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Abstract 

The electromechanical responses of single and multi-layered piezoelectric functionally graded graphene-

reinforced composite (FG-GRC) plates are studied based on an accurate higher-order shear deformation theory 

(HSDT) involving quasi-3D sinusoidal plate theory and linear piezoelectricity. These FG-GRC plates are 

composed of randomly oriented graphene nanoplatelets (GPLs) reinforcing fillers and the piezoelectric PVDF 

matrix considering two different distribution patterns such as linear- and uniform- distribution (LD and UD) 

of GPLs across the thickness. The modified Halpin-Tsai (HT) and Rule of mixture (ROM) models are utilized 

to determine the effective material properties of FG-GRCs. The analytical model of FG-GRCs is extended 

further to analyze the time-dependent linear viscoelastic electromechanical behaviour of the system based on 

Biot model of viscoelasticity in the framework of inverse Fourier algorithm. The viscoelastic electromechanical 

responses include the static deformation and electric responses of simply supported FG-GRC plates which are 

investigated by considering transverse mechanical and external electrical loading, as well as other critical 

parameters like aspect ratio and weight fraction of GPLs. The numerical results reveal that the 

electromechanical response of FG-GRC plates can be enriched due to the addition of a small weight fraction 

of GPLs. The coupled multiphysics-based computational framework proposed here for predicting the 

viscoelastic electromechanical behaviour of laminated composites can be exploited for stimulating and 

developing a wide range of micro-electro-mechanical systems (MEMS) and devices incorporating time-

dependent programming features. 

Keywords 

Active composite laminates; Graphene-reinforced piezoelectric laminates; Functionally graded materials; 

Piezoelectric effect; Viscoelastic electromechanical responses 

 

1. Introduction 

Owing to stimulating multi-functional properties, two-dimensional (2D) materials and their derivatives 

have emerged to be significantly vital nanomaterials (Saumya et al., 2023). The quest for exploiting 

extraordinary mechanical properties of 2D graphene (modulus of elasticity, ~1 TPa and strength, 130 GPa) and 

mailto:S.Naskar@soton.ac.uk


2 
 

high specific surface area (2630 m2/g) led to the opening of an evolving area of research for developing 

graphene-based nanocomposites. It can be utilized as an ideal reinforcement candidate for tailoring 

multifunctional hybrid composites, leading to multifarious applications. The mechanical and interfacial 

properties of graphene-based composites are significantly enhanced due to the addition of controlled loading 

contents of graphene. Extensive research is carried out for the prediction of electromechanical behaviour 

including static and dynamic analysis of graphene-reinforced composite (GRCs) structures such as beam, plate, 

rod and shell by introducing piezoelectric nanoscale graphene fiber in a non-piezoelectric polyimide matrix 

(Mukhopadhyay et al., 2021) (Naskar et al., 2022) (Shingare and Naskar, 2023). Graphene is considered as a 

nanoscale fiber, wherein the effect of size-dependent properties is investigated such as strain and electric field 

gradient as well as piezoelectric, flexoelectric and surface effects on these GRC structures. The effective piezo 

elastic and relative permittivity properties of GRC are also probed by using analytical and finite element (FE) 

micromechanical models. They show a significant enhancement in mechanical and electrical behaviour of GRC 

structures as it incorporates flexoelectric and surface effects in comparison to the piezoelectric effect. Despite 

its importance in material design and engineering, research on the behaviors of graphene-reinforced composite 

is still inadequate. 

In the last few years, a new class of materials has emerged as an excellent choice of researchers due to 

its unique tailorable variation in material properties mainly across the thickness, known as functionally graded 

materials (FGMs) (Singh et al. 2023a). FGMs show great potential to be used in several areas like automotive, 

aerospace, aviation and many other engineering domains as shown in Fig. 1. The quest for high performance 

and exceptional properties including high stiffness, light in weight, durability, and high load-bearing/resistance 

capacity are the main causes for adopting FGMs (Karsh et al., 2019, 2018; Trinh et al., 2020). The influences 

of the graded components on the deformation and strength of thick-walled FGM tubes when subjected to 

internal pressure were examined by Fukui and Yamanaka (1992). Further, Fukui et al. (1993) extended their 

earlier research by considering these FGM tubes when subjected to uniform thermal loading and examined the 

effects of gradation of components on residual stresses. By curtailing the circumferential compressive stress at 

the inner surface of FGM tube, they also proposed an optimal composition. To examine stress intensity factors 

and transient thermal stresses of FGMs considering cracks, Fuchiyama et al., (1993) utilized an eight-noded 

quad-axisymmetric element. In order to get more accurate results, they emphasized that the temperature-

dependent properties must be accounted for in the investigation. Utilizing optimization and sensitivity 

techniques, Tanaka et al. (1993) considered FGM property profiles based on the lessening of thermal stresses. 

Mondal et al. (2022) formulated the closed-form solutions of three-dimensional crack-tip stress fields for a 

FGM medium under thermo-mechanical loading and investigated the scope of delaying its failure mechanisms. 

Lu et al. (2006) used stroh-like formalism to analyze a simply supported laminate of functionally graded 

piezoelectric material (FGPM). Behjat et al. (2011) carried out FE formulation in their paper to investigate 
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static bending, free vibration and dynamic behaviour of FGPM plates where material properties are graded 

along thickness direction based on power law. Das and Sarangi (2016) modeled and performed the analysis of 

an FG beam within ANSYS environment using Solid 186 element. Based on the Navier solution and first-order 

shear deformation theory (FSDT), Song et al. (2017a) reported the free and forced vibration analyses of FG 

graphene platelet-reinforced composite (FG GPLRC) laminates. Afterward, by utilizing the same theories, 

Song et al. (2017b) investigated the buckling and post-buckling behavior of bi-axially compressed FG GPLRC 

plates. Shen et al. (2017) derived an analytical solution for buckling and post-buckling analyses of FG GPLRC 

plates rested on elastic foundation. In addition to this, the results of thermal buckling and the post-buckling of 

GPLRC plates were analyzed by Wu et al. (2017) using the differential quadrature-based iteration method. 

They showed the increment and decrement of thermal buckling and post-buckling resistance considering 

different parameters such as weight fraction of GPLs along with their distribution, width-to-thickness, and 

aspect ratios. Gholami and Ansari (2017) investigated the large deflection and geometrically nonlinear analysis 

of FG GPLRC plates using analytical solutions. Based on the Navier solution and FSDT, Song et al. (2018) 

introduced the static and compressive buckling analyses of the FG GPLRC plate. They also reported that the 

shear correction factor is essential to confirm the accuracy of the mathematical framework that they presented. 

Using the element-free IMLS-Ritz method and FSDT, Guo et al. (2018) studied the vibration of GPLs 

reinforced layered composite quadrilateral plates. Gholami and Ansari (2018) used higher-order SDT to find 

out nonlinear harmonically excited vibration of rectangular FG GPLRC plates based on the variational 

differential quadrature (DQ). Using the transformed DQ method, Malekzadeh et al. (2018) investigated the 

vibration of FG GPLRC eccentric annular plates integrated with layers of piezoelectric material. Some of the 

research investigations in this field combine FGMs and composite structures for achieving a wide range of 

performances (Barati and Zenkour, 2019; Natarajan et al., 2014) (Assadi and Farshi, 2011). A major interest 

of current research activities involves the presence of homogeneous strain and electric field in FGM plates 

concerning the piezoelectric effect, which we discuss in the following paragraph. 

In the search for emerging lightweight multi-functional structures, it was revealed that if piezoelectric 

materials are utilized as distributed sensors/actuators which can be attached to or incorporated into the structure 

then it accomplishes self-monitoring and self-controlling competencies (Smith and Auld, 1991). These 

structures are usually named as “smart structures”. Piezoelectric materials generate the electric response to an 

applied mechanical load by virtue of the direct piezoelectric effect while it deforms due to the electric load by 

virtue of the inverse effect (Kuai et al., 2013; Maranganti et al., 2006; Tita et al., 2015). For developing high-

performing structures, the use of piezoelectric materials as distributed actuators and sensors is related to these 

direct and inverse effects, respectively. In recent advances, the FG structures integrated with piezoelectric 

actuators and sensors have received much interest from the application as well as the fundamental research 

point of view to develop MEMS and technology-based energy harvesters  
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Fig 1. A bird's eye view concerning detailed flowchart of viscoelastic electromechanical analysis of 

piezoelectric FG-GRC plates for application in various technologically demanding industries. 

 

(Beeby et al., 2006; Yan and Jiang, 2017, 2011). For a better understanding of piezoelectricity phenomena, the 

concept of piezoelectric effect is described using mathematical relation: Di ~ eijkεjk . In this, Di, εjk and eijk 

represent the electric displacement vector, the strain tensor and the piezoelectric tensor, respectively. Such 

piezoelectricity phenomena are found to be present in materials where the inversion symmetry plays a vital 

role, meaning the material should be non-centrosymmetric.  

Consideration of viscoelasticity in smart piezoelectric composite materials makes it more realistic in 

terms of accurate electromechanical response prediction due to the fact that many of the polymers used in 

composite structures are inherently viscoelastic in nature. Time and frequency domain analyses of the 

viscoelastic effect have been reported in composite structures. Aboudi and Cederbaum, 1989 presented a 

micromechanical analysis of unidirectional fibre composites considering the phases to be viscoelastic in nature. 
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Salehi and Aghaei, 2005 analyzed axisymmetric viscoelastic circular plates using a non-linear and non-

axisymmetric formulation. Wenzel et al., 2009 developed a model to analyze the deflection of viscoelastic 

(polymeric) cantilevered beams under uniform (adsorption-induced) surface stress. García-Barruetabeña et al., 

2013 discussed the interconversion scheme of viscoelastic relaxation modulus from the time-domain and 

frequency domain and vice-versa. Amoushahi and Azhari, 2014 studied a moderately thick viscoelastic plate 

using linear finite strip formulations. Mukhopadhyay et al., 2019 incorporated the effect of viscoelasticity into 

an irregular hexagonal honeycomb lattice following a bottom-up analytical framework in the frequency 

domain. Jafari and Azhari, 2021 discussed the bending of thick viscoelastic Mindlin plates with different 

geometries in the time-domain. Singh et al., 2023 showed the usage of extended Kantorovich method (EKM) 

to analyze IPFG viscoelastic plates embedded with piezo sensory layer.   

The review of literature presented on composite/FGM with consideration of graphene platelets clearly 

specifies that graphene/its derivatives are one of the most promising nanofiller for multiphysical applications. 

