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Abstract— This paper proposes a dynamic anti-windup
scheme for a class of iterative learning control (ILC) systems.
The anti-windup compensator has the same structure as a class
of compensators for 1D systems and is able to guarantee similar
properties: (i) that the constrained system with anti-windup
compensation is exponentially stable if a certain linear matrix
inequality is satisfied; and (ii) if the trajectory to be tracked
by the nominal ILC controller is consistent with the control
constraints, the anti-windup compensator will ensure that the
behaviour of the nominal ILC controller is eventually recovered.

I. INTRODUCTION
Iterative learning control (ILC) has evolved for application

to systems that make repeated executions of the same task
over a finite duration, and once complete, resetting to the
starting location occurs. Each execution is known as a trial
in the literature, and the duration is known as the trial
length. This form of control can also be applied to a system
where a trial is completed, and a stoppage occurs before the
subsequent trial begins.

Once a trial is complete, all information generated, i.e.,
state, input, and output, is available for use in updating the
control law at any instant to be applied on the subsequent
trial. In ILC, it is the control input that is updated. The
introduction of this form of control action is widely credited
to [1]. This first work was inspired by robotic applications,
where, e.g., pick and place operations are one application. In
such operations, the task is to collect a sequence of items,
in turn, from a fixed location, transfer each of them over a
finite duration, place each of them on a moving conveyor
and then return to the starting location, and so on.

Suppose that a reference trajectory is available. Then the
error on each trial is the difference between this trajectory
and the trial output, leading to an error sequence indexed by
trial number. The control design problem is to ensure that this
sequence converges in the trial number, ideally to zero or, in
practical applications, to within some tolerance specified in
terms of the norm on the underlying function space.

The design of ILC laws has seen application in a range
of problems, e.g., printing systems [2], additive manufactur-
ing [3], free-electron lasers [4], center-articulated industrial
vehicles [5], and robotic-assisted stroke rehabilitation [6].
See also the survey papers [7], [8].

Most popular ILC algorithms assume an underlying lin-
earity in both the system to be controlled and the controller.
However, as with other types of control system they have
to operate in environments where actuation is limited, and,
not surprisingly, they are liable to suffer from performance
degradation if actuator saturation occurs. Consequently a
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number of papers have investigated constrained control
techniques for ILC systems - see for example [9], [10],
[11]. While these approaches show some promise, none
follow the anti-windup paradigm which is used extensively
in conventional (non-learning) control systems.

The advantage of the anti-windup approach to handling
actuator constraints is that it enables a so-called nominal con-
troller to be designed, ignoring control constraints, and then,
in a second step an anti-windup compensator is designed to
assist the nominal one when actuator saturation occurs. In
this way, all the properties of the nominal control system
are preserved unless saturation is encountered. The anti-
windup approach is rather standard in control engineering,
but traditionally has been implemented without stability
considerations. See [12], [13], [14], [15], [16] for further
discussion for 1D systems.

For the past two decades, an appealing approach to the
anti-windup problem has been to decouple the system into
a nominal linear part and an additional nonlinear part,
featuring the effects of the saturation nonlinearity and the
anti-windup compensator dynamics [17], [18]. One can then
see that if the baseline controller has been designed so
that the system functions well in the absence of saturation,
then the anti-windup compensator can be designed in a
separate stage, with the goal solely to retain stability and
limit performance degradation during periods of saturation.
This approach is fairly straightforward for 1D linear systems,
and some extensions have been made for certain classes of
nonlinear 1D system, [19], [20]. The goal in this paper is to
provide similar AW approaches for ILC systems.

A. Preliminary results on saturation

For simplicity, the standard element-wise saturation func-
tion is considered throughout this paper:

sat[u] = [sat1[u1] . . . satm[um]]
′ (1)

where sati[ui] = sign(ui)min{|ui|, ūi} and ūi > 0 is the sat-
uration limit in the i’th channel. The complement of the
saturation function is the deadzone, defined using the identity

u = sat[u]+Dz[u] (2)

Let σi[·] be the i’th element of either the saturation or the
deadzone functions. It is well-known (e.g. [20]) that both
functions are slope restricted; that is

0≤ σi[u1]−σi[u2]

u1−u2
≤ 1 ∀u1,u2 6= u1 ∈ R (3)

The following well-known fact is useful for slope-restricted
nonlinearities and will be used to prove the main results.

