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On characterizing the viscoelastic electromechanical responses 
of functionally graded graphene-reinforced piezoelectric 
laminated composites: Temporal programming based on a 
semi-analytical higher-order framework

S. Mondal , K. B. Shingare , T. Mukhopadhyay , and S. Naskar

Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK 

ABSTRACT 
The electromechanical responses of single and multi-layered piezoelectric 
functionally graded graphene-reinforced composite (FG-GRC) plates are 
studied based on an accurate higher-order shear deformation theory (HSDT) 
involving quasi-3D sinusoidal plate theory and linear piezoelectricity. These 
FG-GRC plates are composed of randomly oriented graphene nanoplatelets 
(GPLs) reinforcing fillers and the piezoelectric PVDF matrix considering two 
different distribution patterns such as linear- and uniform- distribution (LD 
and UD) of GPLs across the thickness. The modified Halpin-Tsai (HT) and Rule 
of mixture (ROM) models are utilized to determine the effective material 
properties of FG-GRCs. The analytical model of FG-GRCs is extended further 
to analyze the time-dependent linear viscoelastic electromechanical behavior 
of the system based on Biot model of viscoelasticity in the framework of 
inverse Fourier algorithm. The viscoelastic electromechanical responses 
include the static deformation and electric responses of simply supported FG- 
GRC plates which are investigated by considering transverse mechanical and 
external electrical loading, as well as other critical parameters like aspect ratio 
and weight fraction of GPLs. The numerical results reveal that the electro-
mechanical response of FG-GRC plates can be enriched due to the addition 
of a small weight fraction of GPLs. The coupled multiphysics-based computa-
tional framework proposed here for predicting the viscoelastic electromech-
anical behavior of laminated composites can be exploited for stimulating and 
developing a wide range of micro-electro-mechanical systems (MEMS) and 
devices incorporating time-dependent programming features.
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1. Introduction

Owing to stimulating multi-functional properties, two-dimensional (2D) materials and their 
derivatives have emerged to be significantly vital nanomaterials (Saumya, Naskar, and 
Mukhopadhyay 2023). The quest for exploiting extraordinary mechanical properties of 2D gra-
phene (modulus of elasticity, �1 TPa and strength, 130 GPa) and high specific surface area 
(2630 m2/g) led to the opening of an evolving area of research for developing graphene-based 
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nanocomposites. It can be utilized as an ideal reinforcement candidate for tailoring multifunc-
tional hybrid composites, leading to multifarious applications. The mechanical and interfacial 
properties of graphene-based composites are significantly enhanced due to the addition of con-
trolled loading contents of graphene. Extensive research is carried out for the prediction of elec-
tromechanical behavior including static and dynamic analysis of graphene-reinforced composite 
(GRCs) structures such as beam, plate, rod and shell by introducing piezoelectric nanoscale gra-
phene fiber in a non-piezoelectric polyimide matrix (Mukhopadhyay et al. 2021; Naskar et al. 
2022; Shingare and Naskar 2023). Graphene is considered as a nanoscale fiber, wherein the effect 
of size-dependent properties is investigated such as strain and electric field gradient as well as 
piezoelectric, flexoelectric and surface effects on these GRC structures. The effective piezo elastic 
and relative permittivity properties of GRC are also probed by using analytical and finite element 
(FE) micromechanical models. They show a significant enhancement in mechanical and electrical 
behavior of GRC structures as it incorporates flexoelectric and surface effects in comparison to 
the piezoelectric effect. Despite its importance in material design and engineering, research on 
the behaviors of graphene-reinforced composite is still inadequate.

In the last few years, a new class of materials has emerged as an excellent choice of researchers 
due to its unique tailorable variation in material properties mainly across the thickness, known as 
functionally graded materials (FGMs) (Singh, Shingare, et al. 2023). FGMs show great potential 
to be used in several areas like automotive, aerospace, aviation and many other engineering 
domains as shown in Fig. 1. The quest for high performance and exceptional properties including 
high stiffness, light in weight, durability, and high load-bearing/resistance capacity are the main 
causes for adopting FGMs (Karsh et al. 2019, Karsh, Mukhopadhyay, and Dey 2018; Trinh, 
Mukhopadhyay, and Kim 2020). The influences of the graded components on the deformation 
and strength of thick-walled FGM tubes when subjected to internal pressure were examined by 
Fukui and Yamanaka (1992). Further, Fukui, Yamanaka, and Wakashima (1993) extended their 
earlier research by considering these FGM tubes when subjected to uniform thermal loading and 
examined the effects of gradation of components on residual stresses. By curtailing the circumfer-
ential compressive stress at the inner surface of FGM tube, they also proposed an optimal com-
position. To examine stress intensity factors and transient thermal stresses of FGMs considering 
cracks, Fuchiyama (1993) utilized an eight-noded quad-axisymmetric element. In order to get 
more accurate results, they emphasized that the temperature-dependent properties must be 
accounted for in the investigation. Utilizing optimization and sensitivity techniques, Tanaka et al. 
(1993) considered FGM property profiles based on the lessening of thermal stresses. Mondal, 
Agnihotri, and Faye (2022) formulated the closed-form solutions of three-dimensional crack-tip 
stress fields for a FGM medium under thermo-mechanical loading and investigated the scope of 
delaying its failure mechanisms. Lu, Lee, and Lu (2006) used stroh-like formalism to analyze a 
simply supported laminate of functionally graded piezoelectric material (FGPM). Behjat et al. 
(2011) carried out FE formulation in their paper to investigate static bending, free vibration and 
dynamic behavior of FGPM plates where material properties are graded along thickness direction 
based on power law. Das and Sarangi (2016) modeled and performed the analysis of an FG beam 
within ANSYS environment using Solid 186 element. Based on the Navier solution and first-order 
shear deformation theory (FSDT), Song, Kitipornchai, and Yang (2017a) reported the free and 
forced vibration analyses of FG graphene platelet-reinforced composite (FG GPLRC) laminates. 
Afterward, by utilizing the same theories, Song et al. (2017b) investigated the buckling and post- 
buckling behavior of bi-axially compressed FG GPLRC plates. Shen et al. (2017) derived an ana-
lytical solution for buckling and post-buckling analyses of FG GPLRC plates rested on elastic 
foundation. In addition to this, the results of thermal buckling and the post-buckling of GPLRC 
plates were analyzed by Wu, Kitipornchai, and Yang (2017) using the differential quadrature- 
based iteration method. They showed the increment and decrement of thermal buckling and 
post-buckling resistance considering different parameters such as weight fraction of GPLs along 
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with their distribution, width-to-thickness, and aspect ratios. Gholami and Ansari (2017) investi-
gated the large deflection and geometrically nonlinear analysis of FG GPLRC plates using analyt-
ical solutions. Based on the Navier solution and FSDT, Song, Yang, and Kitipornchai (2018) 
introduced the static and compressive buckling analyses of the FG GPLRC plate. They also 
reported that the shear correction factor is essential to confirm the accuracy of the mathematical 
framework that they presented. Using the element-free IMLS-Ritz method and FSDT, Guo et al. 
(2018) studied the vibration of GPLs reinforced layered composite quadrilateral plates. Gholami 
and Ansari (2018) used higher-order SDT to find out nonlinear harmonically excited vibration of 
rectangular FG GPLRC plates based on the variational differential quadrature (DQ). Using the 
transformed DQ method, Malekzadeh, Setoodeh, and Shojaee (2018) investigated the vibration of 
FG GPLRC eccentric annular plates integrated with layers of piezoelectric material. Some of the 
research investigations in this field combine FGMs and composite structures for achieving a wide 
range of performances (Barati and Zenkour 2019; Natarajan et al. 2014; Assadi and Farshi 2011). 

Figure 1. A Bird’s eye view concerning detailed flowchart of viscoelastic electromechanical analysis of piezoelectric FG-GRC 
plates for application in various technologically demanding industries.
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A major interest of current research activities involves the presence of homogeneous strain and 
electric field in FGM plates concerning the piezoelectric effect, which we discuss in the following 
paragraph.

In the search for emerging lightweight multi-functional structures, it was revealed that if piezo-
electric materials are utilized as distributed sensors/actuators which can be attached to or incor-
porated into the structure then it accomplishes self-monitoring and self-controlling competencies 
(Smith and Auld 1991). These structures are usually named as “smart structures”. Piezoelectric 
materials generate the electric response to an applied mechanical load by virtue of the direct 
piezoelectric effect while it deforms due to the electric load by virtue of the inverse effect (Kuai 
et al. 2013; Maranganti, Sharma, and Sharma 2006; Tita et al. 2015). For developing high-per-
forming structures, the use of piezoelectric materials as distributed actuators and sensors is 
related to these direct and inverse effects, respectively. In recent advances, the FG structures inte-
grated with piezoelectric actuators and sensors have received much interest from the application 
as well as the fundamental research point of view to develop MEMS and technology-based energy 
harvesters (Beeby, Tudor, and White 2006; Yan and Jiang 2017, 2011). For a better understanding 
of piezoelectricity phenomena, the concept of piezoelectric effect is described using mathematical 
relation: Di � eijkejk. In this, Di, ejk and eijk represent the electric displacement vector, the strain 
tensor and the piezoelectric tensor, respectively. Such piezoelectricity phenomena are found to be 
present in materials where the inversion symmetry plays a vital role, meaning the material should 
be non-centrosymmetric.

Consideration of viscoelasticity in smart piezoelectric composite materials makes it more real-
istic in terms of accurate electromechanical response prediction due to the fact that many of the 
polymers used in composite structures are inherently viscoelastic in nature. Time and frequency 
domain analyses of the viscoelastic effect have been reported in composite structures. Aboudi and 
Cederbaum (1989) presented a micromechanical analysis of unidirectional fiber composites con-
sidering the phases to be viscoelastic in nature. Salehi and Aghaei (2005) analyzed axisymmetric 
viscoelastic circular plates using a non-linear and non-axisymmetric formulation. Wenzel, Josse, 
and Heinrich (2009) developed a model to analyze the deflection of viscoelastic (polymeric) canti-
levered beams under uniform (adsorption-induced) surface stress. Garc�ıa-Barruetabe~na et al. 
(2013) discussed the interconversion scheme of viscoelastic relaxation modulus from the time- 
domain and frequency domain and vice-versa. Amoushahi and Azhari (2014) studied a moder-
ately thick viscoelastic plate using linear finite strip formulations. Mukhopadhyay, Adhikari, and 
Batou (2019) incorporated the effect of viscoelasticity into an irregular hexagonal honeycomb lat-
tice following a bottom-up analytical framework in the frequency domain. Jafari and Azhari 
(2021) discussed the bending of thick viscoelastic Mindlin plates with different geometries in the 
time-domain. Singh, Naskar, et al. (2023) showed the usage of extended Kantorovich method 
(EKM) to analyze IPFG viscoelastic plates embedded with piezo sensory layer.)

