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A relatively hyperbolic group G is said to be QCERF if all finitely generated relatively quasiconvex
subgroups are closed in the profinite topology on G.

Assume that G is a QCERF relatively hyperbolic group with double coset separable (eg virtually poly-
cyclic) peripheral subgroups. Given any two finitely generated relatively quasiconvex subgroupsQ;R6G
we prove the existence of finite-index subgroups Q0 6f Q and R0 6f R such that the join hQ0; R0i is
again relatively quasiconvex in G. We then show that, under the minimal necessary hypotheses on the
peripheral subgroups, products of finitely generated relatively quasiconvex subgroups are closed in the
profinite topology on G. From this we obtain the separability of products of finitely generated subgroups
for several classes of groups, including limit groups, Kleinian groups and balanced fundamental groups of
finite graphs of free groups with cyclic edge groups.
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1 Introduction

Any group can be equipped with the profinite topology, whose basic open sets are cosets of finite-index
subgroups. A subset of a group is said to be separable if it is closed in the profinite topology. The trivial
subgroup of a group G is separable if and only if the profinite topology is Hausdorff; in this case G is
said to be residually finite. If every finitely generated subgroup of G is separable then G is called LERF
(or subgroup separable), and if the product of any two finitely generated subgroups is separable, G is
said to be double coset separable.

In this paper we will be interested in various separability properties of relatively hyperbolic groups. The
notion of a relatively hyperbolic group was originally suggested by Gromov [25] as a generalisation
of word hyperbolic groups. The concept was further developed by Farb [20], Bowditch [8], Drut,u and
Sapir [17], Osin [46], and Groves and Manning [26], whose various definitions were later shown to be
equivalent by Hruska [30]. Relative hyperbolicity is a relative property of a group G in the sense that
one must specify a collection of peripheral subgroups fH� j � 2 Ng with respect to which G is relatively
hyperbolic (see Definition 5.3). Typical examples of relatively hyperbolic groups include geometrically
finite Kleinian groups, fundamental groups of finite-volume manifolds of pinched negative curvature,
and small cancellation quotients of free products. Respectively, these groups are hyperbolic relative to
their maximal parabolic subgroups, their cusp subgroups and the images of the free factors (see, for
example, [46]).

1.1 Quasiconvexity of virtual joins

Since general finitely generated subgroups of word hyperbolic (relatively hyperbolic) groups can be quite
wild and need not be separable, it is customary to restrict one’s attention to quasiconvex (respectively,
relatively quasiconvex) subgroups.
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Quasiconvexity of virtual joins and separability of products in relatively hyperbolic groups 401

Quasiconvex subgroups play a central role in the study of word hyperbolic groups. They are precisely the
finitely generated quasi-isometrically embedded subgroups, and, hence, they are hyperbolic themselves
and are generally well behaved.

If Q and R are two quasiconvex subgroups of a hyperbolic group G then the intersection S DQ\R is
also quasiconvex (see, for example, Short [57]) but the join hQ;Ri need not be. This can be remedied
by considering a virtual join of Q and R, which is defined as hQ0; R0i, for some finite-index subgroups
Q0 6f Q and R0 6f R. The existence of a quasiconvex virtual join hQ0; R0i was proved by Gitik [23]
under the assumption that S DQ\R is separable in G. More precisely, Gitik’s theorem states that there
exist finite-index subgroups Q0 6f Q and R0 6f R such that Q0\R0 D S and the virtual join hQ0; R0i
is quasiconvex in G; moreover, hQ0; R0i will be naturally isomorphic to the amalgamated free product
Q0 �S R

0. This theorem was an important ingredient in the proof that double cosets of quasiconvex
subgroups are separable in LERF hyperbolic groups (see [22; 43]).

In the setting of relatively hyperbolic groups, the natural subobjects are the relatively quasiconvex
subgroups, which are themselves relatively hyperbolic in a way that is compatible with the ambient
group. Basic examples of relatively quasiconvex subgroups are maximal parabolic subgroups (that is,
conjugates of the peripheral subgroups), parabolic subgroups (subgroups of maximal parabolics) and
finitely generated undistorted (equivalently, quasi-isometrically embedded) subgroups (see [30]).

In [30], Hruska proved that the intersection of two relatively quasiconvex subgroups is again relatively
quasiconvex. However, until now the existence of a relatively quasiconvex virtual join hQ0; R0i, for two
relatively quasiconvex subgroups Q and R in a relatively hyperbolic group G, such that S DQ\R is
separable in G, was only known in special cases:

� Martínez-Pedroza [37] proved it in the case when R 6 P , for some maximal parabolic subgroup
P of G, such that Q\P �R;

� Martínez-Pedroza and Sisto [38] proved it when Q and R have compatible parabolics (that is, for
every maximal parabolic subgroup P of G either Q\P �R\P or R\P �Q\P );

� Yang [60] (unpublished; see also McClellan’s thesis [40]) proved it when R is a full subgroup of G
(that is, for every maximal parabolic subgroup P in G, R\P is either finite or has finite index
in P ).

Similarly to Gitik’s theorem [23], in all three cases above the authors establish an isomorphism between
the virtual join hQ0; R0i and the amalgamated free product Q0 �S 0 R0, where S 0 DQ0\R0 6f S .

The extra assumptions on Q and R in each of the above results from [37; 38; 40; 60] imply that Q and R
have almost compatible parabolics (see Definition 1.5 below). Unfortunately this is still a significant
restriction and a more general result is desirable. Moreover, in the absence of almost compatibility one
cannot expect a virtual join to split as an amalgamated free product of Q0 and R0. Indeed, for example if
both Q and R are subgroups of an abelian peripheral subgroup of G then any virtual join hQ0; R0i would
again be abelian.

Algebraic & Geometric Topology, Volume 25 (2025)
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One of the goals of the present paper is to establish quasiconvexity of virtual joins without making
any compatibility assumptions on Q and R. However we need to impose stronger assumptions on the
properties of the profinite topology on G than just separability of S DQ\R: we will require the finitely
generated relatively quasiconvex subgroups to be separable and the peripheral subgroups to be double
coset separable.

Definition 1.1 (QCERF) We will say that a relatively hyperbolic group G is QCERF if every finitely
generated relatively quasiconvex subgroup in G is separable.

Theorem 1.2 Let G be a finitely generated relatively hyperbolic group. Suppose that G is QCERF and
the peripheral subgroups of G are double coset separable. If Q;R 6G are finitely generated relatively
quasiconvex subgroups and S DQ\R then there exist finite-index subgroups Q0 6f Q and R0 6f R,
with Q0\R0 D S , such that the virtual join hQ0; R0i is relatively quasiconvex in G.

More precisely, there exists L 6f G, with S � L, such that for any L0 6f L, satisfying S � L0, we
can choose Q0 DQ\L0 6f Q, and there exists M 6f L0, with Q0 �M , such that for any M 0 6f M ,
satisfying Q0 �M 0, we can choose R0 DR\M 0 6f R.

One can observe that the choice of R0 6f R in the above theorem depends on the choice of Q0 6f Q. In
the case when the peripheral subgroups are abelian the situation is easier:

Theorem 1.3 Let G be a finitely generated group hyperbolic relative to a finite collection of abelian
subgroups. Assume that G is QCERF. If Q;R 6G are relatively quasiconvex subgroups and S DQ\R
then there exists a finite-index subgroupL6f G, with S�L, such that the virtual join hQ0; R0i is relatively
quasiconvex in G, for arbitrary subgroups Q0 6f Q\L and R0 6f R\L, satisfying Q0\R0 D S .

In fact, one can slightly weaken the assumptions in Theorem 1.3 by requiring the peripheral subgroups of
G to be virtually abelian instead of abelian; see Corollary 14.2.

Unlike the previous results from [38; 60], Theorem 1.2 does not require any (almost) compatibility of
parabolics from the subgroups Q and R. To work in this general setting, we develop a novel approach
which uses the profinite topology on G to carefully select the finite-index subgroups Q0 6f Q and
R0 6f R satisfying certain metric properties (see Sections 3.1, 3.2 and 11). We also give a new and
simple criterion for establishing separability of double cosets in amalgamated free products in Section 12.

Theorem 1.2 applies to a wide class of relatively hyperbolic groups, including all limit groups, all Kleinian
groups and many groups acting on CAT(0) cube complexes. Regarding QCERF-ness, Manning and
Martínez-Pedroza [36] proved that the following two statements are equivalent:

(a) every finitely generated group hyperbolic relative to a finite collection of LERF and slender
subgroups is QCERF;

(b) all word hyperbolic groups are residually finite.
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Recall that a group is called slender if every subgroup is finitely generated. The question of whether
statement (b) is true is a well-known open problem. If the answer to it is positive then, for example, all
finitely generated groups hyperbolic relative to virtually polycyclic subgroups will be QCERF.

Large classes of relatively hyperbolic groups have already been proved to be QCERF. One of the first
results in this direction is due to Wilton [58], who established QCERF-ness of limit groups. The ground-
breaking work of Haglund and Wise [28] and Agol [2] implies that any word hyperbolic group acting
geometrically on a CAT(0) cube complex is QCERF. One of the consequences of this result is that all
finitely generated Kleinian groups are QCERF. More recently, Einstein and Groves [18] and Groves and
Manning [27] extended this theory to relatively hyperbolic groups acting (weakly) relatively geometrically
on CAT(0) cube complexes. Einstein and Ng [19] used it to show that full relatively quasiconvex subgroups
of C 0.1=6/-small cancellation quotients of free products of residually finite groups are separable. In the
case when the free factors are LERF and slender the latter result can be combined with a theorem of
Manning and Martínez-Pedroza [36, Theorem 1.7] to conclude that such small cancellation free products
are QCERF.

By a theorem of Lennox and Wilson [33] all virtually polycyclic groups are double coset separable; hence
the assumption about peripheral subgroups in Theorem 1.2 is automatically true in many relevant cases.
However whether this assumption is actually necessary is less obvious. It is required in our approach, but
it would be interesting to see whether the theorem remains valid without it. As expected from the results
in [38; 60], it is not needed if the relatively quasiconvex subgroups Q and R have almost compatible
parabolics; see Theorem 14.5 below.

1.2 Separability of double cosets

In group theory, knowing that double cosets of certain subgroups are separable is often quite useful. For
example, the separability of double cosets of hyperplane subgroups was used by Haglund and Wise in [28]
to give a criterion for virtual specialness of a compact non-positively curved cube complex. Separability
of double cosets of abelian subgroups in Kleinian groups was an important ingredient in the theorem
of Hamilton, Wilton and Zalesskii [29] that fundamental groups of compact orientable 3-manifolds are
conjugacy separable.

Double coset separability of free groups was first proved by Gitik and Rips [24]. Shortly after, Niblo [44]
came up with a new criterion for separability of double cosets and applied it to show that finitely
generated Fuchsian groups and fundamental groups of Seifert-fibred 3-manifolds are double coset separable.
Separability of double cosets of quasiconvex subgroups in QCERF word hyperbolic groups was proved
by the first author in [43]. Martínez-Pedroza and Sisto [38] generalised this to double cosets of relatively
quasiconvex subgroups with compatible parabolics in QCERF relatively hyperbolic groups; Yang [60]
and McClellan [40] treated the case when at least one of the factors is full. Our proof of Theorem 1.2
almost immediately yields the following.
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Corollary 1.4 Let G be a finitely generated group hyperbolic relative to a finite collection of subgroups
fH� j � 2 Ng. Suppose that G is QCERF and H� is double coset separable , for every � 2 N. Then for all
finitely generated relatively quasiconvex subgroups Q;R 6G, the double coset QR is separable in G.

Clearly the assumptions of Corollary 1.4 are the minimal possible. This result is powerful enough to
prove a conjecture of Hsu and Wise from [31]; see Corollary 2.3.

In the case when the relatively hyperbolic group G admits a weakly relatively geometric action on a
CAT(0) cube complex, Corollary 1.4 was proved by Groves and Manning [27]. Groves and Manning’s
argument uses Dehn fillings to approximate G by QCERF word hyperbolic groups; thus reducing the
statement to separability of double cosets in hyperbolic groups from [43]. Our approach is completely
different as we always work within G.

In the following definition we will use a preorder 4 on the sets of subsets of a group G, introduced by
the first author in [42]:

given U; V �G we will write U 4 V if there exists a finite subset Y �G such that U � V Y:

If dX is the word metric on G, corresponding to a finite generating set X , and U and V are subsets of G
then U 4 V if and only if U is contained in a finite dX -neighbourhood of V . If U and V are subgroups
of G then U 4 V is equivalent to jU W .U \V /j<1 (see [42, Lemma 2.1]).

Definition 1.5 (almost compatible parabolics) Let Q and R be subgroups of a relatively hyperbolic
groups G. We will say that Q and R have almost compatible parabolics if for every maximal parabolic
subgroup P of G either Q\P 4R\P or R\P 4Q\P .

Clearly if G is a relatively hyperbolic group and Q and R are subgroups with compatible parabolics then
they have almost compatible parabolics. The same is true if at least one of Q or R is a full subgroup of G.

In the case when the relatively quasiconvex subgroups Q and R have almost compatible parabolics, the
assumption that the peripheral subgroupsH� are double coset separable can be dropped from Corollary 1.4,
allowing us to recover the double coset separability results from [38; 40; 60].

Corollary 1.6 Suppose that G is a finitely generated QCERF relatively hyperbolic group. If Q and R
are finitely generated relatively quasiconvex subgroups of G with almost compatible parabolics then the
double coset QR is separable in G.

1.3 Separability of products of quasiconvex subgroups

The third part of this paper is dedicated to proving separability for more general products F1 � � �Fs , where
s 2N is arbitrary and F1; : : : ; Fs are relatively quasiconvex subgroups in a relatively hyperbolic group.

Definition 1.7 (RZs and product separability) Let P be a group and let s 2 N. We say that P has
property RZs if for arbitrary finitely generated subgroups E1; : : : ; Es 6 P the product E1 � � �Es is
separable in P . If P has property RZs for all s 2N, we say that P is product separable.
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Thus RZ1 means that the group is LERF and RZ2 is equivalent to double coset separability. The definition
of RZs is due to Coulbois [14]; he named it after Ribes and Zalesskii, who proved in [53] that free groups
are product separable, confirming a conjecture of Pin and Reutenauer from [49]. Pin and Reutenauer
showed that product separability of free groups implies Rhodes’ type II conjecture from semigroup theory
(see [48; 49] for the background).

In [43], generalising the result of [53], the first author proved that the product of finitely many quasiconvex
subgroups is separable in a QCERF word hyperbolic group. Moreover, in [14] Coulbois showed that, for
every s 2N, free products of groups with property RZs also have property RZs . Taken together, these
facts motivate the following theorem.

Theorem 1.8 Let G be a finitely generated group hyperbolic relative to a finite collection of subgroups
fH� j � 2 Ng, and let s 2 N. Suppose that G is QCERF and H� has property RZs , for each � 2 N. If
F1; : : : ; Fs 6G are finitely generated relatively quasiconvex subgroups of G, then the product F1 � � �Fs
is separable in G.

We note that separability of products of full relatively quasiconvex subgroups in a QCERF relatively
hyperbolic group was proved by McClellan [40].

Finitely generated virtually abelian groups are product separable. Therefore, Theorem 1.8 applies to finitely
generated QCERF relatively hyperbolic groups with virtually abelian peripheral subgroups. Examples of
such groups include limit groups, geometrically finite Kleinian groups and C 0.1=6/-small cancellations
quotients of free products of finitely generated virtually abelian groups (see [51]). We discuss some
applications of Theorem 1.8 in Section 2.2, and give a brief outline of the proof at the beginning of
Part III.
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2 Applications

In this section we list some applications of the main results from the introduction.

2.1 Geometrically finite virtual joins

A Kleinian group is a discrete subgroup of the (orientation-preserving) isometries of the real hyperbolic
3-space, Isom.H3/. Recall that a Kleinian group G has an induced action on the ideal boundary @H3 of
hyperbolic space by homeomorphisms, under which the smallest G-invariant compact subset, ƒG, is
called its limit set. A subgroup P 6G is called parabolic if it has a single fixed point p in @H3 and setwise
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fixes some horosphere centred at p. We say that G is geometrically finite if every point of ƒG is either a
conical limit point or a bounded parabolic point (see [7] for definitions). Examples of geometrically finite
Kleinian groups include the fundamental groups of finite-volume hyperbolic 3-manifolds.

As noted in the introduction, geometrically finite Kleinian groups are relatively hyperbolic with respect
to conjugacy class representatives of their maximal parabolic subgroups (which are virtually abelian).
Moreover, geometrically finite subgroups are exactly the relatively quasiconvex subgroups of geometrically
finite Kleinian groups [30, Corollary 1.6].

Baker and Cooper [5] showed, using geometric methods, that if G is a finitely generated Kleinian group
and Q and R are geometrically finite subgroups of G with almost compatible parabolics, then there are
finite-index subgroups Q0 6f Q and R0 6f R such that the join hQ0; R0i is geometrically finite. In [38]
Martínez-Pedroza and Sisto recover this result for geometrically finite Kleinian groups as a special case
of their work, using techniques closer to those in the present paper. Using Theorem 1.2, we are able to
eliminate the hypothesis of compatible parabolic subgroups in these results:

Corollary 2.1 Let G be a geometrically finite Kleinian group , and suppose that Q;R 6G are geomet-
rically finite subgroups of G. Then there are finite-index subgroups Q0 6f Q and R0 6f R such that
hQ0; R0i is a geometrically finite subgroup of G.

Proof The group G is geometrically finite, so it is finitely generated [50, Theorem 12.4.9] and hyperbolic
relative to a finite collection of finitely generated virtually abelian subgroups [8; 30]. Agol proved that all
finitely generated Kleinian groups are LERF [2, Corollary 9.4]; in particular, this means that they are
QCERF. Therefore G is a QCERF relatively hyperbolic group with double coset separable peripheral
subgroups. By Hruska’s result [30, Corollary 1.6], a subgroup of G is geometrically finite if and only if it
is relatively quasiconvex. We may now apply Theorem 1.2 to obtain the desired conclusion.

2.2 Product separability

Recall that a group G is product separable if the product of finitely many finitely generated subgroups
is closed in the profinite topology on G. Until now, few examples of groups were known to be product
separable: free abelian groups, free groups [53], groups of the form F �Z, where F is free [61], and
locally quasiconvex LERF hyperbolic groups [43] (eg, surface groups). Additionally, the class of product
separable groups is closed under taking subgroups, finite-index supergroups and free products [14].
However, this class is not closed under direct products (eg, the direct product of two non-abelian free
groups is not even LERF [4]). It also does not contain some polycyclic groups: in [33] Lennox and
Wilson proved that the integral Heisenberg group H3.Z/, which is polycyclic (in fact, finitely generated
nilpotent of class 2), is not product separable as it does not have property RZ3.

We use Theorem 1.8 to establish product separability for many more groups.
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Theorem 2.2 The following groups are product separable:

(i) limit groups;

(ii) finitely generated Kleinian groups;

(iii) fundamental groups of finite graphs of free groups with cyclic edge groups , as long as they are
balanced.

Recall that a group G is called a limit group if it is finitely generated and fully residually free (that is, for
every finite subset A�G, there is a free group F and a homomorphism ' WG! F that is injective when
restricted to A). Limit groups played an important role in the solutions of Tarski’s problems about the
first order theory of free groups by Sela [54] and Kharlampovich and Myasnikov [32].

Following Wise, we say that a group G is balanced if for every infinite order element g 2G the conjugacy
between gm and gn implies that nD˙m. In [59], Wise proved that the fundamental group G of a finite
graph of free groups with cyclic edge groups is LERF if and only if it is balanced if and only if G does
not contain any non-Euclidean Baumslag–Solitar subgroups BS.m; n/ D ha; t j tamt�1 D ani, with
m; n 2 Z n f0g and n¤˙m.

Part (iii) of Theorem 2.2 generalises a result of Coulbois [13, Theorem 5.18], who proved that the free
amalgamated product of two free groups along a cyclic subgroup is product separable. Theorem 2.2(iii)
confirms (in a strong way) a conjecture of Hsu and Wise [31, Conjecture 15.5], which states that a
balanced group splitting as a finite graph of free groups with cyclic edge groups is double coset separable.

Corollary 2.3 Suppose that G splits as a fundamental group of a finite graph of finitely generated free
groups with cyclic edge groups. If G is balanced then it is virtually compact special ; in other words , G
has a finite-index subgroup which is isomorphic to the fundamental group of a compact non-positively
curved special cube complex (in the sense of Haglund and Wise [28]).

Proof Hsu and Wise [31, Theorem 10.4] proved that G admits a proper cocompact action on a CAT(0)
cube complex X. By Theorem 2.2, G is double coset separable; hence, by a result of Haglund and Wise
[28, Theorem 9.19], G has a finite-index subgroup K such that KnX is a special cube complex.

After the completion of this paper the authors learned of a recent result of Shepherd and Woodhouse [56,
Theorem 1.2], which gives an alternative proof of Corollary 2.3, using different methods.

One of the original motivations for considering product separability of groups came from semigroups and
automata theory. Pin and Reutenauer [49] used this property to characterise the profinitely closed rational
subsets of free groups.

Recall that for a monoid M , the rational subsets Rat.M/� 2M form the smallest collection of subsets
of M satisfying the following conditions:

(1) ∅ 2 Rat.M/ and, for each m 2M , fmg 2 Rat.M/;
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(2) if A;B 2 Rat.M/, then AB 2 Rat.M/ and A[B 2 Rat.M/;

(3) if A 2 Rat.M/, then A� 2 Rat.M/, where A� is the submonoid of M generated by A.

We refer the reader to [49] for an account of the basic theory of rational subsets.

In a group G it makes sense to consider the subgroup closure instead of the �-closure. Thus we define
the set Rat0.G/� 2G as the smallest collection of subsets of G containing all finite subsets, closed under
finite unions, products and subgroup closure. It is easy to see that Rat0.G/ consists of all subsets of
the form gF1 � � �Fs , where s 2 N0, g 2 G and F1; : : : ; Fs are finitely generated subgroups of G [49,
Proposition 2.2]. Evidently Rat0.G/�Rat.G/; moreover, it is not difficult to show that Rat0.G/DRat.G/
if and only if G is torsion.

The following theorem was proved by Pin and Reutenauer [49, Corollary 2.5] in the case of free groups
(see also [52, Section 12.3] for a slightly different argument); however the proof is readily seen to remain
valid in all product separable groups.

Theorem 2.4 (Pin and Reutenauer) If G is a product separable group then Rat0.G/ is precisely the
class of all separable rational subsets of G.

Corollary 2.5 If G is a group from one of the classes (i)–(iii), described in Theorem 2.2, then the set of
separable rational subsets of G coincides with Rat0.G/.

3 Plan of the paper

3.1 The metric quasiconvexity theorem

Let G be a relatively hyperbolic group generated by a finite set X , and let Q and R be relatively
quasiconvex subgroups of G. The technical heart of this paper is Theorem 3.5 below, which, given some
relatively quasiconvex subgroups Q0 6 Q and R0 6 R, provides sufficient metric conditions for the
relative quasiconvexity of the join hQ0; R0i.

Definition 3.1 (minX ) Let G be a group with finite generating set X , and let Y �G. Then we denote
the number minfjgjX j g 2 Y g by minX .Y /, with the usual convention that minimum over the empty set
is C1.

Let S DQ\R and A � 0 be some constant. We will be interested in finding subgroups Q0 6Q and
R0 6R satisfying the following properties:

(P1) if Q0 and R0 are relatively quasiconvex in G then so is the subgroup hQ0; R0i;

(P2) minX .hQ0; R0i nS/� A;

(P3) minX .QhQ0; R0iR nQR/� A.

Algebraic & Geometric Topology, Volume 25 (2025)
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Remark 3.2 � Quasiconvexity of Q0 and R0 is only required in property (P1).

� Property (P2) says that all “short” elements of hQ0; R0i belong to S .

� Property (P3) is the key ingredient for proving that the double coset QR is separable in G in
Corollary 1.4.

Let us now describe the metric conditions used to establish the above properties. Given a finite collection
P of maximal parabolic subgroups of G, constants B;C � 0 and subgroups Q0 6Q and R0 6 R, we
will consider the following conditions:

(C1) Q0\R0 D S ;

(C2) minX .QhQ0; R0iQ nQ/� B and minX .RhQ0; R0iR nR/� B;

(C3) minX ..PQ0[PR0/ nPS/� C , for each P 2 P.

Moreover, if not all of the subgroups in P are abelian then we will need two more conditions (here for
subgroups H;P 6G, we use HP to denote the intersection H \P 6 P ):

(C4) QP \ hQ
0
P ; R

0
P i DQ

0
P and RP \ hQ0P ; R

0
P i DR

0
P , for every P 2 P;

(C5) minX .qhQ0P ; R
0
P iRP n qQ

0
PRP /� C , for each P 2 P and all q 2QP .

Remark 3.3 If the peripheral subgroups of G are abelian then condition (C4) follows from (C1) and
condition (C5) is trivially true.

Indeed, if P is abelian, then, in the notation of (C4), hQ0P ; R
0
P i DQ

0
PR
0
P ; hence

Q0P �QP \ hQ
0
P ; R

0
P i DQP \Q

0
PR
0
P DQ

0
P .QP \R

0
P /�Q

0
PSP DQ

0
P ;

where the last equality used that SP D S \P �Q0P by (C1). The second equality of (C4) can be proved
in the same fashion.

Similarly, if q 2QP then qhQ0P ; R
0
P iRP D qQ

0
PR
0
PRP D qQ

0
PRP , so

minX .qhQ0P ; R
0
P iRP n qQ

0
PRP /DminX .∅/DC1I

thus (C5) holds.

Remark 3.4 In this paper we will be primarily interested in the existence of finite-index subgroups
Q0 6f Q and R0 6f R satisfying the above conditions. This may be easier to interpret through the lens
of the profinite topology on G (see Section 11):

� Conditions (C1) and (C4) can be ensured by choosing any finite-index subgroup M 6f G with
S �M , and setting Q0 DQ\M , R0 DR\M .

� The existence of finite-index subgroups Q0 6f Q and R0 6f R satisfying condition (C2) can be
deduced from separability of Q and R in G.

� The existence of finite-index subgroups Q0 6f Q and R0 6f R satisfying condition (C3) can be
deduced from separability of the double coset PS in G.
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� If Q0P 6f QP is already chosen then R0P 6f RP , satisfying (C5), can be constructed with the help
of separability of the double coset Q0PRP in P . Indeed, if QP D

Sn
jD1 ajQ

0
P , then the inequality

in (C5) can be rewritten as minX .aj hQ0P ; R
0
P iQ

0
pRP n ajQ

0
PRP / � C , for every j D 1; : : : ; n.

Thus our approach to establishing (C5) will be to choose R0 6f R after Q0 6f Q has already been
constructed (in other words, R0 will depend on Q0).

Theorem 3.5 (metric quasiconvexity theorem) Let G be relatively hyperbolic group generated by
a finite set X . Suppose that Q;R 6 G are relatively quasiconvex subgroups and denote S D Q \R.
There exists a finite collection P of maximal parabolic subgroups of G such that for any A� 0 there are
constants B;C � 0 satisfying the following.

Suppose that Q0 6 Q and R0 6 R are subgroups of G satisfying conditions (C1)–(C5). Then these
subgroups enjoy properties (P1)–(P3) above.

Rough sketches of the proofs of Theorems 3.5 and 1.2 are given in the beginning of Part II of the paper.

3.2 The separability assumptions

As the reader may notice, our main results in the introduction assume that the underlying relatively
hyperbolic group G is QCERF and the peripheral subgroups of G are double coset separable. Indeed, the
essence of our method is in finding (sufficiently many) finite-index subgroups Q0 6f Q and R0 6f R
satisfying conditions (C1)–(C5) by using properties of the profinite topology. However, a careful analysis
of the arguments reveals that instead of the full QCERF assumption it is possible to require the separability
only of certain finitely generated relatively quasiconvex subgroups related to Q and R. For example,
the proof of Theorem 1.2 relies on the separability conditions (S1)–(S3) from Theorem 11.3, which are
established in Section 13 using the separability of relatively quasiconvex subgroups Q, R, K, hK;T i
and hK;V i, where K 6f P 2 P, T 6f Q, V 6f R and P D P1 is a finite collection of maximal
parabolic subgroups of G that depends on Q and R (see Notation 10.2). The exact requirements for
double coset separability of the peripheral subgroups are easier to trace: it suffices to look at condition (S4)
of Theorem 11.3.

3.3 Section outline

This paper is structured as follows. There are three parts: Part I contains background material and useful
preliminary results (Sections 4–5), Part II is dedicated to the proof of the metric quasiconvexity theorem
and the double coset separability results that follow from them (Sections 6–15), and Part III is essentially
dedicated to the proof and applications of Theorem 1.8 (Sections 16–21).