Fact 1: Assume σ [u] : Rm 7→Rm is a decentralised slope-
restricted function in the sense that inequality (3) holds for
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each of its elements. Then for all positive definite diagonal
matrices W ∈ Dm

+, the following inequality holds(
σ [u]−σ [v]

)′W(u− v−σ [u]+σ [v]
)
≥ 0 ∀u,v ∈ Rm

II. PROBLEM FORMULATION

Consider the discrete-plant

ΣP ∼
{

xk(p+1) = Axk(p)+Bνk(p)
yk(p) = Cxk(p) xk(0) = x0 ∀k (4)

where p∈ {0,1,N−1} is the time index and k≥ 0 is the trial
index. xk(p)∈Rn is the plant state at time p, trial k, yk(p)∈
Rny is the output which must track a profile yref(p) ∈ Rny

and νk(p)∈Rm is the plant input. The following assumption
is made throughout.

Assumption 1: The plant ΣP is such that for some r < n,

CAr−1B 6= 0, CAiB = 0 i = {1,2, . . . ,r−2} (5)
Similar to [21], the following ILC control law is considered.

uk(p) = unom
k (p)− v[1]k (p) (6)

unom
k (p) = unom

k−1(p)+K1(x̂k(p)− x̂k−1(p))+K2ek−1(p+ r)
(7)

where K1 and K2 are the controller gains, x̂k(p) represents
the state-estimate, ek(p) the tracking error (defined below)
and v[1]k (p) is a signal whose role will be defined shortly.
The estimated state is generated by the observer

ΣO ∼
{

x̂k(p+1) = (A−LC)x̂k(p)+Bunom
k (p)

+L
(
yk(p)+ v[2]k (p)

) (8)

where L is the observer gain and again v[2]k (p) is a signal
whose role will be clarified shortly.

The reference tracking error is given by

ek(p) = yre f (p)− yk(p) (9)

The evolution of this error over k trials is given by

ek+1(p) = ek(p)−
(
yk+1(p)− yk(p)

)
(10)

A. Nominal linear dynamics
The system is said to be nominal when no saturation

is present at the plant input, and hence no anti-windup
compensator is required to be active. This corresponds to
the interconnection conditions

νk(p) = uk(p)
v[1]k (p) = 0
v[2]k (p) = 0

(11)

Defining  ξk+1(p) = xk+1(p)− xk(p)
ξ̃k+1(p) = x̃k+1(p)− x̃k(p)
ēk(p) = ek(p+ r)

(12)

where x̃k(p) = xk(p)− x̂k(p), the dynamics of the system
(4),(6),(7),(8),(10) and (11) can be written as in equation (13)
above, where Assumption 1 has been used. The dynamics

(13) are to be kept in mind for the subsequent development
and the reader’s attention is drawn to the following equivalent
representation of the control law (6) when saturation is
absent

uk(p) = uk−1(p)+K1(ξk(p)− ξ̃k−1(p))+K2ēk−1(p) (14)

Since equation (13) is a linear system, K1, K2 and L can be
designed such that it is exponentially stable and such that the
error ēk(p) converges to zero exponentially. The following
assumption [22] is therefore made.

Assumption 2: The dynamics (13) are exponentially sta-
ble; that is there exist real numbers κ > 0 and λ ∈ (0,1) such
that

‖ξk(p)‖2+‖ξ̃k(p)‖2+‖ēk(p)‖2≤κλ
k+p ∀ξk, ξ̃k ∈ Rn, ēk ∈ Rny

(15)

B. Dynamics with input saturation
When the system contains input saturation, the dynamics

become nonlinear and can lead to severe performance and
stability degradation. To temper this degradation, an anti-
windup compensator similar to that used in 1D anti-windup
compensation is used (see e.g. [18]). In this case the inter-
connection conditions become

νk(p) = sat[uk(p)]
v[1]k (p) = Fwk(p)
v[2]k (p) = Cwk(p)

(16)

where the signal wk(p)∈Rn is the anti-windup compensator
state vector. The first condition of (16) captures the presence
of saturation with the remaining two dictating how the anti-
windup compensator exerts its influence on the system. The
anti-windup compensator has the typical property that it
is not active unless the control signal uk(p) exceeds the
saturation values i.e. Dz[uk(p] 6= 0 only when the saturation
bounds ūi are exceeded.