The review of literature presented on composite/FGM with consideration of graphene platelets 
clearly specifies that graphene/its derivatives are one of the most promising nanofiller for multi-
physical applications. However, until now, to the best knowledge of the authors, there are no 
(or very few) studies investigating the electric and mechanical response of functionally graded 
graphene-reinforced piezoelectric composite (FG-GRC) plates with and without consideration of 
the viscoelastic effect. Such an investigation could offer many exploitable prospects for developing 
next-generation MEMS and smart structures (note: hereinafter the “FGM” is used for functionally 
graded material without piezoelectric effect, while “FGPM” is used for functionally graded piezo-
electric material). In this article, the electromechanical responses of single and multi-layered 
piezoelectric functionally graded graphene-reinforced composite (FG-GRC) plates would be 
studied based on an accurate higher-order shear deformation theory (HSDT) involving quasi-3D 
sinusoidal plate theory, linear piezoelectricity and the effect of viscoelasticity. The results would 
be further validated with separate finite element (FE) modeling extensively. The reason for taking 
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HSDT as a benchmark over classical plate theories (CPT) is due to its ability to incorporate thick-
ness deformation (ez 6¼ 0) and transverse shear deformation.

The contribution of this work is aimed at predicting the viscoelastic electromechanical performance 
of simply supported FG-GRC plates with and without consideration of piezoelectric effect using analyt-
ical and FE approach under generic loading conditions (quasi 3D sinusoidal distributed load). In the 
process, we would investigate different critical parameters such as weight fraction of GPLs and aspect 
ratios concerning direct and inverse piezoelectric effects. An overview of the comprehensive analysis 
concerning the current research work is systematically presented in Fig. 1. This article is structured as: 
Section 2: the basic mathematical formulations based on quasi-3D sinusoidal plate theory and linear 
viscoelasticity are introduced; Section 3: the details of FE models are presented; Section 4: the numer-
ical results are discussed for single and multilayer FG-GRC plates to investigate their electromechanical 
responses, including the effect of viscoelasticity; Finally, the article is summarized with concluding 
remarks and critical perspectives in Section 5.

2. Theoretical formulation

2.1. Geometric consideration

Figure 2 shows a schematic of single-layered rectangular plates made of functionally graded 
piezoelectric material (FGPM) with width a, length b and height h and it is associated with 
Cartesian coordinate system 0 � x � b, 0 � y � a, � h

2 � z � h
2

� �
: The FGPM plate is assumed to 

consist of polyvinylidene fluoride (PVDF) matrix and graphene platelets (GPLs) reinforcement. 
The top surface of FGPM plate is subjected to a transversely distributed load p0: This mechanical 
load is dependent on only two in-plane spatial coordinates x and y while an external electric volt-
age V is applied in between its top and bottom plate surface. Variation of material properties is 
considered to be continuous in nature (Nomura and Sheahen 1997) and it is varied only along its 
thickness direction i.e., z-axis. The present formulation can also be applicable to multilayer lami-
nates (with number of layers NL) which is explained later in Section 4.2.

2.2. Kinematic relations

Considering the quasi-3D sinusoidal plate theory (Zenkour 2007) and the shape function pro-
posed by Levy (1877), Stein (1986) and Touratier (1991), the displacement field ðu, v, wÞ of any 
point within the volume of interest along three orthonormal directions can be expressed in the 
following form (Zenkour and Hafed 2020):

u x, y, zð Þ ¼ u0 x, yð Þ� z
@w0 x, yð Þ

@x
þ

h
p

sin
p

h
z

� �

wx x, yð Þ (1a) 

Figure 2. Schematic of FGPM plate subjected to electromechanical loadings and associated Cross-sections.
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v x, y, zð Þ ¼ v0 x, yð Þ� z
@w0 x, yð Þ

@y
þ

h
p

sin
p

h
z

� �

wy x, yð Þ (1b) 

w x, y, zð Þ ¼ w0 x, yð Þ þ cos
p

h
z

� �

uz x, yð Þ (1c) 

where u0, v0ð Þ and w0 indicate the in-plane and out-of-plane displacements of any point 
respectively on the mid-plane ðz ¼ 0Þ and (wx, wyÞ indicate the respective rotations of the trans-
verse normal about y and x-axis. uz x, yð Þ is for accounting the stretching effect of the plate. 
Contrary to typical first-order shear deformation theory, the present trigonometric plate theory 
does not require any shear correction coefficient.

� Assumptions:

1. Any straight lines perpendicular to mid-surface before deformation stay straight after its 
deformation.

2. There will be the contribution of bending and shear both in total transverse displacement.

w0 x, yð Þ ¼ w0b x, yð Þ þ w0s x, yð Þ (2) 

3. Rotation function (wx, wyÞ are approximated as respective slopes of shear transverse 
deflection:

wx x, yð Þ ¼
@w0s

@x
and wy x, yð Þ ¼

@w0s

@y
: (3) 

Considering these assumptions in Eq. (1), we get the following simpler forms:

u x, y, zð Þ ¼ u0 x, yð Þ� z
@w0b x, yð Þ

@x
� f1 zð Þ

@w0s x, yð Þ

@x
(4a) 

v x, y, zð Þ ¼ v0 x, yð Þ� z
@w0b x, yð Þ

@y
� f1 zð Þ

@w0s x, yð Þ

@y
(4b) 

w x, y, zð Þ ¼ w0b x, yð Þ þ w0s x, yð Þ þ f 2 zð Þuz x, yð Þ (4c) 

where f1 zð Þ ¼ z � h
p

sin p
h z
� �

and f2 zð Þ ¼ cos p
h z
� �

are derived from the assumed shape function. 
Neglecting Von-Karmen non-linear terms in strain formulae, we can derive the following linear 
strain-displacement relations from Eq. (4):

ex ¼
@u
@x
¼
@u0

@x
� z

@2w0b

@x2 � f1 zð Þ
@2w0s

@x2 ¼ e0
x þ zjx þ f1 zð Þgx (5a) 

ey ¼
@v
@y
¼
@v0

@y
� z

@2w0b

@y2 � f1 zð Þ
@2w0s

@y2 ¼ e0
y þ zjy þ f1 zð Þgy (5b) 
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ez ¼
@w
@z
¼ f 02 zð Þuz (5c) 

cxy ¼ 2exy ¼
@u
@y
þ
@v
@x
¼
@u0

@y
þ
@v0

@x
� 2z

@2w0b

@x@y
� 2f1 zð Þ

@2w0s

@x@y
¼ c0

xy þ zjxy þ f 1 zð Þgxy (5d) 

cyz ¼ 2eyz ¼
@v
@z
þ
@w
@y
¼ f2 zð Þ

@w0s

@y
þ
@uz
@y

� �

¼ f2 zð Þc0
yz (5e) 

cxz ¼ 2exz ¼
@u
@z
þ
@w
@x
¼ f 2 zð Þ

@w0s

@x
þ
@uz
@x

� �

¼ f2 zð Þc0
xz (5f) 

where e0
x ¼

@u0
@x , e0

y ¼
@v0
@y , c0

xy ¼
@u0
@y þ

@v0
@x , jx ¼ �

@2w0b
@x2 , jy ¼ �

@2w0b
@y2 , jxy ¼ � 2 @2w0b

@x@y , 

gx ¼ �
@2w0s
@x2 , gy ¼ �

@2w0s
@y2 , gxy ¼ � 2 @2w0s

@x@y , c0
yz ¼

@w0s
@y þ

@uz
@y

� �
and c0

xz ¼
@w0s
@x þ

@uz
@x

� �

: We can 
observe here the existence of non-zero transverse strains (ez 6¼ 0) which is also a characteristic of 
any typical shear deformation plate theories.

Accounting Maxwell’s equation, the variation of electric potential (/ Þ through thickness can 
be approximated by the following equation proposed by Quek and Wang (2000):

/ ¼ � cos
p

h
z

� �

/ x, yð Þ þ
2V
h

z ¼ � f2 zð Þ/ x, yð Þ þ
2V
h

z (6) 

where / denotes the distribution of electric potential induced in mid-plane. The electric field 
components E can be given by:

E ¼
Ex

Ey

Ez

0

B
@

1

C
A ¼

�
@/

@x

�
@/

@y

�
@/

@z

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼

f2 zð Þ
@/

@x
f2 zð Þ

@/

@y

f 02 zð Þ/ �
2V
h

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

(7) 

2.3. Constitutive equations and function resultants

General constitutive relations for any piezoelectric material can be given by following two equa-
tions of actuation- and sensing- law (Li et al. 2020):

rx

ry

rz

syz

sxz

sxy

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼

c11 zð Þ c12 zð Þ c13 zð Þ 0 0 0
c12 zð Þ c22 zð Þ c23 zð Þ 0 0 0
c13 zð Þ c23 zð Þ c33 zð Þ 0 0 0

0 0 0 c44 zð Þ 0 0
0 0 0 0 c55 zð Þ 0
0 0 0 0 0 c66 zð Þ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ex

ey

ez

cyz
cxz
cxy

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

�

0 0 e13 zð Þ
0 0 e23 zð Þ
0 0 e33 zð Þ
0 e24 zð Þ 0

e15 zð Þ 0 0
0 0 0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

Ex

Ey

Ez

0

B
@

1

C
A

(8a) 
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Dx

Dy

Dz

0

B
@

1

C
A ¼

0 0 0 0 e15 zð Þ 0
0 0 0 e24 zð Þ 0 0

e13 zð Þ e23 zð Þ e33 zð Þ 0 0 0

0

B
@

1

C
A

ex

ey

ez

cyz
cxz
cxy

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

þ

l11 zð Þ 0 0
0 l22 zð Þ 0
0 0 l33 zð Þ

0

B
@

1

C
A

Ex

Ey

Ez

0

B
@

1

C
A

(8b) 

where Df g is electric displacement field and cij i, j ¼ 1, 2, 3, 4, 5, 6ð Þ are the elastic 
constants under constant electric field (Zenkour and Alghanmi 2018) which can be given as 
follows:

c11 zð Þ ¼ c22 zð Þ ¼ c33 zð Þ ¼
E zð Þ 1� � zð Þ2

� �

1 � 3� zð Þ2 � 2� zð Þ2
(9a) 

c12 zð Þ ¼ c13 zð Þ ¼ c23 zð Þ ¼
E zð Þ� zð Þ 1þ � zð Þð Þ

1 � 3� zð Þ2 � 2� zð Þ2
(9b) 

c44 zð Þ ¼ c55 zð Þ ¼ c66 zð Þ ¼
E zð Þ

2 1þ � zð Þð Þ
(9c) 

As this is an FGM system, all elastic and piezo coefficients such as elastic modulus (E), Poisson 
ratio (�Þ, piezoelectric (eij) and dielectric (lijÞ coefficients are varying along the direction of the 
plate thickness (z).