Section 4 covers generalities and Section 5 covers definitions and results specific to relatively hyperbolic
groups. In Section 6 we introduce the terminology of path representatives, their associated types, and
make some observations about path representatives that have minimal type. Sections 7 and 8 are devoted to
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controlling certain instances of backtracking in minimal type path representatives. In Section 9 we describe
the “shortcutting” of a broken line, and establish its quasigeodesicity under some technical assumptions.
Section 10 contains the proof of Theorem 3.5. In Sections 11 and 13 we show how finite-index subgroups
Q0 6f Q and R0 6f R satisfying conditions (C1)–(C5) can be obtained using separability, with the help
of a new criterion for separability of double cosets in amalgamated products from Section 12. Section 14
contains proofs of Theorems 1.2 and 1.3, while Section 15 contains the proof of Corollary 1.6.

In Section 16 we generalise the content of Section 6 to the setting of products of subgroups, as well
as introducing new metric conditions (C2-m) and (C5-m). Sections 17 and 18 are product analogues
to Section 8; similarly, Section 19 generalises Section 11. Finally, Section 20 contains the proof of
Theorem 1.8, and Section 21 establishes new examples of product separable groups, proving Theorem 2.2.

Part I Background

In this part we will present the definitions and basic results that will be necessary for the rest of the paper.

4 Preliminaries

4.1 Notation

We write N for the set of natural numbers f1; 2; 3; : : : g, and N0 for N [f0g.

Let G be a group. If H is a finite-index (respectively, finite-index normal) subgroup of G, then we
write H 6f G (respectively, H Cf G). For a subgroup T 6 G and elements a; b 2 G we will write
T a D aTa�1 6G and ba D aba�1 2G.

By a generating set A of G we will mean a set A together with a map A!G such that the image of A

under this map generates G.

If A is a generating set for G, then we denote by �.G;A/ the (left) Cayley graph of G with respect to A.
The standard edge path length metric on �.G;A/ will be denoted by dA. � ; � /. After identifying G with
the vertex set of �.G;A/, this metric induces the word metric associated to A: dA.g; h/D jg

�1hjA for
all g; h 2G, where jgjA denotes the length of the shortest word in A˙1 representing g in G.

Abusing the notation, we will identify the combinatorial Cayley graph �.G;A/ with its geometric
realisation. The latter is a geodesic metric space and, given two points x and y in this space, we will
use Œx; y� to denote a geodesic path from x to y in �.G;A/. In general �.G;A/ need not be uniquely
geodesic, so there will usually be a choice for Œx; y�, which will either be specified or will be clear from
the context (eg, if x and y already belong to some geodesic path under discussion, then Œx; y� will be
chosen as the subpath of that path).

If Y �G is a subset of G and K � 0, we denote by

NA.Y;K/D fg 2G j dA.g; Y /�Kg
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the K-neighbourhood of Y with respect to dA. Note that when A is a finite generating set, the metric
dA is proper. However, in this paper we will also be working with infinite generating sets; see Section 5
below, where generating sets of the form ADX [H are considered.

The following general fact will be used quite often.

Lemma 4.1 Let G be a group generated by a finite set A. If A;B 6 G are subgroups of G then for
every K � 0 there is a constant K 0 DK 0.A;B;K/� 0 such that for any x 2G we have

NA.xA;K/\NA.xB;K/�NA.x.A\B/;K
0/:

Proof After applying the left translation by x�1, which preserves the metric dA, we can assume that
x D 1. Now the statement follows, for example, from [30, Proposition 9.4].

Suppose that 
 is a combinatorial path (edge path) in �.G;A/. We will denote the initial and terminal
endpoints of 
 by 
� and 
C respectively. We will write `.
/ for the length (that is, the number of edges)
of 
 . We will also use 
�1 to denote the inverse of 
 , which is the path starting at 
C, ending at 
� and
traversing 
 in the reverse direction. If 
1; : : : ; 
n are combinatorial paths with .
i /C D .
iC1/�, for
each i 2 f1; : : : ; n� 1g, we will denote their concatenation by 
1 � � � 
n.

Since �.G;A/ is a labelled graph, every combinatorial path 
 comes with a label Lab.
/, which is a
word over the alphabet A˙1. We denote by Q
 2 G the element represented by Lab.
/ in G. Finally,
we write j
 jA D j Q
 jA D dA.
�; 
C/. Note that Lab.
�1/ is the formal inverse of Lab.
/, so that and
j
�1jA D j
 jA and e
�1 D Q
�1.

4.2 Quasigeodesic paths

In this section we assume that � is a graph equipped with the standard path length metric d. � ; � /.

Definition 4.2 (quasigeodesic) Let �� 1 and c � 0 be some numbers and let p be an edge path in � .
Recall that p is said to be .�; c/-quasigeodesic if for every combinatorial subpath q of p we have

`.q/� �d.q�; qC/C c:

Lemma 4.3 Suppose that s D rpt is a concatenation of three combinatorial paths r , p and t in � such
that `.r/�D and `.t/�D, for some D � 0, and p is .�; c/-quasigeodesic , for some �� 1 and c � 0.
Then the path s is .�; c0/-quasigeodesic , where c0 D cC 2.�C 1/D.

Proof Consider an arbitrary combinatorial subpath q of s. We need to show that

(4-1) `.q/� �d.q�; qC/C cC 2.�C 1/D:

If q is contained in r or in t then the desired inequality follows from the assumptions that `.r/�D and
`.t/ � D. Therefore we can further suppose that q� is a vertex of rp and qC is a vertex of pt . The
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bounds on the lengths of r and t imply that there is a combinatorial subpath a of p such that there are at
most D edges of s between q� and a� and between aC and qC. Thus d.q�; a�/�D, d.qC; aC/�D
and `.q/� `.a/C 2D

The assumption that p is .�; c/-quasigeodesic implies that

(4-2) `.q/� `.a/C 2D � �d.a�; aC/C cC 2D:

The triangle inequality gives d.a�; aC/� d.q�; qC/C2D, which, combined with (4-2), shows that (4-1)
holds, as required.

Lemma 4.4 Let � � 1, c � 0 and K 2 N. Suppose that p is a combinatorial path in � and let p0 be
a path obtained by replacing some edges of p with combinatorial paths of length at most K. If p is
.�; c/-quasigeodesic then p0 is .K�; 2K2�CKcC 2K/-quasigeodesic.

Proof Let q be any combinatorial subpath of p0 and write q� D x and qC D y. We need to show that

(4-3) `.q/�K�d.x; y/C 2K2�CKcC 2K:

If q does not contain any vertices of p then `.q/�K and (4-3) holds. Otherwise, let z and w be the first
and the last vertices of q that lie on p respectively, and let r be the subpath of p starting at z and ending
at w. The assumptions imply that d.x; z/�K, d.y;w/�K and

(4-4) `.q/�K`.r/C 2K:

Using the quasigeodesicity of p and the triangle inequality, we obtain

`.r/� �d.z; w/C c � �d.x; y/C 2K�C c;

which, combined with (4-4), gives (4-3).

4.3 Hyperbolic metric spaces

In this subsection let .�; d/ be a geodesic metric space.

Definition 4.5 (Gromov product) Let x; y; z 2 � be points. The Gromov product of x and y with
respect to z is

hx; yiz D
1
2
.d.x; z/C d.y; z/� d.x; y//:

It is easy to see that the Gromov products satisfy

d.x; y/D hy; zixChx; ziy ; d.y; z/D hx; ziy Chx; yiz; d.z; x/D hx; yizChy; zix :

The following elementary property of Gromov products is an immediate consequence of the triangle
inequality.

Remark 4.6 Suppose that x, y and z are points in � , u is a point on any geodesic segment Œx; z�, from
x to z, and v is a point on any geodesic segment Œz; y�, from z to y. Then

hu; viz � hx; yiz :
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Definition 4.7 (ı-thin triangle) Let � be a geodesic triangle in � with vertices x, y and z, and let
ı � 0. Denote by T� the (possibly degenerate) tripod with edges of length hx; yiz , hy; zix and hz; xiy
respectively. There is an map from fx; y; zg to the extremal vertices of T�, which extends uniquely to a
map � W�! T�, whose restriction to each side of � is an isometry. If the diameter in � of ��1.ftg/ is
at most ı, for all t 2 T�, then � is said to be ı-thin.

Definition 4.8 (hyperbolic space) The space � is said to be a hyperbolic metric space if there is a
constant ı � 0 such that every geodesic triangle in � is ı-thin.

The above definition of ı-hyperbolicity is not the most commonly used in the literature, though it is well-
known to be equivalent to other definitions after possibly increasing ı; see, for example, [9, III.H.1.17].
For technical reasons we will always assume that ı is chosen to be sufficiently large so that all the
definitions in this reference are satisfied.

In the remainder of this subsection we assume that � is a ı-hyperbolic graph, for some ı � 0, and d. � ; � /
is the standard path length metric on � .

Definition 4.9 (broken line) A broken line in � is a path p which comes with a fixed decomposition
as a concatenation of combinatorial geodesic paths p1; : : : ; pn in � , so p D p1p2 � � �pn. The paths
p1; : : : ; pn will be called the segments of the broken line p, and the vertices

p� D .p1/�; .p1/C D .p2/�; : : : ; .pn�1/C D .pn/�; .pnC1/C D pC

will be called the nodes of p.

The following statement is a special case of [41, Lemma 4.2], applied to the situation when each pi is
geodesic (so, in the notation of that lemma, we can take N� D 1, Nc D 0 and � D ı). Note that due to a
slightly different definition of quasigeodesicity used in [41], a .�; c/-quasigeodesic in the sense of [41] is
.1=�; c=�/-quasigeodesic in the sense of Definition 4.2 above, and vice versa.

Lemma 4.10 Let c0, c1 and c2 be constants such that c0� 14ı, c1D 12.c0Cı/C1 and c2D 10.ıCc1/.

Suppose that pDp1 � � �pn is a broken line in � , where pi is a geodesic with .pi /�Dxi�1 and .pi /CDxi
for i D 1; : : : ; n. If d.xi�1; xi /� c1 for i D 1; : : : ; n, and hxi�1; xiC1ixi

� c0 for each i D 1; : : : ; n�1,
then the path p is .4; c2/-quasigeodesic.

We will need an extension of the above lemma which allows the first and the last geodesic segments p1
and pn to be short.

Lemma 4.11 For any constant c0 satisfying c0 � 14ı, let

c1 D c1.c0/D 12.c0C ı/C 1 and c3 D c3.c0/D 10.ıC 2c1/:

Suppose that pDp1 � � �pn is a broken line in �, where pi is a geodesic with .pi /�Dxi�1 and .pi /CDxi
for iD1; : : : ; n. If d.xi�1; xi /�c1 for iD2; : : : ; n�1, and hxi�1; xiC1ixi

�c0 for each iD1; : : : ; n�1,
then the path p is .4; c3/-quasigeodesic.
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Proof This follows easily by combining Lemma 4.10 with Lemma 4.3. Indeed, there are four possibilities
depending on whether or not d.x0; x1/� c1 and d.xn�1; xn/� c1. Since all of these cases are similar, let
us concentrate on the situation when d.x0; x1/< c1 and d.xn�1; xn/� c1. Then the path qDp2p3 � � �pn
is .4; c2/-quasigeodesic by Lemma 4.10, where c2 D 10.ıC c1/. Since `.p1/ D d.x0; x1/ < c1, we
can apply Lemma 4.3 to deduce that the path p D p1 � � �pn D p1q is .4; c3/-quasigeodesic, where
c3 D c2C 10c1 D 10.ıC 2c1/, as required.

4.4 Profinite topology and separable subsets

Let G be a group. The profinite topology on G is the topology PT.G/ whose basis consists of left cosets
to finite-index subgroups of G.

A subset Z �G is called separable (in G) if it is closed in PT.G/. Evidently finite unions and arbitrary
intersections of separable subsets are separable. It is easy to see that a subset Z � G is separable if
and only if for every g 2 G nZ, there is a finite group Q and a homomorphism ' W G!Q such that
'.g/ … '.Z/ in Q. A subgroup H �G is separable if and only if it is the intersection of the finite-index
subgroups of G containing it.

The following observation stems from the fact that the group operations of taking an inverse and multiplying
by a fixed element are homeomorphisms with respect to the profinite topology.

Remark 4.12 Let Z be a separable subset of a group G. Then for every g 2G the subsets Z�1, gZ
and Zg are also separable.

Lemma 4.13 Suppose that A is a subgroup of a group G.

(a) Every subset of A which is closed in PT.G/ is also closed in PT.A/.

(b) If every finite-index subgroup of A is separable in G then every closed subset of PT.A/ is closed
in PT.G/.

Proof Claim (a) immediately follows from the observation that the intersection of A with any basic
closed subset from PT.G/ is either empty or is a basic closed subset of PT.A/.

If each finite-index subgroup of A is separable in G then, in view of Remark 4.12, every basic closed set
in PT.A/ is closed in the profinite topology of G. Claim (b) of the lemma now follows from the fact that
any closed subset of A is the intersection of basic closed sets.

Lemma 4.14 Let G be a group with subgroups A and B . Suppose that A0 6f A, B 0 6f B and A0B 0 is
separable in G. Then AB is separable in G.

Proof Let AD
Fm
iD1 aiA

0 and B D
Fn
jD1B

0bj . Then

AB D

m[
iD1

n[
jD1

aiA
0B 0bj ;

which is separable in G by Remark 4.12.
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The next two lemmas use the notation introduced in Sections 1.2 and 3.1.

Lemma 4.15 Let A and B be subgroups of a group G such that A4 B . If B is separable in G then so
are the double cosets AB and BA.

Proof By [42, Lemma 2.1]A\B has finite index inA, soAD
Fm
iD1 ai .A\B/, for some a1; : : : ; am2A.

It follows that AB D
Sm
iD1 aiB , so it is separable by Remark 4.12. The same remark also implies that

BAD .AB/�1 is separable in G.

The main use of the profinite topology in this paper stems from the following elementary facts.

Lemma 4.16 Let G be a group generated by a finite set X , and let P 6G be a subgroup. Suppose that
Z is a separable subset of P .

(a) If a finite subset U � P is disjoint from Z then there is a normal finite-index subgroup N Cf P
such that U \ZN D∅. Thus the image of U in the quotient P=N will be disjoint from the image
of Z.

(b) For every constant C � 0 there is a finite-index normal subgroup N Cf P such that

minX .ZN nZ/� C:

(c) For any finite subset A� P and any C � 0 there exists N Cf P such that

minX .aZN n aZ/� C for all a 2 A:

Proof For (a), let U D fu1; : : : ; umg � P . Since ui …Z and Z is separable in P , there exists Ni Cf P
such that uiNi \Z D ∅, for each i D 1; : : : ; m. We set N D

Tm
iD1Ni Cf P , so that uiN \Z D ∅.

That is, ui …ZN for all i D 1; : : : ; m. Therefore U \ZN D∅ and (a) has been proved.

Claim (b) follows by applying claim (a) to the finite subset U D fg 2 P nZ j jgjX < C g of P .

To prove (c), suppose that AD fa1; : : : ; akg � P . By Remark 4.12, ajZ is separable in P , for every
j D 1; : : : ; k, so, according to part (b), there exists Nj Cf P such that

minX .ajZNj n ajZ/� C for each j D 1; : : : ; k:

It is easy to see that the normal subgroup N D
Tk
jD1Nj Cf P enjoys the required property.

The following statement is well known; we include a proof for completeness.

Lemma 4.17 Let G be a group with subgroups K 6f H 6 G. If K is separable in G, then there is
L6f G such that L\H DK

Proof Since K is of finite index in H , we can write

H DK [Kh1[ � � � [Khm
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for some h1; : : : ; hm 2H nK. The subgroup K is separable in G, meaning that it is closed in PT.G/.
Following Remark 4.12, the union Kh1[ � � � [Khm is also closed in PT.G/. Thus the subset

.G nH/[K DG n .Kh1[ � � � [Khm/

is open in PT.G/ and contains the identity. It follows from the definition of the profinite topology that
there is a finite-index normal subgroup N Cf G with N � .G nH/[K. Observe that Khi \N D∅, for
every i D 1; : : : ; m, soN \H 6K. Now set LDKN 6f G. Then L\H DKN \H DK.N \H/DK,
as required.

5 Relatively hyperbolic groups

In this section we define relatively hyperbolic groups and collect various properties that will be used
throughout the paper.

5.1 Definition

We will define relatively hyperbolic groups following the approach of Osin (for full details, see [46]).

Definition 5.1 (relative generating set, relative presentation) Let G be a group, X �G a subset and
fH� j � 2 Ng a collection of subgroups of G. The group G is said to be generated by X relative to
fH� j � 2Ng if it is generated by XtH, where HD

F
�2N.H� nf1g/ (with the obvious map XtH!G).

If this is the case, then there is a surjection

F D F.X/� .��2NH�/!G;

where F.X/ denotes the free group on X . Suppose that the kernel of this map is the normal closure of a
subset R� F . Then G can equipped with the relative presentation

(5-1) hX;H� ; � 2 N jRi:

If X is a finite set, then G is said to be finitely generated relative to fH� j � 2 Ng. If R is also finite,
G is said to be finitely presented relative to fH� j � 2 Ng and the presentation above is a finite relative
presentation.

With the above notation, we call the Cayley graph �.G;X [H/ the relative Cayley graph of G with
respect to X and fH� j � 2Ng. Note that when X is itself a generating set of G, dX[H.g; h/� dX .g; h/,
for all g; h 2G.

Definition 5.2 (relative Dehn function) Suppose that G has a finite relative presentation (5-1) with
respect to a collection of subgroups fH� j � 2Ng. If w is a word in the free group F.X tH/, representing
the identity in G, then it is equal in F to a product of conjugates

w
F
D

nY
iD1

airia
�1
i ;
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where ai 2 F and ri 2 R, for each i . The relative area of the word w with respect to the relative
presentation, Arearel.w/, is the least number n among products of conjugates as above that are equal to
w in F .

A relative isoperimetric function of the above presentation is a function f WN!N such that Arearel.w/

is at most f .jwj/, for every freely reduced word w in F.X tH/ representing the identity in G. If an
isoperimetric function exists for the presentation, the smallest such function is called the relative Dehn
function of the presentation.

Definition 5.3 (relatively hyperbolic group) Let G be a group and let fH� j � 2Ng be a collection of
subgroups of G. If G admits a finite relative presentation with respect to this collection of subgroups
which has a well-defined linear relative Dehn function, it is called hyperbolic relative to fH� j � 2 Ng.
When it is clear what the relevant collection of subgroups is, we refer toG simply as a relatively hyperbolic
group. The groups fH� j � 2Ng are called the peripheral subgroups of the relatively hyperbolic group G,
and their conjugates in G are called maximal parabolic subgroups. Any subgroup of a maximal parabolic
subgroup is said to be parabolic.

Lemma 5.4 [46, Corollary 2.54] Suppose that G is a group generated by a finite set X and hyperbolic
relative to a collection of subgroups fH� j � 2 Ng, and let HD

F
�2N.H� n f1g/. Then the Cayley graph

�.G;X [H/ is ı-hyperbolic , for some ı � 0.

In the remainder of this section (namely, in Sections 5.2–5.4, we will assume that G is a group generated
by a finite subset X and hyperbolic relative to a finite collection of subgroups fH� j � 2Ng. As usual, we
will let HD

F
�2N.H� n f1g/.

5.2 Geodesics and quasigeodesics in relatively hyperbolic groups

Definition 5.5 (path components) Let p be a combinatorial path in �.G;X [ H/. A non-trivial
combinatorial subpath of p whose label consists entirely of elements of H� n f1g, for some � 2 N, is
called an H�-subpath of p.

An H�-subpath is called an H�-component if it is not contained in any strictly longer H�-subpath. We
will call a subpath of p an H-subpath (respectively, an H-component) if it is an H�-subpath (respectively,
an H�-component), for some � 2 N.

Definition 5.6 (connected and isolated components) Let p and q be edge paths in �.G;X [H/ and
suppose that s and t are H�-subpaths of p and q respectively, for some � 2 N. We say that s and t are
connected if s� and t� belong to the same left coset of H� in G. The latter means that for all vertices u of
s and v of t either uD v or there is an edge e in �.G;X[H/ with Lab.e/2H� nf1g and e�D u; eCD v.

If s is an H�-component of a path p and s is not connected to any other H�-component of p then we say
that s is isolated in p.
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Definition 5.7 (phase vertex) A vertex v of a combinatorial path p in �.G;X [H/ is called non-phase
if it is an interior vertex of an H-component of p (that is, if it lies in an H-component for which it is not
an endpoint). Otherwise v is called phase.

Definition 5.8 (backtracking) If all H-components of a combinatorial path p are isolated, then p is
said to be without backtracking. Otherwise we say that p has backtracking.

Remark 5.9 If p is a geodesic edge path in �.G;X [H/ then every H-component of p will consist of
a single edge, labelled by an element from H. Therefore every vertex of p will be phase. Moreover, it is
easy to see that p will be without backtracking.

The following is a basic observation about the lengths of paths in the relative Cayley graph whose
H-components are uniformly short.

Lemma 5.10 Let p be a path in �.G;X [H/ and suppose there is a constant ‚� 1 such that for any
H-component h of p, we have jhjX �‚. Then jpjX �‚`.p/.

Proof We can write p as a concatenation p D a0h1a1 � � � an�1hnan, where h1; : : : ; hn are the H-
components of p and a0; : : : ; an are subpaths of p all whose edges are labelled by elements of X˙1.

It follows from the triangle inequality that

jpjX D dX .p�; pC/�

nX
iD0

dX ..ai /�; .ai /C/C

nX
iD1

dX ..hi /�; .hi /C/:

Since each edge of ai is labelled by an element of X˙1, we have that dX ..ai /�; .ai /C/� `.ai /, for all
i D 0; : : : ; n. Moreover, dX ..hi /�; .hi /C/D jhi jX �‚`.hi /, for each i D 1; : : : ; n, by the hypothesis
of the lemma, as `.hi /� 1.

Combining the above three inequalities with the fact that ‚� 1, we obtain

jpjX �

nX
iD0

`.ai /C

nX
iD1

‚`.hi /�‚

� nX
iD0

`.ai /C

nX
iD1

`.hi /

�
D‚`.p/:

Lemma 5.11 [46, Lemma 3.1] There is a constant M � 1 such that if h1; : : : ; hn are isolated H-
components of a cycle q in �.G;X [H/, then

nX
iD1

jhi jX �M`.q/:

Lemma 5.12 For any � � 1, c � 0 and A � 0 there is a constant � D �.�; c; A/ � 0 such that the
following is true.

Suppose that p is a .�; c/-quasigeodesic path in �.G;X [H/ possessing an isolated H-component h
such that jhjX � �. Then jpjX � A.

Algebraic & Geometric Topology, Volume 25 (2025)



420 Ashot Minasyan and Lawk Mineh

Proof Let M � 1 be the constant from Lemma 5.11, and set

(5-2) �DM.1C�/ACMc:

Let q be a path in �.G;X [H/, labelled by a word over X˙1, with endpoints q� D p� and qC D pC,
such that `.q/D jpjX .

Consider the cycle r D pq�1 in �.G;X [H/, formed by concatenating p and the inverse of q. By the
quasigeodesicity of p, `.p/� �jpjX[HC c � �jpjX C c. Now `.r/D `.p/C `.q/; therefore

(5-3) `.r/� .1C�/jpjX C c:

Since h is isolated in p it must also be an isolated H-component of the cycle r (because all edges of q
are labelled by letters from X˙1). Hence jhjX �M`.r/ by Lemma 5.11, so (5-3) implies that

(5-4) jpjX �
1

1C�
.`.r/� c/�

1

M.1C�/
.jhjX �Mc/:

Combining the above inequality with (5-2) and the assumption that jhjX � �, we obtain the desired bound
jpjX � A.

Proposition 5.13 [47, Proposition 3.2] There is a constant L� 0 such that if � is a geodesic triangle in
�.G;X [H/ and some side p is an isolated H-component of � then jpjX � L.

Lemma 5.14 There is a constant L� 0 such that if p1 and p2 are geodesic paths in �.G;X [H/ with
.p1/C D .p2/�, and s and t are connected H�-components of p1 and p2 respectively , for some � 2 N,
then dX .sC; t�/� L.

Proof Let L� 0 be the constant provided by Proposition 5.13.

Since the component s of p1 is connected to the component t of p2, we know that hD .sC/�1t� 2H� .
If h D 1 then sC D t� and there is nothing to prove, otherwise sC and t� are endpoints of an edge e
labelled by h in �.G;X [H/.

Consider the geodesic triangle � with vertices sC, .p1/C and t�, where the sides ŒsC; .p1/C� and
Œ.p1/C; t�� are chosen to be subpaths of p1 and p2 respectively, and the side ŒsC; t�� is the edge e.

If v 2 ŒsC; .p1/C� is a vertex belonging to the left coset sCH� then dX[H.s�; v/D 1 and sC 2 Œs�; v�
in p1. Since dX[H.s�; sC/D 1 and p1 is geodesic, we can conclude that v D sC. Similarly, the only
vertex of Œ.p1/C; t�� which belongs to the left coset t�H� D sCH� is t�. It follows that the edge e is an
isolated H�-component of �. Hence dX .sC; t�/� L by Proposition 5.13.

Proposition 5.15 [46, Theorem 3.26] Let � be a combinatorial geodesic triangle in �.G;X [H/ with
sides p, q and r . There is a constant � D �.G;H; X/ 2 N0 such that for any vertex u 2 p, there is a
vertex v 2 q[ r with dX .u; v/� � .

Definition 5.16 (k-similar paths) Let p and q be paths in �.G;X [H/, and let k � 0. The paths p
and q are said to be k-similar if dX .p�; q�/� k and dX .pC; qC/� k.
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Proposition 5.17 [46, Proposition 3.15, Lemma 3.21 and Theorem 3.23] For any ��1 and c; k�0 there
is a constant � D �.�; c; k/� 0 such that if p and q are k-similar .�; c/-quasigeodesics in �.G;X [H/

and p is without backtracking , then

(1) for every phase vertex u of p, there is a phase vertex v of q with dX .u; v/� �;

(2) every H-component s of p, with jsjX � �, is connected to an H-component of q.

Moreover , if q is also without backtracking then

(3) if s and t are connected H-components of p and q respectively, then

maxfdX .s�; t�/; dX .sC; tC/g � �:

5.3 Quasigeodesicity of paths with long components

One of the tools for proving Theorem 3.5 will be the next result of Martínez-Pedroza from [37].

Proposition 5.18 [37, Proposition 3.1] There are constants �0 � 0 and �0 � 1 such that the following
holds. If q D r0s1 � � � rnsnC1 is a concatenation of geodesic paths r0; s1; : : : ; rn; snC1 in �.G;X [H/

such that

(1) si is an H-component of q, for each i D 1; : : : ; nC 1,

(2) jsi jX � �0, for every i D 1; : : : ; nC 1,

(3) si is not connected to siC1, for every i D 1; : : : ; n,

then q is .�0; 0/-quasigeodesic in �.G;X [H/ without backtracking.

We will actually need a slightly more general version of Proposition 5.18, as follows.

Proposition 5.19 There exist constants � � 1 and c � 0 such that for every � � 0 there is �1 > 0

such that the following holds. Suppose that p D a0b1a1 � � � bnan is a concatenation of geodesic paths
a0; b1; : : : ; bn; an in �.G;X [H/ such that

(1) bi is an H-subpath of p, for each i D 1; : : : ; n,

(2) jbi jX � �1, for each i D 1; : : : ; n;

(3) bi is not connected to biC1, for every i D 1; : : : ; n� 1;

(4) if bi is connected to a component h of ai or ai�1 then jhjX � �, i D 1; : : : ; n.

Then p is a .�; c/-quasigeodesic without backtracking.

Proof The argument below employs the following trick: for each i D 1; : : : ; n, we replace the H-
component of p containing bi by a single edge si , and then embed the resulting path p0 into a larger
path q to which Proposition 5.18 can be applied. Since a subpath of a .�; c/-quasigeodesic path without
backtracking is again .�; c/-quasigeodesic and without backtracking, this will complete the proof. In
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order to construct the path q we add an extra infinite peripheral subgroup Z by embedding G into a larger
relatively hyperbolic group G1.

Let us consider the free product G1 D G � Z, where Z D hzi is an infinite cyclic group. Since G
is hyperbolic relative to the family fH� j � 2 Ng, the group G1 is hyperbolic relative to the union
fH� j � 2 Ng [ fZg (this can be fairly easily deduced from the definition or from many existing
combination theorems for relatively hyperbolic groups, eg [45, Corollary 1.5]).

Note that G embeds in G1 and G1 is generated by the finite set X 0 DX t fzg. Let H0 DHtZ n f1g, so
that the Cayley graph �.G;X[H/ is naturally a subgraph of the Cayley graph �.G1; X 0[H0/. Therefore
we can think of p as a path in �.G1; X 0[H0/.