ΣA ∼
{

wk(p+1) = (A+BF)wk(p)+BDz[uk(p)] (17)

The same form of control signal (6) is used but in this case
v[1]k (p) may not be zero, and the nominal control signal (7)
is replaced with

unom
k (p) = unom

k−1(p)+K1(x̂k(p)− x̂k−1(p))+K2ẽk−1(p+ r)
(18)

This has an identical form to the control law generated by
the linear system without saturation (equation (7)), except
that error ek(p) is replaced by the modified tracking error,

ẽk(p) := yre f (p)− (yk(p)+Cwk(p)) (19)

meaning that the relationship between this and the original
error ek(p), in equation (9), is

ek(p) = ẽk(p)+Cwk(p) (20)

This modified tracking error is introduced to assist the
development of the forthcoming stability proofs.



ξk+1(p+1)
ξ̃k+1(p+1)
αk+1(p+1)

ěk+1(p)

=

 A+BK1 −BK1 0 BK2
0 A−LC 0 0
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−CAr−1(A+BK1) CAr−1BK1 0 I−CAr−1BK2
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ξk+1(p+1)
ξ̃k+1(p+1)

ěk+1(p)

=

 A+BK1 −BK1 BK2
0 (A−LC) 0

CAr−1(A+BK1) CAr−1BK1 I +CAr−1BK2

ξk+1(p)
ξ̃k+1(p)
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 (33)

αk+1(p+1) = (A+BF)αk+1(p)+Bφk+1 (34)

Remark 1:
• The anti-windup dynamics are identical to the 1D full-
order anti-windup compensator case [18]: in particular, the
compensator becomes active, on trial k, if the control signal
on that trial exceeds the saturation bounds.
• A crucial element of the anti-windup approach is the
concept of the nominal control signal defined in (18). This
has an identical form to the linear nominal control law (see
also (6)). It will be shown that a return to nominal “un-
saturated” behaviour will occur if (and only if) the nominal
control signal unom

k (p) eventually lies within the control
bounds. Under these conditions, the error (10) will then
converge to zero, although not necessarily exponentially. �

Similar to the case of 1D systems (see [17], [14],
[19]) it is illuminating to write the closed-loop dynamics
(4),(6),(8),(16),(17), and (18) in a different set of coordinates
to emphasize the decoupling offered by the anti-windup
compensator (17).{

w̃k(p) = xk(p)+wk(p)
x̃k(p) = xk(p)+wk(p)− x̂p
wk(p) = wk(p)

(21)

After lengthy algebra, the dynamics can be re-written as

w̃k(p+1) =(A+BK1)w̃k(p)−BK1x̃k(p)+Bunom
k−1(p)

+BK2ẽk−1(p+ r)−BK1w̃k−1(p)+BK1x̃k−1(p)
(22)

x̃k(p+1) =(A−LC)x̃k(p) (23)
wk(p+1) =(A+BF)wk(p)+BDz[uk(p)] (24)

A further change of coordinates, similar to the linear case
([21]), is also defined ξk+1(p) = w̃k+1(p)− w̃k(p)

ξ̃k+1(p) = x̃k+1(p)− x̃k(p)
ěk(p) = ẽk(p+ r)

(25)

and an extra change of coordinates is defined for the trial-
to-trial difference in anti-windup compensator state:

αk+1(p) = wk+1(p)−wk(p) (26)

Using the coordinate transformations above, and the dynam-
ics (22)-(24), after some algebra it follows that

ξk+1(p+1) = (A+BK1)ξk+1(p)−BKξk+1(p)+BK2ěk(p)
(27)

ξ̃k+1(p+1) = (A−LC)ξ̃k+1(p) (28)
αk+1(p+1) = (A+BF)αk+1(p)+Bφk+1(p) (29)

where φk+1(p) := Dz[uk+1(p)]−Dz[uk(p)]. Note also, that
the dynamics of ěk(p) can be written as

ěk+1(p) = yre f (p+ r)−Cw̃k(p+ r) (30)
= ěk(p)−Cξk+1(p+ r) (31)

meaning that the dynamics of the closed-loop system with
input saturation and anti-windup can be written as in equation
(32) above. Note further that the states ξk(p), ξ̃k(p) and ěk(p)
evolve independently of both αk(p) and φk(p). Therefore, it
is possible to decouple the dynamics (32) into (33) and (34).