The governing equations for the present static FGPM system are achieved from the principle 
of virtual displacements that can be given as follows:

ðtf

ti

� dUð Þ þ dWext
� �

dt ¼ 0 (10a) 

The virtual strain energy ðdUÞ is expressed as follows:

dU ¼
ða

0

ðb

0

ðh
2

� h
2

rxxdexx þ ryydeyy þ rzzdezz þ rxydcxy þ ryzdcyz þ rxzdcxz
� �

dxdydz (10b) 

The virtual work done by the externally applied uniform transverse load p0 and externally applied 
Electric potential, V can be written as follows:

dWext ¼

ða

0

ðb

0
p0 x, yð Þdw0

� �
dxdy þ

ða

0

ðb

0

ðh
2

� h
2

DxdEx þ DydEy þ DzdEz
� �

dxdydz (10c) 

After substituting the strain-displacement relations and rearranging Eq. (10a), the following six 
governing equations of motion can be obtained:

@Nx

@x
þ
@Nxy

@y
¼ 0 (11a) 

@Nxy

@x
þ
@Ny

@y
¼ 0 (11b) 
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@2Mx

@x2 þ 2
@2Mxy

@x@y
þ
@2My

@y2 þ p0 x, yð Þ ¼ 0 (11c) 

@2Px

@x2 þ 2
@2Pxy

@x@y
þ
@2Py

@y2 þ
@Qx

@x
þ
@Qy

@y
þ p0 x, yð Þ ¼ 0 (11d) 

@Qx

@x
þ
@Qy

@y
� Qz ¼ 0 (11e) 

XNL

k¼1

ðzk

zk� 1

f2 zð Þ
@Dx

@x
þ f2 zð Þ

@Dy

@y
� f 02 zð ÞDz

� �

dz ¼ 0 (11f) 

Here Nij, Mij, Pij are the function (stress and moment) resultants whose definitions are given as 
follows:

Nx, Nxy, Nyf g ¼

ðh
2

� h
2

rx, sxy, ryf gdz ¼
XNL

k¼1

ðzk

zk� 1

rk
x, sk

xy, rk
y

n o
dz (12a) 

Mx, Mxy, Myf g ¼

ðh
2

� h
2

rx, sxy, ryf gzdz ¼
XNL

k¼1

ðzk

zk� 1

rk
x, sk

xy, rk
y

n o
zdz (12b) 

Px, Pxy, Pyf g ¼

ðh
2

� h
2

rx, sxy, ryf gf1 zð Þdz ¼
XNL

k¼1

ðzk

zk� 1

rk
x, sk

xy, rk
y

n o
f1 zð Þdz (12c) 

Qx, Qy, Qz
� �

¼

ðh
2

� h
2

f2 zð Þsk
yz, f2 zð Þsk

xz, f 02 zð Þrk
z

n o
dz ¼

XNL

k¼1

ðzk

zk� 1

f2 zð Þsk
yz, f2 zð Þsk

xz, f 02 zð Þrk
z

n o
dz (12d) 

Now if we substitute Eq. (8) in the aforementioned resultants and perform tabulation in the terms 
of ðe0

x, e0
y, c0

xy, jx, jy, jxy, gx, gy, gxy, c0
yz, c0

xz, uzÞ, we get the following matrix.

Nx

Ny

Nxy

Mx

My

Mxy

Px

Py

Pxy

Qz
Qy
Qx

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼

A11 A12 0 B11 B12 0 Ba
11 Ba

12 0 E13

A12 A22 0 B12 B22 0 Ba
12 Ba

22 0 E23

0 0 A66 0 0 B66 0 0 Ba
66 0

B11 B12 0 D11 D12 0 Da
11 Da

12 0 H13

B12 B22 0 D12 D22 0 Da
12 Da

22 0 H23

0 0 B66 0 0 D66 0 0 Da
66 0

Ba
11 Ba

12 0 Da
11 Da

12 0 F11 F12 0 Ha
13

Ba
12 Ba

22 0 Da
12 Da

22 0 F12 F22 0 Ha
23

0 0 Ba
66 0 0 Da

66 0 0 F66 0
E13 E23 0 H13 H23 0 Ha

13 Ha
23 0 G33

0 0 0 0 0 0 0 0 Aa
44 0

0 0 0 0 0 0 0 0 0 Aa
55

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

e0
x

e0
y

c0
xy

jx

jy

jxy

gx
gy
gxy
uz
c0

yz

c0
xz

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

�

ðh
2

� h
2

e13Ez

e23Ez

0
e13zEz

e23zEz

0
e13f1 zð ÞEz

e23f1 zð ÞEz

0
f 02 zð Þe33Ez

e24f2 zð ÞEy

e15f2 zð ÞEx

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

dz

(13) 
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In Eq. (13), the stiffness coefficients can be defined by

Aij

Bij

Dij

Eij

Fij

Hij

Gij

Aa
ij

Ba
ij

Da
ij

Ha
ij

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼

ðh
2

� h
2

cij

zcij

z2cij

f 02 zð Þcij

f2
1 zð Þcij

f 02 zð Þzcij

f 022 zð Þcij

f2
2 zð Þcij

f1 zð Þcij

f1 zð Þzcij

f 02 zð Þf1 zð Þcij

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

dz ¼
XNL

k¼1

ðzk

zk� 1

ck
ij

zck
ij

z2ck
ij

f 02 zð Þck
ij

f2
1 zð Þck

ij

f 02 zð Þzck
ij

f 022 zð Þck
ij

f2
2 zð Þck

ij

f1 zð Þck
ij

f1 zð Þzck
ij

f 02 zð Þf1 zð Þck
ij

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

dz, i ¼ 1, 2, :::, 6ð Þ (14) 

2.4. Governing equations

Putting Eq. (13) in the governing Eq. (11), we get the following six partial differential equations.

A11
@2u0

@x2 þ A66
@2u0

@y2 þ A12 þ A66ð Þ
@2v0

@x@y
� B11

@3w0b

@x3 � B12 þ 2B66ð Þ
@3w0b

@x@y2 � Ba
11
@3w0s

@x3

� Ba
12 þ 2Ba

66
� � @3w0s

@x@y2 þ E13
@uz
@x
þ �Ap

13
@/

@x
¼ 0 (15a) 

A66
@2v0

@x2 þ A22
@2v0

@y2 þ A12 þ A66ð Þ
@2u0

@x@y
� B22

@3w0b

@y3 � B12 þ 2B66ð Þ
@3w0b

@x2@y
� Ba

22
@3w0s

@y3

� Ba
12 þ 2Ba

66
� � @3w0s

@x2@y
þ E23

@uz
@y
þ �Ap

23
@/

@y
¼ 0 (15b) 

B11
@3u0

@x3 þ B12 þ 2B66ð Þ
@3u0

@x@y2 þ
@3v0

@x2@y

 !

þ B22
@3v0

@y3 � D11
@4w0b

@x4 � D22
@4w0b

@y4

� 2D12 þ 4D66ð Þ
@4w0b

@x2@y2 � Da
11
@4w0s

@x4 � Da
22
@4w0s

@y4 � 2Da
12 þ 4Da

66
� � @4w0s

@x2@y2 þH13
@2uz
@x2

þH23
@2uz
@y2 þ p x, yð Þ þ �Azp

13
@2/

@x2 þ
�Azp

23
@2/

@y2 ¼ 0 (15c) 
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Ba
11
@3u0

@x3 þ Ba
12 þ 2Ba

66
� � @3u0

@x@y2 þ
@3v0

@x2@y

 !

þ Ba
22
@3v0

@y3 � Da
11
@4w0b

@x4 � Da
22
@4w0b

@y4

� 2Da
12 þ 4Da

66
� � @4w0b

@x2@y2 � F11
@4w0s

@x4 � F22
@4w0s

@y4 � 2F12 þ 4F66ð Þ
@4w0s

@x2@y2 þ Aa
55
@2w0s

@x2

þ Aa
44
@2w0s

@y2 þ Ha
13 þ Aa

55
� � @2uz

@x2 þ Ha
23 þ Aa

44
� � @2uz

@y2 þ p x, yð Þ þ �Afp
13
@2/

@x2 þ
�Afp

23
@2/

@y2

� �A|{z}
p

24

@2/

@y2 �
�A|{z}

p

15

@2/

@x2 ¼ 0 (15d) 

� E13
@u0

@x
� E23

@v0

@y
þH13

@2w0b

@x2 þH23
@2w0b

@y2 þ Ha
13 þ Aa

55
� � @2w0s

@x2 þ Ha
23 þ Aa

44
� � @2w0s

@y2

þ Aa
55
@2uz
@x2 þ Aa

44
@2uz
@y2 � G33uz �

�A|{z}
p

24

@2/

@y2 �
�A|{z}

p

15

@2/

@x2 þ /EE33 þ
2V
h

�Ap
33¼ 0 (15e) 

�A|{z}
p

15

@2w0s

@x2 þ
@2uz
@x2

� �

þ �Dp
11
@2/

@x2 þ
�A|{z}

p

24

@2w0s

@y2 þ
@2uz
@y2

 !

þ �Dp
22
@2/

@y2 þ
�Ap

13
@u0

@x
þ �Ap

23
@v0

@y

� �Azp
13
@2w0b

@x2 �
�Azp

23
@2w0b

@y2 �
�Afp

13
@2w0s

@x2 �
�Afp

23
@2w0s

@y2 �
�Hp

33/ �
�Hpp

33 V� EE33uz¼ 0

(15f) 

In Eq. (15), EE33, �Ap
31, �Ap

32, �Ap
33, �Azp

31, �Azp
32, �A|{z}

p

24
, �A|{z}

p

15
, �Afp

31, �Afp
32, �Dp

11, �Dp
22, �Hp

33, �Hpp
33 which 

corroborate the piezoelectric coupling coefficients are defined by:

EE33 ¼

ðh
2

� h
2

e33 zð Þf 02
2 zð Þdz ¼

XNL

k¼1

ðzk

zk� 1

ek
33 zð Þf 02

2 zð Þdz (16a) 

�Ap
13, �Ap

23, �Ap
33

� �
¼

ðh
2

� h
2

� e13 zð Þ, e23 zð Þ, e33 zð Þ
� �

f 02 zð Þdz 

¼
XNL

k¼1

ðzk

zk� 1

� ek
13 zð Þ, ek

23 zð Þ, ek
33 zð Þ

n o

f 02 zð Þdz (16b) 

�Azp
13, �Azp

23
� �

¼

ðh
2

� h
2

� e13 zð Þ, e23 zð Þ
� �

zf 02 zð Þdz ¼
XNL

k¼1

ðzk

zk� 1

� ek
13 zð Þ, ek

23 zð Þ
n o

zf 02 zð Þdz (16c) 

�A|{z}
p

24
, �A|{z}

p

15

n o
¼

ðh
2

� h
2

e24 zð Þ, e15 zð Þ
� �

f2
2 zð Þdz ¼

XNL

k¼1

ðzk

zk� 1

ek
24 zð Þ, ek

15 zð Þ
n o

f 2
2 zð Þdz (16d) 
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�Afp
13, �Afp

23

n o

¼

ðh
2

� h
2

� f1 zð Þ e13 zð Þ, e23 zð Þ
� �

f 02 zð Þdz ¼
XNL

k¼1

ðzk

zk� 1

� f1 zð Þ ek
13 zð Þ, ek

23 zð Þ
n o

f 02 zð Þdz (16e) 

�Dp
11, �Dp

22
� �

¼

ðh
2

� h
2

l11 zð Þ, l22 zð Þ
� �

f2
2 zð Þdz ¼

XNL

k¼1

ðzk

zk� 1

lk
11 zð Þ, lk

22 zð Þ
n o

f2
2 zð Þdz (16f) 

�Hp
33, �Hpp

33
� �

¼

ðh
2

� h
2

l33 zð Þf 02 zð Þ, �
2
h

l33 zð Þ
� �

f 02 zð Þdz ¼
XNL

k¼1

ðzk

zk� 1

lk
33 zð Þf 02 zð Þ, �

2
h

lk
33 zð Þ

� �

f 02 zð Þdz

(16g) 

Here, Navier’s method is implemented to get the analytical results, wherein the following bound-
ary constraints of the four ends simply supported (SSSS) plate are assigned.