However, until now, to the best knowledge of the authors, there are no (or very few) studies investigating the 

electric and mechanical response of functionally graded graphene-reinforced piezoelectric composite (FG-

GRC) plates with and without consideration of the viscoelastic effect. Such an investigation could offer many 

exploitable prospects for developing next-generation MEMS and smart structures (note: hereinafter the “FGM” 

is used for functionally graded material without piezoelectric effect, while “FGPM” is used for functionally 

graded piezoelectric material).  In this article, the electromechanical responses of single and multi-layered 

piezoelectric functionally graded graphene-reinforced composite (FG-GRC) plates would be studied based on 

an accurate higher-order shear deformation theory (HSDT) involving quasi-3D sinusoidal plate theory, linear 

piezoelectricity and the effect of viscoelasticity. The results would be further validated with separate finite 

element (FE) modeling extensively. The reason for taking HSDT as a benchmark over classical plate theories 

(CPT) is due to its ability to incorporate thickness deformation (𝜀𝑧 ≠ 0) and transverse shear deformation.  

The contribution of this work is aimed at predicting the viscoelastic electromechanical performance of 

simply supported FG-GRC plates with and without consideration of piezoelectric effect using analytical and 

FE approach under generic loading conditions (quasi 3D sinusoidal distributed load). In the process, we would 

investigate different critical parameters such as weight fraction of GPLs and aspect ratios concerning direct 

and inverse piezoelectric effects. An overview of the comprehensive analysis concerning the current research 

work is systematically presented in Fig. 1. This article is structured as: Section 2: the basic mathematical 

formulations based on quasi-3D sinusoidal plate theory and linear viscoelasticity are introduced; Section 3: 

the details of FE models are presented; Section 4: the numerical results are discussed for single and multilayer 

FG-GRC plates to investigate their electromechanical responses, including the effect of viscoelasticity; Finally, 

the article is summarized with concluding remarks and critical perspectives in Section 5.  
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2. Theoretical formulation 

2.1 Geometric consideration  

Figure 2 shows a schematic of single-layered rectangular plates made of functionally graded 

piezoelectric material (FGPM) with width 𝑎, length 𝑏 and height ℎ and it is associated with Cartesian 

coordinate system (0 ≤ x ≤ b, 0 ≤ y ≤ a,−
h

2
≤ z ≤

h

2
). The FGPM plate is assumed to consist of 

polyvinylidene fluoride (PVDF) matrix and graphene platelets (GPLs) reinforcement. The top surface of 

FGPM plate is subjected to a transversely distributed load p0. This mechanical load is dependent on only two 

in-plane spatial coordinates x and y while an external electric voltage 𝑉 is applied in between its top and bottom 

plate surface. Variation of material properties is considered to be continuous in nature (Nomura and Sheahen, 

1997) and it is varied only along its thickness direction i.e., z-axis. The present formulation can also be 

applicable to multilayer laminates (with number of layers NL) which is explained later in Section 4.2. 

 

2.2 Kinematic relations 

Considering the quasi-3D sinusoidal plate theory (Zenkour, 2007) and the shape function proposed by 

Levy (1877), Stein (1986) and Touratier (1991), the displacement field (u, v, w) of any point within the volume 

of interest along three orthonormal directions can be expressed in the following form (Zenkour and Hafed, 

2020): 

u(x, y, z) = u0(x, y) − z
∂w0(x, y)

∂x
+
h

π
sin (

π

h
 z)ψx(x, y) 

(1a) 

v(x, y, z) = v0(x, y) − z
∂w0(x, y)

∂y
+
h

π
sin (

π

h
z)ψy(x, y) 

(1b) 

w(x, y, z) = w0(x, y) + cos (
π

h
z)φz(x, y) 

(1c) 

where (u0, v0) and   w0 indicate the in-plane and out-of-plane displacements of any point respectively on the 

mid-plane (z = 0) and (ψx, ψy) indicate the respective rotations of the transverse normal about y and x-

axis. φz(x, y) is for accounting the stretching effect of the plate. Contrary to typical first-order shear 

deformation theory, the present trigonometric plate theory does not require any shear correction coefficient.   

• Assumptions: 

1. Any straight lines perpendicular to mid-surface before deformation stay straight after its deformation. 

2. There will be the contribution of bending and shear both in total transverse displacement. 

w0(x, y) = w0b(x, y) + w0s(x, y) 
(2) 

3. Rotation function (ψx, ψy) are approximated as respective slopes of shear transverse deflection: 
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Fig 2. Schematic of FGPM plate subjected to electromechanical loadings and associated cross-sections. 

 

ψx(x, y) =
∂w0s

∂x
 and ψy(x, y) =

∂w0s

∂y
. (3) 

Considering these assumptions in Eq. (1), we get the following simpler forms: 

u(x, y, z) = u0(x, y) − z
∂w0b(x, y)

∂x
− f1(z)

∂w0s(x, y)

∂x
 

(4a) 

v(x, y, z) = v0(x, y) − z
∂w0b(x, y)

∂y
− f1(z)

∂w0s(x, y)

∂y
 (4b) 

w(x, y, z) = w0b(x, y) + w0s(x, y) + f2(z)φz(x, y) (4c) 

where f1(z) = z −
h

π
sin (

π

h
z) and f2(z) = cos (

π

h
z) are derived from the assumed shape function. Neglecting 

Von-Karmen non-linear terms in strain formulae, we can derive the following linear strain-displacement 

relations from Eq. (4): 

εx =
∂u

∂x
=
∂u0
∂x
− z

∂2w0b
∂x2

− f1(z)
∂2w0s
∂x2

= εx
0 + zκx + f1(z)ηx  (5a) 

εy =
∂v

∂y
=
∂v0
∂y
− z

∂2w0b
∂y2

− f1(z)
∂2w0s
∂y2

= εy
0 + zκy + f1(z)ηy  (5b) 

εz =
∂w

∂z
= f2

′(z)φz  (5c) 

γxy = 2εxy =
∂u

∂y
+
∂v

∂x
=
∂u0
∂y

+
∂v0
∂x
− 2z

∂2w0b
∂x ∂y

− 2f1(z)
∂2w0s
∂x ∂y

= γxy
0 + zκxy + f1(z)ηxy (5d) 

γyz = 2εyz =
∂v

∂z
+
∂w

∂y
= f2(z) (

∂w0s
∂y

+
∂φz
∂y
) = f2(z)γyz

0  (5e) 
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γxz = 2εxz =
∂u

∂z
+
∂w

∂x
= f2(z) (

∂w0s
∂x

+
∂φz
∂x
) = f2(z)γxz

0  (5f) 

where εx
0 = 

∂u0

∂x
 ,  εy

0 =
∂v0

∂y
 ,  γxy

0 =
∂u0

∂y
+
∂v0

∂x
,  κx = −

∂2w0b

∂x2
,  κy = −

∂2w0b

∂y2
,  κxy = −2

∂2w0b

∂x∂y
,  ηx = −

∂2w0s

∂x2
, 

 ηy = −
∂2w0s

∂y2
,  ηxy = −2

∂2w0s

∂x∂y
,  γyz

0 = (
∂w0s

∂y
+
∂φz

∂y
) and  γxz

0 = (
∂w0s

∂x
+
∂φz

∂x
). We can observe here the 

existence of non-zero transverse strains (εz ≠ 0) which is also a characteristic of any typical shear deformation 

plate theories.   

Accounting Maxwell’s equation, the variation of electric potential (ϕ ̅) through thickness can be 

approximated by the following equation proposed by Quek and Wang (2000): 

ϕ ̅ =  − cos (
π

h
z)ϕ(x, y) +

2V

h
z = −f2(z)ϕ(x, y) +

2V

h
z 

(6) 

where ϕ denotes the distribution of electric potential induced in mid-plane. The electric field components E 

can be given by: 

E = (

Ex
Ey
Ez

) = 

(

 
 
 
 
−
∂ϕ ̅

∂x

−
∂ϕ ̅

∂y

−
∂ϕ ̅

∂z )

 
 
 
 

=

(

 
 
 
 

f2(z)
∂ϕ

∂x

f2(z)
∂ϕ

∂y

f ′2(z)ϕ −
2V

h )

 
 
 
 

 (7) 

 

2.3 Constitutive equations and function resultants 

General constitutive relations for any piezoelectric material can be given by following two equations 

of actuation- and sensing- law (Li et al., 2020): 

(

 
 
 

σx
σy
σz
τyz
τxz
τxy)

 
 
 
=

(

 
 
 

c11(z) c12(z) c13(z) 0 0 0
c12(z) c22(z) c23(z) 0 0 0
c13(z) c23(z) c33(z) 0 0 0
0 0 0 c44(z) 0 0
0 0 0 0 c55(z) 0
0 0 0 0 0 c66(z))

 
 
 

(

 
 
 

εx
εy
εz
γyz
γxz
γxy)

 
 
 
−

(

 
 
 

0 0 e13(z)

0 0 e23(z)

0 0 e33(z)

0 e24(z) 0

e15(z) 0 0
0 0 0 )

 
 
 

(

Ex
Ey
Ez

)     (8a) 

(

Dx
Dy
Dz

) = (

0 0 0 0 e15(z) 0
0 0 0 e24(z) 0 0

e13(z) e23(z) e33(z) 0 0 0
)

(

 
 
 

εx
εy
εz
γyz
γxz
γxy)

 
 
 
+ (

μ11(z) 0 0
0 μ22(z) 0
0 0 μ33(z)

)(

Ex
Ey
Ez

)          (8b) 

where {D} is electric displacement field and cij (i, j = 1, 2, 3, 4, 5, 6) are the elastic constants under constant 

electric field (Zenkour and Alghanmi, 2018) which can be given as follows: 
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c11(z) = c22(z) = c33(z) =
E(z)(1 − ν(z)2)

1 − 3ν(z)2 − 2ν(z)2
 

(9a) 

c12(z) = c13(z) = c23(z) =
E(z)ν(z)(1 + ν(z))

1 − 3ν(z)2 − 2ν(z)2
 

(9b) 

c44(z) = c55(z) = c66(z) =
E(z)

2(1 + ν(z))
 (9c) 

As this is an FGM system, all elastic and piezo coefficients such as elastic modulus (E), Poisson ratio (ν), 

piezoelectric (eij) and dielectric (μij) coefficients are varying along the direction of the plate thickness (z). 