The normal form theorem for free products [35, Theorem IV.1.2] implies that the embedding of G into
G1 is isometric with respect to both proper and relative metrics; more precisely,

(5-5) dX .g; h/D dX 0.g; h/ and dX[H.g; h/D dX 0[H0.g; h/ for all g; h 2G:

An alternative way to see this is to use the retraction r WG1!G, such that r.x/D x for all x 2X and
r.z/D 1. Then r.X 0/DX [f1g, r.H�/DH� , for all � 2 N, and r.Z/D f1g.

Let �0 � 0 and �0 � 1 be the constants provided by Proposition 5.18 applied to the group G1, its finite
generating set X 0 and its Cayley graph �.G1; X 0[H0/. Set �1 D �0C 2�C 1 > 0.

For each i D 1; : : : ; n, let ti denote the H�i
-component of p containing the edge bi , �i 2 N. Note that

t1; : : : ; tn are pairwise distinct by condition (3), in particular no two of them share a common edge. In
view of Remark 5.9, for every i D 1; : : : ; n we can represent ti as a concatenation ti D hi�1bifi , where

� hi�1 is either the last edge and an H�i
-component of ai�1 if ai�1 ends with an H�i

-component,
or hi�1 is the trivial path, consisting of the vertex .ai�1/C, if ai�1 does not end with an H�i

-
component;

� fi is the first edge and an H�i
-component of ai if ai starts with an H�i

-component, or fi is the
trivial path, consisting of the vertex .ai /�, if ai does not start with an H�i

-component.

Note that for each i D 1; : : : ; n we have jhi�1jX � � and jfi jX � �, by condition (4). By (2) and the
triangle inequality we get

(5-6) jti jX � jbi jX � 2� � �0C 1 for i D 1; : : : ; n:

Therefore p decomposes as a concatenation

p D r0t1r1 � � � tnrn;

where ri is a subpath of ai , i D 0; : : : ; n, such that a0 D r0h0; a1 D f1r1h1; : : : ; an D fnrn.

By (5-6) the endpoints of the H�i
-component ti of p must be distinct; hence there is an edge si joining

them in �.G;X [H/, with Lab.si / 2H�i
n f1g, i D 1; : : : ; n. Now, (5-6) and (5-5) imply that

jsi jX 0 D jti jX 0 D jti jX � �0 for i D 1; : : : ; n:
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Choose k 2N so that jzkjX 0 � �0 and let snC1 be the edge in �.G1; X 0[H0/, starting at pC D .rn/C
and labelled by zk . Observe that jsnC1jX 0 D jzkjX 0 � �0.

Consider the path q in �.G1; X 0 [H0/, defined as the concatenation q D r0s1 � � � rnsnC1. By (5-5)
the paths r0; : : : ; rn are still geodesic in �.G1; X 0[H0/, and s1; : : : ; snC1 are H0-components of q, by
construction. Finally, si is not connected to siC1, for i D 1; : : : ; n � 1, because elements of G that
belong to different H�-cosets continue to do so in G1, and sn is not connected to snC1 because H�n

and Z are distinct peripheral subgroups of G1. Therefore all of the assumptions of Proposition 5.18 are
satisfied, which allows us to conclude that the path q is .�0; 0/-quasigeodesic without backtracking in
�.G1; X

0[H0/.

Consequently, the pathp0Dr0s1r1 � � � snrn is .�0;0/-quasigeodesic without backtracking in�.G1;X 0[H0/,
as a subpath of q. Since p0 only contains vertices and edges from �.G;X [H/, we see that p0 is also
.�0; 0/-quasigeodesic without backtracking in �.G;X [H/.

Now, the original path p can be obtained by replacing the edges s1; : : : ; sn of p0 by paths t1; : : : ; tn, each
of which has length at most 3. Hence, by Lemma 4.4, p is .3�0; 18�0C 6/-quasigeodesic. Since p0

is without backtracking and every H-component of p is connected to an H-component of p0 (and vice
versa), by construction, the path p must also be without backtracking.

Thus we have shown that the path p is .�; c/-quasigeodesic without backtracking in �.G;X [H/, where
�D 3�0 and c D 18�0C 6.

5.4 Quasiconvex subsets in relatively hyperbolic groups

In this paper we shall use the definition of a relatively quasiconvex subgroup given by Osin in [46]. For
convenience we state it in the case of arbitrary subsets rather than just subgroups.

Definition 5.20 (relatively quasiconvex subset) A subset Q �G is said to be relatively quasiconvex
(with respect to fH� j � 2 Ng) if there exists "� 0 such that for every geodesic path q in �.G;X [H/,
with q�; qC 2Q, and every vertex v of q we have dX .v;Q/� ".

Any number "� 0 as above will be called a quasiconvexity constant of Q.

Osin proved that relative quasiconvexity of a subset is independent of the choice of a finite generating set
X of G; see [46, Proposition 4.10] — the proof there is stated for relatively quasiconvex subgroups but
actually works more generally for relatively quasiconvex subsets.

We outline some basic properties of quasiconvex subsets and subgroups of G in the next two lemmas.

Lemma 5.21 Let Q be a relatively quasiconvex subset of G. Then

(a) the subset gQ is relatively quasiconvex, for every g 2G;

(b) if T �G lies at a finite dX -Hausdorff distance from Q then T is relatively quasiconvex.
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Proof Claim (a) follows immediately from the fact that left multiplication by g induces an isometry of
G with respect to both the proper metric dX and the relative metric dX[H.

To prove claim (b), suppose that "� 0 is a quasiconvexity constant of Q and the dX -Hausdorff distance
between Q and T is less than k 2 N. Consider any geodesic path t in �.G;X [H/ with t�; tC 2 T ,
and take any vertex v of t . Then there are x; y 2 Q such that dX .x; t�/ � k and dX .y; tC/ � k. Let
q be any geodesic connecting x with y. Then q is k-similar to t , hence there is a vertex u of q such
that dX .v; u/� �, where � D �.1; 0; k/� 0 is the global constant given by Proposition 5.17 applied to
k-similar geodesics. By the relative quasiconvexity of Q, there exists w 2Q such that dX .u;w/ � ".
Moreover, dX .w; T /� k by assumption. Therefore dX .v; T /� �C"Ck, thus T is relatively quasiconvex
in G.

Lemma 5.22 Suppose thatQ6G is a relatively quasiconvex subgroup. Then for all g 2G andQ06f Q
the subgroups gQg�1 and Q0 are relatively quasiconvex in G.

Proof By claim (a) of Lemma 5.21, the coset gQ is relatively quasiconvex and the dX -Hausdorff
distance between this coset and gQg�1 is at most jgjX ; hence gQg�1 is relatively quasiconvex in G by
claim (b) of the same lemma.

Suppose that QD
Sm
iD1Q

0hi , where hi 2Q, i D 1; : : : ; m. Then the dX -Hausdorff distance between Q
andQ0 is bounded above by maxfjhi jX j 1� i �mg, soQ0 is relatively quasiconvex by Lemma 5.21(b).

Corollary 5.23 Any parabolic subgroup of G is relatively quasiconvex.

Proof Let H D gQg�1 be a parabolic subgroup, where g 2 G and Q 6 H� , for some � 2 N. The
subgroup Q is relatively quasiconvex in G (with quasiconvexity constant 0), because any geodesic
connecting two elements of Q consists of a single edge in �.G;X [H/. Therefore H is relatively
quasiconvex by Lemma 5.22.

Lemma 5.24 Let P be a maximal parabolic subgroup of G and let Q be a finitely generated relatively
quasiconvex subgroup of G. Then the subgroups P and Q\P are finitely generated.

Proof The fact that each H� is finitely generated, provided G is finitely generated, was proved by Osin
in [46, Theorem 1.1].

Now, Hruska [30, Theorem 9.1] proved that every quasiconvex subgroup Q of G is itself relatively
hyperbolic and maximal parabolic subgroups of Q are precisely the infinite intersections of Q with
maximal parabolic subgroups of G. In other words, if P 6G is maximal parabolic, then Q\P is either
finite or a maximal parabolic subgroup of Q. Combined with Osin’s result [46, Theorem 1.1] mentioned
above we can conclude that if Q is finitely generated then so is Q\P , as required.

The following property of quasiconvex subgroups will be useful.
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Lemma 5.25 Let Q;R 6G be relatively quasiconvex subgroups of G. For every � � 0 there exists a
constant �D �.�/� 0 such that the following holds.

Suppose x2G, a2Q and b2R are some elements , Œx; xa� and Œx; xb� are geodesic paths in �.G;X[H/,
and u2 Œx; xa� and v 2 Œx; xb� are vertices such that dX .u; v/� �. Then there is an element z 2x.Q\R/
such that dX .u; z/� � and dX .v; z/� �.

Proof Denote by " � 0 a quasiconvexity constant of the subgroups Q and R. After applying the left
translation by x�1, which is an isometry with respect to both metrics dX and dX[H, we can assume that
x D 1. Let K 0 DK 0.Q;R; "C �/ be the constant given by Lemma 4.1.

Since x D 1 2 Q \ R, xa D a 2 Q and xb D b 2 R, by the relative quasiconvexity of Q and R
we know that u 2 NX .Q; "/ and v 2 NX .R; "/. By the assumptions dX .u; v/ � �, it follows that
u 2NX .Q; "C �/\NX .R; "C �/; hence u 2NX .Q\R;K 0/ by Lemma 4.1.

Thus there exists z 2 Q \R such that dX .u; z/ � K 0, and, hence, dX .v; z/ � K 0C � by the triangle
inequality. Therefore the statement of the lemma holds for �DK 0C �.

The next combination theorem was proved by Martínez-Pedroza.

Theorem 5.26 [37, Theorem 1.1] Let G be a relatively hyperbolic group generated by a finite set X .
Suppose that Q is a relatively quasiconvex subgroup of G, P is a maximal parabolic subgroup of G
and D DQ\P . There is a constant C � 0 such that the following holds. If H 6 P is any subgroup
satisfying

(1) H \QDD, and

(2) minX .H nD/� C ,

then the subgroup AD hH;Qi is relatively quasiconvex in G and is naturally isomorphic to the amalga-
mated free product H �DQ.

Moreover , for every maximal parabolic subgroup T of G, there exists u 2 A such that either

A\T � uQu�1 or A\T � uHu�1:

Part II Quasiconvexity of virtual joins

This part of the paper is mostly devoted to the proofs of Theorems 3.5 and 1.2. Let us start by giving
brief outlines of the arguments.

Suppose G is a group generated by finite set X and hyperbolic relative to a collection of subgroups
fH� j � 2Ng. Denote HD

F
�2NH� n f1g and take any A� 0. Consider two finitely generated relatively

quasiconvex subgroups Q;R 6G. Set S DQ\R and suppose that Q0 6Q and R0 6R are subgroups
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satisfying conditions (C1)–(C5) from Section 3.1, with some finite collection of maximal parabolic
subgroups P of G (which is independent of A) and parameters B and C that are sufficiently large with
respect to A.

Every element g 2 hQ0; R0i can be written as a product of elements of Q0 and R0, which gives rise to
a broken geodesic line in �.G;X [H/ (not necessarily uniquely), whose label represents g in G. We
choose a path p from the collection of such broken lines, representing g, that is minimal in a certain
sense. The path p may fail to be uniformly quasigeodesic, as it may travel through H�-cosets for an
arbitrarily long time. We do, however, have some metric control over such instances of backtracking,
using the fact that Q0 and R0 satisfy conditions (C1)–(C5) and the minimality of p.

We construct a new path from p, which we call the shortcutting of p, that turns out to be uniformly
quasigeodesic. Informally speaking, the shortcutting of p is obtained by replacing each maximal instance
of backtracking in consecutive geodesic segments of p with a single edge, then connecting these edges in
sequence by geodesics. The resulting path can be seen to satisfy the hypotheses of Proposition 5.19. It
follows that the shortcutting of p is uniformly quasigeodesic, and hence hQ0; R0i is relatively quasiconvex.
Properties (P2) and (P3) also follow from this quasigeodesicity, giving us Theorem 3.5.

Now suppose that G is QCERF and its peripheral subgroups are double coset separable. In Theorem 11.3
we use the separability assumptions on G and fH� j � 2 Ng to deduce the existence of a finite-index
subgroup M 6f G such that Q0 DQ\M 6f Q;R0 DR\M 6f R satisfy conditions (C1)–(C5) with
constants B and C large enough to apply Theorem 3.5 (as suggested in Remark 3.4). Conditions (C1) and
(C4) are essentially automatic. Conditions (C2), (C3) and (C5) can be assured to hold for the subgroups
Q0 and R0 using Lemma 4.16 by the QCERF condition on G, separability of double cosets PS (where
P is one of finitely many maximal parabolic subgroups) and double coset separability of the peripheral
subgroups, respectively.

The remaining technical difficulty is in showing that the double cosets of the form PS as above are
separable in G. To this end, we prove a general result about lifting separability of certain double cosets in
amalgamated free products. This is then combined with a result of Martínez-Pedroza (Theorem 5.26),
allowing us to deduce Theorem 1.2 from Theorem 3.5.

6 Path representatives

Let us set the notation that will be used in the next few sections.

Convention 6.1 We fix a group G, generated by a finite set X , which is hyperbolic relative to a finite
family of subgroups fH� j � 2 Ng. We let H D

F
�2N.H� n f1g/. It follows that the Cayley graph

�.G;X [H/ is ı-hyperbolic, for some ı 2N (see Lemma 5.4).

Furthermore, we assume that Q;R 6G are fixed relatively quasiconvex subgroups of G, with a quasi-
convexity constant "� 0, and denote S DQ\R.
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In this section Q0 and R0 will denote some subgroups of Q and R respectively. We will introduce path
representatives of elements in hQ0; R0i and will order such representatives by their types. This will be
crucial in our proof of Theorem 3.5.

Definition 6.2 (path representative, I) Consider an arbitrary element g 2 hQ0; R0i. Let p D p1 � � �pn
be a broken line in �.G;X [H/ with geodesic segments p1; : : : ; pn, such that Qp D g and Qpi 2Q0[R0

for each i 2 f1; : : : ; ng. We will call p a path representative of g.

To choose an optimal path representative we define their types.

Definition 6.3 (type of a path representative, I) Suppose that p D p1 � � �pn is a broken line in
�.G;X[H/. For each i D 1; : : : ; n, let Ti denote the set of all H-components of pi , and let T D

Sn
iD1 Ti .

We define the type �.p/ of p to be the triple

�.p/D

�
n; `.p/;

X
t2T

jt jX

�
2N0

3;

where `.p/D
Pn
iD1 `.pi / is the length of p.

Definition 6.4 (minimal type) Given g2 hQ0; R0i, the set S of all path representatives of g is non-empty.
Therefore the subset �.S/D f�.p/ j p 2 Sg �N0

3, where N0
3 is equipped with the lexicographic order,

will have a unique minimal element.

We will say that pDp1 � � �pn is a path representative of g of minimal type if �.p/ is the minimal element
of �.S/.

Remark 6.5 If p1 and p2 are paths with .p1/C D .p2/� whose labels both represent elements of Q0

(or, respectively, both of R0), then the label of any geodesic Œ.p1/�; .p2/C� also represents an element
of Q0 (respectively, R0). Hence in a path representative of g 2 hQ0; R0i of minimal type, the labels of
the consecutive segments necessarily alternate between representing elements of Q0 n .Q0 \R0/ and
R0 n .Q0\R0/, whenever g is not itself an element of Q0\R0.

The minimality of the type of a path representative is thus a numerical condition on the total lengths
of the paths pi and the total lengths of their components. In the next few sections we will study local
properties induced by this global condition. The first such property is stated in the next lemma.

Notation 6.6 Let x; y; z 2G. We will write hx; yirel
z D

1
2
.dX[H.x; z/CdX[H.y; z/�dX[H.x; y// to

denote the Gromov product of x and y with respect to z in the relative metric dX[H.

Lemma 6.7 (Gromov products are bounded) There is a constant C0 � 0 such that the following holds.

Let Q0 6Q and R0 6R be subgroups satisfying condition (C1). If p D p1 � � �pn is a minimal type path
representative of an element g 2 hQ0; R0i and f0; : : : ; fn 2G are the nodes of p (that is , fi�1 D .pi /�,
for i D 1; : : : ; n, and fn D .pn/C) then hfi�1; fiC1irel

fi
� C0 for each i D 1; : : : ; n� 1.
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fi�1

fi

fiC1

z

u1
v1

u v

Figure 1: We obtain a different path representative for g by replacing pi and piC1 with geodesics
from fi�1 to z to fiC1.

Proof Let � 2N0 be the constant from Proposition 5.15 and let �D�.�/� 0 be given by Lemma 5.25.
Set C0 D �C ıC 2� C 2, and assume that p D p1 � � �pn is a path representative of g 2 hQ0; R0i of
minimal type.

Take any i 2 f1; : : : ; n� 1g. Choose vertices u 2 pi and v 2 piC1 so that

dX[H.fi ; u/D dX[H.fi ; v/D bhfi�1; fiC1i
rel
fi
c:

As �.G;X [H/ is ı-hyperbolic, we must have dX[H.u; v/� ı.

If hfi�1; fiC1irel
fi
< C0 then we are done, so suppose otherwise. Then dX[H.u; fi /� ıC � C 1 2N, so

there is a vertex u1 on the subpath Œu; fi � of pi such that

dX[H.u1; u/D ıC � C 1:

Applying Proposition 5.15 to the geodesic triangle � with sides Œu; fi �, Œfi ; v� and Œu; v� (here we choose
Œfi ; v� to be a subpath of piC1), we can find some vertex v1 2 Œu; v�[ Œfi ; v� with dX .v1; u1/ � � . If
v1 2 Œu; v�, then, by the triangle inequality,

dX[H.u1; u/� dX[H.u1; v1/C dX[H.u; v/� � C ı;

which would contradict the choice of u1. Therefore it must be that v1 2 Œfi ; v� (see Figure 1).

Since the path representative p has minimal type, in view of Remark 6.5 we must have either Qpi 2Q0

and QpiC1 2 R0 or Qpi 2 R0 and QpiC1 2 Q0. Without loss of generality let us assume the former. We
can apply Lemma 5.25 to find z 2 fi .Q \ R/ with dX .u1; z/ � � and dX .v1; z/ � �. Let p0i be a
geodesic path in �.G;X [H/ joining fi�1 D .pi /� with z and let p0iC1 be a geodesic path joining z
with fiC1 D .piC1/C. Observe that fi�1 2 fiQ0 and Q\R �Q0 by (C1), whence

Qp0i D f
�1
i�1z 2Q

0f �1i fi .Q\R/DQ
0:
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Similarly, Qp0iC1 2R
0. It follows that the path p0 D p1 � � �pi�1p0ip

0
iC1piC2 � � �pn is also a path represen-

tative of the same element g 2 hQ0; R0i.

Since p has minimal type, by the assumption, it must be that `.pi /C `.piC1/� `.p0i /C `.p
0
iC1/, which

can be rewritten as

(6-1) dX[H.fi�1; fi /C dX[H.fi ; fiC1/� dX[H.fi�1; z/C dX[H.z; fiC1/:

Since u1 2 pi , we have dX[H.fi�1; fi /D dX[H.fi�1; u1/C dX[H.u1; fi /. On the other hand,

dX[H.fi�1; z/� dX[H.fi�1; u1/C dX[H.u1; z/� dX[H.fi�1; u1/C�;

by the triangle inequality. Similarly,

dX[H.fi ; fiC1/D dX[H.fi ; v1/C dX[H.v1; fiC1/ and dX[H.z; fiC1/� dX[H.v1; fiC1/C�:

Combining the above inequalities with (6-1), we obtain

(6-2) dX[H.u1; fi /C dX[H.fi ; v1/� 2�:

Now, by construction, we have

(6-3) dX[H.u1; fi /D dX[H.u; fi /� dX[H.u1; u/D bhfi�1; fiC1i
rel
fi
c� .ıC � C 1/:

On the other hand, since dX[H.v1; u1/� � , we achieve

(6-4) dX[H.fi ; v1/� dX[H.u1; fi /� dX[H.v1; u1/� bhfi�1; fiC1i
rel
fi
c� .ıC 2� C 1/:

After combining (6-3), (6-4) and (6-2), we obtain

2bhfi�1; fiC1i
rel
fi
c� .2ıC 3� C 2/� 2�:

Therefore, we can conclude that hfi�1; fiC1irel
fi
� �C ıC 2� C 2D C0, as required.

7 Adjacent backtracking in path representatives of minimal type

In this section we continue working under Convention 6.1. Our goal here is to study the possible
backtracking within two adjacent segments in a minimal type path representative.

Lemma 7.1 For all non-negative numbers � and � there exists � D �.�; �/� 0 such that the following
holds.

Suppose that Q0 6Q and R0 6R are subgroups satisfying (C1), g 2 hQ0; R0i and pD p1 � � �pn is a path
representative of g of minimal type. If for some i 2 f1; : : : ; n� 1g, s and t are connected H-components
of pi and piC1 respectively , such that dX .s�; tC/� � and dX .sC; .pi /C/� �, then jsjX � � and jt jX � � .

Proof Let �D �.�/� 0 be the constant from Lemma 5.25. Since jX j<1 and jNj<1 we can define
the constant k � 0 as

(7-1) k DmaxfK 0.Q\R; cH�c�1; �C�/ j � 2 N; c 2G; jcjX � �g;
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.pi /C D x

˛ ˇ

xaD sC t� D xb

u 2 xaH�a
�1

s w t

s� e

wa wb

f
tC

.pi /� 2 xQ
0 z 2 x.Q\R/ .piC1/C 2 xR

0

Figure 2: Illustration of Lemma 7.1.

where for each c 2 G and � 2 N the constant K 0.Q\R; cH�c�1; �C�/ is given by Lemma 4.1. Let
L� 0 be the constant from Lemma 5.14 and set � D 2kC 2�C �CL� 0.

Let p D p1 � � �pn be a path representative of some g 2 hQ0; R0i of minimal type. Suppose that s and t
are connected H�-components of pi and piC1 respectively, for some i 2 f1; : : : ; n� 1g and � 2 N, such
that dX .s�; tC/� � and dX .sC; .pi /C/� � .

Note that, by Lemma 5.14,

(7-2) dX .sC; t�/� L:

Denote x D .pi /C D .piC1/� 2G, aD x�1sC 2G and b D x�1t� 2G; see Figure 2.

Note that

(7-3) aH� D bH� ; hence aH�a�1 D bH�b�1;

because the H�-components s and t are connected. Using the lemma hypotheses and (7-2) we also have

(7-4) jajX D dX .x; sC/� � and jbjX � dX .x; sC/C dX .sC; t�/� �CL:

In view of Remark 6.5, without loss of generality we can assume that Lab.pi / represents an element of
Q0 and Lab.piC1/ represents an element of R0 in G (the other case can be treated similarly). Applying
Lemma 5.25, we can find z 2 x.Q\R/ such that dX .s�; z/� �.

Consider the element uD s�a�1 D xaQs�1a�1 2 xaH�a�1, and observe that dX .s�; u/D ja�1jX � �.
On the other hand, dX .s�; x.Q\R//� dX .s�; z/� �, whence

s� 2NX .x.Q\R/; �C�/\NX .xaH�a
�1; �C�/:
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Therefore, according to Lemma 4.1, there exists w 2 x.Q\R\ aH�a�1/ such that

(7-5) dX .s�; w/� k;

where k � 0 is the constant defined in (7-1).

Let ˛ be the subpath of pi from sC D xa to .pi /C D x. Choose the geodesic path Œwa;w� as the
translate wx�1˛. Observe that s� 2 xaH� and wa 2 xaH�a�1a D xaH� lie in the same H�-coset.
Thus dX[H.s�; wa/� 1; if s� Dwa we let e be the trivial path in �.G;X [H/ consisting of the single
vertex s�, and otherwise we let e be the edge of �.G;X [H/ labelled by an element of H� n f1g that
joins s� to wa. Define the path q in �.G;X [H/ as the concatenation

(7-6) q D Œ.pi /�; s��eŒwa;w�;

where Œ.pi /�; s�� is chosen as the initial segment of pi .

Since `.e/� 1D dX[H.s�; sC/, we can bound the length of the path q from above as follows:

(7-7) `.q/D dX[H..pi /�; s�/C `.e/C dX[H.wa;w/

� dX[H..pi /�; s�/C dX[H.s�; sC/C dX[H.xa; x/D `.pi /:

Now we construct a similar path from w to .piC1/C. Let ˇ be the subpath of piC1 from .piC1/� D x

to t� D xb. Choose the geodesic path Œw;wb� as the translate wx�1ˇ. Recall that tC 2 xbH� and note
that the inclusion w 2 xaH�a�1, together with (7-3), imply that wb 2 xbH� also. If tC D wb then let
f be the trivial path in �.G;X [H/ consisting of the single vertex tC, otherwise let f be the edge
in �.G;X [H/ joining the vertices wb and tC with Lab.f / 2H� n f1g. We now define the path r in
�.G;X [H/ as the concatenation

(7-8) r D Œw;wb�f ŒtC; .piC1/C�;

where ŒtC; .piC1/C� is chosen as the ending segment of piC1. Similarly to the case of q we can estimate
that

(7-9) `.r/� `.piC1/:

Note that since q� D .pi /� D x Qp�1i 2 xQ
0, qC D w 2 x.Q\R/ and Q\R �Q0, we have Qq 2Q0.

Similarly, Qr 2R0.

Let p0i be a geodesic path from q� D .pi /� to qC D w, and let p0iC1 be a geodesic path from w D r� to
.piC1/CD rC. Since Qp0i D Qq 2Q

0 and Qp0iC1D Qr 2R
0, the broken line p0Dp1 � � �pi�1p0ip

0
iC1piC2 � � �pn

is a path representative of the same element g 2G.

If at least one of the paths q, r is not geodesic in �.G;X [H/, then, in view of (7-7) and (7-9) we have

`.p0i /C `.p
0
iC1/ < `.q/C `.r/� `.pi /C `.piC1/I

hence `.p/D
Pn
iD1 `.pi / > `.p

0/, contradicting the minimality of the type of p.
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Hence both q and r must be geodesic in �.G;X [ H/, so we can further assume that p0i D q and
p0iC1D r . Moreover, the inequality `.p/� `.p0/ must hold by the minimality of the type of p. Therefore
`.pi /C`.piC1/�`.q/C`.r/, which, in view of (7-7) and (7-9), implies that `.q/D`.pi /, `.r/D`.piC1/
and `.p/D `.p0/. In particular, e and f are actual edges of �.G;X [H/ (and not trivial paths).

The definition (7-6) of q implies that Lab.q/ can differ from Lab.pi / in at most one letter, which is the
label of the H�-component e in Lab.q/ and the label of the H�-component s in Lab.pi /. Indeed,

Lab.pi /D Lab.Œ.pi /�; s��/Lab.s/Lab.˛/ and Lab.q/D Lab.Œ.pi /�; s��/Lab.e/Lab.˛/;

where we used the fact that Œwa;w� is the left translate of ˛, by definition, and hence it has the same label
as ˛.

Similarly, (7-8) implies Lab.r/ can differ from Lab.pi / in at most one letter which is the label of f in r
and the label of t in piC1. The minimality of the type of p therefore implies that

(7-10) jsjX Cjt jX � jejX Cjf jX :

Now, using the triangle inequality, (7-5) and (7-4) we obtain

(7-11) jejX D dX .s�; wa/� dX .s�; w/C dX .w;wa/� kCjajX � kC �:

To estimate jf jX we also use the inequality dX .s�; tC/� �:

(7-12) jf jX D dX .tC; wb/� dX .tC; w/CjbjX

� dX .tC; s�/C dX .s�; w/C �CL� �C kC �CL:

Combining (7-10)–(7-12) together, we achieve

maxfjsjX ; jt jXg � jejX Cjf jX � 2kC 2�C �CLD �:

This inequality completes the proof of the lemma.

The following auxiliary definition will only be used in the remainder of this section.

Definition 7.2 Let C0 � 0 be the constant provided by Lemma 6.7, let L� 0 be the constant given by
Lemma 5.14 and let � D �.1; 0; L/� 0 be the constant from Proposition 5.17.

Define the sequences .�j /j2N , .�j /j2N and .�j /j2N of non-negative real numbers as follows.

Set �1 D �, �1 D C0C 1 and �1 Dmaxf�; �.�1; �1/g, where �.�1; �1/ is given by Lemma 7.1.

Now suppose that j > 1 and the first j � 1 members of the three sequences have already been defined.
Then we set

�j D �; �j D C0C 1C

j�1X
kD1

�k; �j Dmaxf�; �.�j ; �j /g;

where �.�j ; �j / is given by Lemma 7.1.
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Lemma 7.3 There exists a constant C1 � 0 such that the following is true.