Edge 1: y ¼ 0 u0ðx, 0Þ ¼ wobðx, 0Þ ¼ w0sðx, 0Þ ¼ uzðx, 0Þ ¼ 0

Edge 2: y ¼ a u0ðx, aÞ ¼ wobðx, aÞ ¼ w0sðx, aÞ ¼ uzðx, aÞ ¼ 0

Edge 3: x ¼ 0 v0ð0, yÞ ¼ wobð0, yÞ ¼ w0sð0, yÞ ¼ uzð0, yÞ ¼ 0

Edge 4: x ¼ b v0ðb, yÞ ¼ wobðb, yÞ ¼ w0sðb, yÞ ¼ uzðb, yÞ ¼ 0

To satisfy the aforementioned boundary conditions, (u0, v0, w0b, w0s, uz) are expressed using an 
infinite series which are given by:

u0 x, yð Þ ¼
X1

m¼1

X1

n¼1
Umn cos

mpx
b

� �

sin
npy

a

� �

(17a) 

v0 x, yð Þ ¼
X1

m¼1

X1

n¼1
Vmn sin

mpx
b

� �

cos
npy

a

� �

(17b) 

w0b x, yð Þ ¼
X1

m¼1

X1

n¼1
Wbmn sin

mpx
b

� �

sin
npy

a

� �

(17c) 

w0s x, yð Þ ¼
X1

m¼1

X1

n¼1
Wsmn sin

mpx
b

� �

sin
npy

a

� �

(17d) 

uz x, yð Þ ¼
X1

m¼1

X1

n¼1
Umn sin

mpx
b

� �

sin
npy

a

� �

(17e) 

As Eq. (15) contains total six primary unknown variables, the mechanical (p0Þ and electrical load 
(/) are also expressed based on double sine series as follows:

/ x, yð Þ ¼
X1

m¼1

X1

n¼1
Ymn sin

mpx
b

� �

sin
npy

a

� �

(17f) 
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p0 x, yð Þ ¼
X1

m¼1

X1

n¼1
pmn sin

mpx
b

� �

sin
npy

a

� �

(17g) 

We consider that a uniform transverse load, p0 is acting throughout the top surface of the 
plate. Thus we have p0 x, yð Þ ¼ p0 and value of pmn can be determined from Fourier series 
expansion.

pmn ¼
4

ab

ða

0

ðb

0
p0 sin

mpx
b

� �

sin
npy

a

� �

dxdy ¼
4p0

mnp2 1 � cos mpð Þ 1 � cos npð Þ (18) 

Now, we have to assume a function Vs x, yð Þ (potential per unit surface) to tackle the external 
applied electric voltage V in the Eqs. (15e) and (15f). Similar to p0 x, yð Þ, this Vs x, yð Þ can also be 
expressed as double sine series as follows.

Vs x, yð Þ ¼
X1

m¼1

X1

n¼1
Emn sin

mpx
b

� �

sin
npy

a

� �

(19) 

Similarly, considering Vs x, yð Þ ¼
V
ab i.e., independent of x and y, Emn can be determined similar to 

pmn:

Emn ¼
4V

mnabp2 1 � cos mpð Þ 1 � cos npð Þ (20) 

Note here that while we have considered uniformly distributed mechanical load and 
electrical voltage, other loading conditions can also be analyzed based on the analytical 
framework presented here. Substituting Eqs. (17) (18)(19) and (20) in the partial differential 
Eq. (15), we get the following six linear simultaneous equations of Umn, Vmn, Wbmn, Wsmn, 
Umn, Ymn:

� A11Umn �m2 � A66Umn�n2 � A12 þ A66ð ÞVmn �m�nþ B11Wbmn �m3 þ B12 þ 2B66ð ÞWbmn�n2 �m

þ Ba
11Wsmn �m3 þ Ba

12 þ 2Ba
66

� �
Wsmn�n2 �mþ E13Umn �mþ �Ap

13Ymn �m¼ 0 (21a) 

� A66Vmn �m2 � A22Vmn�n2 � A12 þ A66ð ÞUmn �m�nþ B22Wbmn�n3 þ B12 þ 2B66ð ÞWbmn �m2�n

þ Ba
22Wsmn�n3 þ Ba

12 þ 2Ba
66

� �
Wsmn �m2�nþ E23Umn�nþ �Ap

23Ymn�n¼ 0 (21b) 

B11Umn �m3 þ B12 þ 2B66ð Þ Umn�n2 �mþ Vmn �m2�n
� �

þ B22Vmn�n3 � D11Wbmn �m4 � D22Wbmn�n4

� 2D12 þ 4D66ð ÞWbmn �m2�n2 � Da
11Wsmn �m4 � Da

22Wsmn�n4 � 2Da
12 þ 4Da

66
� �

Wsmn �m2�n2

� H13Umn �m2 � H23Umn�n2 þ pmn �
�Azp

13Ymn �m2 � �Azp
23Ymn�n2¼ 0 (21c) 

Ba
11Umn �m3 þ Ba

12 þ 2Ba
66

� �
Umn�n2 �mþ Vmn �m2�n
� �

þ Ba
22Vmn�n3 � Da

11Wbmn �m4 � Da
22Wbmn�n4

� 2Da
12 þ 4Da

66
� �

Wbmn �m2�n2 � F11Wsmn �m4 � F22Wsmn�n4 � 2F12 þ 4F66ð ÞWsmn �m2�n2

� Aa
55Wsmn �m2 � Aa

44Wsmn�n2 � Ha
13 þ Aa

55
� �

Umn �m2 � Ha
23 þ Aa

44
� �

Umn�n2 þ pmn �
�Afp

13Ymn �m2

� �Afp
23Ymn�n2 þ �A|{z}

p

24
Ymn�n2 þ �A|{z}

p

15
Ymn �m2¼ 0

(21d) 

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES 13



E13Umn �mþ E23Vmn�n � H13Wbmn �m2 � H23Wbmn�n2 � Ha
13 þ Aa

55
� �

Wsmn �m2 � Ha
23 þ Aa

44
� �

Wsmn�n2

� Aa
55Umn �m2 � Aa

44Umn�n2 � G33Umn þ �A|{z}
p

24
Ymn�n2 þ �A|{z}

p

15
Ymn �m2 þ EE33Ymn þ

2Emn

h
�Ap

33¼ 0

(21e) 

�A|{z}
p

15
� Wsmn �m2 � Umn �m2
� �

� �Dp
11Ymn �m2 � �A|{z}

p

24
� Wsmn�n2 � Umn�n2
� �

� �Dp
22Ymn�n2 � �Ap

13Umn �m

� �Ap
23Vmn�nþ �Azp

13Wbmn �m2 þ �Azp
23Wbmn�n2 þ �Afp

13Wsmn �m2 þ �Afp
23Wsmn�n2 � �Hp

33Ymn

� �Hpp
33 Emn� EE33Umn¼ 0

(21f) 

Here ð �m, �nÞ ¼ mp
b , np

a
� �

: Solving six simultaneous Eq. (21), we can determine Wbmn, Wsmn, Umn 
and accordingly, the total transverse deflection wðx, y, zÞ of the plate can be calculated by adding 
these three effects of bending, shear and stretching. By solving for Ymn, we can calculate the volt-
age component corresponding to the applied load. It can be noted in this context that the above 
formulation is valid for single and multi-layer (with the number of layers NL) functionally graded 
plates. Equivalent material properties are adopted for utilizing the analytical framework presented 
here as described below.

2.5. Equivalent material properties

The PVDF has isotropic and piezoelectric properties, and it is presumed that GPLs are uniformly 
and linearly distributed with a randomly distributed placement within the PVDF matrix. Such 
randomly oriented fiber composite can be approximated to a quasi-isotropic laminate (Halpin 
and Karoos 1978). Here the GPLs are assumed as rectangular-shaped solid reinforcement of aver-
age width wGPL, length lGPL and thickness tGPL: The electromechanical behavior of the FGPM 
plate is discussed by considering two distributions of weight fraction of GPLs along the thickness 
direction (z) which are as follows (Zhao et al. 2020):

Linear distribution : WGPL zð Þ ¼ 200W�
GPL

1
2
þ

z
h

� �

W0
GPL (22a) 

Uniform distribution : WGPL zð Þ ¼ 100W�
GPLW0

GPL (22b) 

where W�
GPL and W0

GPL are the total weight fraction and characteristic value of GPLs weight 
fraction, respectively (refer to Fig. 3). The total volume fraction of GPLs is calculated using the 
following relation:

VGPL zð Þ ¼
WGPL zð Þ

WGPL zð Þ þ qGPL
qPVDF

� �
1 � WGPL zð Þð Þ

(23) 

where qGPL and qPVDF denote the respective mass densities of GPLs and PVDF matrix. The modi-
fied Halpin-Tsai model is utilized to estimate the effective material constants (properties). The 
Young modulus of a nearly isotropic laminate system is as follows (Wang, Xie, and Fu 2020):

E zð Þ ¼
3
8

EL þ
5
8

ET (24) 
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where EL and ET indicate the longitudinal and transverse moduli and their values can be esti-
mated from the Eq. (25). Here 3

8 and 5
8 are the reinforcing efficiency of GPLs considered in longi-

tudinal and transverse directions, respectively.