The governing equations for the present static FGPM system are achieved from the principle of virtual 

displacements that can be given as follows: 

∫ [−(δU) + δWext] dt = 0
tf

ti

   (10a) 

The virtual strain energy (δU) is expressed as follows: 

δU = ∫ ∫ ∫ (σxxδεxx + σyyδεyy + σzzδεzz + σxyδγxy + σyzδγyz + σxzδγxz)dxdydz               (10b) 

h
2

−
h
2

b

0

a

0

 

The virtual work done by the externally applied uniform transverse load 𝑝0 and externally applied Electric 

potential, V can be written as follows: 

δWext = ∫ ∫ [ p0(x, y)δw0] dxdy + 
b

0

a

0

∫ ∫ ∫ [ DxδEx + DyδEy + DzδEz]dxdydz

ℎ
2

−
ℎ
2

𝑏

0

𝑎

0

                   (10c) 

After substituting the strain-displacement relations and rearranging Eq. (10a), the following six governing 

equations of motion can be obtained: 

∂Nx
∂x

+
∂Nxy

∂y
= 0 (11a) 

∂Nxy

∂x
+
∂Ny

∂y
= 0 (11b) 

∂2Mx
∂x2

+ 2
∂2Mxy

∂x ∂y
+
∂2My

∂y2
+ p0(x, y) = 0 (11c) 

∂2Px
∂x2

+ 2
∂2Pxy

∂x ∂y
+
∂2Py

∂y2
+
∂Qx
∂x

+
∂Qy

∂y
+ p0(x, y) = 0 (11d) 
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∂Qx
∂x

+
∂Qy

∂y
− Qz = 0 (11e) 

∑∫ [f2(z)
∂Dx
∂x

+ f2(z)
∂Dy

∂y
− f2

′(z)Dz] dz
zk

zk−1

NL

k=1

= 0 (11f) 

Here Nij, Mij, Pij are the function (stress and moment) resultants whose definitions are given as follows: 

{Nx, Nxy, Ny} = ∫ {σx, τxy, σy}dz

h
2

−
h
2

= ∑∫ {σx
k, τxy

k , σy
k}dz

zk

zk−1

NL

k=1

  (12a) 

{Mx, Mxy, My} = ∫ {σx, τxy, σy}zdz

h
2

−
h
2

= ∑∫ {σx
k, τxy

k , σy
k}zdz

zk

zk−1

NL

k=1

 (12b) 

{Px, Pxy, Py} = ∫ {σx, τxy, σy}f1(z)dz

h
2

−
h
2

= ∑∫ {σx
k, τxy

k , σy
k}f1(z)dz

zk

zk−1

NL

k=1

 (12c) 

{Qx, Qy, Qz} = ∫ {f2(z)τyz
k , f2(z)τxz

k , f2
′(z)σz

k}dz

h
2

−
h
2

= ∑∫ {f2(z)τyz
k , f2(z)τxz

k , f2
′(z)σz

k}dz
zk

zk−1

NL

k=1

 
(12d) 

Now if we substitute Eq. (8) in the aforementioned resultants and perform tabulation in the terms of (εx
0, εy

0, 

, γxy
0 , κx, κy, κxy, ηx, ηy, ηxy ,γyz

0 , γxz
0 , φz), we get the following matrix. 

(

 
 
 
 
 
 
 
 
 
 
 

Nx
Ny
Nxy
Mx
My
Mxy
Px
Py
Pxy
Qz
Qy
Qx )

 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
 

A11 A12 0 B11 B12 0 B11
a B12

a 0 E13
A12 A22 0 B12 B22 0 B12

a B22
a 0 E23

0 0 A66 0 0 B66 0 0 B66
a 0

B11 B12 0 D11 D12 0 D11
a D12

a 0 H13
B12 B22 0 D12 D22 0 D12

a D22
a 0 H23

0 0 B66 0 0 D66 0 0 D66
a 0

B11
a B12

a 0 D11
a D12

a 0 F11 F12 0 H13
a

B12
a B22

a 0 D12
a D22

a 0 F12 F22 0 H23
a

0 0 B66
a 0 0 D66

a 0 0 F66 0

E13 E23 0 H13 H23 0 H13
a H23

a 0 G33
0 0 0 0 0 0 0 0 A44

a 0

0 0 0 0 0 0 0 0 0 A55
a )

 
 
 
 
 
 
 
 
 
 
 

 

(

 
 
 
 
 
 
 
 
 
 

εx
0

εy
0

 γxy
0

κx
κy
κxy
ηx
ηy
ηxy
φz
γyz
0

γxz
0 )

 
 
 
 
 
 
 
 
 
 

−∫

(

 
 
 
 
 
 
 
 
 
 

e13Ez
e23Ez
0

e13zEz
e23zEz
0

e13f1(z)Ez
e23f1(z)Ez

0
f2
′(z)e33Ez
e24f2(z)Ey
e15f2(z)Ex)

 
 
 
 
 
 
 
 
 
 

h
2

−
h
2

dz  (13) 

In Eq. (13), the stiffness coefficients can be defined by  



11 
 

(

 
 
 
 
 
 
 
 
 
 
 

Aij
Bij
Dij
Eij
Fij
Hij
Gij
Aij
a

Bij
a

Dij
a

Hij
a
)

 
 
 
 
 
 
 
 
 
 
 

= ∫

(

 
 
 
 
 
 
 
 
 
 
 

cij
zcij

z2cij
f2
′(z)cij

f1
2(z)cij
f2
′(z)zcij

f2
′2(z)cij

f2
2(z)cij
f1(z)cij
f1(z)zcij

f2
′(z)f1(z)cij)

 
 
 
 
 
 
 
 
 
 
 

dz

h
2

−
h
2

=∑∫

(

 
 
 
 
 
 
 
 
 
 
 
 
 

cij
k

zcij
k

z2cij
k

f2
′(z)cij

k

f1
2(z)cij

k

f2
′(z)zcij

k

f2
′2(z)cij

k

f2
2(z)cij

k

f1(z)cij
k

f1(z)zcij
k

f2
′(z)f1(z)cij

k
)

 
 
 
 
 
 
 
 
 
 
 
 
 

dz
zk

zk−1

NL

k=1

        , (𝑖 = 1,2,… ,6) (14) 

 

2.4 Governing equations 

Putting Eq. (13) in the governing Eq. (11), we get the following six partial differential equations. 

A11
∂2u0
∂x2

+ A66
∂2u0
∂y2

+ (A12 + A66)
∂2v0
∂x ∂y

− B11
∂3w0b
∂x3

− (B12 + 2B66)
∂3w0b
∂x ∂y2

− B11
a
∂3w0s
∂x3

− (B12
a + 2B66

a )
∂3w0s
∂x ∂y2

+ E13
∂φz
∂x

+ A̅13
p ∂ϕ

∂x
= 0 

(15a) 

A66
∂2v0
∂x2

+ A22
∂2v0
∂y2

+ (A12 + A66)
∂2u0
∂x ∂y

− B22
∂3w0b
∂y3

− (B12 + 2B66)
∂3w0b
∂x2 ∂y

− B22
a
∂3w0s
∂y3

− (B12
a + 2B66

a )
∂3w0s
∂x2 ∂y

+ E23
∂φz
∂y

+ A̅23
p ∂ϕ

∂y
= 0 

(15b) 

B11
∂3u0
∂x3

+ (B12 + 2B66) (
∂3u0
∂x ∂y2

+
∂3v0
∂x2 ∂y

) + B22
∂3v0
∂y3

− D11
∂4w0b
∂x4

− D22
∂4w0b
∂y4

− (2D12 + 4D66)
∂4w0b
∂x2 ∂y2

− D11
a
∂4w0s
∂x4

− D22
a
∂4w0s
∂y4

− (2D12
a + 4D66

a )
∂4w0s
∂x2 ∂y2

+ H13
∂2φz
∂x2

+ H23
∂2φz
∂y2

+ p(x, y) + A̅13
zp ∂

2ϕ

∂x2
+ A̅23

zp ∂
2ϕ

∂y2
= 0 

(15c) 

B11
a
∂3u0
∂x3

+ (B12
a + 2B66

a ) (
∂3u0
∂x ∂y2

+
∂3v0
∂x2 ∂y

) + B22
a
∂3v0
∂y3

− D11
a
∂4w0b
∂x4

− D22
a
∂4w0b
∂y4

− (2D12
a + 4D66

a )
∂4w0b
∂x2 ∂y2

− F11
∂4w0s
∂x4

− F22
∂4w0s
∂y4

− (2F12 + 4F66)
∂4w0s
∂x2 ∂y2

+ A55
a
∂2w0s
∂x2

+ A44
a
∂2w0s
∂y2

+ (H13
a + A55

a )
∂2φz
∂x2

+ (H23
a + A44

a )
∂2φz
∂y2

+ p(x, y)

+ A̅13
fp ∂

2ϕ

∂x2
+ A̅23

fp ∂
2ϕ

∂y2
− A̅⏟

24

p ∂
2ϕ

∂y2
− A̅⏟

15

p ∂
2ϕ

∂x2
= 0 

(15d) 
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−E13
∂u0
∂x
− E23

∂v0
∂y
+ H13

∂2w0b
∂x2

+ H23
∂2w0b
∂y2

+ (H13
a + A55

a )
∂2w0s
∂x2

+ (H23
a + A44

a )
∂2w0s
∂y2

+ A55
a
∂2φz
∂x2

+ A44
a
∂2φz
∂y2

− G33φz − A̅⏟
24

p ∂
2ϕ

∂y2
− A̅⏟

15

p ∂
2ϕ

∂x2
+ϕEE33 +

2V

h
A̅33
p
= 0 

(15e) 

A̅⏟
15

p
(
∂2w0s
∂x2

+
∂2φz
∂x2

) + D̅11
p ∂

2ϕ

∂x2
+ A⏟̅

24

p
(
∂2w0s
∂y2

+
∂2φz
∂y2

) + D̅22
p ∂

2ϕ

∂y2
+ A̅13

p ∂u0
∂x
+ A̅23

p ∂v0
∂y

− A̅13
zp ∂

2w0b
∂x2

− A̅23
zp ∂

2w0b
∂y2

− A̅13
fp ∂

2w0s
∂x2

− A̅23
fp ∂

2w0s
∂y2

− H̅33
p
ϕ− H̅33

pp
V

− EE33φz = 0 

(15f) 

In Eq. (15),  EE33,  A̅31
p
, A̅32

p
,  A̅33

p
,  A̅31

zp
,  A̅32

zp
, A̅⏟

24

p
, A̅⏟

15

p
, A̅31

fp
, A̅32

fp
, D̅11

p
, D̅22

p
, H̅33

p
, H̅33

pp
 which corroborate 

the piezoelectric coupling coefficients are defined by: 

EE33 = ∫ e33(z)f2
′2(z)dz =  ∑∫ e33

k (z)f2
′2(z)dz

zk

zk−1

NL

k=1

 

h
2

−
h
2

 
(16a) 

{A̅13
p
, A̅23
p
, A̅33
p
} = ∫ −{e13(z), e23(z), e33(z)}f2

′(z)dz 

h
2

−
h
2

 

= ∑∫ −{e13
k (z), e23

k (z), e33
k (z)}f2

′(z)dz
zk

zk−1

NL

k=1

 

(16b) 

{A̅13
zp
, A̅23
zp
} = ∫ −{e13(z), e23(z)}zf2

′(z)dz

h
2

−
h
2

= ∑∫ −{e13
k (z), e23

k (z)}zf2
′(z)dz

zk

zk−1

NL

k=1

 (16c) 

{A̅⏟
24

p
, A̅⏟
15

p
} = ∫ {e24(z), e15(z)}f2

2(z)dz =∑∫ {e24
k (z), e15

k (z)}f2
2(z)dz

zk

zk−1

NL

k=1

h
2

−
h
2

 (16d) 

{A̅13
fp
, A̅23
fp
} = ∫ −f1(z){e13(z), e23(z)}f2

′(z)dz

h
2

−
h
2

=∑∫ −f1(z){e13
k (z), e23

k (z)}f2
′(z)dz

zk

zk−1

NL

k=1

 (16e) 

{D̅11
p
, D̅22
p
} = ∫ {μ11(z), μ22(z)}f2

2(z)dz =∑∫ {μ11
k (z), μ22

k (z)}f2
2(z)dz

zk

zk−1

NL

k=1

h
2

−
h
2

 (16f) 

{H̅33
p
, H̅33

pp
} = ∫ {μ33(z)f2

′(z),−
2

h
μ33(z)}f2

′(z)dz

h
2

−
h
2

=∑∫ {μ33
k (z)f2

′(z),−
2

h
μ33
k (z)}f2

′(z)dz
zk

zk−1

NL

k=1

 (16g) 
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Here, Navier’s method is implemented to get the analytical results, wherein the following boundary constraints 

of the four ends simply supported (SSSS) plate are assigned. 