Let Q0 6 Q and R0 6 R be subgroups satisfying (C1) and let p D p1 � � �pn be a minimal type path
representative for an element g2hQ0; R0i. Suppose that , for some i 2f1; : : : ; n�1g, q and r are connected
H-components of pi and piC1 respectively. Then dX .qC; .pi /C/� C1 and dX ..pi /C; r�/� C1.

Proof Denote x D .pi /C D .piC1/� 2G. First, let us show that

(7-13) dX[H.qC; x/� C0C 1;

where C0 � 0 is the global constant provided by Lemma 6.7. Indeed, the latter lemma states that
h.pi /�; .piC1/Ci

rel
x �C0. Since qC and r� are points on the geodesics pi and piC1, Remark 4.6 implies

that
hqC; r�i

rel
x � h.pi /�; .piC1/Ci

rel
x � C0:

Consequently,

C0 � hqC; r�i
rel
x D

1
2

�
dX[H.x; qC/C dX[H.x; r�/� dX[H.qC; r�/

�
�
1
2

�
2dX[H.x; qC/� 2dX[H.qC; r�/

�
� dX[H.x; qC/� 1;

where the last inequality used the fact that dX[H.qC; r�/� 1, which is true because q and r are connected
H-components. This establishes the inequality (7-13).

Let ˛ denote the subpath of pi starting at qC and ending at x, and let ˇ denote the subpath of piC1
starting at x and ending at r�. Let s1; : : : ; sl , l 2N0, be the set of all H-components of ˛ listed in the
reverse order of their occurrence. That is, s1 is the last H-component of ˛ (closest to ˛C D x) and sl is
the first H-component of ˛ (closest to ˛� D qC). Note that, by (7-13),

(7-14) l � `.˛/D dX[H.x; qC/� C0C 1:

Let L� 0 be the constant given by Lemma 5.14, then

(7-15) dX .˛�; ˇC/D dX .qC; r�/� L:

It follows that the geodesic paths ˛ and ˇ�1 are L-similar in �.G;X [H/. Let � D �.1; 0; L/ � 0 be
the constant provided by Proposition 5.17.

We will now prove the following.

Claim 7.4 For each j D 1; : : : ; l we have

(7-16) jsj jX � �j ;

where �j � 0 is given by Definition 7.2.

We will establish the claim by induction on j . For the base of induction, j D 1, note that if js1jX < �
then the inequality js1jX � �1 will be true by definition of �1. Thus we can suppose that js1jX � �.
In this case, by Proposition 5.17, s1 must be connected to some H-component of ˇ�1. Claim (3) of
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the same proposition implies that there is an H-component t1 of ˇ, such that s1 is connected to t1 and
dX ..s1/�; .t1/C/� �. Note that, by construction, s1 and t1 are also connected H-components of pi and
piC1 respectively.

Observe that the subpath of ˛ from .s1/C to x is labelled by letters from X˙1 because it has no H-
components. Therefore dX ..s1/C; x/� `.˛/�C0C1. Consequently, we can apply Lemma 7.1 to deduce
that js1jX � �.�1; �1/, where �1 D � and �1 D C0C 1.

Thus we have shown that js1jX � �1, where �1 Dmaxf�; �.�1; �1/g, and the base of induction has been
established.

Now, suppose that j > 1 and inequality (7-16) has been proved for all strictly smaller values of j .
If jsj jX < � then are done, because �j � � by definition. So we can assume that jsj jX � �. As
before, we can use Proposition 5.17, to find an H-component tj of ˇ such that sj is connected to tj and
dX ..sj /�; .tj /C/� �.

By construction, s1; : : : ; sj�1 is the list of all H-components of the subpath Œ.sj /C; x� of ˛; hence

dX ..sj /C; x/� `.˛/C

j�1X
kD1

jskjX � C0C 1C

j�1X
kD1

�k;

where the second inequality used (7-14) and the induction hypothesis. This allows us to apply Lemma 7.1
again, and conclude that jsj jX � �.�j ; �j /, where �j D � and �j D C0C 1C

Pj�1

kD1
�k .

Thus, jsj jX �maxf�; �.�j ; �j /g D �j , as required. Hence the claim has been proved by induction on j .

We are finally ready to prove the main statement of the lemma. Since s1; : : : ; sl is the list of all H-
components of ˛, we can combine the inequalities (7-14) and (7-16) to achieve

dX .qC; .pi /C/D j˛jX � `.˛/C

lX
jD1

jsj jX � C0C 1C

lX
jD1

�j � C0C 1C

bC0C1cX
jD1

�j :

On the other hand, by the triangle inequality and (7-15), we have

dX ..pi /C; r�/� LC dX .qC; .pi /C/� LCC0C 1C

bC0C1cX
jD1

�j :

We have shown that the constant C1DLCC0C1C
PbC0C1c
jD1 �j >0 is an upper bound for dX .qC; .pi /C/

and dX ..pi /C; r�/; thus the lemma is proved.

Definition 7.5 (consecutive, adjacent and multiple backtracking) Let p D p1 � � �pn be a broken line
in �.G;X [H/. Suppose that for some i and j , with 1 � i < j � n, and � 2 N there exist pairwise
connected H�-components hi ; hiC1; : : : ; hj of the paths pi ; piC1; : : : ; pj , respectively. Then we will
say that p has consecutive backtracking along the components hi ; : : : ; hj of pi ; : : : ; pj . Moreover, if
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j D i C 1, we will call it an instance of adjacent backtracking, while if j > i C 1 will use the term
multiple backtracking.

The next lemma shows that, among path representatives of minimal type, instances of adjacent backtracking
where at least one of the components is sufficiently long with respect to the proper metric dX must have
initial and terminal vertices far apart in dX .

Lemma 7.6 (adjacent backtracking is long) For any � � 0 there is ‚0 D ‚0.�/ 2 N such that the
following holds.

Let Q0 6 Q and R0 6 R be subgroups satisfying (C1) and let p D p1 � � �pn be a minimal type path
representative for an element g 2 hQ0; R0i. Suppose that for some i 2 f1; : : : ; n� 1g the paths pi and
piC1 have connected H-components q and r respectively, satisfying

maxfjqjX ; jr jXg �‚0:

Then dX .q�; rC/� �.

Proof For any � � 0 we can define ‚0 D b�.�; C1/cC1, where C1 is the constant from Lemma 7.3 and
�.�; C1/ is provided by Lemma 7.1.

It follows that if dX .q�; rC/ < � then jqjX < ‚0 and jr jX < ‚0, which is the contrapositive of the
required statement.

8 Multiple backtracking in path representatives of minimal type

As before, we keep working under Convention 6.1. In this section we deal with multiple backtracking in
path representatives of elements from hQ0; R0i. Proposition 8.4 below uses condition (C3) to show that
any instance of multiple backtracking essentially takes place inside a parabolic subgroup. In order to
achieve this we first prove two auxiliary statements.

Notation 8.1 Throughout this section C1 � 0 will be the constant given by Lemma 7.3 and P1 will
denote the finite collection of parabolic subgroups of G defined by

P1 D ftH�t
�1
j � 2 N; jt jX � C1g:

Consider the subset O D fo 2 PS j P 2P1; jojX � 2C1g of G. Since jOj<1, we can choose and fix a
finite subset � � S such that every element o 2O can be written as oD f h, where f 2 P , for some
P 2 P1, and h 2�. We define a constant E by

(8-1) E DmaxfjhjX j h 2�g � 0:

Lemma 8.2 There exists a constant D � 0 such that the following holds.

Let � 2 N and b 2G be an element with jbjX � C1, so that P D bH�b�1 2 P1, and let p be a geodesic
path in �.G;X [H/ with Qp 2Q[R.
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Figure 3: Illustration of Lemma 8.2.

Suppose there is a vertex v of p and an element u2P such that v 2PbD bH� and u�1p� 2 S DQ\R.
Then there exists a geodesic path p0 in �.G;X [H/ such that

� p0� D u and dX .p0C; v/�D;

� if Qp 2Q then Qp0 2Q\P , otherwise Qp0 2R\P .

Proof Let K DmaxfC1; "g � 0, where " is the quasiconvexity constant of Q and R, and let

(8-2) D DmaxfK 0.Q;P;K/;K 0.R; P;K/ j P 2 P1g;

where K 0.Q;P;K/ and K 0.R; P;K/ are obtained from Lemma 4.1.

Denote x D p� 2 G and assume, without loss of generality, that Qp 2 Q (the case Qp 2 R can be
treated similarly). By the quasiconvexity of Q, we have that dX .v; xQ/ � ". Moreover, xQ D uQ as
u�1x 2 S �Q.

By the assumptions, vb�1 2 P ; hence dX .v; P /� jbjX � C1. Since uP D P we see that

v 2NX .uQ; "/\NX .uP; C1/:

Applying Lemma 4.1, we find w 2 u.Q\P / such that dX .v; w/�D (see Figure 3).

Let p0 be any geodesic in �.G;X [H/ starting at u and ending at w. It is easy to see that p0 satisfies all
of the required properties, so the lemma is proved.

The next lemma describes how condition (C3) is used in this paper.

Lemma 8.3 Assume that subgroups Q0 6Q and R0 6R satisfy conditions (C1) and (C3) with constant
C and family P such that C � 2C1C1 and P1 �P. Let P D bH�b�1 2P1, for some � 2N and b 2G,
with jbjX � C1, and let p be a path in �.G;X [H/ with Qp 2Q0[R0.

Suppose that there is a vertex v of p and an element u 2 P satisfying u�1p� 2 S , v 2 Pb, and
dX .v; pC/� C1. Then there exists a geodesic path p0 such that .p0/� D u, Qp0 2 P , .p0/�1

C
pC 2 S and
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u

x

2 S

2 P

p0

p

z

b

v

2 P
zf

2 S

y

Figure 4: Illustration of Lemma 8.3.

dX ..p
0/C; pC/�E, where E is the constant from (8-1). In particular , if Qp 2Q0 (respectively , Qp 2R0)

then Qp0 2Q0\P (respectively, Qp0 2R0\P ).

Proof Denote xDp�, yDpC and zDvb�12P (see Figure 4). Then u�1z2P and x�1yD Qp2Q0[R0.

Since u�1x 2 S DQ0\R0, we obtain

u�1y D .u�1x/.x�1y/ 2Q0[R0;

whence z�1y D .z�1u/.u�1y/ 2 P.Q0[R0/. Now, observe that

jz�1yjX D dX .z; y/� dX .z; v/C dX .v; y/� jbjX CC1 � 2C1 < C:

Condition (C3) now implies that z�1y 2 PS . That is, z�1y D f h for some f 2 P and h 2�, where �
is the finite subset of S defined above the statement of the lemma. Let p0 be a geodesic path starting at u
and ending at zf 2 P . Then Qp0 D u�1zf 2 P ,

.p0/�1C pC D f
�1z�1y D h 2 S and dX ..p

0/C; pC/D jhjX �E:

The last statement of the lemma follows from (C1) and the observation that

Qp0 D u�1.p0/C D u
�1p� Qp.pC/

�1.p0/C 2 S QpS:

Proposition 8.4 Let D � 0 is the constant provided by Lemma 8.2, and let E be given by (8-1). Suppose
that Q0 6Q and R0 6R are subgroups satisfying (C1) and (C3), with constant C � 2C1C 1 and family
P� P1.

Let p D p1 � � �pn be a path representative for an element g 2 hQ0; R0i with minimal type. If p has
consecutive backtracking along H-components hi ; : : : ; hj of the subpaths pi ; : : : ; pj respectively , then
there is a subgroup P 2 P1 and a path p0 D p0i � � �p

0
j satisfying the following properties:

(i) p0
k

is geodesic with Qp0
k
2 P for all k D i; : : : ; j ;

(ii) .p0i /C D .pi /C, .p0
k
/�1
C
.pk/C 2 S and dX ..p0k/C; .pk/C/�E, for all k D i C 1; : : : ; j � 1;

(iii) dX .p
0
�; .hi /�/�D and dX .p0C; .hj /C/�D;
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p0i

p0iC1
p0j�1

p0j

hi

hiC1 hj�1

hj

�D �D

Figure 5: The new path p0 constructed in Proposition 8.4. The dotted lines between p and p0 are
paths whose labels represent elements of S .

(iv) Qp0i 2Q\P if Qpi 2Q0, and Qp0i 2R\P if Qpi 2R0; similarly, Qp0j 2Q\P if Qpj 2Q0, and Qp0j 2R\P
if Qpj 2R0;

(v) for each k 2 fi C 1; : : : ; j � 1g, Lab.p0
k
/ either represents an element of Q0\P or an element of

R0\P .

Proof Figure 5 below is a sketch of the path p0 above the subpath pipiC1 � � �pj�1pj of p.

Note that claim (v) follows from claim (ii) and condition (C1), so we only need to establish claims (i)–(iv).

By the assumptions, there is � 2 N such that for each k 2 fi; : : : ; j g, the path pk is a concatenation
pk D akhkbk , where hk is an H�-component of pk and ak; bk are subpaths of pk .

According to Lemma 7.3, we have

(8-3) jbkjX � C1 for k D i; : : : ; j � 1:

After translating everything by .pi /�1C we can assume that .pi /CD 1. From here on, we let bD Qb�1i 2G
and P D bH�b�1. As noted in (8-3), jbjX D jbi jX � C1, so P 2 P1.

Since the components hi and hk are connected, for every kD iC1; : : : ; j , the elements .hi /CD .bi /�Db
and .hk/C all belong to the same left coset bH� D Pb; thus

(8-4) .hk/C 2 Pb for all k D i C 1; : : : ; j:

The rest of the argument will be divided into three steps.

Step 1 Construction of the path p0i .

Set ui D .pi /C D 1 and vi D .hi /�. Then vi D Qb�1i Qh
�1
i 2 bH� D Pb, so the path p�1i , its vertex vi

and the element ui D 1 2 P satisfy the assumptions of Lemma 8.2. Therefore there exists a path q with
q� D ui , dX .qC; v/�D and such that Qq 2Q\P if Qpi 2Q and Qq 2R\P if Qpi 2R.

It is easy to check that the path p0i D q
�1 enjoys the required properties.

Algebraic & Geometric Topology, Volume 25 (2025)



Quasiconvexity of virtual joins and separability of products in relatively hyperbolic groups 439

Step 2 Construction of the paths p0
k

, for k D i C 1; : : : ; j � 1.

We will define the paths p0
k

by induction on k. For k D i C 1 we consider the path piC1, its vertex
viC1 D .hiC1/C and the element ui D 1D .piC1/�. Since viC1 2 Pb by (8-4) and

dX .viC1; .piC1/C/D jbiC1jX � C1

by (8-3), we can apply Lemma 8.3 to find a geodesic path p0iC1 starting at ui and satisfying the required
conditions.

Now suppose the required pathsp0iC1; : : : ;p
0
m have already been constructed for somem2fiC1; : : : ;j�2g.

To construct the path p0mC1, let vmC1 be the vertex .hmC1/C of pmC1 and set um D .p0m/C. Then
um 2 P and u�1m .pmC1/� D .p

0
m/
�1
C
.pm/C 2 S by the induction hypothesis. In view of (8-4) and (8-3),

vmC1 2Pb and dX .vmC1; .pmC1/C/�C1; therefore we can find a geodesic path p0mC1 with the desired
properties by using Lemma 8.3.

Thus we have described an inductive procedure for constructing the paths p0
k

, for k D i C 1; : : : ; j � 1.

Step 3 Construction of the path p0j .

This step is similar to Step 1: the path p0j will start at uj�1 D .p0j�1/C 2 P and can be constructed by
applying Lemma 8.2 to the path pj and the elements vj D .hj /C 2 Pb, uj�1 2 P .

We have thus constructed a sequence of geodesic paths p0i ; : : : ; p
0
j whose concatenation p0 satisfies all

the properties from the proposition.

We will now prove the main result of this section, which states that the initial and terminal vertices of an
instance of multiple backtracking in a minimal type path representative must lie far apart in the proper
metric dX , provided Q0 6Q and R0 6R satisfy (C1)–(C5) with sufficiently large constants.

Proposition 8.5 (multiple backtracking is long) For any � � 0 there is a constant C2 D C2.�/� 0 such
that if Q0 6Q and R0 6 R are subgroups satisfying conditions (C1)–(C5) with constants B � C2 and
C � C2 and a family P� P1, then the following is true.

Let p D p1 � � �pn be a minimal type path representative for an element g 2 hQ0; R0i. If p has multiple
backtracking along H-components hi ; : : : ; hj of pi ; : : : ; pj then dX ..hi /�; .hj /C/� �.

Proof Let � � 0 and define C2.�/Dmax f2C1; �C 2DgC1, where D � 0 is the constant obtained from
Lemma 8.2.

In view of the assumptions we can apply Proposition 8.4 to find a path p0 D p0i � � �p
0
j and P 2 P1

satisfying properties (i)–(v) from its statement. Let ˛ be a geodesic with ˛� D .p0j /� and ˛C D .pj /�,
and let ˇ D p0iC1 � � �p

0
j�1. We will denote xk D Qpk and x0

k
D Qp0

k
, for each k 2 fi; : : : ; j g, and z D Q̨ .
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Condition (C1), together with claim (ii) of Proposition 8.4, tell us that z 2 S DQ0\R0, and claim (v)
yields that

(8-5) Q̌ D x0iC1 � � � x
0
j�1 2 hQ

0
P ; R

0
P i

(as before, for a subgroup H 6G we denote by HP 6G the intersection H \P ).

Now suppose, for a contradiction, that dX ..hi /�; .hj /C/ < �. Then

(8-6) jp0jX D dX .p
0
�; p

0
C/ < �C 2D < C2 �minfB;C g;

by claim (iii) of Proposition 8.4. There are four cases to consider depending on whether Qpi and Qpj are
elements of Q0 or R0.

Case 1 xi D Qpi 2Q
0 and xj D Qpj 2Q0.

Then, by claim (iv) of Proposition 8.4, both x0i and x0j are elements of QP . It follows that

Qp0 2QP hQ
0
P ; R

0
P iQP �QhQ

0; R0iQ:

By (8-6) and (C2), there is q 2Q such that Qp0 D q. Therefore

(8-7) Q̌ D x0i
�1
Qp0x0j
�1
D x0i

�1
qx0j
�1
2Q:

Combining (8-7) with (8-5) and using condition (C4), we get

Q̌ 2Q\ hQ0P ; R
0
P i DQP \ hQ

0
P ; R

0
P i DQ

0
P :

Let 
 be any geodesic path in �.G;X [H/ starting at .pi /� and ending at .pj /C. Then 
 shares the
same endpoints with the path piˇ˛pj ; therefore their labels represent the same element of G,

Q
 D xi Q̌zxj 2Q
0Q0PSQ

0
DQ0:

Thus we can use 
 to obtain another path representative for g through p1 � � �pi�1
pjC1 � � �pn, which
consists of strictly fewer geodesic subpaths than p D p1 � � �pn. This contradicts the minimality of the
type of p, so Case 1 has been considered.

Case 2 Both Qpi and Qpj are elements of R0.

This case can be dealt with identically to Case 1.

Case 3 xi D Qpi 2Q
0 and xj D Qpj 2R0.

Then x0i 2QP and x0j 2 RP by claim (iv) of Proposition 8.4. Hence Lab.p0/ represents an element of
x0i hQ

0
P ; R

0
P iRP with x0i 2QP . In view of (8-6), we can use condition (C5) to deduce that Qp0 2 x0iQ

0
PRP .

It follows that
Q̌ D .x0i /

�1
Qp0.x0j /

�1
2Q0PRP ;
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so there exist q 2 Q0P and r 2 RP such that Q̌ D qr . Combining this with (8-5) we conclude that
r D q�1 Q̌ 2RP \ hQ

0
P ; R

0
P i, so r 2R0P by condition (C4), whence

(8-8) Q̌ D qr 2Q0PR
0
P :

Observe that the paths 
 D pi � � �pj and piˇ˛pj have the same endpoints; hence their labels represent
the same element of G,

Q
 D xi Q̌zxj 2Q
0Q0PR

0
PSR

0
�Q0R0:

Therefore there are elements q1 2Q0 and r1 2R0 such that Q
 D q1r1.

Let 
1 be a geodesic path in �.G;X [H/ starting at 
� D .pi /� and ending at 
�q1 and let 
2 be a
geodesic path starting at .
1/C and ending at .
1/Cr1D
CD .pj /C. Since Q
1Dq12Q0 and Q
2D r12R0

the path p1 � � �pi�1
1
2pjC1 � � �pn is a path representative of g. Moreover, it consists of fewer than
n geodesic segments because j > i C 1 (by the definition of multiple backtracking), contradicting the
minimality of the type of p. This contradiction shows that Case 3 is impossible.

Case 4 xi D Qpi 2R
0 and xj D Qpj 2Q0.

Then x0i 2RP while x0j 2QP , which implies that Qp02RP hQ0P ; R
0
P ix

0
j , hence Qp0�12.x0j /

�1hQ0P ; R
0
P iRP .

By (8-6), we can use (C5) to conclude that Qp0�1 2 .x0j /
�1Q0PRP , thus Qp0 2RPQ0Px

0
j . The rest of the

argument proceeds similarly to the previous case, leading to a contradiction with the minimality of the
type of p. Hence Case 4 is also impossible.

We have arrived at a contradiction in each of the four cases, so dX ..hi /�; .hj /C/� �, as required.

9 Constructing quasigeodesics from broken lines

In this section we detail a procedure that takes as input a broken line and a natural number, and outputs
another broken line together with some additional vertex data. We show that if a broken line satisfies
certain metric conditions, then the new path constructed through this procedure is uniformly quasigeodesic.

We assume that G is a group generated by a finite set X and hyperbolic relative to a finite family of
subgroups fH� j � 2 Ng. As usual we set HD

F
�2N.H� n f1g/, and by Lemma 5.4 we know that the

Cayley graph �.G;X [H/ is ı-hyperbolic, for some ı � 0.

The outline of the construction is as follows. We begin with a broken line p D p1 � � �pn in �.G;X [H/.
Starting from the initial vertex p�, we note in sequence (along the vertices of p) the vertices marking
the start and end of maximal instances of consecutive backtracking in p involving sufficiently long
H-components. Once we have done this, we construct the new path by connecting (in the same sequence)
the marked vertices with geodesics.
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Procedure 9.1 (‚-shortcutting) Fix a natural number ‚ 2N and let p D p1 � � �pn be a broken line in
�.G;X [H/. Let v0; : : : ; vd be the enumeration of all vertices of p in the order they occur along the
path (possibly with repetition), so that v0 D p�, vd D pC and d D `.p/.

We construct a broken line †.p;‚/, called the ‚-shortcutting of p, which comes with a finite set
V.p;‚/� f0; : : : ; dg � f0; : : : ; dg corresponding to indices of vertices of p that we shortcut along.

In the algorithm below we will refer to numbers s; t;N 2f0; : : : ;dg and a subset V�f0; : : : ;dg�f0; : : : ;dg.
To avoid excessive indexing these will change value throughout the procedure. The parameters s and t
will indicate the starting and terminal vertices of subpaths of p in which all H-components have lengths
less than ‚. The parameter N will keep track of how far along the path p we have proceeded. The set V
will collect all pairs of indices .s; t/ obtained during the procedure. We initially take s D 0, N D 0 and
V D∅.

Step 1 If there are no edges of p between vN and vd that are labelled by elements of H, then add the
pair .s; d/ to the set V and skip ahead to Step 4. Otherwise, continue to Step 2.

Step 2 Let t 2 f0; : : : ; dg be the least natural number with t �N for which the edge of p with endpoints
vt and vtC1 is an H-component hi of a geodesic segment pi of p, for some i 2 f1; : : : ; ng.

If i D n or if hi is not connected to a component of piC1 then set j D i . Otherwise, let j 2 fiC1; : : : ; ng
be the maximal integer such that p has consecutive backtracking along H-components hi ; : : : ; hj of
segments pi ; : : : ; pj . Proceed to Step 3.

Step 3 If
maxfjhkjX j k D i; : : : ; j g �‚;

then add the pair .s; t/ to the set V and redefine s DN in f1; : : : ; dg to be the index of the vertex .hj /C
in the above enumeration v0; : : : ; vd of the vertices of p. Otherwise let N be the index of .hi /C, and
leave s and V unchanged.

Return to Step 1 with the new values of s, N and V .

Step 4 Set V.p;‚/D V . The above constructions gives a natural ordering of V.p;‚/,

V.p;‚/D f.s0; t0/; : : : ; .sm; tm/g;

where sk � tk < skC1, for all k D 0; : : : ; m� 1. Note that s0 D 0 and tm D d . Proceed to Step 5.

Step 5 For each k D 0; : : : ; m, let fk be a geodesic segment (possibly trivial) connecting vsk with vtk .
Note that when k < m, vtk and vskC1

are in the same left coset of H� , for some � 2 N. If vtk D vskC1

then let ekC1 be the trivial path at vtk , otherwise let ekC1 be an edge of �.G;X [H/ starting at vtk ,
ending at vskC1

and labelled by an element of H� n f1g.

We define the broken line †.p;‚/ to be the concatenation f0e1f1e2 � � � fm�1emfm.
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f0

e1

f1
e2

f2
e3

f3

Figure 6: An example of a shortcutting of a path p in �.G;X [H/. The path p contains long
H-components, some of which are involved in instances of consecutive backtracking, as indicated
by the dashed lines. The path †.p;‚/D f0e1f1e2f2e3f3 is drawn on top of p.

Remark 9.2 Let us collect some observations about Procedure 9.1.

(a) Since p has only finitely many vertices and N increases at each iteration of Step 3 above, the
procedure will always terminate after finitely many steps.

(b) The newly constructed broken line†.p;‚/ has the same endpoints as p, and each node of†.p;‚/
is a vertex of p.

(c) By construction, for any k 2 f0; : : : ; mg the subpath of p between vsk and vtk contains no edge
labelled by an element h 2H satisfying jhjX �‚.

Figure 6 sketches an example of the output of Procedure 9.1.

In the next definition we describe paths that will serve as input for the above procedure.

Definition 9.3 (tamable broken line) Let p D p1 � � �pn be a broken line in �.G;X [H/, and let
B;C; � � 0 and ‚ 2N. We say that p is .B; C; �;‚/-tamable if all of the following conditions hold:

(i) jpi jX � B , for i D 2; : : : ; n� 1;

(ii) h.pi /�; .piC1/Cirel
.pi /C

� C , for each i D 1; : : : ; n� 1;

(iii) whenever p has consecutive backtracking along H-components hi ; : : : ; hj , of segments pi ; : : : ; pj ,
such that

maxfjhkjX j k D i; : : : ; j g �‚;

it must be that dX ..hi /�; .hj /C/� �.

The remainder of this section is devoted to showing the following result about quasigeodesicity of
shortcuttings for tamable paths with appropriate constants.

Proposition 9.4 Given arbitrary c0 � 14ı and �� 0 there are constants �D �.c0/� 1, c D c.c0/� 0
and � D �.�; c0/� 1 such that for any natural number ‚� � there is B0 D B0.‚; c0/� 0 satisfying the
following.
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Let p D p1 � � �pn be a .B0; c0; �;‚/-tamable broken line in �.G;X [H/ and let †.p;‚/ be the ‚-
shortcutting , obtained by applying Procedure 9.1 to p, †.p;‚/ D f0e1f1 � � � fm�1emfm. Then ek is
non-trivial , for each k D 1; : : : ; m, and †.p;‚/ is .�; c/-quasigeodesic without backtracking.

Moreover , for any k 2 f1; : : : ; mg, if we denote by e0
k

the H-component of †.p;‚/ containing ek , then
je0
k
jX � �.

The idea of the proof will be to show that under the above assumptions the broken line †.p;‚/ satisfies
the hypotheses of Proposition 5.19.

Notation 9.5 For the remainder of this section we fix arbitrary constants c0 � 14ı and � � 0. We let
�D �.4; c3; 0/, where c3 D c3.c0/� 0 is the constant from Lemma 4.11 and �.4; c3; 0/ is the constant
obtained by applying Proposition 5.17 to .4; c3/-quasigeodesics. Let �1 > 0, � � 1 and c � 0 be the
constants given by Proposition 5.19, applied with constant �. Note that the constants � and c only depend
on c0 and do not depend on �.

We now define the constant � by

(9-1) � Dmaxf�1; �gC 2�C 1:

Finally we take any natural number ‚� � and

(9-2) B0 Dmaxf.12c0C 12ıC 1/‚; .4C c3/‚C 1g:

The proof of Proposition 9.4 will consist of the following four lemmas. Throughout these lemmas we
use the constants defined above and assume that p D p1 � � �pn is a .B0; c0; �;‚/-tamable broken line in
�.G;X [H/. As before, we write v0; : : : ; vd for the set of vertices of p in the order of their appearance.
We let †.p;‚/D f0e1f1 � � � fm�1emfm be the ‚-shortcutting and V.p;‚/D f.s0; t0/; : : : ; .sm; tm/g
be the set obtained by applying Procedure 9.1 to p.