EL zð Þ, ET zð Þ
� �

¼
1þ nGPL

L gGPL
L VGPL zð Þ

1 � gGPL
L VGPL zð Þ

,
1þ nGPL

W gGPL
W VGPL zð Þ

1 � gGPL
W VGPL zð Þ

( )

EPVDF (25) 

where the parameters gGPL
L and gGPL

W can be expressed by

gGPL
L , gGPL

W
� �

¼

EGPL
EPVDF

� �
� 1

EGPL
EPVDF

� �
þ nGPL

L

,
EGPL

EPVDF

� �
� 1

EGPL
EPVDF

� �
þ nGPL

W

8
><

>:

9
>=

>;
(26) 

Here EGPL and EPVDF indicate the respective Young moduli of GPLs and PVDF matrix, and filler 
geometric factors nGPL

L and nGPL
W of GPLs are given by the following equations:

nGPL
L , nGPL

w

n o

¼
2lGPL

tGPL
,
2wGPL

tGPL

� �

(27) 

where tGPL, lGPL, and wGPL are the respective thickness, length, and width of GPLs fillers. Other 
material properties are calculated by the rule of mixture which is as follows:

q zð Þ ¼ qGPLVGPL zð Þ þ qPVDF 1 � VGPL zð Þð Þ (28a) 

� zð Þ ¼ �GPLVGPL zð Þ þ �PVDF 1 � VGPL zð Þð Þ (28b) 

eij zð Þ
� �

¼ a e3i½ �
PVDFVGPL zð Þ þ e3i½ �

PVDF 1 � VGPL zð Þð Þ (28c) 

kii zð Þ½ � ¼ a kii½ �
PVDFVGPL zð Þ þ kii½ �

PVDF 1 � VGPL zð Þð Þ (28d) 

where �, eij ði, j ¼ 1, 2, 3, 4, 5Þ, kiiði ¼ 1, 2, 3Þ and a are the Poison ratio, coupling coefficient, 
electric permittivity and piezoelectric multiple, respectively. Table 1 summarizes the values of all 
these coefficients.

2.6 Time-dependent viscoelastic analysis

Here the analytical model presented in the preceding sections has been extended for analyzing 
the functionally graded piezoelectric plates with time-dependent viscoelastic properties. For the 

Figure 3. Distribution of WGPL across the thickness of single-layered FGPM (x–z plane) (a) linear and (b) uniform distribution.
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sake of simplicity, the complex elastic modulus of the plate in the frequency domain (x) is 
expressed as the Biot’s viscoelactic model with only one term (Mukhopadhyay, Adhikari, and 
Batou 2019).

E�z xð Þ ¼ E0 xð Þ þ iE00 xð Þ ¼ E zð Þ 1þ �
ix

lþ ix

� �

(29) 

where EðzÞ is the effective young modulus in the absence of viscoelasticity, given in Eq. (24) and 
i ¼

ffiffiffiffiffiffiffi
� 1
p

: � and l are the constants indicating “the strength” of viscosity and relaxation param-
eter respectively. E0 (real part) and E00 (imaginary part) can be regarded as storage and loss modu-
lus respectively. The amplitude (dynamic modulus) and phase of the complex modulus can be 
derived as follows:

E�z xð Þ
�
�

�
� ¼ E zð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ x2 1þ �ð Þ
2

l2 þ x2

s

(30a) 

/ E�z xð Þ
� �

¼ tan� 1 �lx

l2 þ x2 þ �x2

� �

(30b) 

As the phase increases, the contribution of loss modulus will increase which in turn makes the 
material more viscous (Mun, Chehab, and Kim 2007). Considering all the limiting properties of 
E�z xð Þ, present in the existing literature, it can be deduced that for all positive x and �, E�z xð Þ

�
�

�
�

achieves minimum amplitude (E zð Þ) when x! 0 and l!1 whereas the same will achieve 
maximum amplitude (E zð Þð1þ �Þ) when x!1 and l! 0: However, for all limiting cases, the 
viscoelastic material properties tend to be pure elastic as the phase / E�z xð Þ

� �
becomes zero.

To employ this complex modulus in the present analytic model and for capturing the realistic 
time-dependent viscoelastic behavior of the plate, it is necessary to invert back the frequency 
domain representation discussed above into the time-domain (t). This inversion of young modu-
lus from its frequency domain (refer Eq. 29) to the time domain is carried out by the efficient 
inverse Fourier algorithm written in MATLAB symbolic environment. All values of x, from high-
est to lowest, are taken into account when inverting frequency domain data into the time domain 
(t > 0). This inversion can be expressed as follows:

Ez tð Þ ¼
1

2p

ð1

� 1

E�z xð Þeixtdx ¼

ð1

� 1

E�z 2pfð Þe2pfitdx (31) 

Here the function Ez tð Þ (also called relaxation modulus) encompasses the thickness direction (z) 
along with the time parameter (t). Handling these two parameters at the same time in the present 
analytical model can be cumbersome. To mitigate this issue, we have performed the temporal 

Table 1. Geometric and Material properties of constituents of FGPM (Li et al. 2020).

Elastic and geometrical properties Piezoelectric constants ðC=m2Þ

W0
GPL 1% ePVDF

31
32.075� 10� 3

lGPL 2:5lm ePVDF
32

� 4:07� 10� 3

wGPL 1:5lm ePVDF
33

� 21:19� 10� 3

tGPL 1:5nm ePVDF
24

� 12:65� 10� 3

a 100� 1000 ePVDF
15

� 15:93� 10� 3

qGPL 1920kg=m3 Dielectric constants ðF=mÞ

qPVDF 800kg=m3
lPVDF

11
53.985� 10� 12

EGPL 1010GPa lPVDF
22

66.375� 10� 12

EPVDF 1:44GPa lPVDF
33

59.295� 10� 12

�GPL 0.186
�PVDF 0.29
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analysis throughout the plate thickness at each time step separately. The evolution of material 
properties at each time step is determined by a suitable viscoelasticity model. Note that the FE 
validations (comparative results obtained from the analytical approach and FEM) presented in 
this paper can be regarded as the validation for a particular time step and the corresponding 
material properties in the context of time-dependent viscoelastic analysis. By ensuring the accur-
acy of results at each time step corresponding to time-dependent material properties obtained 
based on suitable viscoelastic models, the correctness of the overall temporal analysis is ascer-
tained. In this context, it can be noted that two viscoelastic parameters (l and �) need to be eval-
uated specific to the material under consideration. The time-dependent variation of material 
properties depends on these parameters.

We approximate the integral in Eq. (14) by taking a summation through the plate’s thickness 
for each time instant. As here some approximations are involved, the accuracy of the result is 
ensured by comparing the value of each constant in Eq. (14) obtained from the present summa-
tion method and the normal integral method at a particular time instant. Considering time- 
domain, Eq. (17a–f) can be rewritten as follows:

u0 x, y, tð Þ ¼
X1

m¼1

X1

n¼1
Umn tð Þ cos

mpx
b

� �

sin
npy

a

� �

(32a) 

v0 x, y, tð Þ ¼
X1

m¼1

X1

n¼1
Vmn tð Þ sin

mpx
b

� �

cos
npy

a

� �

(32b) 

w0b x, y, tð Þ ¼
X1

m¼1

X1

n¼1
Wbmn tð Þ sin

mpx
b

� �

sin
npy

a

� �

(32c) 

w0s x, y, tð Þ ¼
X1

m¼1

X1

n¼1
Wsmn tð Þ sin

mpx
b

� �

sin
npy

a

� �

(32d) 

uz x, y, tð Þ ¼
X1

m¼1

X1

n¼1
Umn tð Þ sin

mpx
b

� �

sin
npy

a

� �

(32e) 

/ x, y, tð Þ ¼
X1

m¼1

X1

n¼1
Ymn tð Þ sin

mpx
b

� �

sin
npy

a

� �

(32f) 

Afterwards, solving Eq. (21) in conjunction with Eq. (32), the time-dependent parameters 
WbmnðtÞ, WsmnðtÞ, UmnðtÞ can be calculated for each time instant. Thus, in the proposed frame-
work of viscoelastic analysis, we first characterize the frequency-domain depth-wise material 
properties, which are then inverted to time-domain variation of the depth-wise varying material 
properties and subsequently used to analyze the electromechanical response of the plates at each 
time-step.

3. Finite element (FE) analysis

We have carried out a separate finite element analysis to validate the analytical framework as 
described in the preceding section. The primary objective of including the finite element model 
in present paper is to give an initial validation to our parent general analytic model (which is 
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equally applicable for both viscoelastic and non-viscoelastic structures). The elastic model, for 
which we have presented finite element validations, is further extended to analyze the viscoelastic 
behavior where only the elastic modulus terms in the analytical expressions are replaced by the 
viscoelastic parameters based on the correspondence principle. The essence of this principle is 
that the analytical expressions of the structure in the elastic regime can be readily extended to the 
viscoelastic regime without any further change in the parent elastic framework. It is well- 
established in the literature that a correct elastic framework for analyzing structural behavior can 
be converted to time-dependent viscoelastic analysis through this principle. The FEM analysis 
presented in the current paper is intended to establish the accuracy of the elastic analysis, which 
in turn assures the correctness of the viscoelastic analysis. That is why no additional FE calcula-
tions are added for viscoelastic structures separately. In this context, it can be noted that the FE 
validations presented here can be regarded as the validation for a particular time step and the 
corresponding material properties in the context of time-dependent viscoelastic analysis. Once the 
electromechanical analysis is validated for a particular set of material properties, it can be 
extended to the other time steps readily by considering the appropriate time-dependent material 
properties at different other time steps. Thus finite element validation of the electromechanical 
analysis for a particular set of material properties, as presented here, is sufficient for the time- 
dependent viscoelastic analysis performed afterwards in this study.

The finite element analysis is carried out here considering single and multi-layered systems, 
wherein the equivalent material properties are evaluated based on the approach presented in the 
preceding section. The same geometry and the coordinate system are adopted in FE analysis as 
shown in Fig. 2 (refer to Table 2). The CAD model is prepared in the COMSOL multi-physics 
version 5.5 software package and FEM simulation has been performed in COMSOL’s 3D 
“piezoelectricity multiphysics interface” which combines Solid Mechanics and Electrostatics 
together with the constitutive relationships required to model piezoelectrics. In the geometry, 
thickness direction is taken along the z-axis and material coordinate system are same as the spa-
tial coordinate system in COMSOL. For simulating FGPM (functionally graded piezoelectric 
material) in the present structure, we have created a “blank material” within COMSOL material 
library whose elastic and piezoelectric properties are given in accordance with Eqs. (24) and (28). 
As all the properties vary along the thickness direction, we have adopted the COMSOL’s global 
coordinate variable z with lower limit of � h=2 and upper limit of h=2 to build the analytic 
functions for its material properties (density, elasticity matrix, coupling matrix and relative per-
mittivity matrix). The discretization of the rectangular plate is carried out using free tetrahedral 
(tet) mesh (fine) elements where the maximum element size varies between 0.24 m to 0.03 m.