Edge 1: y = 0 u0(x, 0) = wob(x, 0) = w0s(x, 0) = φz(x, 0) = 0 

Edge 2: y = a u0(x, a) = wob(x, a) = w0s(x, a) = φz(x, a) = 0 

Edge 3: x = 0 v0(0, y) = wob(0, y) = w0s(0, y) = φz(0, y) = 0 

Edge 4: x = b v0(b, y) = wob(b, y) = w0s(b, y) = φz(b, y) = 0 

To satisfy the aforementioned boundary conditions, (u0, v0, w0b, w0s, φz) are expressed using an infinite series 

which are given by: 

u0(x, y) = ∑∑Umn cos (
mπx

b
)

∞

n=1

∞

m=1

sin (
nπy

a
) (17a) 

v0(x, y) = ∑∑Vmn sin (
mπx

b
)

∞

n=1

∞

m=1

cos (
nπy

a
) (17b) 

w0b(x, y) = ∑∑Wbmn sin (
mπx

b
)

∞

n=1

∞

m=1

sin (
nπy

a
) (17c) 

w0s(x, y) = ∑∑Wsmn sin (
mπx

b
)

∞

n=1

∞

m=1

sin (
nπy

a
) (17d) 

φz(x, y) = ∑∑Φmn sin (
mπx

b
)

∞

n=1

∞

m=1

sin (
nπy

a
) (17e) 

As Eq. (15) contains total six primary unknown variables, the mechanical (p0) and electrical load (ϕ) are also 

expressed based on double sine series as follows: 

ϕ(x, y) = ∑∑Ymn sin (
mπx

b
)

∞

n=1

∞

m=1

sin (
nπy

a
) (17f) 

p0(x, y) = ∑∑pmn sin (
mπx

b
)

∞

n=1

∞

m=1

sin (
nπy

a
) (17g) 

We consider that a uniform transverse load, p0 is acting throughout the top surface of the plate. Thus 

we have  p0(x, y) = p0 and value of pmn can be determined from Fourier series expansion. 
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pmn =
4

ab
∫ ∫ p0 sin (

mπx

b
) sin (

nπy

a
)

b

0

a

0

dxdy =
4p0
mnπ2

(1 − cos mπ)(1 − cos nπ)  (18) 

Now, we have to assume a function Vs(x, y) (potential per unit surface) to tackle the external applied electric 

voltage V in the Eqn. (15e) and (15f). Similar to p0(x, y), this Vs(x, y) can also be expressed as double sine 

series as follows. 

Vs(x, y) = ∑∑Emn sin (
mπx

b
)

∞

n=1

∞

m=1

sin (
nπy

a
) (19) 

Similarly, considering Vs(x, y) =
V

ab
  i.e., independent of x and y, Emn can be determined similar to pmn. 

Emn =
4V

mnabπ2
(1 − cos mπ)(1 − cos nπ) (20) 

Note here that while we have considered uniformly distributed mechanical load and electrical voltage, other 

loading conditions can also be analyzed based on the analytical framework presented here.  Substituting Eqs. 

(17), (18), (19) and (20) in the partial differential Eqs. (15), we get the following six linear simultaneous 

equations of Umn, Vmn,Wbmn,Wsmn, Φmn, Ymn. 

−A11Umnm̅
2 − A66Umnn̅

2 − (A12 + A66)Vmnm̅n̅ + B11Wbmnm̅
3 + (B12 + 2B66)Wbmnn̅

2m̅

+ B11
a Wsmnm̅

3 + (B12
a + 2B66

a )Wsmnn̅
2m̅ + E13Φmnm̅ + A̅13

p
Ymnm̅ = 0 

(21a) 

−A66Vmnm̅
2 − A22Vmnn̅

2 − (A12 + A66)Umnm̅n̅ + B22Wbmnn̅
3 + (B12 + 2B66)Wbmnm̅

2n̅

+ B22
a Wsmnn̅

3 + (B12
a + 2B66

a )Wsmnm̅
2n̅ + E23Φmnn̅ + A̅23

p
Ymnn̅ = 0 

(21b) 

B11Umnm̅
3 + (B12 + 2B66)(Umnn̅

2m̅ + Vmnm̅
2n̅) + B22Vmnn̅

3 − D11Wbmnm̅
4 − D22Wbmnn̅

4

− (2D12 + 4D66)Wbmnm̅
2n̅2 − D11

a Wsmnm̅
4 − D22

a Wsmnn̅
4

− (2D12
a + 4D66

a )Wsmnm̅
2n̅2 − H13Φmnm̅

2 − H23Φmnn̅
2 + pmn − A̅13

zp
Ymnm̅

2

− A̅23
zp
Ymnn̅

2 = 0 

(21c) 

B11
a Umnm̅

3 + (B12
a + 2B66

a )(Umnn̅
2m̅ + Vmnm̅

2n̅) + B22
a Vmnn̅

3 − D11
a Wbmnm̅

4 − D22
a Wbmnn̅

4

− (2D12
a + 4D66

a )Wbmnm̅
2n̅2 − F11Wsmnm̅

4 − F22Wsmnn̅
4

− (2F12 + 4F66)Wsmnm̅
2n̅2 − A55

a Wsmnm̅
2 − A44

a Wsmnn̅
2 − (H13

a + A55
a )Φmnm̅

2

− (H23
a + A44

a )Φmnn̅
2 + pmn − A̅13

fp
Ymnm̅

2 − A̅23
fp
Ymnn̅

2 + A̅⏟
24

p
Ymnn̅

2

+ A̅⏟
15

p
Ymnm̅

2 = 0 

(21d) 
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E13Umnm̅ + E23Vmnn̅ − H13Wbmnm̅
2 − H23Wbmnn̅

2 − (H13
a + A55

a )Wsmnm̅
2

− (H23
a + A44

a )Wsmnn̅
2 − A55

a Φmnm̅
2 − A44

a Φmnn̅
2 − G33Φmn + A̅⏟

24

p
Ymnn̅

2

+ A̅⏟
15

p
Ymnm̅

2 + EE33Ymn +
2Emn
h

A̅33
p
= 0 

(21e) 

A̅⏟
15

p
(−Wsmnm̅

2 −Φmnm̅
2) − D̅11

p
Ymnm̅

2 − A⏟̅
24

p
(−Wsmnn̅

2 −Φmnn̅
2) − D̅22

p
Ymnn̅

2 − A̅13
p
Umnm̅

− A̅23
p
Vmnn̅ + A̅13

zp
Wbmnm̅

2 + A̅23
zp
Wbmnn̅

2 + A̅13
fp
Wsmnm̅

2 + A̅23
fp
Wsmnn̅

2 − H̅33
p
Ymn

− H̅33
pp
Emn − EE33Φmn = 0 

(21f) 

Here (m̅, n̅) = ( 
mπ

b
,
nπ

a
). Solving six simultaneous Eqs. (21), we can determine Wbmn,Wsmn, Φmn  and 

accordingly, the total transverse deflection w(x, y, z) of the plate can be calculated by adding these three effects 

of bending, shear and stretching. By solving for Ymn, we can calculate the voltage component corresponding 

to the applied load. It can be noted in this context that the above formulation is valid for single and multi-layer 

(with the number of layers NL) functionally graded plates. Equivalent material properties are adopted for 

utilizing the analytical framework presented here as described below. 

 

2.5 Equivalent material properties 

The PVDF has isotropic and piezoelectric properties, and it is presumed that GPLs are uniformly and 

linearly distributed with a randomly distributed placement within the PVDF matrix. Such randomly oriented 

fiber composite can be approximated to a quasi-isotropic laminate (Halpin and Karoos, 1978). Here the GPLs 

are assumed as rectangular-shaped solid reinforcement of average width 𝑤𝐺𝑃𝐿, length 𝑙𝐺𝑃𝐿 and thickness 𝑡𝐺𝑃𝐿. 

The electromechanical behaviour of the FGPM plate is discussed by considering two distributions of weight 

fraction of GPLs along the thickness direction (z) which are as follows (Zhao et al., 2020): 

• Linear distribution:         WGPL(z) = 200WGPL
∗ (

1

2
+
z

h
)WGPL

0  (22a) 

• Uniform distribution:       WGPL(z) = 100WGPL
∗ WGPL

0  (22b) 

where WGPL
∗  and WGPL

0  are the total weight fraction and characteristic value of GPLs weight fraction, 

respectively. The total volume fraction of GPLs is calculated using the following relation: 

VGPL(z) =
WGPL(z)

WGPL(z) + (
ρGPL
ρPVDF

) (1 −WGPL(z))
 (23) 

where ρGPL and  ρPVDF denote the respective mass densities of GPLs and PVDF matrix. The modified Halpin-

Tsai model is utilised to estimate the effective material constants (properties). The Young modulus of a nearly 

isotropic laminate system is as follows (Wang et al., 2020): 
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Fig. 3. Distribution of WGPL across the thickness of single-layered FGPM (x–z plane) (a) linear and (b) uniform 

distribution. 

 

E(z) =
3

8
EL +

5

8
ET 

(24) 

whereas EL and ET indicate the longitudinal and transverse moduli and their values can be estimated from the 

Eq. (25). Here 
3

8
 and 

5

8
 are the reinforcing efficiency of GPLs considered in longitudinal and transverse 

directions, respectively. 

{EL(z), ET(z)} = {
1 + ξL

GPLηL
GPLVGPL(z)

1 − ηL
GPLVGPL(z)

,
1 + ξW

GPLηW
GPLVGPL(z)

1 − ηW
GPLVGPL(z)

} EPVDF (25) 

where the parameters ηL
GPL and ηW

GPL can be expressed by  

{ηL
GPL, ηW

GPL} = {
(
EGPL
EPVDF

) − 1

(
EGPL
EPVDF

) + ξL
GPL

,
(
EGPL
EPVDF

) − 1

(
EGPL
EPVDF

) + ξW
GPL
} (26) 

Here EGPL and EPVDF indicate the respective Young moduli of GPLs and PVDF matrix, and filler geometric 

factors  ξL
GPL and ξW

GPL of GPLs are given by the following equations: 

{ ξL
GPL, ξw

GPL } = { 
2lGPL
tGPL

,
2wGPL
tGPL

 } (27) 

where tGPL, lGPL, and wGPL are the respective thickness, length, and width of GPLs fillers. Other material 

properties are calculated by the rule of mixture which is as follows: 

         ρ(z) =  ρGPLVGPL(z) + ρPVDF(1 − VGPL(z)) (28a) 
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ν(z) =  νGPLVGPL(z) + νPVDF(1 − VGPL(z)) (28b) 

[eij(z)] = α[e3i]
PVDFVGPL(z) + [e3i]

PVDF(1 − VGPL(z)) (28c) 

[kii(z)] = α[kii]
PVDFVGPL(z) + [kii]

PVDF(1 − VGPL(z)) (28d) 

where ν, eij (i, j = 1, 2, 3, 4, 5), kii(i = 1,2,3) and α are the Poison ratio, coupling coefficient, electric 

permittivity and piezoelectric multiple, respectively. Table 1 summarizes the values of all these coefficients. 