Lemma 9.6 For each k D 1; : : : ; m, we have jekjX � � > 0.

Proof By the construction in Procedure 9.1, there are pairwise connected H-components h1; : : : ; hj of
consecutive segments of p, such that j � 1, .h1/� D .ek/�, .hs/C D .ek/C and

maxfjhl jX j l D 1; : : : ; j g �‚:

If j D 1 we see that jekjX D jh1jX �‚� �, and if j > 1 then we know that jekjX � � by property (iii)
from Definition 9.3.

Lemma 9.7 The subpaths of p between vsk and vtk , for k D 0; : : : ; m, are .4; c3/-quasigeodesic.

Proof We write c1 D c1.c0/D 12c0C 12ıC 1, as in Lemma 4.11.

Choose any k 2 f0; : : : ; mg and denote by p0 be the subpath of p starting at vsk and terminating at vtk .
If vsk and vtk are both vertices of pi , for some i 2 f1; : : : ; ng, then p0 is geodesic and we are done.
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Otherwise p0Dp0ipiC1 � � �pj�1p
0
j , for some i; j 2 f1; : : : ; ng, with i < j , where p0i is a terminal segment

of pi and p0j is an initial segment of pj .

By Remark 9.2(c), the paths piC1; : : : ; pj�1 contain no H-components h with jhjX � ‚. Since p is
.B0; c0; �;‚/-tamable, jpl jX � B0 for each l D i C 1; : : : ; j � 1 by condition (i). Thus we can combine
Lemma 5.10 with (9-2) to obtain

dX[H..pl/�; .pl/C/D `.pl/�
1

‚
jpl jX �

B0

‚
� c1 for each l 2 fi C 1; : : : ; j � 1g:

Again, from the assumption that p is .B0; c0; �;‚/-tamable, we have that

h.pl/�; .plC1/Ci
rel
.pl /C

� c0 for all l D i; : : : ; j � 1;

using condition (ii). In view of Remark 4.6,

h.p0i /�; .piC1/Ci
rel
.p0

i
/C
� c0 and h.pj�1/�; .p

0
j /Ci

rel
.pj�1/C

� c0:

Therefore we can use Lemma 4.11 to conclude that p0 is .4; c3/-quasigeodesic, as required.

Lemma 9.8 If k 2 f0; : : : ; m� 1g and h is an H-component of fk or fkC1 that is connected to ekC1,
then jhjX � �.

Proof Arguing by contradiction, suppose that h is an H-component of fk connected to ekC1 and
satisfying jhjX > � (the other case when h is an H-component of fkC1 is similar). Remark 5.9 tells us
that h is a single edge of fk . Moreover, since h and ekC1 are connected and .fk/C D .ekC1/�, we have
dX[H.h�; .fk/C/� 1. The geodesicity of fk in �.G;X [H/ now implies that h must in fact be the last
edge of fk , so that hC D .fk/C D vtk .

Let p0 D p0ipiC1 � � �pj�1p
0
j be the subpath of p with p0� D vsk and p0

C
D vtk , where p0i and p0j are

non-trivial subpaths of pi and pj respectively. By Lemma 9.7, p0 is .4; c3/-quasigeodesic.

Since jhjX >�D �.4; c3; 0/ we may apply Proposition 5.17 to find that h is connected to an H-component
of p0 (which may consist of multiple edges, each of which is an H-component of a segment of p). We
write h0 for the final edge of this H-component and denote by u the edge of p with endpoints vtk
and vtkC1 (see Figure 7). Procedure 9.1 and the assumption that h is connected to ekC1 imply that u is
an H-component of a segment of p and h0 and u are connected as H-subpaths of p.

Suppose, first, that p0j is a proper subpath of pj , so that u belongs to the segment pj , as shown on
Figure 7. Then there are the following possibilities.

Case 1 h0 is an edge of pj .

In this case h0 and u are connected distinct H-subpaths of pj , which is a geodesic. This contradicts the
observation of Remark 5.9, that geodesics are without backtracking and H-components of geodesics are
single edges.
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vsk

vtk vtkC1

vskC1

pi

h0 u
pj

fk

h

ekC1

Figure 7: Illustration of Lemma 9.8.

Case 2 h0 is an H-component of pj�1.

Let t 2 f0; : : : ; dg be such that vt D h0�, and note that

(9-3) sk � t < tk :

By the construction from Procedure 9.1, there are pairwise connected H-components hj ; : : : ; hjCl , of
segments pj ; : : : ; pjCl , with .ekC1/� D .hj /� D vtk and .ekC1/C D .hjCl/C D vskC1

, such that

maxfjhj jX ; : : : ; jhjCl jXg �‚

and l 2 f0; : : : ; n� j g is chosen to be maximal with this property. Then the components h0; hj ; : : : ; hjCl
constitute a larger instance of consecutive backtracking, starting at h0� D vt , with

maxfjh0jX ; jhj jX ; : : : ; jhjCl jXg �‚:

In view of (9-3), this contradicts the choice of tk and the inclusion of .sk; tk/ in the set V.p;‚/ at Steps 2
and 3 of Procedure 9.1.

Case 3 h0 is an H-component of one of the paths p0i ; piC1; : : : ; pj�2.

Then the subpath q of p0 from h0
C

to p0
C
D vtk contains all of pj�1. By Remark 9.2(c), pj�1 contains

no H-components q satisfying jqjX � ‚. Therefore, in view of Lemma 5.10 and the assumption that
p is .B0; c0; �;‚/-tamable, we can deduce that ‚`.pj�1/ � jpj�1jX � B0: Combining this with the
.4; c3/-quasigeodesicity of p0, we obtain

dX[H.h
0
C; p

0
C/�

1

4
.`.q/� c3/�

1

4
.`.pj�1/� c3/�

B0

4‚
�
c3

4
> 1;

where the last inequality follows from (9-2). On the other hand, the fact that h0 and h are connected gives
dX[H.h

0
C
; p0
C
/D dX[H.h

0
C
; hC/� 1, contradicting the above.

In each case we arrive at a contradiction, so it is impossible that jhjX > � if p0j is a proper subpath of pj .
If p0j is instead the whole subpath pj , we may carry out a similar analysis. In this situation it must be
that u is an H-component of the segment pjC1. We now have only two relevant cases to consider: h0 is
an H-component of pj or h0 is an H-component of one of the paths p0i ; piC1; : : : ; pj�1. Both of them
will lead to contradictions similarly to Cases 2 and 3 above.

Therefore it must be that jhjX � �, as required.
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Lemma 9.9 For each k 2 f1; : : : ; m� 1g, the H-subpaths ek and ekC1 of †.p;‚/ are not connected.

Proof Suppose that ek is connected to ekC1 for some k 2 f1; : : : ; m � 1g. As before, according to
Procedure 9.1, there exist two sets of pairwise connected H-components of consecutive segments of p,
h1; : : : ; hi and q1; : : : ; qj , such that .h1/�D .ek/�, .hi /CD .ek/C, .q1/�D .ekC1/�, .qj /CD .ekC1/C
and

maxfjh1jX ; : : : ; jhi jXg �‚; maxfjq1jX ; : : : ; jqj jXg �‚:

Since ek and ekC1 are connected, hi and q1 will be connected H-subpaths of p; in particular they cannot
be contained in the same segment of the broken line p by Remark 5.9. If hi and q1 are H-components
of adjacent segments of p, then the components h1; : : : ; hi ; q1; : : : ; qj constitute a longer instance of
consecutive backtracking in p, which contradicts the construction of ek in Procedure 9.1.

Therefore it must be the case that the subpath p0 of p between

.ek/C D .hi /C D vsk and .ekC1/� D .q1/� D vtk

contains at least one full segment pl (with 1<l <n). By Remark 9.2(c) the path p0 has no H-components h
satisfying jhjX �‚. Therefore we can combine Lemma 5.10 with the fact that p is .B0; c0; �;‚/-tamable
to deduce that

(9-4) `.p0/� `.pl/�
jpl jX

‚
�
B0

‚
:

Moreover, by Lemma 9.7 the path p0 is .4; c3/-quasigeodesic, so

`.p0/� 4dX[H..ek/C; .ekC1/�/C c3 � 4C c3;

where the last inequality is true because ek and ekC1 are connected. Combined with (9-4), the above
inequality gives B0 � .4C c3/‚, which contradicts the choice of B0 in (9-2).

Therefore ek and ekC1 cannot be connected, for any k 2 f1; : : : ; m� 1g.

Proof of Proposition 9.4 The construction, together with Lemmas 9.6, 9.8 and 9.9, show that the
‚-shortcutting †.p;‚/D f0e1f1 � � � fm�1emfm satisfies the hypotheses of Proposition 5.19 and ek is
non-trivial, for each k D 1; : : : ; m. Therefore †.p;‚/ is .�; c/-quasigeodesic without backtracking.

For the final claim of the proposition, consider any k 2 f1; : : : ; mg and denote by e0
k

the H�-component of
†.p;‚/ containing ek , for some � 2N. Lemma 9.9 implies that e0

k
is the concatenation h1ekh2, where

h1 is either trivial or it is an H�-component of fk�1, and h2 is either trivial or it is an H�-component
of fk . Combining the triangle inequality with Lemmas 9.6 and 9.8 and equation (9-1), we obtain

je0kjX � jekjX � jh1jX � jh2jX � � � 2� � �;

as required.
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10 Metric quasiconvexity theorem

This section comprises a proof of Theorem 3.5, and, as usual, we work under Convention 6.1. First we
will show that if some subgroups Q0 6Q and R0 6R satisfy conditions (C1)–(C5) with appropriately
large constants, then minimal type path representatives of hQ0; R0i meet the conditions of Proposition 9.4.
We will then use the quasigeodesicity of shortcuttings of these path representatives to obtain properties
(P1)–(P3).

Lemma 10.1 Suppose that Q0 6Q and R0 6R satisfy (C2) with constant B � 0. Then

minX ..Q0[R0/ nS/� B:

Proof Let g 2 .Q0[R0/ nS . If g 2Q0 then g …R as g … S . Therefore g 2Q0 nR �RhQ0; R0iR nR;
hence jgjX � B by (C2). Similarly, if g 2 R0 then g 2QhQ0; R0iQ nQ, and (C2) again implies that
jgjX � B .

Notation 10.2 For the remainder of this section we fix the following notation:

� C0 is the constant provided by Lemma 6.7;

� c0 DmaxfC0; 14ıg and c3 D c3.c0/ is the constant obtained by applying Lemma 4.11;

� �D �.c0/ and c D c.c0/ are the first two constants from Proposition 9.4;

� C1 � 0 is the constant from Lemma 7.3;

� P1 is the finite family of parabolic subgroups of G defined by

P1 D ftH�t
�1
j � 2 N; jt jX � C1g:

Lemma 10.3 For each �� 0 there are constants C3 D C3.�/� 0, � D �.�/� 1, ‚1 D‚1.�/ 2N and
B1 D B1.�/� 0 such that the following is true.

Suppose that Q0 6Q and R0 6R are subgroups satisfying conditions (C1)–(C5) with constants B � B1
and C � C3 and family P� P1. If p D p1 � � �pn is a minimal type path representative for an element
g 2 hQ0; R0i then p is .B; c0; �;‚1/-tamable.

Moreover , let†.p;‚1/Df0e1f1 � � � fm�1emfm be the ‚1-shortcutting of p obtained from Procedure 9.1
and let e0

k
be the H-component of †.p;‚1/ containing ek for k D 1; : : : ; m. Then †.p;‚1/ is a .�; c/-

quasigeodesic without backtracking and je0
k
jX � �, for each k D 1; : : : ; m.

Proof We define the following constants:

� � D �.�; c0/� 0, the constant provided by Proposition 9.4;

� C3 D C2.�/� 0, where C2.�/ is given by Proposition 8.5;
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� ‚1 Dmaxf‚0.�/; �g, where ‚0 is the constant of Lemma 7.6;

� B1 DmaxfB0.‚1; c0/; C2.�/g � 0, where B0 is the remaining constant of Proposition 9.4.

Let B � B1 and C � C3. Suppose that Q0, R0, g and p are as in the statement of the lemma. In view of
Remark 6.5, Qpi 2 .Q0[R0/ nS , for every i D 2; : : : ; n� 1. Therefore, by Lemma 10.1, we have

(10-1) jpi jX � B for each i D 2; : : : ; n� 1:

On the other hand, Lemma 6.7 tells us that

(10-2) h.pi /�; .piC1/Ci
rel
.pi /C

� C0 � c0 for each i D 1; : : : ; n� 1:

Now suppose that p has consecutive backtracking along H-components hi ; : : : ; hj of segments pi ; : : : ; pj
satisfying

maxfjhi jX ; : : : ; jhj jXg �‚1:

If j D i C 1 then Lemma 7.6 and the choice of ‚1 give that dX ..hi /�; .hj /C/ � �. Otherwise
Proposition 8.5 gives the same inequality. The above together with (10-1) and (10-2) show that p
is .B; c0; �;‚1/-tamable.

The remaining claims of the lemma follow from Proposition 9.4.

We can now deduce the relative quasiconvexity of hQ0; R0i by applying Lemma 10.3 with �D 0.

Proposition 10.4 Let ˇ1 D B1.0/ and 
1 D C3.0/ be the constants provided by Lemma 10.3 applied to
the case when �D 0.

Suppose that Q0 6Q and R0 6R are relatively quasiconvex subgroups of G satisfying conditions (C1)–
(C5) with family P � P1 and constants B � ˇ1 and C � 
1. Then the subgroup hQ0; R0i is relatively
quasiconvex in G.

Proof By assumption the subgroups Q0 and R0 are relatively quasiconvex, with some quasiconvexity
constant "0 � 0. For any element g 2 hQ0; R0i consider a geodesic � in �.G;X [H/ with �� D 1 and
�C D g. Let u be any vertex of � .

Since g 2 hQ0; R0i, it has a path representative p D p1 � � �pn of minimal type, with p� D 1. Let
†.p;‚/ D f0e1f1 � � � fm�1emfm be the ‚-shortcutting of p obtained from Procedure 9.1, where
‚D‚1.0/ is provided by Lemma 10.3. This lemma implies that p is .B; c0; �;‚/-tamable and†.p;‚/ is
a .�; c/-quasigeodesic without backtracking, where ��1 and c�0 are the constants fixed in Notation 10.2.
Therefore, by Proposition 5.17, there is a phase vertex v of †.p;‚/ with dX .u; v/� �.�; c; 0/.

Since each ei is a single edge, the vertex v lies on the geodesic subpath fi of †.p;‚/, for some
i 2 f0; : : : ; mg. The subpath of p sharing endpoints with fi is .4; c3/-quasigeodesic by Lemma 9.7.
Hence there is a vertex w of p such that dX .v; w/� �.4; c3; 0/, by Proposition 5.17.
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Noww is a vertex of a subpath pj of p, for some j 2f1; : : : ; ng. Let xD .pj /�, and note that x 2hQ0; R0i.
Without loss of generality, suppose that Qpj 2Q0 (the case when Qpj 2R0 can be treated similarly). Then
by the relative quasiconvexity of Q0, dX .w; xQ0/� "0, whence dX .w; hQ0; R0i/� "0. Therefore

dX .u; hQ
0; R0i/� dX .u; v/C dX .v; w/C dX .w; hQ

0; R0i/

� �.�; c; 0/C �.4; c3; 0/C "
0;

so hQ0; R0i is a relatively quasiconvex subgroup of G, with the quasiconvexity constant

�.�; c; 0/C �.4; c3; 0/C "
0:

We will next show that properties (P2) and (P3) will be satisfied if one chooses the constants B and C of
(C1)–(C5) to be sufficiently large with respect to A.

Lemma 10.5 For any A � 0 there exist constants ˇ2 D ˇ2.A/ � 0 and 
2 D 
2.A/ � 0 such that if
Q0 6Q and R0 6R satisfy conditions (C1)–(C5) with constants B � ˇ2 and C � 
2 and family P�P1,
then

minX .hQ0; R0i nS/� A:

Proof Given any A� 0 let �D �.�; c; A/ be the constant provided by Lemma 5.12. Using Lemma 10.3,
set

‚D‚1.�/; 
2 D C3.�/; ˇ2 DmaxfB1.�/; .4AC c3/‚g:

Suppose that Q0 and R0 satisfy conditions (C1)–(C5) with constants B � ˇ2 and C � 
2, and let
g 2 hQ0; R0i be any element with jgjX <A. Let pD p1 � � �pn be a path representative of g with minimal
type. By Lemma 10.3, p is .B; c0; �;‚1/-tamable, the ‚-shortcutting †.p;‚/D f0e1f1 � � � fm�1emfm
is .�; c/-quasigeodesic without backtracking, and, for each k D 1; : : : ; m, e0

k
, the H-component of

†.p;‚/ containing ek , is isolated and satisfies je0
k
jX � �.

If m � 1, then, according to Lemma 5.12, jgjX D j†.p;‚/jX � A, contradicting our assumption.
Therefore it must be the case that m D 0 and †.p;‚/ D f0. Since p� D .f0/� and pC D .f0/C,
Lemma 9.7 tells us that p is .4; c3/-quasigeodesic. Moreover, following Remark 9.2(c), we see that pi
has no H-component h with jhjX �‚, for each i D 1; : : : ; n.

Now, arguing by contradiction, suppose that g … S . Then Qp1 2 .Q0 [ R0/ n S (by Remark 6.5), so
jp1jX � B � ˇ2, by Lemma 10.1. Lemma 5.10 now implies that

`.p1/� ˇ2=‚� 4AC c3:

Since `.p/� `.p1/, the .4; c3/-quasigeodesicity of p yields

A > jgjX � jgjX[H D jpjX[H �
1
4
.`.p/� c3/� A;

which is a contradiction. Therefore g 2 S and the lemma is proved.
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In order to prove that property (P3) holds for the subgroups Q0 and R0, we need to consider path
representatives of elements g 2 QhQ0; R0iR. These path representatives will necessarily have to be
slightly different from those in Definition 6.2.

Definition 10.6 (path representative, II) Let g be an element of QhQ0; R0iR, and suppose that
p D qp1 � � �pnr is a broken line in �.G;X [H/, satisfying all of the following conditions:

� Qp D g;

� Qq 2Q and Qr 2R;

� Qpi 2Q
0[R0, for each i 2 f1; : : : ; ng.

Then we say that p is a path representative of g in the product QhQ0; R0iR.

Similarly to Definition 6.3, we can define types for such path representatives.

Definition 10.7 (type of a path representative, II) Suppose that pD qp1 � � �pnr is a path representative
of some g 2QhQ0; R0iR, as described in Definition 10.6. Let Y denote the set of all H-components of
the segments of p. We define the type of the path representative p to be the triple

�.p/D

�
n; `.p/;

X
y2Y

jyjX

�
2N0

3:

Remark 10.8 Note that, by Definition 10.6, a path representative p D qp1 � � �pnr , of an element
g 2 QhQ0; R0iR nQR, must necessarily satisfy n > 0. Moreover, if p has minimal type (so n is the
smallest possible) then Qp1 2 R0 n S , Qpn 2 Q0 n S and the labels of p1; : : : ; pn will alternate between
representing elements of R0 nS and Q0 nS . It follows that the integer n must be even, so n� 2.

For example, if g 2R0Q0 nQR then a minimal type path representative of g will have the form qp1p2r ,
where q and r are trivial paths, Qp1 2R0 and Qp2 2Q0.

It is not difficult to check that the results of Sections 6, 7, and 8 hold equally well for minimal type path
representatives of the above form for elements g 2QhQ0; R0iR nQR, with only superficial adjustments
to the proofs in those sections. It follows that Lemma 10.3 also remains valid in these settings.

Lemma 10.9 In the statement of Lemma 10.5 we can add that

minX .QhQ0; R0iR nQR/� A:

Proof For any A� 0 we define the constants �, ‚, 
2 and ˇ2 exactly as in Lemma 10.5.

Suppose that for some element g 2 QhQ0; R0iR nQR we have jgjX < A. Let p D qp1 � � �pnr be a
minimal type path representative of g, of the form described in Definition 10.6.

Arguing in the same way as in Lemma 10.5, we can deduce that p is .4; c3/-quasigeodesic and for each
i D 1; : : : ; n, pi has no H-component h with jhjX �‚.
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According to Remark 10.8, n � 2 and Qp1 2 R0 n S . So, by Lemma 10.1, jp1jX � B � ˇ2. The same
argument as in Lemma 10.5 now yields that jgjX � A, leading to a contradiction. Therefore it must be
that jgjX � A for any g 2QhQ0; R0iR nQR.

We are finally able to prove Theorem 3.5.

Proof of Theorem 3.5 Choose P to be the finite family P1, defined in Notation 10.2. Given any A� 0,
we apply Proposition 10.4 and Lemma 10.5 to define the constants

B Dmaxfˇ1; ˇ2.A/g and C Dmaxf
1; 
2.A/g:

Suppose that Q0 6Q and R0 6R are subgroups satisfying conditions (C1)–(C5) with constants B and
C and the finite family of parabolic subgroups P. Then property (P1) holds by Proposition 10.4, while
properties (P2) and (P3) are satisfied by Lemmas 10.5 and 10.9 respectively.

11 Using separability to establish the conditions of the quasiconvexity
theorem

In this section we will show how one can prove the existence of finite-index subgroups Q0 6f Q and
R0 6f R, satisfying the conditions (C1)–(C5) from Section 3.1, using certain separability assumptions.
We start with finding such assumptions for establishing (C2) and (C3).

Proposition 11.1 Let G be a group generated by a finite subset X , letQ;R6G and S DQ\R, and let
P be a finite collection of subgroups of G. Suppose that Q and R are separable in G and PS is separable
in G, for each P 2 P.

Then for any constants B;C � 0 there exists a finite-index subgroup L 6f G, with S � L, such that
conditions (C2) and (C3) are satisfied by arbitrary subgroups Q0 6Q\L and R0 6R\L.

Proof Combining the separability of Q and R in G with Lemma 4.16, we can find E1; E2 Cf G such
that minX .QE1 nQ/� B and minX .RE2 nR/� B . Set N0 DE1\E2 Cf G and observe that

QSN0QDQN0QDQQN0 DQN0 �QE1;

as Q is a subgroup containing S and normalising N0 in G. Similarly, RSN0RDRN0 �RE2; therefore

(11-1) minX .QSN0Q nQ/� B and minX .RSN0R nR/� B:

Let P D fP1; : : : ; Pkg. The assumptions imply that for every i 2 f1; : : : ; kg the double coset PiS is
separable in G; hence we can apply Lemma 4.16 again to find finite-index normal subgroups Ni Cf G
satisfying

(11-2) minX .PiSNi nPiS/� C for each i D 1; : : : ; k:
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Now set L D
Tk
iD0 SNi 6f G, and choose arbitrary subgroups Q0 6 Q\L and R0 6 R\L. Then

S � L and hQ0; R0i � L� SNi , for all i D 0; : : : ; k, by construction; hence (C2) holds by (11-1) and
(C3) holds by (11-2), as desired.

To establish condition (C5) we need to be able to lift certain finite-index subgroups of a maximal parabolic
subgroup P 6G to finite-index subgroups of G in a controlled way. The next statement shows how a
double coset separability assumption can help with this task.

Lemma 11.2 Let G be a group , P;Q6G be subgroups of G and letK 6f P be a finite-index subgroup
of P , with Q\P �K. If KQ is separable in G, then there is a finite-index subgroup M 6f G such that
Q �M and M \P �K.

Proof Let P DK[Kh1[� � �[Khm, where h1; : : : ; hm 2P nK. Note thatKQ\P DK.Q\P /DK,
so h1; : : : ; hm … KQ. The double coset KQ is profinitely closed, so, by Lemma 4.16(a), there exists
N Cf G such that

fh1; : : : ; hmg\KQN D∅:

Let M DQN 6f G, so that the above implies Khi \M D ∅, for each i D 1; : : : ; m. We then have
Q �M and M \P �K, as required.

We are now in position to prove the main result of this section.

Theorem 11.3 Assume that G is a group generated by a finite set X , Q;R 6 G are subgroups of G,
and denote S DQ\R. Let P be a finite collection of subgroups of G such that for every P 2P all of
the following hold :

(S1) Q and R are separable in G;

(S2) the double coset PS is separable in G;

(S3) for all K 6f P and T 6f Q, satisfying S � T and T \P �K, the double coset KT is separable
in G;

(S4) for all U 6f Q\P , with S \P � U , the double coset U.R\P / is separable in P .

Then , given arbitrary constants B;C � 0, there exist finite-index subgroups Q0 6f Q and R0 6f R such
that conditions (C1)–(C5) are all satisfied.

More precisely, there exists L 6f G, with S � L, such that for any L0 6f L, satisfying S � L0, we
can choose Q0 DQ\L0 6f Q and there exists M 6f L0, with Q0 �M , such that for any M 0 6f M ,
satisfying Q0 �M 0, we can choose R0 DR\M 0 6f R.

Proof The idea is that (S1) will take care of condition (C2), (S2) will take care of (C3), and (S3) and
(S4) will take care of (C5). The subgroups Q0 and R0 will satisfy Q0 DQ\M 0 and RDR\M 0, for
some M 0 6f G, with S �M 0, which will immediately imply (C1) and (C4).
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Let PD fP1; : : : ; Pkg. Arguing just like in the proof of Proposition 11.1 (using the assumptions (S1)
and (S2)), we can find finite-index normal subgroups Ni Cf G, i D 0; : : : ; k, such that

minX .QSN0Q nQ/� B; minX .RSN0R nR/� B;

minX .PiSNi nPiS/� C for i D 1; : : : ; k:

We can now define a finite-index subgroup L6f G by LD
Tk
iD0 SNi . Note that S �L by construction,

and for each i 2 f1; : : : ; kg we have

(11-3) minX .QLQ nQ/� B; minX .RLR nR/� B; minX .PiL nPiS/� C:

Choose an arbitrary finite-index subgroup L0 6f L, with S � L0, and define Q0 D Q \ L0, so that
S 6Q0 6f Q.

To construct R0 6f R, consider any i 2 f1; : : : ; kg and denote

Qi DQ\Pi ; Ri DR\Pi ; Q0i DQ
0
\Pi 6f Qi :

Choose some elements ai1; : : : ; aini
2Qi such that Qi D

Fni

jD1 aijQ
0
i . Condition (S4) implies that the

subset Q0iRi is separable in Pi ; hence, by claim (c) of Lemma 4.16, there exists Fi Cf Pi such that

(11-4) minX .aijQ0iRiFi n aijQ
0
iRi /� C for j D 1; : : : ; ni :

Define Ki DQ0iFi 6f Pi . Then Q0\Pi DQ0i �Ki and aijKiRi D aijQ0iRiFi , for each j D 1; : : : ; ni .
Therefore, from (11-4) we can deduce that

(11-5) minX .aijKiRi n aijQ0iRi /� C for all j D 1; : : : ; ni :

By (S3), the double coset KiQ0 is separable in G, so we can apply Lemma 11.2 to find Mi 6f G such
that Q0 �Mi and Mi \Pi �Ki .

We now letM D
Tk
iD1Mi\L

0 and observe thatQ06M 6f L0 andM \Pi �Ki for each i 2 f1; : : : ; kg.
Inequality (11-5) yields

(11-6) minX
�
aij .M \Pi /Ri n aijQ

0
iRi

�
� C for all i D 1; : : : ; k and j D 1; : : : ; ni :

We can now choose an arbitrary finite-index subgroup M 06f M , withQ0�M 0, and define R0DR\M 0.
Observe that M 0 6f G, by construction, hence R0 6f R.

Let us check that the subgroups Q0 and R0 obtained above satisfy conditions (C1)–(C5). Indeed, by
construction, S DQ\R �Q0, so S �R\M 0 DR0; hence

S �Q0\R0 �Q\RD S:

Thus (C1) holds. We also have Q0 DQ\L0 DQ\M 0, as Q0 �M 0 � L0; hence

Q0 �Q\ hQ0; R0i �Q\M 0 DQ0:

Algebraic & Geometric Topology, Volume 25 (2025)



Quasiconvexity of virtual joins and separability of products in relatively hyperbolic groups 455

Thus Q\hQ0; R0i DQ0. After intersecting both sides of the latter equation with an arbitrary P 2P, we
get QP \ hQ0; R0i DQ0P ; hence

Q0P �QP \ hQ
0
P ; R

0
P i �QP \ hQ

0; R0i DQ0P :

Thus QP \ hQ0P ; R
0
P i DQ

0
P . Similarly, RP \ hQ0P ; R

0
P i DR

0
P , so condition (C4) is satisfied.

Conditions (C2) and (C3) hold by (11-3), because Q0; R0 � L by construction.