As the analysis is performed on an electromechanical structure, we have to incorporate elec-
trical boundary conditions in addition to mechanical loadings. Present FGPM rectangular plate is 
under the closed-circuit condition where initially, the electric potential V applied on the upper 
and lower surfaces are expected to be zero (grounded) throughout the analysis (as demonstrated 
in Fig. 4). In COMSOL, the piezoelectric polarization axis is not changed as its default direction 
is always along its spatial z coordinate axis. In case of mechanical loading, a uniformly distributed 
(UDL) unit force is applied throughout the top surface and the bottom surface is kept free. The 
plate is modeled as simply supported along four edges (SSSS). The overall FE modeling is demon-
strated using a flow diagram in Fig. 5. In this context, it can be noted that the finite element vali-
dations presented here can be regarded as the validation for a typical time step considering the 
corresponding material properties. In time-dependent viscoelastic analysis, the material properties 
vary at different time steps that can be ascertained by the adopted viscoelastic model. Once the 
electromechanical analysis is validated for a particular set of material properties, it can be 
extended to the other time steps readily by considering the appropriate time-dependent material 
properties at different other time steps. The time-dependent evolution of material properties in a 
viscoelastic analysis is discussed in the preceding section.
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4. Results and discussions

This section presents numerical results concerning the electromechanical behavior of FGPM 
plates based on the proposed analytical approach and comparative validation results using finite 
element simulations. We would investigate three different configurations with single and multiple 
layers (UD, LD and UD/LD). Subsequently, we present time-dependent viscoelastic results for the 
deformation and electric potential of FGPM plates.

4.1. Electromechanical analysis of single FGPM plate (NL ¼ 1Þ

A thin FGM plate ða=h ¼ 100Þ is subjected to uniformly distributed load ðp0 ¼ 1 N=m2Þ while 
it’s all four edges are kept simply supported. We first concentrate on validating the analytical 
model using separate FE analysis, wherein a convergence study is important to obtain credible 
results before proceeding further. Therefore, the convergence study concerning FE analysis is car-
ried out to investigate the influence of mesh size or the number of elements on the transverse 
deflection of the plate. Different types of meshing such as: extreme coarse, coarse, normal, fine 
and extreme fine are considered with the overall range of average element size between 0.855 m 
to 0.0303 m. In Table 3, the results of convergence study with respect to maximum center deflec-
tion of the plate and its mesh statistics used in FE analysis have been presented. Figure 6 illus-
trates the variation of transverse deflection of the plate over its length. It can be observed that the 
results for transverse deformations are converged for fine and extreme fine elements. Therefore, 
we followed the ‘fine’ type of element for further analysis in FE modeling.

We further validate the FE model with literature to ensure its prediction accuracy. Figure 7
demonstrates the variation of transverse deflection of SSSS FGPM and FGM plates (i.e., with and 
without accounting for the piezoelectric effect) over their lengths and a comparison of the avail-
able results based on classical plate theory (CPT) (Reddy 2006). For this purpose, we have consid-
ered a thin FGM plate with uniform distribution (UD) of W�

GPL and carried out a deflection 

Figure 4. Schematic representation of FGPM plate subjected to: (a) electrical (b) mechanical loads.

Table 2. Initial dimensions of the plate.

Parameters Values Unit

Length, b 3 m
Width, a 1 m
Thickness to span ratio (h=a) 0.01 –
Total No. of layer, NL � Single (¼ 1) 

� multilayer ð> 1Þ
–
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analysis of UD FGM (refer to Fig. 7). The earlier existing analytical result for center deflection of 
the plate calculated from CPT is 2:8524� 10� 5 m (Reddy 2006) which shows a very close agree-
ment with the current FE results. Due to consideration of the piezoelectric effect, there is a decre-
ment in maximum transverse deflection of the plate compared with non-piezoelectric FGM plate. 
Having adequate confidence in the finite element model, we present further numerical results 
based on analytical predictions and finite element analyses.

To check the accuracy of the current quasi-3D sinusoidal shear deformation plate theory with 
respect to the FE model in case of FGPM LD plates subjected to uniform loading (p0), the com-
parative results are plotted in Fig. 8(a). The results are observed to be in excellent agreement, cor-
roborating the validity of the proposed analytical framework further. In the following numerical 
results, we investigate different critical effects on the electromechanical behavior of FGPM plates, 
primarily based on the analytical approach. Figure 8(b) shows the variation of transverse deflec-
tion of SSSS FGM and FGPM plates over their lengths considering linear distribution (LD) of 

Figure 5. Flowchart describing the detailed FE analysis.
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GPLs weight fraction ðW�
GPLÞ: A similar trend is observed in UD cases (refer to Fig. 7) for trans-

verse deflection, while the LD case shows higher deflection of the plate. A detailed comparison of 
the results considering LD and UD cases is presented in Fig. 9 based on analytical and FE 
approaches. The results show that the incorporation of piezoelectricity stiffens the FGM plates for 
both distributions.

Figure 10(a) shows the variation of transverse deflection of the SSSS plate over its length by 
considering different aspect ratios (a/h). For this, we considered W�

GPL ¼ 1% with LD case while 
the different aspect ratios are considered as 10, 20, 50 and 100. It is noticed that the transverse 
deflection increases with increasing aspect ratio. Figure 10(b) shows the variation of transverse 
deflection of SSSS FGPM plates along their length by considering different W�

GPL with the LD 
case. From this, it is noticed that the deflection of SSSS plate is significantly influenced due to the 
incorporation of nanoparticles such as graphene. The transverse deflection of the plate is reduced 
due to the addition of a large value of W�

GPL: This effect of different W�
GPL on deflection is also 

intuitively true as the overall elastic modulus of the model increases if the percentage of GPLs 
increases and consequently, it gets stiffer. Further, from Figs. 10(a) and 10(b), it is clear that the 
results obtained from both analytical and FE modeling are observed in excellent agreement.

Figure 11 shows the variation of electric potential generated due to piezoelectricity at the cen-
ter of SSSS FGPM plate with respect to its thickness by considering different W�

GPL: From this, it 
can be noted that the electric potential shows the maximum value at the middle of the plate 
thickness. Similar to transverse deflection, the electric potential decreases due to the addition of 
different W�

GPL: For W�
GPL ¼ 1%, the electric potential shows larger values compared to the 

Table 3. Convergence study of FEM for center deflection of plate.

Mesh type
Number of domain  

element
Number of boundary  

element
Number of edge  

element
Plate center  

deflection (lm)

Extreme coarse 597 476 92 � 21.966
Coarse 3196 2268 212 � 32.929
Normal 7486 5252 312 � 33.123
Fine 24560 16340 548 � 33.199
Extreme Fine 301244 142524 1604 � 33.200

Figure 6. Mesh convergence analysis.
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remaining three values of W�
GPL: The electric potential generated in SSSS FGPM plates also 

depends on the aspect ratios of the plate which are investigated in Fig. 12 for aspect ratios of 10, 
20, 50 and 100 (considering W�

GPL ¼ 1%). It can be noted that the electric potential increases 
with respect to the aspect ratio, while the peak voltage appears in the middle layer of the FGPM 
plate with LD distribution ðW�

GPL ¼ 1% and a=h ¼ 100Þ:
The numerical results are presented here (unless otherwise mentioned) considering unit load 

and zero voltage, which lead to deflections in the micrometer range. The accuracy of the results 

Figure 7. Variation of transverse deflection of UD FGM plates along its length based on analytical and FE models.

Figure 8. (a) Variation of transverse deflection of SSSS FGPM plate along its length ðLD case; a=h ¼ 100, W�GPL ¼ 1%, V ¼
0, p0 ¼ 1Þ: (b) Variation of transverse deflection of LD plates along its length.
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is ensured through separate finite element simulations. It can be noted that the developed semi- 
analytical framework is generic enough to analyze larger values of load which would lead to 
higher deformations. However, to establish the generic nature of the proposed computational 
framework, we have added two separate studies for single and multi-layered FGPM structures 
(refer to Figs. 13 and 18) where we vary the mechanical load and applied voltage in a reasonable 
range (complying the small linear strain-displacement assumption). It is observed that the deflec-
tions increase significantly with external loads up to the millimeter range. The impact of mechan-
ical load and non-zero voltages on the overall deflection of the plate for both LD and UD FG 
distributions is shown in Fig. 13. Both distributions in Figs. 13(a) and (b) show a direct 

Figure 9. Effect of distribution of GPLs on the transverse deflection of plates.

Figure 10. Variation of transverse deflection of SSSS FGPM plate along its length ðLD case; V ¼ 0, p0 ¼ 1Þ: (a) for different 
aspect ratio (W�GPL ¼ 1%) (b) for different GPL volume fractions (a=h ¼ 100).
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relationship between transverse deflection (w) and external load (p0). For instance, in FGPM 
structure with LD distribution, a maximum deflection of 3.313 mm is observed along the centroi-
dal axis of the plate when a 100 Pa load is applied. In Figs.13(c) and (d), the piezoelectric voltages 
are varied for both distributions while maintaining a constant external mechanical stress of 
100 Pa. Although the effect of voltage is minimal in UD distribution, the transverse deflection is 
directly correlated with applied voltages in LD distribution. Overall, the UD distribution in 
FGPM structures exhibits stiffer behavior than the LD distribution.

Figure 11. Variation of electric potential across the thickness of SSSS FGPM plate at its center x, yð Þ ¼
b
2 , a

2

� �
ðLD case; a=h ¼ 100, V ¼ 0, p0 ¼ 1Þ:

Figure 12. Variation of electric potential across the thickness of an SSSS FGPM plate at its center x, yð Þ ¼
b
2 , a

2

� �
ðLD case, W�GPL ¼ 1%, V ¼ 0Þ:
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4.2. Electromechanical analysis of multilayer FGPM plate

In this Section, we extend the same theoretical approach discussed in Section 2 for presenting 
numerical results concerning layered composite structures. We have considered a perfectly 
bonded double-layered FGPM plate ðNL ¼ 2Þ in which GPLs nanofibers are assumed to be ran-
domly oriented in respective matrixes in both the layers with UD/LD configuration. The total 
thickness is taken as h and it is equally divided in both layers. Distribution of GPLs weight frac-
tion is taken differently in two layers i.e., a top layer having UD distribution and a bottom layer 
having LD distribution of GPLs. This layer-wise variation of the FGPM plate is depicted in 
Fig. 14. Other boundary conditions remain the same as considered in the single-layer plate. Unit 
mechanical load and zero external voltage are applied on the outer surface of the plate as before. 

Figure 13. Variation of transverse deflection of SSSS FGPM plate along the length direction of the plate. (a) LD distribution with 
a constant voltage of zero throughout the upper surface (along with different values of loads) (b) UD distribution with a constant 
voltage of zero throughout the upper surface (along with different values of loads) (c) LD distribution when a constant load of 
100 Pa is applied on the structure (along with different values of voltage) (d) UD distribution when a constant load of 100 Pa is 
applied on the structures (along with different values of voltage).
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Both the analytical and FE analyses are performed to check the accuracy of the present theory in 
predicting the behavior of the layered structure.