 

Table 1: Geometric and material properties of constituents of FGPM (Li et al., 2020) 

Elastic and geometrical properties Piezoelectric constants (C/m2) 

WGPL
0  1% e31

PVDF 32.075 × 10−3 

lGPL 2.5μm e32
PVDF −4.07 × 10−3 

wGPL 1.5μm e33
PVDF −21.19 × 10−3 

tGPL 1.5nm e24
PVDF −12.65 × 10−3 

α 100 × 1000 e15
PVDF −15.93 × 10−3 

ρGPL 1920 kg/m3 Dielectric constants (F/m) 

ρPVDF 800 kg/m3 μ11
PVDF 53.985 × 10−12 

EGPL 1010 GPa μ22
PVDF 66.375 × 10−12 

EPVDF 1.44 GPa μ33
PVDF 59.295 × 10−12 

𝜈𝐺𝑃𝐿 0.186   

𝜈𝑃𝑉𝐷𝐹 0.29   

 

2.6 Time-dependent viscoelastic analysis 

Here the analytical model presented in the preceding sections has been extended for analyzing the 

functionally graded piezoelectric plates with time-dependent viscoelastic properties. For the sake of simplicity, 

the complex elastic modulus of the plate in the frequency domain (𝜔) is expressed as the Biot’s viscoelactic 

model with only one term (Mukhopadhyay et al., 2019). 

𝐸𝑧
∗(𝜔) = 𝐸′(𝜔) + 𝑖𝐸′′(𝜔) =  𝐸(𝑧) (1 + 𝜖

𝑖𝜔

𝜇 + 𝑖𝜔
) (29) 

where 𝐸(𝑧) is the effective young modulus in the absence of viscoelasticity, given in Eq. 24 and 𝑖 = √−1. 𝜖 

and 𝜇 are the constants indicating “the strength” of viscosity and relaxation parameter respectively. 𝐸′ (real 
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part) and 𝐸′′(imaginary part) can be regarded as storage and loss modulus respectively. The amplitude 

(dynamic modulus) and phase of the complex modulus can be derived as follows: 

|𝐸𝑧
∗(𝜔)| = 𝐸(𝑧)√

𝜇2 + 𝜔2(1 + 𝜖)2

𝜇2 + 𝜔2
 (30a) 

𝜙(𝐸𝑧
∗(𝜔)) = tan−1 (

𝜖𝜇𝜔

𝜇2 + 𝜔2 + 𝜖𝜔2
 ) (30b) 

As the phase increases, the contribution of loss modulus will increase which in turn makes the material more 

viscous (Mun et al., 2007). Considering all the limiting properties of 𝐸𝑧
∗(𝜔), present in the existing literature, 

it can be deduced that for all positive 𝜔 and 𝜖, |𝐸𝑧
∗(𝜔)| achieves minimum amplitude ( 𝐸(𝑧)) when 𝜔 → 0 and 

𝜇 → ∞ whereas the same will achieve maximum amplitude ( 𝐸(𝑧)(1 + 𝜖))  when 𝜔 → ∞ and 𝜇 → 0. However, 

for all limiting cases, the viscoelastic material properties tend to be pure elastic as the phase 𝜙(𝐸𝑧
∗(𝜔)) becomes 

zero.  

To employ this complex modulus in the present analytic model and for capturing the realistic time-

dependent viscoelastic behaviour of the plate, it is necessary to invert back the frequency domain representation 

discussed above into the time-domain (𝑡). This inversion of young modulus from its frequency domain (refer 

Eq. 29) to the time domain is carried out by the efficient inverse Fourier algorithm written in MATLAB 

symbolic environment. All values of 𝜔, from highest to lowest, are taken into account when inverting 

frequency domain data into the time domain (𝑡 > 0). This inversion can be expressed as follows: 

𝐸𝑧(𝑡) =
1

2𝜋
∫ 𝐸𝑧

∗(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔
∞

−∞

= ∫ 𝐸𝑧
∗(2𝜋𝑓)𝑒2𝜋𝑓𝑖𝑡𝑑𝜔

∞

−∞

 (31) 

Here the function 𝐸𝑧(𝑡) (also called relaxation modulus) encompasses the thickness direction (𝑧) along with 

the time parameter (𝑡). Handling these two parameters at the same time in the present analytical model can be 

cumbersome. To mitigate this issue, we have performed the temporal analysis throughout the plate thickness 

at each time step separately. The evolution of material properties at each time step is determined by a suitable 

viscoelasticity model. Note that the FE validations (comparative results obtained from the analytical approach 

and FEM) presented in this paper can be regarded as the validation for a particular time step and the 

corresponding material properties in the context of time-dependent viscoelastic analysis. By ensuring the 

accuracy of results at each time step corresponding to time-dependent material properties obtained based on 

suitable viscoelastic models, the correctness of the overall temporal analysis is ascertained. In this context, it 

can be noted that two viscoelastic parameters (𝜇 and 𝜖) need to be evaluated specific to the material under 

consideration. The time-dependent variation of material properties depends on these parameters. 
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We approximate the integral in Eq. (14) by taking a summation through the plate’s thickness for each 

time instant. As here some approximations are involved, the accuracy of the result is ensured by comparing the 

value of each constant in Eq. (14) obtained from the present summation method and the normal integral method 

at a particular time instant.  Considering time-domain, Eq. (17a-f) can be rewritten as follows: 

u0(x, y, t) = ∑∑Umn(𝑡) cos (
mπx

b
)

∞

n=1

∞

m=1

sin (
nπy

a
) (32a) 

v0(x, y, t) = ∑∑Vmn(𝑡) sin (
mπx

b
)

∞

n=1

∞

m=1

cos (
nπy

a
) (32b) 

w0b(x, y, t) = ∑∑Wbmn(𝑡) sin (
mπx

b
)

∞

n=1

∞

m=1

sin (
nπy

a
) (32c) 

w0s(x, y, t) = ∑∑Wsmn(𝑡) sin (
mπx

b
)

∞

n=1

∞

m=1

sin (
nπy

a
) (32d) 

φz(x, y, t) = ∑∑Φmn(𝑡) sin (
mπx

b
)

∞

n=1

∞

m=1

sin (
nπy

a
) (32e) 

ϕ(x, y, t) = ∑∑Ymn(𝑡) sin (
mπx

b
)

∞

n=1

∞

m=1

sin (
nπy

a
) (32f) 

Afterwards, solving Eq. (21) in conjunction with Eq. (32), the time-dependent parameters 

Wbmn(𝑡),Wsmn(𝑡), Φmn(𝑡) can be calculated for each time instant. Thus, in the proposed framework of 

viscoelastic analysis, we first characterize the frequency-domain depth-wise material properties, which are then 

inverted to time-domain variation of the depth-wise varying material properties and subsequently used to 

analyze the electromechanical response of the plates at each time-step. 

 

3. Finite element (FE) analysis 

We have carried out a separate finite element analysis to validate the analytical framework as described 

in the preceding section. The primary objective of including the finite element model in present paper is to give 

an initial validation to our parent general analytic model (which is equally applicable for both viscoelastic and 

non-viscoelastic structures). The elastic model, for which we have presented finite element validations, is 

further extended to analyze the viscoelastic behavior where only the elastic modulus terms in the analytical 

expressions are replaced by the viscoelastic parameters based on the correspondence principle. The essence of 
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this principle is that the analytical expressions of the structure in the elastic regime can be readily extended to 

the viscoelastic regime without any further change in the parent elastic framework. It is well-established in the 

literature that a correct elastic framework for analyzing structural behaviour can be converted to time-

dependent viscoelastic analysis through this principle. The FEM analysis presented in the current paper is 

intended to establish the accuracy of the elastic analysis, which in turn assures the correctness of the 

viscoelastic analysis. That is why no additional FE calculations are added for viscoelastic structures separately. 

In this context, it can be noted that the FE validations presented here can be regarded as the validation for a 

particular time step and the corresponding material properties in the context of time-dependent viscoelastic 

analysis. Once the electromechanical analysis is validated for a particular set of material properties, it can be 

extended to the other time steps readily by considering the appropriate time-dependent material properties at 

different other time steps. Thus finite element validation of the electromechanical analysis for a particular set 

of material properties, as presented here, is sufficient for the time-dependent viscoelastic analysis performed 

afterwards in this study. 

The finite element analysis is carried out here considering single and multi-layered systems, wherein 

the equivalent material properties are evaluated based on the approach presented in the preceding section. The 

same geometry and the coordinate system are adopted in FE analysis as shown in Fig. 2. The CAD model is 

prepared in the COMSOL multi-physics version 5.5 software package and FEM simulation has been performed 

in COMSOL’s 3D “piezoelectricity multiphysics interface” which combines Solid Mechanics and 

Electrostatics together with the constitutive relationships required to model piezoelectrics. In the geometry, 

thickness direction is taken along the z-axis and material coordinate system are same as the spatial coordinate 

system in COMSOL. For simulating FGPM (functionally graded piezoelectric material) in the present 

structure, we have created a “blank material” within COMSOL material library whose elastic and piezoelectric 

properties are given in accordance with Eqns. (24) and (28). As all the properties vary along the thickness 

direction, we have adopted the COMSOL’s global coordinate variable z with lower limit of −ℎ/2  and upper 

limit of ℎ/2  to build the analytic functions for its material properties (density, elasticity matrix, coupling 

matrix and relative permittivity matrix).  The discretization of the rectangular plate is carried out using free 

tetrahedral (tet) mesh (fine) elements where the maximum element size varies between 0.24 m to 0.03 m. 

As the analysis is performed on an electromechanical structure, we have to incorporate electrical 

boundary conditions in addition to mechanical loadings. Present FGPM rectangular plate is under the closed-

circuit condition where initially, the electric potential 𝑉 applied on the upper and lower surfaces are expected 

to be zero (grounded) throughout the analysis (as demonstrated in Fig. 4). In COMSOL, the piezoelectric 

polarization axis is not changed as its default direction is always along its spatial 𝑧 coordinate axis. In case of 

mechanical loading, a uniformly distributed (UDL) unit force is applied throughout the top surface and the 

bottom surface is kept free. The plate is modeled as simply supported along four edges (SSSS). The overall FE 
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Table 2: Initial dimensions of the plate. 