To prove (C5), take Pi 2P for any i 2 f1; : : : ; kg, and denote Qi DQ\Pi , Q0i DQ
0\Pi , Ri DR\Pi

and R0i DR
0\Pi , as before. For any q 2Qi there exists j 2 f1; : : : ; nig such that q 2 aijQ0i . It follows

that

(11-7) qhQ0i ; R
0
i iRi D aij hQ

0
i ; R
0
i iRi and qQ0iRi D aijQ

0
iRi :

Since hQ0i ; R
0
i i6M \Pi , we can combine (11-7) with (11-6) to deduce that

minX .qhQ0i ; R
0
i iRi n qQ

0
iRi /� C;

which establishes condition (C5).

12 Double coset separability in amalgamated free products

In this section we develop a method for establishing the separability assumptions (S2) and (S3) of
Theorem 11.3 using amalgamated products. The idea is that when G is a relatively hyperbolic group,
P is a maximal parabolic subgroup and Q is a relatively quasiconvex subgroup of G, we can apply the
combination theorem of Martínez-Pedroza (Theorem 5.26) to find a finite-index subgroup H 6f P such
that AD hH;Qi ŠH �H\QQ, so proving the separability of PQ in G can be reduced to proving the
separability of HQ in the amalgamated free product A.

The next proposition gives a new criterion for showing separability of double cosets in amalgamated free
products. This criterion may be of independent interest.

Proposition 12.1 Let AD B �D C be an amalgamated free product , where we consider B , C and D as
subgroups of A with B \C DD. Suppose that D is separable in A, and U �B and V � C are arbitrary
subsets.

If the product UD (respectively, DV ) is separable in A then the product UC (respectively, BV ) is
separable in A.

Proof We will prove the statement in the case of UC , as the other case is similar.

If U D ∅ then UC D ∅, so we can suppose that U is non-empty. Take any u 2 U . According to
Remark 4.12, without loss of generality we can replace U with u�1U to assume that 1 2 U .

Consider any element g 2AnUC ; since 12U , we deduce that g …C . We will construct a homomorphism
from A to a finite group L which separates the image of g from the image of UC .
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Since g …D, it has a reduced form g D x1x2 � � � xk , where xi belongs to one of the factors B or C , for
each i , consecutive elements xi and xiC1 belong to different factors, and xi …D for all i D 1; : : : ; k (see
[35, page 187]).

Since D is separable in A, by Lemma 4.16(a) there is a finite group M and a homomorphism ' WA!M

such that

(12-1) '.xi / … '.D/ in M for every i D 1; : : : ; k:

Denote by B , C and D the '-images if B , C and D in M respectively. We can then consider the
amalgamated free product AD B �D C , together with the natural homomorphism  W A! A, which is
compatible with ' on B and C (in other words,  jB D 'jB and  jC D 'jC ). It follows that ' factors
through  . That is, 'D N' ı , where N' WA!M is the natural homomorphism extending the embeddings
of B and C in M . Equation (12-1) now implies that

(12-2)  .xi / …D in A for every i D 1; : : : ; k:

Denote Nxi D  .xi / 2 A, i D 1; : : : ; k. In view of (12-2),  .g/ D Nx1 � � � Nxk is a reduced form in the
amalgamated free product A. We will now consider several cases.

Case 1 Assume that k � 3.

Then the above reduced form for  .g/ has length k � 3, so by the normal form theorem for amalgamated
free products [35, Theorem IV.2.6], it cannot be equal to an element from  .UC/ D  .U /C � BC ,
which would necessarily have a reduced form of length at most 2 in A. Therefore  .g/ …  .UC/ in A.

Since B and C are finite groups, their amalgamated free product A is residually finite (in fact, A
is a virtually free group — see [55, Proposition 2.6.11]), so the finite subset  .UC/ is closed in the
profinite topology on A. Hence there is a finite group L and a homomorphism � W A! L such that
�. .g// … �. .UC// in L. The composition � ı W A! L is the required homomorphism separating
the image of g from the image of UC , and the consideration of Case 1 is complete.

Case 2 Suppose that k D 2, x1 2 C nD and x2 2 B nD.

Then Nx1 2C nD and Nx2 2B nD by (12-2), so  .g/D Nx1 Nx2 is a reduced form of length 2 in A. Again, the
normal form theorem for amalgamated free products implies that  .g/…BC in A; hence  .g/… .UC/
and we can find the required finite quotient L of A as in Case 1.

Case 3 gD bc, where b 2B nUD and c 2C (here we allow c 2D, so this case also covers the situation
when k D 1).

This is the only case where we need to use the assumption that UD is separable in A. This assumption
implies that we can find a finite group M and a homomorphism ' W A!M satisfying

'.b/ … '.UD/ in M:
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As above, we can construct the amalgamated free product A D B �D C , together with the natural
homomorphism  W A! A, such that ' factors through  . It follows that

(12-3)  .b/ …  .UD/D  .U /D in A:

Observe that  .g/ …  .UC/D  .U /C in A. Indeed, otherwise we would have

 .b/D  .g/ .c�1/ 2  .U /C \B D  .U /.C \B/D  .U /D;

which would contradict (12-3) (in the first equality we used the fact that B is a subgroup of A containing
the subset  .U /). We can now argue as in Case 1 above to find a homomorphism from A to a finite
group L separating the image of g from the image of UC .

It is not hard to see that since g … UC in A, the above three cases cover all possibilities; hence the proof
is complete.

In the next two corollaries we assume that AD B �D C is the amalgamated free product of its subgroups
B and C , with B \C DD.

Corollary 12.2 Suppose that D is a separable subgroup in A. Then B , C and BC are all separable in A.

Proof The separability of C and B in A follows from Proposition 12.1, after choosing U D f1g and
V D f1g.

The separability of BC is also a consequence of Proposition 12.1, where we take U D B (so that
UD D BD D B).

We will not need the next corollary in this paper, but it may be of independent interest and can be used to
strengthen some of the statements proved in Section 13.

Corollary 12.3 Suppose that U � B and V � C are subsets such that UD and DV are separable in A.
Then the triple product UDV is separable in A.

Proof If either U or V are empty then UDV is empty, and, hence, separable in A. Thus we can
suppose that there exist some elements u 2 U and v 2 V . By Remark 4.12. the subsets u�1UD � B and
DVv�1 � C are separable in A. Since both of them contain D, we see that D D u�1UD \DVv�1;
thus D is separable in A.

By Proposition 12.1, the products UC and BV are separable in A, so the statement follows from the
observation that

UC \BV D UDV in A:

In the case when U and V are subgroups, the above corollary shows that we can use separability of
double cosets UD and DV to deduce separability of the triple coset UDV . Moreover, if both U and V
are subgroups containing D, Corollary 12.3 implies that the double coset UV D UDV is separable in A,
as long as U and V are separable in A.
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13 Separability of double cosets when one factor is parabolic

Throughout this section we will assume that G is group generated by a finite subset X and hyperbolic
relative to a collection of peripheral subgroups fH� j � 2 Ng, with jNj<1.

Our goal in this section will be to establish separability of double cosets required by conditions (S2)
and (S3) of Theorem 11.3. All statements in this section will assume that finitely generated relatively
quasiconvex subgroups of G are separable — that is, G is QCERF (see Definition 1.1).

Lemma 13.1 Suppose that G is QCERF. If A is a finitely generated relatively quasiconvex subgroup of
G then every subset of A which is closed in PT.A/ is also closed in PT.G/.

Proof By Lemma 5.22 every subgroup of finite index inA is finitely generated and relatively quasiconvex;
hence it is separable in G as G is QCERF. The claim of the lemma now follows from Lemma 4.13(b).

The following statement is essentially a corollary of the combination theorem of Martínez-Pedroza
(Theorem 5.26).

Proposition 13.2 Suppose that G is QCERF. Let P be a maximal parabolic subgroup of G, letQ6G be
a finitely generated relatively quasiconvex subgroup and let D D P \Q. Then there exists a finite-index
subgroup H 6f P such that all of the following properties hold :

� H \QDD;

� the subgroup AD hH;Qi is relatively quasiconvex in G;

� A is naturally isomorphic to H �DQ;

� D is separable in A;

� every subset of A which is closed in PT.A/ is also closed in PT.G/.

Proof Let C � 0 be the constant provided by Theorem 5.26, applied to the maximal parabolic subgroup
P and the relatively quasiconvex subgroup Q. By QCERF-ness, Q is separable in G, so by Lemma 4.16
there exists N Cf G such that minX .QN nQ/� C . Therefore, after setting H D P \QN 6f P , we
get minX .H nD/DminX .H nQ/� C .

Note that since D D P \Q � H � P , we have H \Q D D. Hence we can apply Theorem 5.26 to
conclude that AD hH;Qi is relatively quasiconvex in G and is naturally isomorphic to the amalgamated
free product H �DQ.

Recall, from Lemma 5.24 and Corollary 5.23, that P is finitely generated and relatively quasiconvex
in G; hence it is separable in G by QCERF-ness. It follows that D D P \Q is separable in G, which
implies that it is separable in A by Lemma 4.13.

Observe thatH andQ are both finitely generated, hence A is finitely generated and relatively quasiconvex
in G. Therefore Lemma 13.1 yields the last assertion of the proposition, that every subset of A which is
closed in PT.A/ is also closed in PT.G/.
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By combining Proposition 13.2 with Proposition 12.1 we obtain the first double coset separability result
when one of the factors is parabolic and the other one is finitely generated and relatively quasiconvex.

Proposition 13.3 Assume that G is QCERF. Let P be a maximal parabolic subgroup of G, let R6G be
a finitely generated relatively quasiconvex subgroup of G. Suppose that D 6 P is a subgroup satisfying
the following condition:

(13-1) for each U 6f D the double coset U.P \R/ is separable in P:

Then the double coset DR is separable in G.

Proof According to Proposition 13.2, there exists H 6f P such that the subgroup A D hH;Ri is
naturally isomorphic to the amalgamated free product H �E R, where E D P \RDH \R is separable
in A, and every closed subset from PT.A/ is separable in G.

Denote U DD\H 6f D. By assumption (13-1), UE is separable in P . Since P is finitely generated and
relatively quasiconvex inG, we can conclude that UE is separable inG by Lemma 13.1. As UE�A6G,
UE will also be closed in PT.A/, so we can apply Proposition 12.1 to deduce that the double coset UR
is closed in PT.A/. It follows that this double coset is separable in G and, since U 6f D, Lemma 4.14
implies that DR is separable in G, as desired.

We can now prove that (S3) of Theorem 11.3 holds as long as the relatively hyperbolic group G is QCERF.

Corollary 13.4 Suppose that G is QCERF , P is a maximal parabolic subgroup of G and Q 6 G is
a finitely generated relatively quasiconvex subgroup. Then for all finite-index subgroups K 6f P and
T 6f Q the double coset KT is separable in G.

Proof Note that T is finitely generated and relatively quasiconvex in G by Lemma 5.22. Hence, to apply
Proposition 13.3 we simply need to check that for any U 6f K the double coset U.P \T / is separable
in P . The latter is true because U.P \T / is a basic closed set in PT.P /, being a finite union of right
cosets to U 6f P . Therefore KT is separable in G by Proposition 13.3.

The proof of (S2) of Theorem 11.3 is slightly more involved because the intersection of two finitely
generated relatively quasiconvex subgroups need not be finitely generated.

Proposition 13.5 Let P be a maximal parabolic subgroup of G, let Q;R 6 G be finitely generated
relatively quasiconvex subgroups , let S D Q \R and D D P \Q. Suppose that G is QCERF and
condition (13-1) is satisfied. Then the double coset PS is separable in G.

Proof Proposition 13.3 tells us that the double coset DR is separable in G, and G is QCERF so Q is
separable in G. Now, observe that DR\Q DD.R\Q/ DDS , because D 6 Q. It follows that the
double coset DS is separable in G.
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According to Proposition 13.2, there exists a finite-index subgroup H 6f P such that H \Q D D,
A D hH;Qi Š H �D Q, D is separable in A and every closed subset in PT.A/ is closed in PT.G/.
The double coset DS is separable in A by Lemma 4.13, so HS is closed in PT.A/ by Proposition 12.1.
It follows that HS is closed in PT.G/, which implies that the double coset PS is separable in G by
Lemma 4.14.

14 Quasiconvexity of a virtual join from separability properties

In this section we will prove Theorems 1.2 and 1.3 from the introduction. The latter follows from the
following result and the observation that a finite-index subgroup of a relatively quasiconvex subgroup is
itself relatively quasiconvex (see Lemma 5.22).

Theorem 14.1 Let G be a group generated by a finite set X and hyperbolic relative to a finite collection
of abelian subgroups. Assume that G is QCERF. If Q;R 6G are relatively quasiconvex subgroups and
S DQ\R then for every A � 0 there exists a finite-index subgroup L 6f G, with S � L, such that
properties (P1)–(P3) from Section 3.1 hold for arbitrary subgroupsQ0 6Q\L and R0 6R\L satisfying
Q0\R0 D S .

Proof By combining the assumptions with Lemma 5.24, we know that maximal parabolic subgroups
of G are finitely generated abelian groups. Since such groups are slender, all relatively quasiconvex
subgroups of G are finitely generated (see [30, Corollary 9.2]). Moreover, finitely generated abelian
groups are LERF, and hence, they are double coset separable (because the product of two subgroups is
again a subgroup). Therefore the double coset PS is separable in G for any maximal parabolic subgroup
P 6G by Proposition 13.5.

In view of Proposition 11.1, for any finite collection P, of maximal parabolic subgroups of G, and any
B;C � 0 there exists L6f G, with S �L, such that any subgroups Q0 6Q\L and R0 6R\L satisfy
conditions (C1)–(C3), as long as Q0\R0 D S . Remark 3.3 tells us that these subgroups automatically
satisfy conditions (C4) and (C5). Thus we can obtain the desired statement by applying Theorem 3.5.

Corollary 14.2 Suppose that G is a QCERF group generated by a finite subset X and hyperbolic relative
to a finite family fH� j � 2 Ng of virtually abelian subgroups. Let Q;R 6G be relatively quasiconvex
subgroups and let S DQ\R. Then there exists L6f G such that if Q0 6Q\L and R0 6R\L are
relatively quasiconvex subgroups of G satisfying Q0 \R0 D S \L then the subgroup hQ0; R0i is also
relatively quasiconvex in G.

Proof By the assumptions for each � 2 N there exists a finite-index abelian subgroup K� 6f H� . Since
G is QCERF, each K� is separable in G (it is finitely generated by Lemma 5.24 and it is relatively
quasiconvex by Corollary 5.23). Thus, in view of Lemma 4.17, for every � 2 N there exists L� 6f G
such that L� \H� DK� .
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Since jNj<1, the intersection
T
�2NL� has finite index in G, hence it contains a finite-index normal

subgroup G1 Cf G. Note that for any g 2G and any � 2 N we have

(14-1) G1\gH�g
�1
D g.G1\H�/g

�1
� g.L� \H�/g

�1
D gK�g

�1;

where the first equality follows from the normality of G1, the middle inclusion follows from the fact
that G1 � L� , and the last equality is due to the fact that L� \H� D K� . By Lemma 5.22, G1 is
finitely generated and relatively quasiconvex in G; hence, by [30, Theorem 9.1] it is hyperbolic relative
to representatives of G1-conjugacy classes of the intersections G1\gH�g�1, g 2G. Thus, in view of
(14-1), all peripheral subgroups in G1 are abelian.

By [30, Corollary 9.3], a subgroup of G1 is relatively quasiconvex in G1 (with respect to the above
family of peripheral subgroups) if and only if it is relatively quasiconvex in G. Therefore G1 is QCERF
and Q1 DQ\G1 6f Q, R1 DR\G1 6f R are finitely generated relatively quasiconvex subgroups
of G1 by Lemma 5.22. After denoting S1 D S \G1 D Q1 \R1, we can apply Theorem 1.3 to find
a finite-index subgroup L 6f G1 such that S1 � L (thus, S1 D S \L) and the subgroup hQ0; R0i is
relatively quasiconvex in G1, for arbitrary Q0 6Q1\LDQ\L and R0 6R1\LDR\L satisfying
Q0 \R0 DQ1 \R1 D S1. We can use [30, Corollary 9.3] again to deduce that hQ0; R0i is relatively
quasiconvex in G.

The following collects the results of the previous sections, allowing us to find subgroups Q0 and R0 to
which Theorem 3.5 can be applied.

Proposition 14.3 Let G be a finitely generated QCERF relatively hyperbolic group with double coset
separable peripheral subgroups , and let Q and R be finitely generated relatively quasiconvex subgroups.
Then for any B;C � 0; and finite family P of maximal parabolic subgroups of G, there are finite-index
subgroups Q0 6f Q and R0 6f R satisfying (C1)–(C5) with constants B and C and family P.

More precisely , writing S DQ\R, there exists L6f G with S �L such that for any L0 6f L satisfying
S � L0, we can choose Q0 DQ\L0 6f Q and there exists M 6f L0 with Q0 �M such that for any
M 0 6f M satisfying Q0 �M 0, we can choose R0 DR\M 0 6f R.

Proof We check that all the assumptions of Theorem 11.3 are satisfied for every P 2P. Indeed, (S1)
holds because G is QCERF and (S3) is true by Corollary 13.4.

Note that the subgroups D DQ\P and R\P are finitely generated by Lemma 5.24, hence condition
(13-1) follows from the double coset separability of P ; thus (S4) is satisfied. Finally, (S2) holds by
Proposition 13.5.

The statement now follows by applying Theorem 11.3.

Theorem 14.4 Let G be a group generated by a finite set X and hyperbolic relative to a finite collection
of subgroups fH� j � 2Ng. Suppose that G is QCERF and H� is double coset separable , for each � 2N.
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If Q;R6G are finitely generated relatively quasiconvex subgroups and S DQ\R then for every A� 0
there exist finite-index subgroups Q0 6f Q and R0 6f R which satisfy properties (P1)–(P3).

More precisely , there exists L 6f G with S � L such that for any L0 6f L satisfying S � L0, we can
chooseQ0DQ\L0 6f Q and there existsM 6f L0 withQ0�M such that for anyM 0 6f M satisfying
Q0 �M 0, we can choose R0 DR\M 0 6f R.

Proof Let P be the finite collection of maximal parabolic subgroups of G provided by Theorem 3.5.
The statement follows immediately from a combination of Theorem 3.5 with Proposition 14.3.

Recall thatQ andR are said to have almost compatible parabolics if for every maximal parabolic subgroup
P 6G, either Q\P 4R\P or R\P 4Q\P . We find that in the case when Q and R have almost
compatible parabolics, it is actually not necessary to assume that the peripheral subgroups are double
coset separable:

Theorem 14.5 Suppose that G is a finitely generated QCERF relatively hyperbolic group , Q;R6G are
finitely generated relatively quasiconvex subgroups with almost compatible parabolics and S DQ\R.
Then for every A� 0 there exist finite-index subgroups Q0 6f Q and R0 6f R which satisfy properties
(P1)–(P3).

More precisely, there exists L 6f G, with S � L, such that for any L0 6f L, satisfying S � L0, we
can choose Q0 DQ\L0 6f Q and there exists M 6f L0, with Q0 �M , such that for any M 0 6f M ,
satisfying Q0 �M 0, we can choose R0 DR\M 0 6f R.

Proof As before, we will be verifying the assumptions of Theorem 11.3. Let P be an arbitrary maximal
parabolic subgroup of G. Condition (S1) follows from the QCERF-ness of G and (S3) follows from
Corollary 13.4.

Let D D Q \ P and U 6f D. Since Q and R have almost compatible parabolics and Q \ P 4 U ,
we know that either U 4R\P or R\P 4 U . Note that both U and R\P are finitely generated by
Lemma 5.24 and relatively quasiconvex by Corollary 5.23, so they are separable because G is QCERF.
Lemma 4.15 now implies that the double coset U.R\P / is separable in G, thus condition (13-1) is
satisfied by Lemma 4.13. This shows that (S4) of Theorem 11.3 is satisfied; furthermore, (S2) holds by
Proposition 13.5.

We can now deduce the theorem by combining Theorem 3.5 with Theorem 11.3.

15 Separability of double cosets in QCERF relatively hyperbolic groups

In this section we prove Corollary 1.4 from the introduction.

Proof of Corollary 1.4 Let X be a finite generating set of G. Consider any g 2 G nQR, and set
AD jgjX C 1. By Theorem 14.4 there are subgroups Q0 6f Q and R0 6f R satisfying properties (P1)
and (P3). The latter property, combined with the definition of A, implies that g …QhQ0; R0iR.
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On the other hand, property (P1) tells us that H D hQ0; R0i is relatively quasiconvex in G. Clearly it is
also finitely generated, hence it must be separable in G by QCERF-ness. Observe that since Q0 and R0

are finite-index subgroups in Q and R respectively,

QHRD

n[
iD1

m[
jD1

aiHbj ;

where a1; : : : ; an are left coset representatives of Q0 in Q, and b1; : : : ; bm are right coset representatives
of R0 in R. Recalling Remark 4.12, we see that the subset QHR is separable in G; thus it is a closed
set containing QR but not containing g. Since we found such a set for an arbitrary g 2G nQR, we can
conclude that QR is closed in PT.G/, as required.

Corollary 1.6 from the introduction can be proved in the same way as Corollary 1.4, except that one needs
to use Theorem 14.5 instead of Theorem 14.4.

Part III Separability of products of subgroups

This part of the paper is dedicated to proving Theorem 1.8 from the introduction. In order to do this we
must generalise the discussion of path representatives in Sections 6–8, adapting the arguments there to
deal with additional technicalities. Let us give a summary of the argument.

Let G be a QCERF finitely generated relatively hyperbolic group with a finite collection of peripheral
subgroups fH� j � 2 Ng. Suppose that, for each � 2 N, the subgroup H� has property RZs . Let
F1; : : : ; Fs 6G be finitely generated relatively quasiconvex subgroups. In order to show that the product
F1 � � �Fs is separable, we proceed by induction on s. The case that s D 1 is the QCERF condition and
s D 2 is Corollary 1.4, so we may assume s > 2. For ease of reading we now relabel the subgroups
F1 DQ;F2 DR;F3 D T1; : : : ; Fs D Tm, where mD s� 2 > 0.

We approximate the product QRT1 � � �Tm with sets of the form QhQ0; R0iRT1 � � �Tm, where Q0 6f Q
and R0 6f R are finite-index subgroups of Q and R respectively. Observe that we can write these sets as
finite unions

(15-1) QhQ0; R0iRT1 � � �Tm D
[
i;j

ai hQ
0; R0ibjT1 � � �Tm;

where the elements ai and bj are coset representatives of Q0 and R0 in Q and R respectively. Note that
the products on the right-hand side of (15-1) now involve only s � 1 subgroups. By Theorem 1.2, the
subgroups Q0 and R0 can be chosen so that hQ0; R0i is relatively quasiconvex, hence we can apply the
induction hypothesis to show that such products are separable in G.

It then remains to prove that the product QRT1 � � �Tm is, in fact, an intersection of subsets of the
form QhQ0; R0iRT1 � � �Tm as above. To this end, we study path representatives qp1 � � �pnrt1 � � � tm of
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elements of QhQ0; R0iRT1 � � �Tm in a similar manner to Part II. The main additional difficulty comes
from controlling instances of multiple backtracking that involve segments in the t1 � � � tm part of the path.
We introduce new metric conditions (C2-m) and (C5-m) to deal with these technicalities.

16 Auxiliary definitions

Convention 16.1 We write G for a group generated by a finite set X and hyperbolic relative to a family
of subgroups fH� j � 2 Ng, jNj <1. Let HD

F
�2N.H� n f1g/ and choose ı 2 N so that the Cayley

graph �.G;X [H/ is ı-hyperbolic (see Lemma 5.4).

We will assume that Q;R; T1; : : : ; Tm 6 G are fixed relatively quasiconvex subgroups of G, with
quasiconvexity constant "� 0, where m 2N0. Denote S DQ\R.

Throughout this section we use Q0 and R0 to denote subgroups of Q and R respectively. We will also
assume that Q0\R0 DQ\RD S (that is, Q0 and R0 satisfy (C1)).

16.1 New metric conditions

Suppose B;C � 0 are some constants, P is a finite collection of maximal parabolic subgroups of G, and
U is a finite family of finitely generated relatively quasiconvex subgroups of G. We will be interested in
the following generalisations of conditions (C2) and (C5) to the multiple coset setting:

(C2-m) minX .RhQ0; R0iRT1 � � �Tj nRT1 � � �Tj /� B , for each j D 0; : : : ; m;

(C5-m) minX
�
qhQ0P ; R

0
P iRP .U1/P � � � .Uj /P n qQ

0
PRP .U1/P � � � .Uj /P

�
� C , for each P 2 P, all

q 2QP , any j 2 f0; : : : ; mg and arbitrary U1; : : : ; Uj 2U, where .Ui /P D Ui \P 6 P .

Remark 16.2 Let us make the following observations.

� When j D 0, the inequality from condition (C2-m) reduces to minX .RhQ0; R0iR nR/�B , which
is a part of (C2); on the other hand, the inequality from condition (C5-m) simply becomes (C5). In
particular, for each m� 0, (C5-m) implies (C5).

� In our usage of (C5-m), the set U will consists of finitely many conjugates of T1; : : : ; Tm; in fact,
Ui D T

ai

i , for some ai 2G, i D 1; : : : ; m.

Remark 16.3 Similarly to conditions (C1)–(C5), the above conditions are best understood with a view
towards the profinite topology.

� To prove separability of products of relatively quasiconvex subgroups we argue by induction on the
number of factors. That is, we assume that the product ofmC1 relatively quasiconvex subgroups is
separable and then deduce the separability of the product ofmC2 relatively quasiconvex subgroups.
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The existence of finite-index subgroups Q0 6f Q and R0 6f R realising condition (C2-m) will be
deduced from this inductive assumption.

� The existence of finite-index subgroups Q0 6f Q and R0 6f R realising condition (C5-m), given
a finite family U, will be deduced from the assumption that the peripheral subgroups fH� j � 2Ng

of G each satisfy the property RZmC2.

16.2 Path representatives for products of subgroups

In this subsection we define path representatives for elements of QhQ0; R0iRT1 � � �Tm similarly to the
path representatives for elements of QhQ0; R0iR from Definition 10.6 and discuss their properties.

Definition 16.4 (path representative, III) Let g be an element of QhQ0; R0iRT1 � � �Tm. Suppose that
p D qp1 � � �pnrt1 � � � tm is a broken line in �.G;X [H/ satisfying the following properties:

� Qp D g;

� Qq 2Q and Qr 2R;

� Qpi 2Q
0[R0 for each i 2 f1; : : : ; ng;

� Qti 2 Ti for each i 2 f1; : : : ; mg.

Then we say that p is a path representative of g in the product QhQ0; R0iRT1 � � �Tm.

The type of a path representative is defined as before (cf Definitions 6.3 and 10.7).

Definition 16.5 (type and width of a path representative, III) Let g 2 QhQ0; R0iRT1 � � �Tm and let
p D qp1 � � �pnrt1 � � � tm be a path representative of g in the sense of Definition 16.4. Denote by Y the
set of all H-components of the segments of p. We define the width of p as the integer n and the type of
p as the triple

�.p/D

�
n; `.p/;

X
y2Y

jyjX

�
2N0

3:

The following observation will be useful.

Remark 16.6 Suppose g 2QhQ0; R0iRT1 � � �Tm can be written as a product

g D xy1 � � �ynzu1 � � �um;

where x 2 Q, y1; : : : ; yn 2 Q0 [R0, z 2 R and ui 2 Ti , for each i D 1; : : : ; m. Then g has a path
representative of width n.

Similarly to path representatives of elements of hQ0; R0i (in the sense defined in Section 6), we will be
interested in path representatives whose type is minimal (as an element of N0

3 under the lexicographic
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ordering). Given an element g 2QhQ0; R0iRT1 � � �Tm, such a path representative is always guaranteed
to exist. Let us make the following observation (cf Remark 10.8).

Remark 16.7 Suppose that p D qp1 � � �pnrt1 � � � tm is a minimal type path representative of an element
g 2QhQ0; R0iRT1 � � �Tm such that g …QRT1 � � �Tm. Then n > 0, Qp1 2 R0 n S , Qpn 2Q0 n S and the
labels of p1; : : : ; pn alternate between representing elements of R0 n S and Q0 n S . In particular, the
integer n must be even.

Note that in Definition 16.4 the geodesic paths q, r and t1; : : : ; tm are always counted as segments of
the path p, even if they end up being trivial paths. For example a minimal type path representative of
an element g 2 R0Q0T1 � � �Tm nQRT1 � � �Tm will be a broken line p D qp1p2rt1 � � � tm with mC 4
segments, where q and r are trivial paths.

The proofs of the main results from Sections 6 and 7 can be easily adapted to apply to minimal type path
representatives of elements g 2QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm (in the sense of Definitions 16.4
and 16.5), with only superficial differences, so the proofs of the following generalisations of Lemmas 6.7,
7.3 and 7.6, respectively, will be omitted.