Figure 15 shows the variation of transverse deflection of layered FGPM plate along its length. 
The analytical and FE results for total transverse deflection (w) of the plate under mechanical 
load p0 ¼ 1 N=m2 and electric potential V ¼ 0 are compared. From this figure, it is observed 
that theoretical and FE results are in very good agreement for the multi-layered structures. The 
maximum deflection is found at the half-length (i.e., 1.5 m) of the plate which is the same in the 
case of a single-layered plate. From this, we can conclude that number of layers has negligible 
effects on the overall deflection pattern of the plate if other parameters are kept the same. In 
Fig. 15, it is also observed that in the case of multi-layered plates, there is an increment in the 

Figure 14. Distribution of weight fraction of GPLs ðW�GPLÞ across layered FGPM plate thickness.

Figure 15. Variation of transverse deflection of layered FGPM plate along its length ða=h ¼ 100, W�GPL ¼ 1%, p0 ¼ 1, V ¼ 0Þ:
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magnitude of maximum deflection by 7.94 lm compared to the single-layered plate. A similar 
trend of the result is observed in existing literature (Lu, Lee, and Lu 2006), which validates our 
present formulation further.

Subsequently, insightful parametric analysis is performed by varying weight fraction of GPLs 
ðW�

GPLÞ and plate aspect ratio ða=hÞ, as shown in Figs. 16(a) and 16(b). The deflection of layered 
plate decreases as the value of ðW�

GPLÞ and ða=hÞ increases. It is due to increased stiffness which 
is discussed in the earlier section. In Fig. 17, the variation of electric potential along the thickness 
direction is generated due to the direct piezoelectric effect. It can be observed that the variation is 
continuous, there is no discontinuity at the interface of the two layers.

Figure 16. (a) Effect of weight fraction of GPLs W�GPL

� �
on the transverse deflection of SSSS layered plate ða=h ¼ 100, p0 ¼

1, V ¼ 0Þ: (b) Effect of aspect ratio ða=hÞ on the transverse deflection of SSSS layered plate ðW�GPL ¼ 1%, p0 ¼ 1, V ¼ 0Þ:

Figure 17. Variation of electric potential /
� �

across the thickness of layered FGPM plate at the Center x, yð Þ ¼
b
2 , a

2

� �
ða=h ¼ 100, W�GPL ¼ 1%, p0 ¼ 1, V ¼ 0Þ:
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Similar to single-layered FGPM distributions (refer to Fig. 13), a parametric analysis has been 
conducted here to check the dependency of external loading parameters on the structure’s overall 
deformation in a multi-layered FGPM system. A significant increase in the maximum transverse 
deflection in comparison to its unit-loading state is observed in Fig. 18(a) where the deformation 
increases to the millimeter range with the increase of mechanical loading. Figure 18(b) shows the 
length-wise change in the plate’s deflection with applied voltage. A non-uniform symmetric 
deformation pattern with respect to plate’s centroidal axis can be observed where an increasing 
trend of deflection with voltage is noticed near the central zone and a reverse decreasing trend of 
deflection with voltage is obtained near the supporting edge of the plate. Contrary to the uniform 
trend seen in single layered plates (Fig. 13), the double layered (UD/LD) plate here exhibits such 
non-uniform deformation trend with voltages along its length.

4.3. Time-dependent electromechanical analysis of single and multi-layer viscoelastic 
FGPM plates

In this section, the time-dependent dynamic behavior of the structure’s responses has been investi-
gated by the incorporation of viscoelastic effect. Before obtaining the final results, the effect of 
viscoelasticity on the effective elastic modulus, EðzÞ along the thickness has been checked by plot-
ting it in the time domain. As mentioned earlier, this modulus not only depends on time (t) but 
also the thickness direction (z) since the present structure is depth-wise functionally graded. For 
each vertical point at a particular section of the plate, we obtain a time-variation curve for the 
effective elastic modulus. For the sake of brevity, in Table 4, the effect of viscoelasticity on Young’s 
modulus at three locations of the thickness (at z ¼ � h

2 , z ¼ 0 and z ¼ h
2) in LD distribution is 

shown in both the frequency domain and the corresponding transformed time domain. Note that 
the parameters l and � in Eq. (29) are crucial for conceptualizing viscoelasticity of the present 
structure. It is important to keep in mind that the exact values of both parameters (l and �) in 
general, depend on different physical experimental outcomes of the relevant viscoelastic system. In 
particular, they can be obtained from the curve fitting of experimental data concerning creep test 

Figure 18. Effect of external mechanical load and electrocortical loading on the overall deformation of layered FGPM structures. 
(a) Variation of the plate’s deflection along length direction under a constant voltage of zero and different values of mechanical 
load (b) variation of plate’s deflection along length direction under a constant mechanical load of 100 Pa and different values of 
voltage.
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of the material. Such experimental implementations were performed in the existing literature (Endo 
and de Carvalho Pereira 2017; Rouleau et al. 2013; Enelund and Olsson 1999). As the present study 
doesn’t include any experimental work, we have adopted reasonable parametric values for obtaining 
the numerical results. Analytically these two parameters, present in complex elasticity modulus 
(E�z xð Þ) in the frequency domain, come from the viscoelastic kernel function in the time-domain. 
This function can be obtained by constructing various equivalent lumped spring-dashpot damping 
models for viscoelastic material such as Maxwell model, Voigt model, Standard linear model, 
Generalized Maxwell model and Prony series model. Whereas, in the frequency or Laplace domain, 
various existing viscoelastic models complying Kramers-Kronig relations can be used to derive 
E�z xð Þ such as Biot model, Gaussian model, Fractional derivative, Half cosine model etc. Among 

Table 4. Variation of the effective Young modulus in frequency and corresponding time domain at three locations of the 
thickness (LD distribution).

Position Frequency domain Time domain

� h=2

0

h=2
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them, the Biot’s standard classical model of viscoelasticity (Biot 1955, 1954) has been chosen here 
by which complex elasticity modulus (E�z xð Þ) can be obtained without any significant accuracy loss. 
To examine the effect of the two parameters on overall strength of viscoelastic model, a parametric 
study (refer to Figs. 19(a) and 19(d)) is presented. First, we have investigated the influence of these 
two parameters on the present viscoelastic system and afterwards, a suitable combination of their 
values are chosen to produce numerical results in succeeding sections. It can be noted that the tem-
poral framework presented here is generic and any suitable value of l and �, obtained based on 
experimental investigations, can be used for exploration of the viscoelastic behavior. In Figs.19(a) 
and 19(d), the amplitude of Young modulus at mid-plane and its associated phase angle are varied 
in a reasonable frequency range for different values of l and �: It can be seen in Figs. 19(a) and 
19(b) that the amplitude increases as the values of l and � reduce and increase respectively. They 

Figure 19. (a) Effect of the parameter l of the amplitude of mid-plane-Young-modulus in the frequency domain at constant � ¼
0:01: (b) Effect of the parameter � of the amplitude of mid-plane-Young-modulus in the frequency domain at constant l ¼
xmaxð Þ

5 : (c) Effect of the parameter l of the magnitude of viscoelastic phase angle at mid-plane in the frequency domain at con-
stant � ¼ 0:01: (d) Effect of the parameter l of the magnitude of viscoelastic phase angle at mid-plane in the frequency domain 
at constant l ¼ : xmaxð Þ

5
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all show converging patterns in the values after certain frequencies. This can be explained with the 
help of Figs. 19(c) and 19(d). Figure 19(c) depicts the variation of phase angle in frequency domain 
for different l at a constant � ¼ 0:01, whereas the same is plotted in Fig. 19(d) for different � tak-
ing l as constant i.e., l ¼ xmaxð Þ

5 (where xmax is the maximum magnitude of considered frequency 
spectrum). Existence of critical frequencies can be observed, wherein the physical significance of 
such critical frequency can be explained in the light of spring-dashpot lumped model of viscoelasti-
city. At very low and high frequencies, the model behaves as pure elastic, whilst in the vicinity of 
the critical frequency, the viscous effects become maximum. That is why in Figs. 19(a) and 19(b), 
at very low frequency, amplitude of Young modulus takes a constant non-zero value and after a 
certain frequency, it again converges to a constant non-zero value. From Figs. 19(c) and 19(d), it 
can be concluded that the parameter l controls the critical frequency whereas the parameter �
shows its influence on magnitude of phase angle of the present viscoelastic model.

After the afore-explained parametric study investigating the influence of viscoelastic parame-
ters, we can now proceed for obtaining numerical results in the current context by taking a com-
bination of these two parameters l and �: In the frequency domain, the variation of the dynamic 
modulus and its phase is obtained by taking the parameters as l ¼ xmaxð Þ

1:4 and � ¼ 0:01 for the 
present paper. Except for Young’s moduli, Poisson’s ratio and other piezoelectric properties are 
considered to have a negligible effect of viscoelasticity based on published literature (Salehi and 
Aghaei 2005, Salehi and Safi-Djahanshahi 2010, Barrett and Gotts 2004). It has also been verified 
in MATLAB that the values of elastic modulus in all three cases (refer to Table 4) at low fre-
quency (x � 0) are the same as the non-viscous elastic modulus mentioned in the prior sections. 
Such observations are in coherence with the existing literature (Mukhopadhyay, Adhikari, and 
Batou 2019, Malekmohammadi et al. 2014). In Table 4, the variation of phase angle in all three 
locations has also been plotted and it is observed that all are the same and achieve their peak 
value at a certain critical frequency. So, the phase angle variation is independent of thickness dir-
ection, though the amplitude of elastic moduli keeps changing with the thickness direction. The 
phase angle decreases on both sides of the frequency spectrum i.e., at the lowest and highest fre-
quency of the plot. At low frequencies, the present viscoelastic plate will behave more like a nor-
mal elastic plate. After applying the inverse Fourier algorithm, the time domain plots are 

Figure 20. Time-dependent variation of plate’s deflection (a) in UD, LD and LD/UD cases in terms of normalized form (b) in LD 
case in terms of absolute form. The normalization is carried out here with respect to the deflection value at initial time step 
(t¼ 0), as shown in the inset. In the axis titles of the inset figures, nor. representes normalized.
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obtained along the thickness. As time increases, elastic moduli keep decreasing and after a certain 
time, it gets converged at their non-viscous elastic moduli value (limt!1Ez t, z0ð Þ ¼ Eðz0)). Such a 
trend has also been observed in the existing literature (Garc�ıa-Barruetabe~na et al. 2013).