Parameters Values Unit 

Length, 𝒃 3 m 

Width, 𝒂 1 m 

Thickness to span ratio (𝒉/𝒂) 0.01 - 

Total No. of layer, 𝑵𝑳 • Single (= 1)  

• multilayer (> 1) 

- 

 

 

Fig. 4. Schematic representation of FGPM plate su bjected to: (a) electrical (b) mechanical loads. 

 

modeling is demonstrated using a flow diagram in Fig. 5. In this context, it can be noted that the finite element 

validations presented here can be regarded as the validation for a typical time step considering the 

corresponding material properties. In time-dependent viscoelastic analysis, the material properties vary at 

different time steps that can be ascertained by the adopted viscoelastic model. Once the electromechanical 

analysis is validated for a particular set of material properties, it can be extended to the other time steps readily 

by considering the appropriate time-dependent material properties at different other time steps. The time-

dependent evolution of material properties in a viscoelastic analysis is discussed in the preceding section.  

4. Results and discussions 

This section presents numerical results concerning the electromechanical behavior of FGPM plates 

based on the proposed analytical approach and comparative validation results using finite element simulations. 

We would investigate three different configurations with single and multiple layers (UD, LD and UD/LD). 

Subsequently, we present time-dependent viscoelastic results for the deformation and electric potential of 

FGPM plates.  
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Fig. 5. Flowchart describing the detailed FE analysis. 

 

4.1 Electromechanical analysis of single FGPM plate (𝑵𝑳 = 𝟏) 

A thin FGM plate (a/h = 100) is subjected to uniformly distributed load (p0 = 1 N/m
2) while it’s all 

four edges are kept simply supported. We first concentrate on validating the analytical model using separate 

FE analysis, wherein a convergence study is important to obtain credible results before proceeding further. 

Therefore, the convergence study concerning FE analysis is carried out to investigate the influence of mesh 

size or the number of elements on the transverse deflection of the plate. Different types of meshing such as: 

extreme coarse, coarse, normal, fine and extreme fine are considered with the overall range of average element 

size between 0.855 m to 0.0303 m. In Table 3, the results of convergence study with respect to maximum 

center deflection of the plate and its mesh statistics used in FE analysis have been presented. Figure 6 illustrates 

the variation of transverse deflection of the plate over its length. It can be observed that the results for transverse  
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Table 3: Convergence study of FEM for Center deflection of Plate 

Mesh Type Number of 

Domain 

Element 

Number of 

Boundary 

Element 

Number of 

Edge Element 

Plate Center 

Deflection 

(𝝁𝒎) 

Extreme coarse 597 476 92 -21.966 

Coarse 3196 2268 212 -32.929 

Normal 7486 5252 312 -33.123 

Fine 24560 16340 548 -33.199 

Extreme Fine 301244 142524 1604 -33.200 

 

 
Fig. 6. Mesh convergence analysis. 

 

Fig. 7. Variation of transverse deflection of UD FGM plates along its length based on analytical and FE models. 
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(a)                                                                                  (b) 

Fig. 8. (a) Variation of transverse deflection of SSSS FGPM plate along its length (LD case; a/h =

100,WGPL
∗ = 1%, V = 0, p0 = 1). (b) Variation of transverse deflection of LD plates along its length. 

 

deformations are converged for fine and extreme fine elements. Therefore, we followed the ‘fine’ type of 

element for further analysis in FE modeling.  

We further validate the FE model with literature to ensure its prediction accuracy. Figure 7 

demonstrates the variation of transverse deflection of SSSS FGPM and FGM plates (i.e., with and without 

accounting for the piezoelectric effect) over their lengths and a comparison of the available results based on 

classical plate theory (CPT) (Reddy, 2006). For this purpose, we have considered a thin FGM plate with 

uniform distribution (UD) of WGPL
∗  and carried out a deflection analysis of UD FGM (refer to Figure 7). The 

earlier existing analytical result for center deflection of the plate calculated from CPT is 2.8524 × 10−5 m 

(Reddy, 2006) which shows a very close agreement with the current FE results. Due to consideration of the 

piezoelectric effect, there is a decrement in maximum transverse deflection of the plate compared with non-

piezoelectric FGM plate. Having adequate confidence in the finite element model, we present further numerical 

results based on analytical predictions and finite element analyses.  

To check the accuracy of the current quasi-3D sinusoidal shear deformation plate theory with respect 

to the FE model in case of FGPM LD plates subjected to uniform loading (p0), the comparative results are 

plotted in Fig. 8(a). The results are observed to be in excellent agreement,  corroborating the validity of the 

proposed analytical framework further. In the following numerical results, we investigate different critical 

effects on the electromechanical behaviour of FGPM plates, primarily based on the analytical approach. Figure 

8(b) shows the variation of transverse deflection of SSSS FGM and FGPM plates over their lengths considering 
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linear distribution (LD) of GPLs weight fraction (WGPL
∗ ). A similar trend is observed in UD cases (refer to 

Figures 7) for transverse deflection, while the LD case shows higher deflection of the plate. A detailed 

comparison of the results considering LD and UD cases is presented in Figure 9 based on analytical and FE 

approaches. The results show that the incorporation of piezoelectricity stiffens the FGM plates for both 

distributions. 

 

Fig. 9. Effect of distribution of GPLs on the transverse deflection of plates. 

 

 

(a)                                                                      (b) 

Fig. 10. Variation of transverse deflection of SSSS FGPM plate along its length (LD case; V = 0, p0 = 1). (a) 

for different aspect ratio (WGPL
∗ = 1%) (b) for different GPL volume fractions (a/h = 100). 
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Fig. 11. Variation of electric potential across the thickness of SSSS FGPM plate at its center (x, y) = (
b

2
,
a

2
) 

(LD case; a/h = 100, V = 0, p0 = 1).  

 

Fig. 12. Variation of electric potential across the thickness of an SSSS FGPM plate at its center (x, y) = (
b

2
,
a

2
) 

(LD case,WGPL
∗ = 1%, V = 0). 

 

Figure 10(a) shows the variation of transverse deflection of the SSSS plate over its length by 

considering different aspect ratios (a/h). For this, we considered WGPL
∗ = 1% with LD case while the different 

aspect ratios are considered as 10, 20, 50 and 100. It is noticed that the transverse deflection increases with 

increasing aspect ratio. Figure 10(b) shows the variation of transverse deflection of SSSS FGPM plates along 

their length by considering different WGPL
∗  with the LD case. From this, it is noticed that the deflection of SSSS 
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                         (a)                                                                          (b) 

 
  (c)                                                                          (d) 

Fig. 13. Variation of transverse deflection of SSSS FGPM plate along the length direction of the plate. (a) LD 

distribution with a constant voltage of zero throughout the upper surface (along with different values of loads) 

(b) UD distribution with a constant voltage of zero throughout the upper surface (along with different values 

of loads) (c) LD distribution when a constant load of 100 Pa is applied on the structure (along with different 

values of voltage)  (d) UD distribution when a constant load of 100 Pa is applied on the structures (along with 

different values of voltage). 

 

plate is significantly influenced due to the incorporation of nanoparticles such as graphene. The transverse 

deflection of the plate is reduced due to the addition of a large value of WGPL
∗ . This effect of different WGPL

∗  on 

deflection is also intuitively true as the overall elastic modulus of the model increases if the percentage of GPLs 
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increases and consequently, it gets stiffer. Further, from Figures 10(a) and 10(b), it is clear that the results 

obtained from both analytical and FE modelling are observed in excellent agreement. 

Figure 11 shows the variation of electric potential generated due to piezoelectricity at the center of 

SSSS FGPM plate with respect to its thickness by considering different WGPL
∗ . From this, it can be noted that 

the electric potential shows the maximum value at the middle of the plate thickness. Similar to transverse 

deflection, the electric potential decreases due to the addition of different WGPL
∗ . For WGPL

∗ = 1%, the electric 

potential shows larger values compared to the remaining three values of WGPL
∗ . The electric potential generated 

in SSSS FGPM plates also depends on the aspect ratios of the plate which are investigated in Figure 12 for 

aspect ratios of 10, 20, 50 and 100 (considering WGPL
∗ = 1%). It can be noted that the electric potential 

increases with respect to the aspect ratio, while the peak voltage appears in the middle layer of the FGPM plate 

with LD distribution (WGPL
∗ = 1% and a/h = 100). 

The numerical results are presented here (unless otherwise mentioned) considering unit load and zero 

voltage, which lead to deflections in the micrometer range. The accuracy of the results is ensured through 

separate finite element simulations. It can be noted that the developed semi-analytical framework is generic 

enough to analyze larger values of load which would lead to higher deformations. However, to establish the 

generic nature of the proposed computational framework, we have added two separate studies for single and 

multi-layered FGPM structures (refer to Figures 13 and 18) where we vary the mechanical load and applied 

voltage in a reasonable range (complying the small linear strain-displacement assumption). It is observed that 

the deflections increase significantly with external loads up to the millimeter range. The impact of mechanical 

load and non-zero voltages on the overall deflection of the plate for both LD and UD FG distributions is shown 

in Figure 13. Both distributions in Figure 13(a-b) show a direct relationship between transverse deflection (𝑤) 

and external load (𝑝0). For instance, in FGPM structure with LD distribution, a maximum deflection of 3.313 

mm is observed along the centroidal axis of the plate when a 100 Pa load is applied. In Figure 13(c-d), the 

piezoelectric voltages are varied for both distributions while maintaining a constant external mechanical stress 

of 100 Pa. Although the effect of voltage is minimal in UD distribution, the transverse deflection is directly 

correlated with applied voltages in LD distribution. Overall, the UD distribution in FGPM structures exhibits 

stiffer behavior than the LD distribution.         

 

4.2 Electromechanical analysis of multilayer FGPM plate  

In this Section, we extend the same theoretical approach discussed in Section 2 for presenting numerical 

results concerning layered composite structures. We have considered a perfectly bonded double-layered FGPM 

plate (NL = 2) in which GPLs nanofibers are assumed to be randomly oriented in respective matrixes in both 

the layers with UD/LD configuration. The total thickness is taken as ℎ and it is equally divided in both layers. 

Distribution of GPLs weight fraction is taken differently in two layers i.e., a top layer having UD distribution 
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Fig. 14. Distribution of weight fraction of GPLs (WGPL
∗ ) across layered FGPM plate thickness.  

 

 

Fig. 15. Variation of transverse deflection of layered FGPM plate along its length (a/h = 100,WGPL
∗ =

1%, p0 = 1, V = 0). 

 

and a bottom layer having LD distribution of GPLs. This layer-wise variation of the FGPM plate is depicted 

in Figure 14. Other boundary conditions remain the same as considered in the single-layer plate. Unit 

mechanical load and zero external voltage are applied on the outer surface of the plate as before. Both the 

analytical and FE analyses are performed to check the accuracy of the present theory in predicting the behavior 

of the layered structure.  
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(a)                                                                             (b) 

Fig. 16. (a) Effect of weight fraction of GPLs (WGPL
∗ ) on the transverse deflection of SSSS layered plate 

(a/h = 100, p0 = 1, V = 0). (b) Effect of aspect ratio (a/h) on the transverse deflection of SSSS layered plate 

(WGPL
∗ = 1%, p0 = 1, V = 0). 