Lemma 16.8 There is a constant C0 � 0 such that the following holds.

Assume that Q0 6 Q and R0 6 R are subgroups satisfying condition (C1). Consider any element
g 2QhQ0; R0iRT1 � � �Tm with g …QRT1 � � �Tm. Let p D qp1 � � �pnrt1 � � � tm be a path representative
of g of minimal type , with nodes f0; : : : ; fnCmC2 (that is , f0 D q�, fi D .pi /�, for each i 2 f1; : : : ; ng,
fnC1D r�, fnC1Cj D .tj /�, for each j 2f1; : : : ; mg, and fnCmC2D .tm/C). Then hfi�1; fiC1irel

fi
�C0,

for all i 2 f1; : : : ; nCmC 1g.

Lemma 16.9 There is a constant C1 � 0 such that the following is true.

Let Q0 6 Q and R0 6 R be subgroups satisfying condition (C1). Consider a minimal type path rep-
resentative p D qp1 � � �pnrt1 � � � tm for an element g 2QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm. If a and
b are adjacent segments of p, with aC D b�, and h and k are connected H-components of a and b
respectively, then dX .hC; aC/� C1 and dX .aC; k�/� C1.

Lemma 16.10 For any � � 0 there is ‚0 D‚0.�/ 2N such that the following is true.

Let Q0 6Q and R0 6R be subgroups satisfying condition (C1). Consider a minimal type path represen-
tative p D qp1 � � �pnrt1 � � � tm for an element g 2QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm. Suppose that a
and b are adjacent segments of p, with aC D b�, and h and k are connected H-components of a and b
respectively, such that

maxfjhjX ; jkjXg �‚0:

Then dX .h�; kC/� �.
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17 Multiple backtracking in product path representatives: two special
cases

Just like in Theorem 3.5, the main difficulty in proving Theorem 1.8 consists in dealing with multiple
backtracking in path representatives. In this section we will consider two of the possible cases. We will
be working under Convention 16.1.

Throughout the rest of the paper we fix the following notation.

Notation 17.1 let C1 be the larger of the two constants provided by Lemmas 7.3 and 16.9, and denote
by P1 the finite collection of maximal parabolic subgroups of G given by

P1 D fH�
b
j � 2 N; jbjX � C1g:

The following lemma is roughly analogous to Lemma 8.2.

Lemma 17.2 For any L � 0 and any relatively quasiconvex subgroup T 6 G there is a constant
L0 D L0.L; T /� 0 such that the following is true.

Let P D H�
b
2 P1, for some � 2 N and b 2 G, with jbjX � C1, and let t be a geodesic path in

�.G;X [H/, with Qt 2 T . Suppose that v 2 PbD bH� is a vertex of t and u 2 P is an element satisfying
dX .u; t�/� L. Denote aD u�1t� 2G. Then there is a geodesic path t 0 in �.G;X [H/ such that

� t 0� D u and dX .t 0C; v/� L
0;

� Qt 0 2 T a \P ;

� .t 0
C
/
�1
tC 2 aT.

Proof Let K DmaxfC1; � CLg, where � � 0 is a quasiconvexity constant for T . Denote

(17-1) L0 DmaxfK 0.P; T a; K/ j P 2 P1; a 2G; jajX � Lg;

where K 0.P; T a; K/ is obtained from Lemma 4.1.

The hypotheses that v 2Pb and jbjX �C1 imply that dX .v; P /� jbjX �C1. As u2P, we have P DuP
and so

(17-2) dX .v; uP /� C1:

Set x D t� D ua. Since Qt 2 T, we have dX .v; xT /� � , as T is � -quasiconvex. Hence

dX .v; uT
a/D dX .v; xTa

�1/� dX .v; xT /CjajX � � CL:

Combining the latter inequality with (17-2) allows us to apply Lemma 4.1 to find an element z 2u.T a\P /
such that dX .v; z/ � L0, where L0 � 0 is the constant from (17-1). Now take t 0 to be any geodesic in
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�.G;X [H/ with t 0� D u and t 0
C
D z. It is straightforward to verify that t 0 satisfies the first two of the

required properties. For the last property, observe that

.t 0C/
�1tC D ..t

0
C/
�1u/.u�1t�/.t

�1
� tC/D Qt

0�1a Qt 2 T aaT D aT:

The following notation will be fixed for the remainder of the paper.

Notation 17.3 LetD be the constant from Lemma 8.2, corresponding to C1 and P1 (from Notation 17.1)
and subgroups Q;R. We define constants L1; : : : ; LmC1 as

L1 DDCC1 and LiC1 D L
0.Li ; Ti /CC1 for each i D 1; : : : ; m;

where L0 is obtained from Lemma 17.2.

We also define the family of subgroups

U1 D

m[
iD1

˚
T
g
i j i 2 f1; : : : ; mg; g 2G; jgjX � Li

	
;

consisting of finitely many conjugates of the subgroups T1; : : : ; Tm. Note that, by Lemma 5.22, each
U 2U1 is a relatively quasiconvex subgroup of G.

The next proposition describes how we deal with consecutive backtracking that involves the .t1 � � � tm/-
part of a path representative of an element g 2 QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm; it complements
Proposition 8.4 which takes care of backtracking within the qp1 � � �pnr-part.

Proposition 17.4 Suppose that p D qp1 � � �pnrt1 � � � tm is a path representative of minimal type for
an element g 2QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm, where Q0 6 Q and R0 6 R are some subgroups
satisfying (C1). Let P DH�b 2 P1, for some � 2 N and b 2G, with jbjX � C1.

Suppose that h1; : : : ; hj are connected H�-components of the segments t1; : : : ; tj , respectively, with
j 2 f1; : : : ; mg, such that .h1/� 2 Pb D bH� . If u1 2 P is an element satisfying dX .u1; .t1/�/ � L1
then there exist elements a1; : : : ; aj 2G and a broken line t 01 � � � t

0
j in �.G;X [H/ such that

(i) .t 01/� D u1 and dX ..t 0j /C; .hj /C/� LjC1;

(ii) aiC1 2 aiTi , for i D 1; : : : ; j � 1;

(iii) ai D .t
0
i /
�1
� .ti /� and jai jX � Li , for each i D 1; : : : ; j ;

(iv) Qt 0i 2 T
ai

i \P , for all i D 1; : : : ; j .

Proof We start by setting a1 D u�11 .t1/�, so that ja1jX D dX .u1; .t1/�/� L1. Note that

.h1/C D .h1/� Qh1 2 bH� D Pb:

Therefore we can apply Lemma 17.2 to find a geodesic path t 01 in �.G;X [H/ such that .t 01/� D u1,
dX ..t

0
1/C; .h1/C/� L

0.L1; T1/, Qt 01 2 T
a1

1 \P and

(17-3) .t 01/
�1
C .t1/C 2 a1T1:
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u1

u2 u3 uj

t 01

t 02

t 0j

� L1

� L2
� Lj

� LjC1

.h1/�

.h1/C
.h2/� .h2/C

.hj /�

.hj /Ct1

t2

tj

Figure 8: The new path t 01 � � � t
0
j constructed in Proposition 17.4.

It follows that properties (ii)–(iv) are satisfied for i D 1, while property (i) holds because L2 �L0.L1; T1/
by definition. If j D 1 then property (ii) is vacuously true.

We can now suppose that j > 1. Then h1 is connected to the component h2 of t2, so, according to
Lemma 16.9, dX ..h1/C; .t1/C/�C1. Set u2D .t 01/C and a2D u�12 .t1/C. Note that a2 2 a1T1 by (17-3)
and

ja2jX D dX ..t1/
0
C; .t1/C/� dX ..t

0
1/C; .h1/C/C dX ..h1/C; .t1/C/� L

0.L1; T1/CC1 D L2:

Since .t2/� D .t1/C, we see that a2 D u�12 .t2/� and dX .u2; .t2/�/D ja2jX � L2.

Now, observe that u2 D u1 Qt
0
1 2 P and .h2/C 2 bH� D Pb, as h2 is connected to h1. This allows

us to use Lemma 17.2 to find a geodesic path t 02 in �.G;X [ H/ such that .t 02/� D u2 D .t 01/C,
dX ..t

0
2/C; .h2/C/� L

0.L2; T2/, Qt 02 2 T
a2

2 \P and .t 02/
�1
C
tC 2 a2T2 (see Figure 8).

If j D 2 then we are done, otherwise we construct the remaining elements a3; : : : ; aj and the paths
t 03; : : : ; t

0
j inductively, similarly to the construction of a2 and t 02 above.

The next two propositions prove that, under certain conditions, instances of multiple backtracking are
long. Essentially, they generalise Proposition 8.5. The first of these shows how we can use condition
(C5-m) to deal with particular instances of multiple backtracking.

Proposition 17.5 For each � � 0 there is a constant C2 D C2.�/ � 0 such that if Q0 6Q and R0 6 R

satisfy conditions (C1), (C3) and (C5-m) with constant C � C2 and finite families P and U, such that
P1 � P and U1 �U, then the following is true.

Let p D qp1 � � �pnrt1 � � � tm be a minimal type path representative for some g 2QhQ0; R0iRT1 � � �Tm,
with g …QRT1 � � �Tm. Suppose that p has multiple backtracking along H�-components h1; : : : ; hk of
its segments , for some � 2 N, such that

� h1 is an H�-component of either q or pi , for some i 2 f1; : : : ; n� 1g, with Qpi 2Q0;
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� hk is an H�-component of a segment tj , for some j 2 f1; : : : ; mg.

Then dX ..h1/�; .hk/C/� �.

Proof Take
C2 Dmaxf2C1;DC �CLj j j D 1; : : : ; mC 1gC 1;

where D and Lj are defined in Notation 17.3, and suppose that C � C2.

The proof employs the same strategy as Proposition 8.5: we first construct a path whose endpoints are
close to .h1/� and .hk/C and whose label represents an element of a parabolic subgroup. We will then
obtain a contradiction with the minimality of the type of p, using condition (C5-m).

We will focus on the case when h1 is an H�-component of pi , for some i 2 f1; : : : ; n� 1g with Qpi 2Q0,
with the case when h1 is an H�-component of q being similar. Note that since g …QRT1 � � �Tm, it must
be that n � 2 by Remark 16.7. After translating by .pi /�1C , we may assume that .pi /C D 1. We write
b D .h1/C and note that, according to Lemma 16.9,

(17-4) jbjX D dX ..h1/C; .pi /C/� C1:

Let P D bH�b�1 2P1 �P. Since h1; : : : ; hk are pairwise connected, the vertices .hl/C lie in the same
left coset bH� , for all l D 1; : : : ; k, thus

(17-5) .hl/C 2 Pb for all l D 1; : : : ; k:

We construct a new broken line p0 D p0i � � �p
0
nr
0t 01 � � � t

0
j in two steps. It will be used in conjunction with

condition (C5-m) to obtain a path representative of g with lesser type than p.

Step 1 We start by constructing geodesic paths p0i ; p
0
iC1; : : : ; p

0
n and r 0 by using condition (C3) and

applying Lemmas 8.2 and 8.3, in exactly the same way as in the proof of Proposition 8.4. The newly
constructed paths will have the following properties:

� Qp0i 2QP , Qp0
l
2Q0P [R

0
P , for each l D i C 1; : : : ; n, and Qr 0 2RP ;

� dX ..p
0
i /�; .h1/�/�D and .p0i /C D .pi /C D 1;

� .p0
l
/C D .p

0
lC1

/�, for l D i; : : : ; n� 1;

� r 0� D .p
0
n/C and dX .r 0C; .hk�j /C/�D;

� .p0
l
/�1
C
.pl/C 2 S , for l D i C 1; : : : ; n.

Step 2 We now construct geodesic paths t 01; : : : ; t
0
j as follows. Set u1 D .r 0/C and observe that since

.p0iC1/� D .p
0
i /C D 1, we have

u1 D Qp
0
iC1 � � � Qp

0
n Qr
0
2 P:

By Lemma 16.9, we have dX ..hk�j /C; .t1/�/D dX ..hk�j /C; rC/ � C1. Moreover, by Step 1 above,
dX .u1; .hk�j /C/�D. Therefore

dX .u1; .t1/�/� C1CD D L1:
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Together with (17-5) this allows us to apply Proposition 17.4 to find elements a1; : : : ; aj 2 G and a
broken line t 01t

0
2 � � � t

0
j in �.G;X [H/ such that

� .t 01/� D u1 and dX ..t 0j /C; .hk/C/� LjC1;

� alC1 2 alTl , for l D 1; : : : ; j � 1;

� al D .t
0
l
/�1� .tl/� and jal jX � Ll , for each l D 1; : : : ; j ;

� Qt 0
l
2 T

al

l
\P , for all l D 1; : : : ; j .

Observe that

(17-6) a1D .t 01/
�1
� .t1/�D u

�1
1 rCD .r

0
C

�1
r 0�/.r

0
�

�1
r�/.r

�1
� rC/D Qr

0�1.p0n/
�1
C .pn/C Qr 2RPSR�R:

We now define a new broken line p0 in �.G;X [H/ by

p0 D p0i � � �p
0
nr
0t 01 � � � t

0
j :

Note that dX .p0�; .h1/�/ � D, dX .p0C; .hk/C/ � LjC1 and Qp0 2 Qp0i hQ
0
P ; R

0
P iRP .T

a1

1 /P � � � .T
aj

j /P ,
where Qp0i 2QP . Moreover, T al

l
2U1 �U, for each l D 1; : : : ; j .

Now, suppose, for a contradiction, that dX ..h1/�; .hk/C/ < �. Then, by the triangle inequality,

jp0jX �DC �CLjC1 < C2:

Thus, as C �C2, we can apply (C5-m) to deduce that Qp0 2 Qp0iQ
0
PRP .T

a1

1 /P � � � .T
aj

j /P . Therefore, there
exist elements z 2 Qp0iQ

0
P , x 2R and yl 2 Tl , l D 1; : : : ; j , such that Qp0D zxya1

1 � � �y
aj

j . By construction,
for each l D 1; : : : ; j � 1 there is bl 2 Tl such that alC1 D albl , and so a�1

l
alC1 D bl 2 Tl . Recalling

that .p0i /C D .pi /C D 1, the above yields

(17-7) Qp0 D zxy
a1

1 � � �y
aj

j D zxa1y1b1y2b2 � � � bj�1yja
�1
j :

Let ˛ and ˇ be geodesic segments in �.G;X [H/ connecting .pi /� with .p0i /� and .t 0j /C with .tj /C
respectively. Since .pi /C D .p0i /C, we have

(17-8) Q̨ D .pi /
�1
� .p

0
i /� D .pi /

�1
� .pi /C.p

0
i /
�1
C .p

0
i /� D Qpi Qp

0
i
�1:

On the other hand, it follows from the construction that

(17-9) Q̌ D .t 0j /
�1
C .tj /C D Qt

0
j
�1.t 0j /

�1
� .tj /� Qtj D Qt

0
j
�1aj Qtj 2 T

aj

j ajTj D ajTj :

The broken lines p and 
 D qp1 � � �pi�1˛p0ˇtjC1 � � � tm have the same endpoints in �.G;X[H/. Hence,
in view of (17-8) and (17-7), we obtain

(17-10) g D Qp D Q
 D Qq Qp1 � � � Qpi�1 Q̨ Qp
0 Q̌ QtjC1 � � � Qtm

D Qq Qp1 � � � Qpi�1. Qpi Qp
0
i
�1/.zxa1y1b1y2b2 � � � bj�1yja

�1
j / Q̌ QtjC1 � � � Qtm

D Qq Qp1 � � � Qpi�1. Qpi Qp
0
i
�1z/.xa1/.y1b1/ � � � .yj�1bj�1/.yja

�1
j
Q̌/QtjC1 � � � Qtm:
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Recall that Qq 2Q, Qp1; : : : ; Qpi�1 2Q0[R0 and Qtl 2 Tl , for l D j C 1; : : : ; m, by definition. On the other
hand, Qpi Qp0i

�1z 2Q0 Qp0i
�1 Qp0iQ

0
P DQ

0, xa1 2 R by (17-6) and ylbl 2 Tl , for each l D 1; : : : ; j � 1, by
construction. Finally, yja�1j Q̌ 2 Tja

�1
j ajTj D Tj by (17-9). Thus, following Remark 16.6, the product

decomposition (17-10) for g gives us a path representative of g with width i < n. This contradicts the
minimality of the type of p, so the proposition is proved.

Condition (C2-m) can be used deal with another case of multiple backtracking.

Proposition 17.6 For every � � 0 there is a constant B1 D B1.�/� 0 such that if Q0 6Q and R0 6R

satisfy condition (C2-m) with constant B � B1 then the following is true.

Let p D qp1 � � �pnrt1 � � � tm be a minimal type path representative for some g 2QhQ0; R0iRT1 � � �Tm,
with g …QRT1 � � �Tm, and let � 2 N. Suppose that p has multiple backtracking along H�-components
h1; : : : ; hk of its segments such that

� h1 is an H�-component of pi , for some i 2 f1; : : : ; n� 1g, with Qpi 2R0;

� hk is an H�-component of tj for some j 2 f1; : : : ; mg.

Then dX ..h1/�; .hk/C/� �.

Proof TakeB1D �C2"C1, where "�0 is a quasiconvexity constant for the subgroupsR and T1; : : : ; Tm
(as in Convention 16.1), and let B � B1. Suppose, for a contradiction, that dX ..h1/�; .hk/C/ < �.

Since Qpi 2R0, we have dX ..h1/�; .pi /CR/� ", by the quasiconvexity of R. Therefore there is a geodesic
path p0i in �.G;X [H/, such that Qp0i 2R, dX ..p0i /�; .h1/�/� " and .p0i /C D .pi /C. Similarly, using
the quasiconvexity of Tj , we can find a geodesic path t 0j in �.G;X [H/, such that Qt 0j 2 Tj , .t 0j /�D .tj /�
and dX ..t 0j /C; .hk/C/� ". Let p0 be the broken line p0ipiC1 � � �pnrt1 � � � tj�1t

0
j .

Observe that Qp0 2RhQ0; R0iRT1 � � �Tj and, by the triangle inequality, jp0jX � �C 2". Therefore we can
apply condition (C2-m) to Qp0 to find that Qp0D xy1 � � �yj , where x 2R and yl 2 Tl , for each l D 1; : : : ; j .

The broken lines p and 
 D qp1 � � �pip0i
�1
p0t 0j
�1
tj � � � tm have the same endpoints; hence

(17-11) g D Qp D Q
 D Qq Qp1 � � � Qpi Qp
0
i
�1
Qp0 Qt 0j
�1 Qtj � � � Qtm

D Qq Qp1 � � � Qpi�1. Qpi Qp
0
i
�1x/y1 � � �yj�1.yj Qt

0
j
�1 Qtj /QtjC1 � � � Qtm:

Note that Qpi Qp0i
�1x 2 R and yj Qt 0j

�1 Qtj 2 Tj . In view of Remark 16.6, the product decomposition of g
from (17-11) can be used to obtain a path representative p00 of g with width i � 1 < n. Thus the type of
p00 is strictly less than the type of p, which yields the desired contradiction.

18 Multiple backtracking in product path representatives: general case

Propositions 8.5, 17.5 and 17.6 above show that for g 2QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm, instances
of multiple backtracking in a minimal type path representative p D qp1 � � �pnrt1 � � � tm, that start at a
component of q; p1; : : : , or pn�1, are long. We cannot draw the same conclusion in all cases since we
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have no control over the elements Qr; Qt1; : : : ; Qtm. Therefore in this section we use a different approach.
Proposition 18.3 below shows that in the remaining cases we can find a path representative with one of
the segments from the tail section rt1 � � � tm being short with respect to the proper metric dX . Note that
the main constant �0 D �0.Q0; �/, produced in this proposition, will depend on Q0 (unlike the constants
C1;D; C2.�/; B1.�/; : : : , defined previously) but will be independent of R0.

As before, we work under Convention 16.1. We will also keep using Notation 17.1 and 17.3. Let us start
with the following elementary observation.

Lemma 18.1 For any � � 0 and any given subsets A1; : : : ; Ak �G, k � 1, there is a constant

� D �.�; A1; : : : ; Ak/� 0

such that if g 2 A1 � � �Ak and jgjX � �, then there exist a1 2 A1; : : : ; ak 2 Ak such that g D a1 � � � ak
and jai jX � �, for all i 2 f1; : : : ; kg.

Proof For each g 2 A1 � � �Ak fix some elements a1;g 2 A1; : : : ; ak;g 2 Ak such that g D a1;g � � � ak;g .
Now we can define

� Dmax
˚
ja1;g jX ; : : : ; jak;g jX j g 2 A1 � � �Ak; jgjX � �

	
<1:

Clearly � has the required property.

Definition 18.2 (tail height) Suppose that Q0 6 Q, R0 6 R and p D qp1 � � �pnrt1 � � � tm is a path
representative of an element g 2QhQ0; R0iRT1 � � �Tm. The tail height of p, thX .p/, is defined as

thX .p/Dminfjr jX ; jt1jX ; : : : ; jtm�1jXg:

Proposition 18.3 For each � � 0, let C2 D C2.�/ be the larger of the two constants provided by Proposi-
tions 8.5 and 17.5, and letB1DB1.�/ be given by Proposition 17.6. SetB2DB2.�/DmaxfC2.�/; B1.�/g.

Suppose that Q0 6Q is a relatively quasiconvex subgroup of G containing S DQ\R. Then there exists
a constant �0 D �0.Q0; �/� 0 such that if R0 6R and Q0 and R0 satisfy conditions (C1)–(C4), (C2-m)
and (C5-m), with constants B �B2 and C � C2 and collections of subgroups P�P1 and U�U1, then
the following is true.

Let p D qp1 � � �pnrt1 � � � tm be a minimal type path representative for some g 2QhQ0; R0iRT1 � � �Tm,
with g …QRT1 � � �Tm. Suppose that p has multiple backtracking along H-components h1; : : : ; hk of its
segments , with k � 3 and dX ..h1/�; .hk/C/� �. Then m� 1 and there is a path representative p0 for g
(not necessarily of minimal type) such that thX .p0/� �0.

Proof Let "0 � 0 be a quasiconvexity constant for Q0. Take �0 D �0.Q0; �/ � 0 to be the maximum,
taken over all indices i and j satisfying 1� i � j �m, of the constants

�.�C "C "0;Q0; R; T1; : : : ; Tj /; �.�C 2";R; T1; : : : ; Tj /; �.�C 2"; Ti ; : : : ; Tj /;

obtained from Lemma 18.1.
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Suppose that h1; : : : ; hk are as in the statement, with dX ..h1/�; .hk/C/ � �. There are four possible
cases to consider, depending on the segments of p to which the H-components h1 and hk belong to. If
hk is an H-component of one of the segments p2; : : : ; pn or r , then one obtains a contradiction to the
minimality of type of p by following the same argument as in Proposition 8.5 (recall that (C5-m) implies
(C5) by Remark 16.2).

If h1 is an H-component of one of the segments q; p1; : : : ; pn�1 and hk is an H-component of one of the
segments t1; : : : ; tm, we obtain a contradiction by applying either Proposition 17.5 or 17.6 (depending on
whether h1 is a component of a segment of p representing an element of Q or R, respectively).

It remains to consider the possibility when h1 is an H-component of one of the segments pn; r; t1; : : : ; tm.
It follows that hk is an H-component of tj , for some j 2 f1; : : : ; mg, in particular m� 1. For simplicity
we treat only the case when h1 is an H-component of pn; the remaining cases can be dealt with similarly.

Note that Qpn 2Q0 by Remark 16.7. By the relative quasiconvexity of Q0 and Tj there are geodesic paths
˛ and ˇ in �.G;X [H/ satisfying

dX .˛�; .h1/�/� "
0; ˛C D .pn/C; Q̨ 2Q0;

ˇ� D .tj /�; dX .ˇC; .hk/C/� "; Q̌ 2 Tj :

Let 
 D ˛rt1 � � � tj�1ˇ. Observe that Q
 2Q0RT1 � � �Tj and, by the triangle inequality,

j
 jX D dX .˛�; ˇC/� "
0
C �C ":

Thus, applying Lemma 18.1, we can find elements x 2 Q0, y 2 R, z1 2 T1; : : : ; zj 2 Tj such that
Q
 D xyz1 � � � zj and

(18-1) jyjX � �0:

Therefore

(18-2) g D Qp D Qq Qp1 � � � Qpn. Q̨
�1
Q̨ / Qr Qt1 � � � Qtj�1. Q̌ Q̌

�1/Qtj � � � Qtm

D Qq Qp1 � � � Qpn Q̨
�1
Q
 Q̌�1 Qtj � � � Qtm

D Qq Qp1 � � � Qpn�1. Qpn Q̨
�1x/yz1 � � � zj�1.zj Q̌

�1 Qtj /QtjC1 � � � Qtm:

Following Remark 16.6, the product decomposition (18-2) gives rise to a path representative

p0 D q0p01 � � �p
0
nr
0t 01 � � � t

0
m

for g, where Qq0 D Qq 2 Q, Qp0i D Qpi 2 Q
0 [R0, for i D 1; : : : ; n� 1, Qp0n D Qpn Q̨

�1x 2 Q0, Qr 0 D y 2 R,
Qt 0
l
D zl 2 Tl , for l D 1; : : : ; j � 1, Qt 0j D zj Q̌

�1 Qtj 2 Tj and Qt 0s D Qts 2 Ts , for s D j C 1; : : : ; m. In view of
(18-1), we see that thX .p0/� jyjX � �0, so the proof is complete.

The following proposition is an analogue of Lemma 10.3. It employs the constant c0 DmaxfC0; 14ıg,
where C0 is provided by Lemma 16.8, and the constants � D �.c0/ � 1 and c D c.c0/ � 0, given by
Proposition 9.4.
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Proposition 18.4 For any � � 0 there are constants � D �.�/ � 0, C3 D C3.�/ � 0, ‚1 D‚1.�/ 2N

and B3DB3.�/� 0 such that if Q0 6Q is a relatively quasiconvex subgroup of G and B �B3, C �C3
then there exists E DE.�;Q0; B/� 0 such that the following holds.

Suppose Q0 and some subgroup R0 6R satisfy conditions (C1)–(C4), (C2-m) and (C5-m), with constants
B and C , and families P�P1 and U�U1. Let p be a minimal type path representative for an element
g 2 QhQ0; R0iRT1 � � �Tm nQRT1 � � �Tm. Assume that for any path representative p0 for g we have
thX .p0/�E. Then p is .B; c0; �;‚1/-tamable.

Let †.p;‚1/ D f0e1f1 � � � elfl denote the ‚1-shortcutting of p, obtained by applying Procedure 9.1,
and let e0j be the H-component of †.p;‚1/ containing ej , j D 1; : : : ; l . Then †.p;‚1/ is a .�; c/-
quasigeodesic without backtracking and je0j jX � �, for each j D 1; : : : ; l .

Proof The proof is similar to the argument in Lemma 10.3. Let us define the necessary constants:

� � D �.�; c0/ is the constant from Proposition 9.4;

� ‚1 Dmaxf‚0.�/; �g, where ‚0 is the constant from Lemma 16.10;

� B2.�/ and C3 D C2.�/ are the constants provided by Proposition 18.3;

� B3 DmaxfB0.‚1; c0/; B2.�/g, where B0.‚1; c0/ is the constant from Proposition 9.4;

and, finally, for any given B � B3; C � C3, we set

� E DmaxfB; �0.�;Q0/C 1g, where �0.�;Q0/ is the constant from Proposition 18.3.

Suppose that Q0, R0, g and p D qp1 � � �pnrt1 � � � tm are as in the statement of the proposition. We will
now show that p is .B; c0; �;‚1/-tamable.

Since Q0 and R0 satisfy (C2), Lemma 10.1 together with Remark 16.7 imply that jpi jX � B , for
each i D 1; : : : ; n. Moreover, by assumption, jr jX ; jt1jX ; : : : ; jtm�1jX � E � B , so condition (i) of
Definition 9.3 is satisfied. On the other hand, condition (ii) is satisfied by Lemma 16.8.

If condition (iii) of Definition 9.3 is not satisfied then p must have consecutive backtracking along
H-components h1; : : : ; hk of its segments, such that

maxfjhi jX j i D 1; : : : ; kg �‚1 and dX ..h1/�; .hk/C/ < �:

Lemma 16.10 rules out the case of adjacent backtracking (k D 2), so it must be that k � 3. That is,
h1; : : : ; hk is an instance of multiple backtracking in p. Proposition 18.3 now applies, giving a path
representative p0 for g with thX .p0/� �0.�;Q0/ < E. This contradicts a hypothesis of the proposition,
so p must also satisfy condition (iii).