Finally, observe that the dynamics (33) have exactly the
same form as equation (13) i.e. the nominal linear system
dynamics. Therefore, by Assumption 2, it follows that

‖ěk+1‖2 +‖ξk+1(p)‖2 +‖ξ̃k+1(p)‖2 ≤ κλ
k+p (35)

for some κ > 0 and λ ∈ (0,1). Therefore, the system (33)-
(34) will be stable if the dynamics (34) are stable. Note that
(34) is driven by the output of (33) since the control law (6)
and (18) can be written as

uk+1(p) = unom
k (p)+K1

(
ξk+1(p)− ξ̃k+1(p)

)
+K2ěk(p)−Fwk+1(p) (36)

III. ANTI-WINDUP COMPENSATOR DESIGN

It is assumed throughout that K1,K2 and L have been
designed such that the dynamics (33) are exponentially
stable: Assumption 2. The goal of this section is to give
a procedure for computing the anti-windup gain F such that
the overall system in equation (32) is exponentially stable,
and then to use this result to prove that the “real” error ek(p)
converges asymptotically to zero, under a natural condition:
that the steady state control signal unom

k (p) lies below the
saturation limits for all p > p̄, for some p̄, and all k > k̄−1
for some k̄. This quite logical condition is similar to what
one expects of anti-windup in 1D systems.

To ease the proof of the results, note that equations (33)
and (34), along with the control law (36), may be written as[
ηk+1(p+1)
αk+1(p+1)

ěk+1(p)

]
=

Ā11 0 B̄
0 (A+BF) 0

Ā21 0 Ā22

[ηk+1(p)
αk+1(p)

ěk(p)

]
+

[0
B
0

]
φk+1

(37)
uk+1(p)= unom

k (p)+ K̄1ηk+1(p)+K2ěk(p)−Fwk+1(p)
(38)

where the various matrices and vectors have obvious defi-
nitions. It will also be useful to keep in mind the nominal
control signal can be written as

unom
k+1(p) = unom

k (p)+ K̄1ηk+1(p)+K2ěk(p) (39)

and also that

uk(p) = unom
k (p)−Fwk(p) (40)

The first result establishes conditions ensuring exponential
stability of the origin of system (33)-(34) (and thus (32)).

Proposition 1: Let Assumptions 1 and 2 hold and further
assume there exist matrices Q > 0, U > 0 and diagonal, and



[
ηk+1(p)
αk+1(p)

ěk(p)

]′Ā′11Pη Ā11 + Ā′21Pη Ā21−Pη 0 Ā′11Pη B̄+ Ā′21PeĀ22
? (A+BF)′Pα(A+BF)−Pα 0
? ? Ā′22PeĀ22 + B̄′Pη B̄η −Pe

[ηk+1(p)
αk+1(p)

ěk(p)

]
+2αk+1(p)′(A+BF)′Pα Bφk+1 +φ

′
k+1B′Pα Bφk+1(p)< 0 (44)Ā′11Pη Ā11 + Ā′21Pη Ā21−Pη 0 Ā′11Pη B̄+ Ā′21PeĀ22 K̄′W

? (A+BF)′Pα(A+BF)−Pα 0 (A+BF)′PB−F ′W
? ? Ā′22PeĀ22 + B̄′Pη B̄η −Pe K′2W
? ? ? −2W +B′Pα B

< 0 (45)

Ā′11Pη Ā11 + Ā′21PeĀ21−Pη Ā′11Pη B̄+ Ā′21PeĀ22 0 K̄′W
? Ā′22PeĀ22 + B̄′Pη B̄η −Pe 0 K′2W
? ? (A+BF)′Pα(A+BF)−Pα (A+BF)′PB−F ′W
? ? ? −2W +B′Pα B

< 0 (46)

an unstructured matrix Y such that the following linear matrix
inequality holds[−Q Y ′ QA′+Y ′B′

? −2U UB′
? ? −Q

]
< 0 (41)

Then the origin of system (33)-(34) is exponentially stable
if F = Y Q−1.