 

Fig. 17. Variation of electric potential (ϕ ̅) across the thickness of layered FGPM plate at the centre (x, y) =

(
b

2
,
a

2
) (a/h =  100,WGPL

∗ = 1%, p0 = 1, V = 0). 

Figure 15 shows the variation of transverse deflection of layered FGPM plate along its length. The 

analytical and FE results for total transverse deflection (w) of the plate under mechanical load p0 = 1 N/m
2 

and electric potential V = 0 are compared. From this figure, it is observed that theoretical and FE results are  
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  (a)                                                                        (b) 

Fig. 18. Effect of external mechanical load and electrocortical loading on the overall deformation of layered 

FGPM structures. (a) Variation of the plate’s deflection along length direction under a constant voltage of zero 

and different values of mechanical load (b) Variation of plate’s deflection along length direction under a 

constant mechanical load of 100 Pa and different values of voltage. 

 

in very good agreement for the multi-layered structures. The maximum deflection is found at the half-length 

(i.e., 1.5 m) of the plate which is the same in the case of a single-layered plate. From this, we can conclude that 

number of layers has negligible effects on the overall deflection pattern of the plate if other parameters are kept 

the same. In figure 15, it is also observed that in the case of multi-layered plates, there is an increment in the 

magnitude of maximum deflection by 7.94 μm compared to the single-layered plate. A similar trend of the 

result is observed in existing literature (Lu et al., 2006), which validates our present formulation further. 

Subsequently, insightful parametric analysis is performed by varying weight fraction of GPLs (WGPL
∗ ) 

and plate aspect ratio (a/h), as shown in figures 16(a) and 16(b). The deflection of layered plate decreases as 

the value of (WGPL
∗ ) and (a/h) increases. It is due to increased stiffness which is discussed in the earlier section.  

In figure 17, the variation of electric potential along the thickness direction is generated due to the direct 

piezoelectric effect. It can be observed that the variation is continuous, there is no discontinuity at the interface 

of the two layers. 

Similar to single-layered FGPM distributions (refer to Figure 13), a parametric analysis has been 

conducted here to check the dependency of external loading parameters on the structure’s overall deformation 

in a multi-layered FGPM system. A significant increase in the maximum transverse deflection in comparison 
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to its unit-loading state is observed in Figure 18(a) where the deformation increases to the millimeter range 

with the increase of mechanical loading. Figure 18(b) shows the length-wise change in the plate’s deflection 

with applied voltage. A non-uniform symmetric deformation pattern with respect to plate’s centroidal axis can 

be observed where an increasing trend of deflection with voltage is noticed near the central zone and a reverse 

decreasing trend of deflection with voltage is obtained near the supporting edge of the plate. Contrary to the 

uniform trend seen in single layered plates (Figure 13), the double layered (UD/LD) plate here exhibits such 

non-uniform deformation trend with voltages along its length.  

4.3 Time-dependent electromechanical analysis of single and multi-layer viscoelastic FGPM plates 

In this section, the time-dependent dynamic behavior of the structure’s responses has been investigated 

by the incorporation of viscoelastic effect. Before obtaining the final results, the effect of viscoelasticity on the 

effective elastic modulus, 𝐸(𝑧) along the thickness has been checked by plotting it in the time domain. As 

mentioned earlier, this modulus not only depends on time (𝑡) but also the thickness direction (𝑧) since the 

present structure is depth-wise functionally graded. For each vertical point at a particular section of the plate, 

we obtain a time-variation curve for the effective elastic modulus. For the sake of brevity, in Table 4, the effect 

of viscoelasticity on Young’s modulus at three locations of the thickness ( at 𝑧 = −
ℎ

2
 , 𝑧 = 0 and 𝑧 =

ℎ

2
 ) in 

LD distribution is shown in both the frequency domain and the corresponding transformed time domain. Note 

that the parameters 𝜇 and 𝜖 in Eq. (29) are crucial for conceptualizing viscoelasticity of the present structure. 

It is important to keep in mind that the exact values of both parameters (𝜇 and 𝜖) in general, depend on different 

physical experimental outcomes of the relevant viscoelastic system. In particular, they can be obtained from 

the curve fitting of experimental data concerning creep test of the material. Such experimental implementations 

were performed in the existing literature (Endo and de Carvalho Pereira, 2017) (Rouleau et al., 2013)(Enelund 

and Olsson, 1999). As the present study doesn’t include any experimental work, we have adopted reasonable 

parametric values for obtaining the numerical results. Analytically these two parameters, present in complex 

elasticity modulus (𝐸𝑧
∗(𝜔)) in the frequency domain, come from the viscoelastic kernel function in the time-

domain. This function can be obtained by constructing various equivalent lumped spring-dashpot damping 

models for viscoelastic material such as Maxwell model, Voigt model, Standard linear model, Generalised 

Maxwell model and Prony series model.  Whereas, in the frequency or Laplace domain, various existing 

viscoelastic models complying Kramers-Kronig relations can be used to derive 𝐸𝑧
∗(𝜔) such as Biot model, 

Gaussian model, Fractional derivative, Half cosine model etc. Among them, the Biot’s standard classical model 

of viscoelasticity (Biot, 1955)(Biot, 1954) has been chosen here by which complex elasticity modulus (𝐸𝑧
∗(𝜔)) 

can be obtained without any significant accuracy loss. To examine the effect of the two parameters on overall 

strength of viscoelastic model, a parametric study (refer to Figure 19(a-d)) is presented. First, we have 

investigated the influence of these two parameters on the present viscoelastic system and afterwards, a suitable  
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                               (a)                                                                          (b) 

 
                                (c)                                                                             (d) 

Fig. 19. (a) Effect of the parameter 𝜇 of the amplitude of mid-plane-Young-modulus in the frequency domain 

at constant 𝜖 = 0.01. (b) Effect of the parameter 𝜖 of the amplitude of mid-plane-Young-modulus in the 

frequency domain at constant 𝜇 =
(𝜔𝑚𝑎𝑥)

5
. (c) Effect of the parameter 𝜇 of the magnitude of viscoelastic phase 

angle at mid-plane in the frequency domain at constant 𝜖 = 0.01. (d) Effect of the parameter 𝜇 of the magnitude 

of viscoelastic phase angle at mid-plane in the frequency domain at constant 𝜇 =
(𝜔𝑚𝑎𝑥)

5
.       

 

combination of their values are chosen to produce numerical results in succeeding sections. It can be noted that 

the temporal framework presented here is generic and any suitable value of 𝜇 and 𝜖, obtained based on 

experimental investigations, can be used for exploration of the viscoelastic behaviour. In Figure 19(a-d), the 
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amplitude of Young modulus at mid-plane and its associated phase angle are varied in a reasonable frequency 

range for different values of  𝜇 and 𝜖. It can be seen in Figure 19(a-b) that the amplitude increases as the values 

of 𝜇 and 𝜖 reduce and increase respectively. They all show converging patterns in the values after certain 

frequencies. This can be explained with the help of Figure 19(c-d). Figure 19(c) depicts the variation of phase 

angle in frequency domain for different 𝜇 at a constant  𝜖 = 0.01, whereas the same is plotted in Figure 19(d) 

for different 𝜖 taking 𝜇 as constant i.e. 𝜇 =
(𝜔𝑚𝑎𝑥)

5
 (where 𝜔𝑚𝑎𝑥 is the maximum magnitude of considered 

frequency spectrum). Existence of critical frequencies can be observed, wherein the physical significance of 

such critical frequency can be explained in the light of spring-dashpot lumped model of viscoelasticity. At very 

low and high frequencies, the model behaves as pure elastic, whilst in the vicinity of the critical frequency, the 

viscous effects become maximum. That is why in Figure 19(a-b), at very low frequency, amplitude of Young 

modulus takes a constant non-zero value and after a certain frequency, it again converges to a constant non-

zero value. From Figure 19(c-d), it can be concluded that the parameter 𝜇 controls the critical frequency 

whereas the parameter 𝜖 shows its influence on magnitude of phase angle of the present viscoelastic model. 

After the afore-explained parametric study investigating the influence of viscoelastic parameters, we can now 

proceed for obtaining numerical results in the current context by taking a combination of these two parameters 

𝜇 and 𝜖. In the frequency domain, the variation of the dynamic modulus and its phase is obtained by taking the 

parameters as 𝜇 =
(𝜔𝑚𝑎𝑥)

1.4
 and 𝜖 = 0.01 for the present paper. Except for Young’s moduli, Poisson's ratio and 

other piezoelectric properties are considered to have a negligible effect of viscoelasticity based on published 

literature (Salehi and Aghaei, 2005, Salehi and Safi-djahanshahi, 2010, Barrett and Gotts, 2004). It has also 

been verified in MATLAB that the values of elastic modulus in all three cases (refer to Table 4) at low 

frequency (𝜔~0) are the same as the non-viscous elastic modulus mentioned in the prior sections. Such 

observations are in coherence with the existing literature (Mukhopadhyay et al., 2019, Malekmohammadi et 

al., 2014). In Table 4, the variation of phase angle in all three locations has also been plotted and it is observed 

that all are the same and achieve their peak value at a certain critical frequency. So, the phase angle variation 

is independent of thickness direction, though the amplitude of elastic moduli keeps changing with the thickness 

direction. The phase angle decreases on both sides of the frequency spectrum i.e. at the lowest and highest 

frequency of the plot. At low frequencies, the present viscoelastic plate will behave more like a normal elastic 

plate. After applying the inverse Fourier algorithm, the time domain plots are obtained along the thickness. As 

time increases, elastic moduli keep decreasing and after a certain time, it gets converged at their non-viscous 

elastic moduli value ( lim
𝑡→∞

𝐸𝑧(𝑡, 𝑧0) = 𝐸(𝑧0) ). Such a trend has also been observed in the existing literature 

(García-Barruetabeña et al., 2013). 
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Table 4: Variation of the effective Young Modulus in frequency and corresponding time domain at three 

locations of the thickness (LD distribution).  

Position Frequency Domain Time Domain 

−𝒉/𝟐  

 

 
 

 

𝟎 

 

 
 

 

𝒉/𝟐  

 

 
 

 



36 
 

 

        (a)                              (b) 

Fig. 20. Time-dependent variation of plate’s deflection (a) in UD, LD and LD/UD cases in terms of normalized 

form (b) in LD case in terms of absolute form. The normalization is carried out here with respect to the 

deflection value at initial time step (t = 0), as shown in the inset. In the axis titles of the inset figures, Nor. 

representes Normalized.  