Thus p is .B; c0; �;‚1/-tamable, and we can apply Proposition 9.4 to achieve the desired conclusion.
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19 Using separability to establish conditions (C2-m) and (C5-m)

In this section we exhibit, under suitable assumptions on G, the existence of finite-index subgroups
Q0 6f Q and R0 6f R satisfying conditions (C1)–(C4), (C2-m) and (C5-m).

Lemma 19.1 Let G be a group generated by finite set X , let Q;R; T1; : : : ; Tm 6G be some subgroups ,
and let S DQ\R. Suppose that RT1 � � �Tl is separable in G, for each l D 0; : : : ; m. Then for any B � 0
there is a finite-index subgroup N 6f G, with S � N , such that arbitrary subgroups Q0 6Q\N and
R0 6R\N satisfy condition (C2-m) with constant B .

Proof For each l 2 f0; : : : ; mg the product RT1 � � �Tl is separable, so, by Lemma 4.16(b), there is a
finite-index normal subgroup Ml Cf G such that

(19-1) minX .RT1 � � �TlMl nRT1 � � �Tl/� B for all l D 0; : : : ; m:

Define the subgroup M D
Tm
lD0Ml Cf G, and take N D SM 6f G. Observe that

(19-2) RNRT1 � � �Tl DRSMRT1 � � �Tl DRSRT1 � � �TlM DRT1 � � �TlM for all l D 0; : : : ; m:

Now choose arbitrary subgroups Q0 6Q\N and R0 6R\N , so that hQ0; R0i �N . Since M �Ml

for all l , we can combine (19-1) with (19-2) to draw the desired conclusion.

The next statement is similar to Theorem 11.3.

Lemma 19.2 Suppose that G is a group generated by finite set X and m 2N0. Let Q;R 6G be some
subgroups , and let P and U be finite collections of subgroups of G such that

(1) each P 2 P has property RZmC2;

(2) the subgroups Q\P , R\P and U \P are finitely generated , for all P 2 P and all U 2U;

(3) if P 2 P, K 6f P and L6f Q then KL is separable in G.

Then for any C � 0 and any finite-index subgroup Q0 6f Q, there is a finite-index subgroup O 6f G,
with Q0 � O , such for any R0 6 R\O the subgroups Q0 and R0 satisfy (C5-m) with constant C and
collections P and U.

Proof As usual, for subgroups H 6G and P 2 P we denote H \P by HP .

Fix an enumeration P D fP1; : : : ; Pkg and let Q0 6f Q be a finite-index subgroup of Q. Given any
i 2 f1; : : : ; kg, we choose some coset representatives ai1; : : : ; aini

2QPi
of Q0Pi

, so that

QPi
D

niG
jD1

aijQ
0
Pi
:

Let U be the finite set consisting of all l-tuples .U1; : : : ; Ul/, where l 2 f0; : : : ; mg and U1; : : : ; Ul 2U.
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Consider any i 2 f1; : : : ; kg and uD .U1; : : : ; Ul/ 2U , where l 2 f0; : : : ; mg. Note that Q0Pi
6f QPi

is
finitely generated, for each i D 1; : : : ; k, since QPi

is itself finitely generated by (2). Combining assump-
tions (1) and (2), the subset Q0Pi

RPi
.U1/Pi

� � � .Ul/Pi
is separable in Pi . Therefore, by Lemma 4.16(c),

for any C � 0 there is Fi;u Cf Pi such that

(19-3) minX
�
aijQ

0
Pi
Fi;uRPi

.U1/Pi
� � � .Ul/Pi

n aijQ
0
Pi
RPi

.U1/Pi
� � � .Ul/Pi

�
� C;

for all j D 1; : : : ; ni .

Define Ki;u DQ0Pi
Fi;u 6f Pi . Then (19-3) implies that for every j D 1; : : : ; ni we have

(19-4) minX
�
aijKi;uRPi

.U1/Pi
� � � .Ul/Pi

n aijQ
0
Pi
RPi

.U1/Pi
� � � .Ul/Pi

�
� C:

Assumption (3) tells us that the double cosetKi;uQ0 is separable inG, and sinceQ0\PiDQ0Pi
�Ki;u, we

can apply Lemma 11.2 to find a finite-index subgroupOi;u6f G such thatQ0�Oi;u andOi;u\Pi �Ki;u.

We can now define a finite-index subgroup O of G by

O D

k\
iD1

\
u2U

Oi;u 6f G:

Observe that Q0 �O and O \Pi �Ki;u, for each i D 1; : : : ; k and all u 2U . Consider any subgroup
R0 6R\O . Then Q0Pi

[R0Pi
�O \Pi , so (19-4) yields that

(19-5) minX
�
aij hQ

0
Pi
; R0Pi

iRPi
.U1/Pi

� � � .Ul/Pi
n aijQ

0
Pi
RPi

.U1/Pi
� � � .Ul/Pi

�
� C;

for arbitrary i D 1; : : : ; k, l D 0; : : : ; m, U1; : : : ; Ul 2U and any j D 1; : : : ; ni .

Given any i 2 f1; : : : ; kg and any q 2QPi
, there is j 2 f1; : : : ; nig such that qQ0Pi

D aijQ
0
Pi

. It follows
that qhQ0Pi

; R0Pi
i D aij hQ

0
Pi
; R0Pi

i, which, combined with (19-5), shows that Q0 and R0 satisfy condition
(C5-m), as required.

For the next result we will follow the notation of Convention 16.1.

Proposition 19.3 Suppose that G is QCERF , the product RT1 � � �Tl is separable in G, for every
l D 0; : : : ; m, and the peripheral subgroup H� has property RZmC2, for each � 2 N. Let P1 be a finite
collection of maximal parabolic subgroups and let U1 be a finite collection of finitely generated relatively
quasiconvex subgroups in G.

Then for any B;C � 0 there exist finite-index subgroups Q0 6f Q and R0 6f R such that

� hQ0; R0i is relatively quasiconvex in G;

� Q0 andR0 satisfy conditions (C1)–(C4), (C2-m) and (C5-m) with constantsB and C and collections
P1 and U1.

More precisely, there is L1 6f G, with S � L1, such that for any L0 6f L1, satisfying S � L0, we can
take Q0 DQ\L0 6f Q, and there is M1 6f L0, with Q0 �M1, such that for any M 0 6f M1, satisfying
Q0 �M 0, the subgroups Q0 and R0 DR\M 0 6f R enjoy the above properties.
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Proof Fix some constants B;C � 0. Let P0 be the finite collection of maximal parabolic subgroups
of G provided by Theorem 3.5 and set PD P0[P1.

Note that maximal parabolic subgroups of G are double coset separable by the assumptions, as mC2� 2.
Therefore the argument from the proof of Theorem 14.4 shows thatG, its subgroupsQ, R and S DQ\R,
and the finite collection P satisfy assumptions (S1)–(S4) of Theorem 11.3. Let L6f G, with S � L, be
the finite-index subgroup provided by this theorem.

By the hypothesis on G, the subsets RT1 � � �Tl are separable in G, for each l D 0; : : : ; m. We can
therefore apply Lemma 19.1 to obtain a finite-index subgroup N 6f G from its statement (in particular,
S �N ). Now we define the finite-index subgroup L1 6f G, from the statement of the proposition, by
setting L1DL\N . Clearly L1 contains S . Take any L06f L1, with S �L0, and setQ0DQ\L06f Q.
Let M 6f L0 be the subgroup provided by Theorem 11.3, with Q0 �M .

Lemma 5.24 and Corollary 13.4 imply that all the assumptions of Lemma 19.2 are satisfied, so letO 6f G
be the subgroup given by this lemma, with Q0 �O . We now define the finite-index subgroup M1 6f L0,
from the statement of the proposition, by M1 DM \O .

Evidently, M1 contains Q0. Choose an arbitrary finite-index subgroup M 0 6f M1, with Q0 �M 0, and
set R0 DR\M 0. Observe that M 0 6f G, by construction, hence R0 6f R.

The combined statements of Theorems 11.3 and 3.5 and Lemmas 5.22, 19.1 and 19.2 now imply that the
subgroups Q0 6f Q and R0 6f R, obtained above, satisfy all of the required properties.

20 Separability of quasiconvex products in QCERF relatively hyperbolic
groups

In this section we prove Theorem 1.8 from the introduction.

Remark 20.1 Let G be a relatively hyperbolic group. Suppose that s 2 N and the product of any s
finitely generated relatively quasiconvex subgroups is separable in G. IfQ1; : : : ;Qs are finitely generated
quasiconvex subgroups of G and a0; : : : ; as 2G are arbitrary elements, then the subset a0Q1a1 � � �Qsas
is separable in G.

Indeed, observe that the subset

a0Q1a1 � � �Qsas DQ
a0

1 Q
a0a1

2 � � �Qa0���as�1
s a0 � � � as

is a translate of a product of conjugates of the subgroups Q1; : : : ;Qs . Combining Lemma 5.22 with
Remark 4.12 and the assumption on G yields the desired conclusion.

Proof of Theorem 1.8 We induct on s. The case s D 1 is equivalent to the QCERF property of G, while
the case s D 2 follows from Corollary 1.4. Thus we can assume that s > 2 and the product of any s� 1
finitely generated relatively quasiconvex subgroups is separable in G.
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Let F1; : : : ; Fs be finitely generated relatively quasiconvex subgroups of G. For ease of notation we write
mD s� 2, QD F1, RD F2 and Ti D FiC2, for i 2 f1; : : : ; mg. Choose a finite generating set X for G
and let ı 2N be a hyperbolicity constant for the Cayley graph �.G;X[H/, where HD

F
�2N.H� nf1g/.

Denote by "� 0 a common quasiconvexity constant for Q;R; T1; : : : ; Tm.

Arguing by contradiction, suppose that the subset QRT1 � � �Tm D F1 � � �Fs is not separable in G. Then
there exists g 2G nQRT1 � � �Tm such that g belongs to the profinite closure of QRT1 � � �Tm in G. Let
us fix the following notation for the remainder of the proof:

� c0 DmaxfC0; 14ıg � 0, where C0 is the constant obtained from Lemma 16.8;

� c3 D c3.c0/� 0 is the constant obtained from Lemma 4.11;

� �D �.c0/� 1 and c D c.c0/� 0 are obtained from Proposition 9.4, applied with the constant c0;

� P1 is the finite family of maximal parabolic subgroups of G from Notation 17.1;

� U1 is the finite collection of finitely generated relatively quasiconvex subgroups of G from
Notation 17.3;

� AD jgjX C 1 and �D �.�; c; A/� 0 is obtained from Lemma 5.12;

� � D �.�/� 0, ‚1 D‚1.�/� 0, C3 D C3.�/� 0 and B3 D B3.�/� 0 are the constants obtained
from Proposition 18.4;

� B DmaxfB3.�/; .4AC c3/‚1g and C D C3.�/.

Observe that, by the induction hypothesis, the product RT1 � � �Tl is separable inG, for every l D 0; : : : ; m.
Let L1 6f G be the finite-index subgroup obtained from Proposition 19.3, applied with finite families
P1, U1 and constants B , C , given above. Note that S � L1, and define Q0 DQ\L1 6f Q. Again, by
Proposition 19.3, there is a finite-index subgroup M1 6f L1 such that Q0 �M1 and for any M 0 6f M1,
with Q0 �M 0, the subgroups Q0 and R0 DR\M 0 6f R satisfy the conclusion of Proposition 19.3.

Let E D E.�;Q0; B/ � 0 be the constant provided by Proposition 18.4. Let fNj j j 2 Ng be an
enumeration of the finite-index subgroups of M1 containing Q0, and define the subgroups

(20-1) M 0i D

i\
jD1

Nj 6f L0 and R0i DM
0
i \R 6f R; i 2N:

Note that for every i 2N,Q0�M 0i , so the subgroupsQ0 andR0i satisfy the conclusion of Proposition 19.3.
In particular, the subgroup hQ0; R0i i is relatively quasiconvex (and finitely generated) in G, and Q0 and
R0i satisfy conditions (C1)–(C4), (C2-m) and (C5-m) with constants B and C , and families P1 and U1,
defined above. For each i 2N, consider the subset

Ki DQhQ
0; R0i iRT1 � � �Tm:
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Choose coset representatives x1; : : : ; xa 2 Q and yi;1; : : : ; yi;bi
2 R such that Q D

Sa
jD1 xjQ

0 and
RD

Sbi

kD1
R0iyi;k . Then

QhQ0; R0i iRD

a[
jD1

bi[
kD1

xj hQ
0; R0i iyi;kI

hence Ki may be written as the finite union

Ki D

a[
jD1

bi[
kD1

xj hQ
0; R0i iyi;kT1 � � �Tm:

Therefore, for every i 2N, Ki is separable in G by Remark 20.1 and the induction hypothesis. Since each
Ki containsQRT1 � � �Tm and g is in the profinite closure ofQRT1 � � �Tm, it must be the case that g 2Ki ,
for every i 2N. We will show that considering sufficiently large values of i leads to a contradiction.

For each i 2 N, let Si be the set of path representatives of g in Ki D QhQ0; R0i iRT1 � � �Tm (see
Definition 16.4, where R0 is replaced by R0i ). We will now consider two cases.

Case 1 There exists i 2N such that infp02Si
thX .p0/�E.

Choose a path representative of minimal type p D qp1 � � �pnrt1 � � � tm for g in Ki . Note that n � 1
and Qp1 2 R0i n S because g …QRT1 � � �Tm (see Remark 16.7). By the assumptions of Case 1 and the
above construction, we can apply Proposition 18.4 to conclude that p is .B; c0; �;‚1/-tamable and
the shortcutting †.p;‚1/D f0e1f1 � � � fl�1elfl , obtained from Procedure 9.1, is .�; c/-quasigeodesic
without backtracking, with je0

k
jX � � for each k D 1; : : : ; l (where e0

k
denotes the H-component of

†.p;‚1/ containing ek).

If l > 0, then applying Lemma 5.12 to the path †.p;‚1/ gives

jgjX D jpjX D j†.p;‚1/jX � A > jgjX ;

by the choice of �, which gives a contradiction.

Therefore it must be that l D 0. Then p is .4; c3/-quasigeodesic by Lemma 9.7 and, according to
Remark 9.2(c), no segment of p contains an H-component h with jhjX �‚1. By the quasigeodesicity of
p and the fact that p1 is a subpath of p, we have

(20-2) jgjX[H D jpjX[H �
1
4
.`.p/� c3/�

1
4
.`.p1/� c3/:

Applying Lemma 5.10 to the geodesic p1 in �.G;X [H/ we obtain

(20-3) `.p1/�
1

‚1
jp1jX �

B

‚1
� 4AC c3;

where the second inequality follows from the fact that Qp1 2R0i nS and Lemma 10.1. Combining (20-2)
and (20-3), we get

jgjX � jgjX[H �
1
4
.4AC c3� c3/D A > jgjX ;

which is a contradiction.
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Case 2 For all i 2N we have infp02Si
thX .p0/ < E.

Then for each i 2N there is a path representative pi D qip1;i � � �pni ;iri t1;i � � � tm;i 2 Si for g such that
th.pi / � E. It must either be the case that lim infi!1jri jX � E or lim infi!1jtj;i jX � E, for some
j 2 f1; : : : ; mg. We will consider the former case, as the latter is very similar.

Since there are only finitely many elements x 2G with jxjX �E, we may pass to a subsequence .pik /k2N

such that Qrik D y 2R is some fixed element, for all k 2N. It follows that

(20-4) g D Qpik 2QhQ
0; R0ik iyT1 � � �Tm; for each k 2N:

Now, g … QyT1 � � �Tm (as y 2 R), and the subset QyT1 � � �Tm is separable in G by the induction
hypothesis and Remark 20.1. By Lemma 4.16(a), there is a finite-index normal subgroup O Cf G such
that g … QOyT1 � � �Tm. The subgroup M1 \QO has finite index in M1 and contains Q0; therefore
M1\QO DNj0

, for some j0 2N.

Choose k 2N such that ik � j0, so that M 0ik � Nj0
�QO (see (20-1)). Then R0ik DM

0
ik
\R �QO;

hence

(20-5) QhQ0; R0ik iyT1 � � �Tm �QOyT1 � � �Tm:

Since g …QOyT1 � � �Tm, inclusions (20-4) and (20-5) contradict each other.

We have arrived to a contradiction at each of the two cases; hence the proof is complete.

21 New examples of product separable groups

In this section we prove Theorem 2.2, which will follow from the three propositions below.

Proposition 21.1 Limit groups are product separable.

Proof Dahmani [15] and, independently, Alibegović [3] proved that every limit group is hyperbolic
relative to a collection of conjugacy class representatives of its maximal non-cyclic finitely generated
abelian subgroups.

Moreover, Wilton [58] showed that limit groups are LERF and Dahmani [15] showed they are locally
quasiconvex (that is, each of their finitely generated subgroups is relatively quasiconvex with respect to the
given peripheral structure). Therefore our Theorem 1.8 yields that limit groups are product separable.

Finitely generated Kleinian groups are not always locally quasiconvex, and we require the following two
lemmas to deal with the case when one of the factors is not relatively quasiconvex.

Lemma 21.2 Let N be a group and n� 2 be an integer. Suppose that H1; : : : ;Hn are subgroups of N
such that Hi C N , for some i 2 f1; : : : ; ng, and the image of the product H1 � � �Hi�1HiC1 � � �Hn is
separable in N=Hi . Then H1 � � �Hn is separable in N .
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Proof Let ' WN !N=Hi denote the natural epimorphism. By the assumptions, the subset

S D '.H1 � � �Hi�1HiC1 � � �Hn/

is separable in N=Hi . Observe that

H1 � � �Hn D .H1 � � �Hi�1HiC1 � � �Hn/Hi D '
�1.S/;

as Hi CN ; hence H1 � � �Hn is closed in the profinite topology on N because group homomorphisms
are continuous with respect to profinite topologies.

Lemma 21.3 Let G be a group with finitely generated subgroups F1; : : : ; Fn 6G, n� 2. Suppose that
there exists a finite-index subgroup G0 6f G and an index i 2 f1; : : : ; ng such that F 0i D Fi \G

0 C G0

and G0=F 0i has property RZn�1. Then the product F1 � � �Fn is separable in G.

Proof Let N Cf G be a finite-index normal subgroup contained in G0, and set Hj D Fj \N , for
j D 1; : : : ; n.

Since jFj W Hj j <1, for each j D 1; : : : ; n, the product F1 � � �Fn can be written as a finite union of
subsets of the form h1H1h2H2 � � � hnHn, where h1; : : : ; hn 2G. Observe that

h1H1h2H2 � � � hnHn DH
g1

1 H
g2

2 � � �H
gn
n gn;

where gj D h1 � � � hj 2G, j D 1; : : : ; n. Thus, in view of Remark 4.12, in order to prove the separability
of F1 � � �Fn in G it is enough to show that the product Hg1

1 H
g2

2 � � �H
gn
n is separable, for arbitrary

g1; : : : ; gn 2G.

Given any elements g1; : : : ; gn 2G, the subgroups Hg1

1 ;H
g2

2 ; : : : ;H
gn
n 6G are finitely generated and

are contained in N . Moreover, since the subgroup Hi D Fi \N D F 0i \N is normal in N and N 6G0

is normal in G, we see that Hgi

i CN and

N=H
gi

i DN
gi=H

gi

i ŠN=Hi 6G0=F 0i :

Therefore the group N=Hgi

i has RZn�1, as a subgroup of G0=F 0i , so the image of the product

H
g1

1 � � �H
gi�1

i�1 H
giC1

iC1 � � �H
gn
n

is separable in N=Hgi

i . Lemma 21.2 now implies thatHg1

1 H
g2

2 � � �H
gn
n is separable in N ; hence it is also

separable in G by Lemma 4.13(b). As we observed above, the latter yields the separability of F1 � � �Fn
in G, as required.

Proposition 21.4 Finitely generated Kleinian groups are product separable.

Proof Let G be a finitely generated discrete subgroup of Isom.H3/. We will first reduce the proof to
the case when GnH3 is a finite-volume manifold. This idea is inspired by the argument of Manning and
Martínez-Pedroza used in the proof of [36, Corollary 1.5].
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Using Selberg’s lemma, we can find a torsion-free finite-index subgroupK6G. Since product separability
ofK implies that ofG [52, Lemma 11.3.5], without loss of generality we can assume thatG is torsion-free.
It follows that G acts freely and properly discontinuously on H3, so that M D GnH3 is a complete
hyperbolic 3-manifold.

If M has infinite volume then, by [39, Theorem 4.10], G is isomorphic to a geometrically finite Kleinian
group. Thus we can further assume that G is geometrically finite, which allows us to apply a theorem
of Brooks [10, Theorem 2] to find an embedding of G into a torsion-free Kleinian group G� such that
G�nH3 is a finite-volume manifold. If G� is product separable, then so is any subgroup of it; hence we
have made the promised reduction.

Thus we can suppose that G D �1.M/, for a hyperbolic 3-manifold M of finite volume. The tameness
conjecture, proved by Agol [1] and Calegari and Gabai [11], combined with a result of Canary [12,
Corollary 8.3], imply that any finitely generated subgroup F 6 G is either geometrically finite or is
a virtual fibre subgroup. The latter means that there is a finite-index subgroup G0 6f G such that
F 0 D F \G0 CG0 and G0=F 0 Š Z.

By [39, Theorem 3.7], G is a geometrically finite subgroup of Isom.H3/; hence it is finitely generated
and hyperbolic relative to a finite collection of finitely generated virtually abelian subgroups, each of
which is product separable by [52, Lemma 11.3.5]. Moreover, by [30, Corollary 1.6], a subgroup of G is
relatively quasiconvex if and only if it is geometrically finite. Finally, G is LERF (and, hence, QCERF)
by [2, Corollary 9.4].

Let F1; : : : ; Fn be finitely generated subgroups of G, n � 2. If Fj is geometrically finite, for all
j D 1; : : : ; n, then the product F1 � � �Fn is separable in G by Theorem 1.8. Thus we can suppose that Fi
is not geometrically finite, for some i 2 f1; : : : ; ng. By the above discussion, in this case Fi must be a
virtual fibre subgroup of G. Since Z is product separable, we can apply Lemma 21.3 to conclude that
F1 � � �Fn is separable in G, completing the proof.

Proposition 21.5 Let G be the fundamental group of a finite graph of free groups with cyclic edge
groups. If G is balanced then it is product separable.

Limit groups and Kleinian groups are hyperbolic relative to virtually abelian subgroups. The peripheral
subgroups from relatively hyperbolic structures on groups in Proposition 21.5 will be fundamental groups
of graphs of cyclic groups, which motivates the next auxiliary lemma.

Lemma 21.6 Suppose that G is the fundamental group of a finite graph of infinite cyclic groups. If G is
balanced then it is product separable.

Proof Suppose that GD�1.G�; �/, where .G�; �/ is a graph of groups, associated to a finite connected
graph � with vertex set V � and edge set E� . According to the assumptions, each vertex group Gv,
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v 2 V � , is infinite cyclic. As usual, we use Ge to denote the edge group corresponding to an edge e 2E�
(see Dicks and Dunwoody [16, Section I.3] for the definition and general theory of graphs of groups).

If jE�j D 0 then G is cyclic and, thus, product separable. Let us proceed by induction on jE�j.

Assume first that one of the edge groups Ge is trivial. If removing e disconnects � then G splits as a free
product G1 �G2, where G1 and G2 are the fundamental groups of finite graphs of infinite cyclic groups
corresponding to the two connected components of � n feg. Otherwise, G Š G1 �G2, where G1 the
fundamental group of a finite graph of infinite cyclic groups corresponding to the graph � n feg and G2 is
infinite cyclic. Moreover, G1 and G2 will be balanced as subgroups of a balanced group G. Hence G1
and G2 will be product separable by induction, so G ŠG1 �G2 will be product separable by Coulbois’
theorem [14, Theorem 1].

Therefore we can assume that every edge group Ge is infinite cyclic. This means that G is a generalised
Baumslag–Solitar group. The assumption that G is balanced now translates into the assumption that G is
unimodular, using Levitt’s terminology from [34]. We can now apply [34, Proposition 2.6] to deduce that
G has a finite-index subgroup K isomorphic to the direct product F �Z, where F is a free group.

Now, K Š F �Z is product separable by You’s result [61, Theorem 5.1]; hence G is product separable
as a finite-index supergroup of K (see [52, Lemma 11.3.5]).

Proof of Proposition 21.5 Suppose that G splits as the fundamental group of a finite graph of free
groups .G�; �/ with cyclic edge groups.

Without loss of generality we can assume that each vertex group is a finitely generated free group (in
particular, G is finitely generated). Indeed, otherwise G ŠG1 �F , where G1 is the fundamental group
of a finite graph of finitely generated free groups with cyclic edge groups and F is free (this follows
from the fact that any element of a free group is the product of only finitely many free generators). In
this case we can deduce the product separability of G from the product separability of G1 and F by [14,
Theorem 1] (recall that F is product separable by Ribes and Zalesskii [53, Theorem 2.1]).

Now, for each vertex group Gv, choose and fix a finite family of maximal infinite cyclic subgroups Pv
such that

(a) no two subgroups from Pv are conjugate in Gv;

(b) for every edge e incident to v in � , the image of the cyclic group Ge in Gv is conjugate into one
of the subgroups from Pv.

Condition (a) means that each Gv is hyperbolic relative to the finite family Pv (for example, by [8,
Theorem 7.11]), and condition (b) means that each edge group of the given splitting of G is parabolic in
the corresponding vertex groups. Therefore we can apply the work of Bigdely and Wise [6, Theorem 1.4]
to conclude that G is hyperbolic relative to a finite collection of subgroups Q, where each Q 2Q acts
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cocompactly on a parabolic tree (see [6, Definition 1.3]) with vertex stabilisers conjugate to elements ofS
v2V � Pv and edge stabilisers conjugate to elements of fGe j e 2 �g. The structure theorem for groups

acting on trees [16, Section I.4.1] implies that every Q 2 Q is isomorphic to the fundamental group
of a finite graph of infinite cyclic groups. Since Q is balanced, being a subgroup of G, we can apply
Lemma 21.6 to conclude that each Q 2Q is product separable. By Wise’s result [59, Theorem 5.1] G
is LERF, hence we can apply our Theorem 1.8 to deduce that the product of a finite number of finitely
generated relatively quasiconvex subgroups is separable in G.

To establish the product separability of G it remains to show that it is locally quasiconvex. To achieve
this we will again use the results of Bigdely and Wise. More precisely, according to [6, Theorem 2.6], a
subgroup of G is relatively quasiconvex if it is tamely generated.

Let H 6G be a finitely generated subgroup. The splitting of G as the fundamental group of the graph
of groups .G�; �/ induces a splitting of H as the fundamental group of a graph of groups .H�; �/,
where for each vertex u 2 V� the stabiliser Hu is equal to H \Gvg , for some v 2 V � and some g 2G.
Moreover, the graph � is finite, because H is finitely generated (see [16, Proposition I.4.13]). Note
that every edge group from .H�; �/ is cyclic; hence each vertex group Hu, u 2 V�, must be finitely
generated as H is finitely generated (see [6, Lemma 2.5]).

According to [6, Definition 0.1], H is tamely generated if for every u2 V� the subgroup HuDH \Gvg

is relatively quasiconvex in Gvg , equipped with the peripheral structure Pv
g. But the latter is true because

Gv
g is a finitely generated free group, so any finitely generated subgroup is undistorted, and hence it is

relatively quasiconvex with respect to any peripheral structure on Gvg, by [30, Theorem 1.5]. Thus every
finitely generated subgroup H 6G is tamely generated, and so it is relatively quasiconvex in G by [6,
Theorem 2.6].

Remark 21.7 In the case when the graph of groups has two vertices and one edge (so that G is a free
amalgamated product of two free groups over a cyclic subgroup), Proposition 21.5 was originally proved
by Coulbois in his thesis; see [13, Theorem 5.18]. We can use similar methods to recover another result of
Coulbois: if G DH �C F , where H is product separable, F is free and C is a maximal cyclic subgroup
in F then G is product separable [13, Theorem 5.4]. Indeed, in this case G will be hyperbolic relative to
QDfH g and will be LERF by Gitik’s theorem [21, Theorem 4.4]. As in the proof of Proposition 21.5, the
results from [6] imply that G is locally quasiconvex. Therefore G is product separable by Theorem 1.8.

Remark 21.8 Using recent work of Shepherd and Woodhouse [56, Theorem 1.2], Proposition 21.5 can
be immediately extended to balanced groups G that split as fundamental groups of finite graphs of groups
with virtually free vertex groups and virtually cyclic edge groups. In fact, by [56, Proposition 3.13], G
has a torsion-free finite-index subgroup K. Then K is balanced and is isomorphic to the fundamental
group of a finite graph of free groups with cyclic edge groups. So the product separability of G follows
by combining Proposition 21.5 with [52, Lemma 11.3.5].
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