The obtained depth-wise varying elastic moduli in the time domain are now embedded within the 
analytic model to obtain the time-dependent responses of the viscoelastic FGPM plate, subjected to the 
aforementioned boundary conditions (V ¼ 0, p0 ¼ 1, SSSS). Figure 20(a) depicts the effect of viscoelas-
ticity on the plate’s deflection under the unit uniform static transverse load. Here the normalized max-
imum deflections (�wmaxÞ along the centroidal axis of the plate are plotted for the single-layered (LD 
and UD distribution) and multi-layered (LD/UD) FGPM plate. In terms of final (saturated) normalized 
deflection, it is observed that the multi-layered (LD/UD) plate is between the rest two distributions 
where LD is having the highest value of the same. It indicates the fact that the increment of the plate’s 
deflection with time is highest in LD distribution, while LD/UD plate is in between the two. Although, 
in terms of absolute deflection, the deflection in LD/UD plate at its saturation stage is higher than the 
rest two. In each case, this maximum deflection converges at a certain deflection which is almost the 
same as that of pure elastic case. For instance, in LD distribution, the FGPM plate starts bending with a 
maximum deflection of 30.51 lm under the constant load of 1 N=m2 and after 0.01 sec, its deflection 
increases to a deflection of around 30.8 lm: The bar charts in Figs. 20–22 are showing the initial deflec-
tions (t ¼ 0) in lm: Due to the incorporation of viscoelasticity, we can see a time lag in achieving its 
prior elastic deflection. A similar trend is observed in other distributions as well. But the rate of change 
in the deflection in three distributions is found to be different depending on the distribution (Multi-lay-
ered FGPM> Single-layered LD FGPM> Single-layered UD FGPM). For the sake of clarity, the time 
variation (discussed in Fig. 20(a)) in terms of absolute deflection for only LD distribution is shown in 
Fig. 20(b) (similar plots can be readily obtained for the other distributions). The trends are in good 
coherence with the existing literature on non-FGPM viscoelastic plate structures (Jafari and Azhari 
2021, Salehi and Aghaei 2005, Wenzel, Josse, and Heinrich 2009).

Figure 21 shows the viscoelastic effect on the plate’s central deflection at four different volume 
fractions i.e., W�

GPL ¼ 1%, 2%, 3%, 4% of GPLs in the PVDF matrix. With the increase of vol-
ume fraction, the plate’s elastic deflection at t ¼ 0 and the steady state (t ¼ 1) both decrease. 
Moreover, the rates of deformation are found to be decreased with the increase of GPL’s volume 
fraction. For the increment of deflection in each FGM distribution, all three show different trends 
with respect to volume fractions. For instance, in LD plate, the increment goes up as the volume 
fraction increases, whereas in UD case, the opposite trend is observed. A little exception is identi-
fied in LD/UD plate as here the normalized deflection rises with volume fractions except the one 
with 1% volume fraction whose increment is higher than rest three in Fig. 21(c).

In Fig. 22, the aspect ratio of FGPM plates is varied over a reasonable range to observe the 
effect of viscoelasticity on the plate’s deformation. Contrary to the trend observed in the afore-
mentioned volume fractions’ cases, both the deflections (at t ¼ 0 and t ¼ 1) are in direct rela-
tion with the plate’s aspect ratio. The rate of deformation here is found to have a rapid 
increment with the increase of aspect ratio. Furthermore, the increment in deflection with respect 
to its initial value (t ¼ 0) is observed to have a direct relation with plate’s aspect ratio in all three 
distributions. In general, the numerical study considering viscoelastic behavior, besides giving a 
more realistic analysis, demonstrates a potential programmable time-dependent structural behav-
ior (including temporal programming in smart stuctures and metamaterials (Sinha and 
Mukhopadhyay 2023)), which could be crucial for analyzing and designing the mechanical behav-
ior of a wide range of polymer composites accurately.

The time-dependent generation of electric potential in the present FGPM viscoelastic system is 
shown in Fig. 23(a) where all three FGM distributions show rapid growth in their values with time. 
These depicted potentials are extracted along the centroidal axis of the plate and with the consideration 
of GPL percentage of 1% and plate’s length-to-thickness ratio of 100. Though the double-layered plate 
gives a relatively higher voltage (�70% higher) than the rest of the distributions after getting saturated, 
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the increment of it with respect to initial electric potential over time is in between the other two distri-
butions where the uniformly distributed (UD) FGPM plate shows the highest increment. Figure 23(b)
shows the same time-variation of electric potential in LD distribution but in its absolute form, leading 
to the same conclusion (similar plots can be readily obtained for the other distributions). Essentially, the 
numerical results concerning electric potential for time-dependent viscoelastic analysis shows that it is 
possible to harness more accumulated power with increasing time.

5. Prospective engineering applications

Functionally graded piezoelectric material (FGPM) viscoelastic composite structures combine the 
properties of piezoelectric materials and viscoelastic composites to create a class of materials with 
unique prospective engineering applications. Such an analysis following efficient semi-analytical 

Figure 21. Effect of viscoelasticity on the maximum transverse deflection of the FGPM plate with four different volume fractions 
of GPL (a) LD (b) UD (c) LD/UD. The normalization is carried out here with respect to the deflection value at initial time step 
(t¼ 0), as shown in the inset. In the axis titles of the inset figures, nor. representes normalized.
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framework is presented for the first time in this manuscript. We have discussed here a few critical 
real-life engineering applications associated with FGPM viscoelastic composite structures.

� Shape Morphing Structures: FGPM viscoelastic composite materials can be engineered to 
change their shape in response to electrical stimuli. These materials are used to create adaptive 
structures and morphing surfaces in aerospace applications, where shape changes can improve 
aerodynamic performance. Similar applications can be found in various other mechanical sys-
tems. The interesting notion here is the capability of temporal programming as discussed in 
the manuscript.

� Energy Absorption: FGPM viscoelastic composites can be employed in impact-absorbing struc-
tures, such as helmet liners and automotive crash pads. The combination of viscoelastic damp-
ing and piezoelectric energy conversion helps dissipate energy during impact events, reducing 
the risk of injury and damage.

Figure 22. Effect of viscoelasticity on the maximum transverse deflection of the FGPM plate with four different plate aspect 
ratios (b ¼ 3, V ¼ 0, p0 ¼ 1) (a) LD (b) UD (c) LD/UD. The normalization is carried out here with respect to the deflection value 
at initial time step (t¼ 0), as shown in the inset. In the axis titles of the inset figures, Nor. representes Normalized.
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� Smart Materials and Structures: FGPM viscoelastic composites can be utilized in the develop-
ment of smart materials and structures. By exploiting their piezoelectric properties, these 
materials can sense changes in the operating environment and respond accordingly, enabling 
applications like active vibration control, actuators, shape adaptation, programmable mechan-
ical properties etc. In microelectromechanical systems (MEMS), FGPM viscoelastic composites 
can be utilized in the fabrication of tiny sensors, actuators, and resonators for applications in 
various mechanical, aerospace, consumer electronics, and medical sectors.

� Structural Health Monitoring: FGPM viscoelastic composite structures can be used for struc-
tural health monitoring (SHM) purposes. They can be embedded with sensors that utilize the 
piezoelectric effect to detect changes in the systems’s properties and identify structural damage 
or defects in real time.

� Soft Robotics: FGPM viscoelastic composites can be integrated into soft robotic systems to cre-
ate deformable structures with piezoelectric functionality. These materials would enable more 
flexible and adaptable robots for delicate tasks and human-robot interaction.

� Vibration Damping and Control: FGPM viscoelastic composite structures can be employed in 
the aerospace, automotive, and civil engineering industries for vibration damping and control. 
These materials can be designed to have specific damping properties, reducing vibrations and 
minimizing resonance effects in structures like aircraft wings, car panels, and buildings.

6. Concluding remarks

In this article, we have investigated the time-dependent viscoelastic electromechanical behavior of 
single and multi-layered piezoelectric functionally graded graphene-reinforced composite (FG- 
GRC) plates (called FGM and FGPM plates). Higher-order shear deformation theory (HSDT) 
with quasi-3D plate formulation that incorporates sinusoidal shape function and linear piezoelec-
tricity are implemented along with the Biot model of viscoelasticity in the framework of the 
inverse Fourier algorithm. The principle of virtual work is adopted to derive the governing equa-
tions and boundary constraints for analytical solutions based on Navier’s method. Further, finite 
element models are developed to confirm the accuracy and validity of the analytical results. The 
electromechanical behavior includes the static and electric response of FG-GRC viscoelastic plates 

Figure 23. Time-dependent variation of plate’s mid-line electric potential (W�GPL ¼ 1% and a=h ¼ 100) (a) in UD, LD and 
LD/UD cases in terms of normalized form (b) in LD case in terms of absolute form. The normalization is carried out here with 
respect to the potential value at initial time step (t¼ 0), as shown in the inset.
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which are predicted considering transverse mechanical and external electrical loading under sim-
ply supported (SSSS) conditions. Following major inferences are drawn from the numerical 
results:

� The transverse deflection of FGM and FGPM plates are significantly affected due to consider-
ation of piezoelectricity, weight fraction of GPLs (W�

GPL) and different distribution patterns 
(such as linear and uniform distribution) of GPLs along the thickness. It increases with respect 
to aspect ratio ða=hÞ while reduces for a larger value of W�

GPL:

� The electric potential shows significant enrichment with higher values of a=h ratio, while it 
shows a decrement with respect to the addition of W�

GPL:

� A rapid decrement in the elastic properties of FG-GRC plates can be observed with time due 
to the consideration of the viscoelastic effect.

� The numerical results concerning electric potential for time-dependent viscoelastic analysis 
establishes that it is possible to harness more accumulated power with increasing time before 
eventually reaching the steady state condition. With regard to the aspect ratio of the plate, 
weight fractions of the GPL and the distribution patterns, the steady-state values follow a simi-
lar general trend as the non-viscoelastic scenario.

� All three distributions exhibit a rapid increment in transverse deformation and electric 
potential with time, although the rates at which this increment occurs vary depending on 
the distribution of the material properties (Multi-layered FGPM> Single-layered LD 
FGPM> Single-layered UD FGPM).

In summary, the current semi-analytical study demonstrates a potential time-dependent elec-
tromechanical behavior based on practically relevant viscoelastic modeling coupled with through- 
thickness gradation, which could be crucial for analyzing the structural behavior of a wide range 
of ‘smart’ plate-like structures accurately and prospective temporal programming for a range of 
engineering applications across the length scales. The present analytical solution approach can 
also be extended to obtain the viscoelastic electromechanical responses of functionally graded 
smart shells and other complicated structural assemblies. The combination of piezoelectricity and 
viscoelasticity in FGPM viscoelastic composite structures opens up a wide range of engineering 
possibilities, from energy harvesting, vibration control, shape-morphing to advanced robotics and 
smart structures. Ongoing research in this field continues to explore new applications and opti-
mize the performance of these materials for real-world scenarios.
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