 

The obtained depth-wise varying elastic moduli in the time domain are now embedded within the 

analytic model to obtain the time-dependent responses of the viscoelastic FGPM plate, subjected to the 

aforementioned boundary conditions (V = 0, p0 = 1, SSSS). Figure 20(a) depicts the effect of viscoelasticity 

on the plate’s deflection under the unit uniform static transverse load. Here the normalized maximum 

deflections (�̅�𝑚𝑎𝑥) along the centroidal axis of the plate are plotted for the single-layered (LD and UD 

distribution) and multi-layered (LD/UD) FGPM plate. In terms of final (saturated) normalized deflection, it is 

observed that the multi-layered (LD/UD) plate is between the rest two distributions where LD is having the 

highest value of the same. It indicates the fact that the increment of the plate’s deflection with time is highest 

in LD distribution, while LD/UD plate is in between the two. Although, in terms of absolute deflection, the 

deflection in LD/UD plate at its saturation stage is higher than the rest two. In each case, this maximum 

deflection converges at a certain deflection which is almost the same as that of pure elastic case. For instance, 

in LD distribution, the FGPM plate starts bending with a maximum deflection of 30.51 𝜇𝑚 under the constant 

load of 1 𝑁/𝑚2 and after 0.01 sec, its deflection increases to a deflection of around 30.8 𝜇𝑚. The bar charts in 

Figures 20-22 are showing the initial deflections (𝑡 = 0) in 𝜇𝑚.  Due to the incorporation of viscoelasticity, 

we can see a time lag in achieving its prior elastic deflection. A similar trend is observed in other distributions 

as well. But the rate of change in the deflection in three distributions is found to be different depending on the  
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(a)                                                                                   (b) 

 

(c) 

Fig. 21. Effect of viscoelasticity on the maximum transverse deflection of the FGPM plate with four different 

volume fractions of GPL (a) LD (b) UD (c) LD/UD. The normalization is carried out here with respect to the 

deflection value at initial time step (t = 0), as shown in the inset. In the axis titles of the inset figures, Nor. 

representes Normalized.  

 

distribution (Multi-layered FGPM > Single-layered LD FGPM > Single-layered UD FGPM). For the sake of 

clarity, the time variation (discussed in Figure 20(a)) in terms of absolute deflection for only LD distribution 

is shown in Figure 20(b) (similar plots can be readily obtained for the other distributions). The trends are in 

good coherence with the existing literature on non-FGPM viscoelastic plate structures (Jafari and Azhari, 2021, 

Salehi and Aghaei, 2005, Wenzel et al., 2009).  
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(a)                                                                                   (b) 

 
(c) 

Fig. 22. Effect of viscoelasticity on the maximum transverse deflection of the FGPM plate with four different 

plate aspect ratios (𝑏 = 3, V = 0, p0 = 1) (a) LD (b) UD (c) LD/UD. The normalization is carried out here 

with respect to the deflection value at initial time step (t = 0), as shown in the inset. In the axis titles of the inset 

figures, Nor. representes Normalized.  

 

Figure 21 shows the viscoelastic effect on the plate’s central deflection at four different volume 

fractions i.e. 𝑊𝐺𝑃𝐿
∗ = 1%, 2%, 3%, 4% of GPLs in the PVDF matrix. With the increase of volume fraction, the 

plate’s elastic deflection at 𝑡 = 0 and the steady state (𝑡 = ∞) both decrease. Moreover, the rates of 

deformation are found to be decreased with the increase of GPL’s volume fraction. For the increment of 

deflection in each FGM distribution, all three show different trends with respect to volume fractions. For 

instance, in LD plate, the increment goes up as the volume fraction increases, whereas in UD case, the opposite  
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(a)                                                                             (b) 

Fig. 23. Time-dependent variation of plate’s mid-line electric potential (𝑊𝐺𝑃𝐿
∗ = 1% and 𝑎/ℎ = 100) (a) in 

UD, LD and LD/UD cases in terms of normalized form (b) in LD case in terms of absolute form. The 

normalization is carried out here with respect to the potential value at initial time step (t = 0), as shown in the 

inset. 

 

trend is observed. A little exception is identified in LD/UD plate as here the normalized deflection rises with 

volume fractions except the one with 1% volume fraction whose increment is higher than rest three in Figure 

21(c).     

In Figure 22, the aspect ratio of FGPM plates is varied over a reasonable range to observe the effect of 

viscoelasticity on the plate’s deformation. Contrary to the trend observed in the aforementioned volume 

fractions’ cases, both the deflections (at 𝑡 = 0 and 𝑡 = ∞) are in direct relation with the plate’s aspect ratio. 

The rate of deformation here is found to have a rapid increment with the increase of aspect ratio. Furthermore, 

the increment in deflection with respect to its initial value (𝑡 = 0) is observed to have a direct relation with 

plate’s aspect ratio in all three distributions.  In general, the numerical study considering viscoelastic behaviour, 

besides giving a more realistic analysis, demonstrates a potential programmable time-dependent structural 

behaviour (including temporal programming in smart stuctures and metamaterials (Sinha and Mukhopadhyay, 

2023)), which could be crucial for analysing and designing the mechanical behaviour of a wide range of 

polymer composites accurately.  

The time-dependent generation of electric potential in the present FGPM viscoelastic system is shown 

in Figure 23(a) where all three FGM distributions show rapid growth in their values with time. These depicted 
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potentials are extracted along the centroidal axis of the plate and with the consideration of GPL percentage of 

1% and plate’s length-to-thickness ratio of 100. Though the double-layered plate gives a relatively higher 

voltage (~70% higher) than the rest of the distributions after getting saturated, the increment of it with respect 

to initial electric potential over time is in between the other two distributions where the uniformly distributed 

(UD) FGPM plate shows the highest increment. Figure 23(b) shows the same time-variation of electric 

potential in LD distribution but in its absolute form, leading to the same conclusion (similar plots can be readily 

obtained for the other distributions). Essentially, the numerical results concerning electric potential for time-

dependent viscoelastic analysis shows that it is possible to harness more accumulated power with increasing 

time. 

5. Prospective engineering applications 

Functionally graded piezoelectric material (FGPM) viscoelastic composite structures combine the 

properties of piezoelectric materials and viscoelastic composites to create a class of materials with unique 

prospective engineering applications. Such an analysis following efficient semi-analytical framework is 

presented for the first time in this manuscript. We have discussed here a few critical real-life engineering 

applications associated with FGPM viscoelastic composite structures. 

• Shape Morphing Structures: FGPM viscoelastic composite materials can be engineered to change their 

shape in response to electrical stimuli. These materials are used to create adaptive structures and 

morphing surfaces in aerospace applications, where shape changes can improve aerodynamic 

performance. Similar applications can be found in various other mechanical systems. The interesting 

notion here is the capability of temporal programming as discussed in the manuscript. 

• Energy Absorption: FGPM viscoelastic composites can be employed in impact-absorbing structures, 

such as helmet liners and automotive crash pads. The combination of viscoelastic damping and 

piezoelectric energy conversion helps dissipate energy during impact events, reducing the risk of injury 

and damage. 

• Smart Materials and Structures: FGPM viscoelastic composites can be utilized in the development of 

smart materials and structures. By exploiting their piezoelectric properties, these materials can sense 

changes in the operating environment and respond accordingly, enabling applications like active 

vibration control, actuators, shape adaptation, programmable mechanical properties etc. In 

microelectromechanical systems (MEMS), FGPM viscoelastic composites can be utilized in the 

fabrication of tiny sensors, actuators, and resonators for applications in various mechanical, aerospace, 

consumer electronics, and medical sectors. 
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• Structural Health Monitoring: FGPM viscoelastic composite structures can be used for structural health 

monitoring (SHM) purposes. They can be embedded with sensors that utilize the piezoelectric effect to 

detect changes in the systems's properties and identify structural damage or defects in real time. 

• Soft Robotics: FGPM viscoelastic composites can be integrated into soft robotic systems to create 

deformable structures with piezoelectric functionality. These materials would enable more flexible and 

adaptable robots for delicate tasks and human-robot interaction. 

• Vibration Damping and Control: FGPM viscoelastic composite structures can be employed in the 

aerospace, automotive, and civil engineering industries for vibration damping and control. These 

materials can be designed to have specific damping properties, reducing vibrations and minimizing 

resonance effects in structures like aircraft wings, car panels, and buildings. 

6. Concluding remarks 

In this article, we have investigated the time-dependent viscoelastic electromechanical behaviour of 

single and multi-layered piezoelectric functionally graded graphene-reinforced composite (FG-GRC) plates 

(called FGM and FGPM plates). Higher-order shear deformation theory (HSDT) with quasi-3D plate 

formulation that incorporates sinusoidal shape function and linear piezoelectricity are implemented along with 

the Biot model of viscoelasticity in the framework of the inverse Fourier algorithm. The principle of virtual 

work is adopted to derive the governing equations and boundary constraints for analytical solutions based on 

Navier’s method. Further, finite element models are developed to confirm the accuracy and validity of the 

analytical results. The electromechanical behaviour includes the static and electric response of FG-GRC 

viscoelastic plates which are predicted considering transverse mechanical and external electrical loading under 

simply supported (SSSS) conditions. Following major inferences are drawn from the numerical results: 

• The transverse deflection of FGM and FGPM plates are significantly affected due to consideration of 

piezoelectricity, weight fraction of GPLs (WGPL
∗ ) and different distribution patterns (such as linear and 

uniform distribution) of GPLs along the thickness. It increases with respect to aspect ratio (a/h) while 

reduces for a larger value of WGPL
∗ .  

• The electric potential shows significant enrichment with higher values of a/h ratio, while it shows a 

decrement with respect to the addition of WGPL
∗ . 

• A rapid decrement in the elastic properties of FG-GRC plates can be observed with time due to the 

consideration of the viscoelastic effect.   

• The numerical results concerning electric potential for time-dependent viscoelastic analysis establishes 

that it is possible to harness more accumulated power with increasing time before eventually reaching 

the steady state condition. With regard to the aspect ratio of the plate, weight fractions of the GPL and 
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the distribution patterns, the steady-state values follow a similar general trend as the non-viscoelastic 

scenario.  

• All three distributions exhibit a rapid increment in transverse deformation and electric potential with 

time, although the rates at which this increment occurs vary depending on the distribution of the 

material properties (Multi-layered FGPM > Single-layered LD FGPM > Single-layered UD FGPM). 

In summary, the current semi-analytical study demonstrates a potential time-dependent 

electromechanical behaviour based on practically relevant viscoelastic modelling coupled with through-

thickness gradation, which could be crucial for analysing the structural behaviour of a wide range of ‘smart’ 

plate-like structures accurately and prospective temporal programming for a range of engineering applications 

across the length scales. The present analytical solution approach can also be extended to obtain the viscoelastic 

electromechanical responses of functionally graded smart shells and other complicated structural assemblies. 

The combination of piezoelectricity and viscoelasticity in FGPM viscoelastic composite structures opens up a 

wide range of engineering possibilities, from energy harvesting, vibration control, shape-morphing to advanced 

robotics and smart structures. Ongoing research in this field continues to explore new applications and optimize 

the performance of these materials for real-world scenarios. 
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