Proof: Exponential stability of (33)-(34) is equivalent to
exponential stability of system (37)-(38). Hence consider this
and choose the Vector Lyapunov function:

V (ηk+1(p),αk+1(p), ěk(p)) =[
ηk+1(p)′Pη ηk+1(p)+αk+1(p)′Pα αk+1(p)

ěk(p))′Peěk(p))

]
(42)

where Pi > 0 for i = {η ,α,e}. It follows from the results of
[21], [22] that if

D {V (ηk+1(p),αk+1(p), ěk(p))}<
− c3(‖ηk+1(p)‖2 +‖αk+1(p)‖2 +‖ěk(p)‖2) (43)

where D(·) represents the divergence operator, then the
system (37)-(38) will be exponentially stable. First note that
the left hand side of inequality (43) simplifies to inequality
(44) above. Next, because the deadzone nonlinearity is slope
restricted, Fact 1 implies that, for all diagonal matrices
W > 0,

φ
′
k+1W

(
uk+1(p)−uk(p)−φk+1

)
≥ 0

⇔ φ
′
k+1W

(
K̄ηk+1(p)+K2ěk(p)−Fαk+1(p)−φk+1

)
≥ 0

which is a quadratic constraint. Using the S-procedure,
and after some algebra, inequality (44) holds if the matrix
inequality (45) holds; interchanging the second and third
rows/columns, this inequality is equivalent to inequality (46).
Letting Pη = δ P̃η and Pe = δ P̃e, it follows that there always
exists a sufficiently large δ such that inequality (46) holds
if the following two matrix inequalities hold:[

Ā′11P̃η Ā11 + Ā′21P̃eĀ21− P̃η Ā′11P̃η B̄+ Ā′21P̃eĀ22
? Ā′22P̃eĀ22 + B̄′P̃η B̄η − P̃e

]
< 0

(47)[
(A+BF)′Pα(A+BF)−Pα (A+BF)′PB−F ′W

? −2W +B′Pα B

]
< 0

(48)

The first matrix inequality is satisfied by assumption since
(Assumption 2) the nominal closed loop is exponentially
stable. Hence, exponential stability of the system (38) is
achieved if the second inequality holds. The second inequal-
ity holds, via the Schur complement, if−Pα −F ′W (A+BF)′

? −2W B′

? ? −P−1
α

< 0 (49)

Using several congruence transformations and defining Q =
P−1

α , Y = FQ, the LMI in the proposition then follows. ��
Proposition 1 gives a computational procedure to pick

F , and hence design the anti-windup compensator (17),
such that the modified error ěk(p) converges exponentially .
However, from equation (20) the real tracking error is

ek(p) = ẽk(p)+Cwk(p) (50)

Hence, since ẽk(p) exponentially converges, then ek(p) will
also converge if wk(p) converges. The following result gives
conditions which ensure that ek(p) does indeed converge.

Proposition 2: Consider the control signal unom
k (p) and

assume that there exists integers k̄ > 0 and p̄ > 0 such that
|unom

k−1(p)| � ū for all k ≥ k̄− 1 and p ≥ p̄. Then, under the
conditions of Proposition 1,

lim
k,p→∞

ek(p) = 0

Proof: From equation (50) it is clear, that since ẽk(p) is ex-
ponentially stable by Proposition 1, it remains to investigate
the convergence of wk(p); that is the state of the anti-windup
compensator. The anti-windup compensator state evolves as

wk(p+1)= (A+BF)wk(p)+BDz[uk(p)] (51)
= (A+BF)wk(p)+B

(
Dz[uk(p)]−Dz[unom

k−1(p)]
)︸ ︷︷ ︸

ψk(p)

+BDz[unom
k−1(p)] (52)

where ψk(p), by Fact 1, is such that

2ψk(p)′W
(
uk(p)−unom

k−1(p)−ψk(p)
)
> 0 (53)

2ψk(p)′W
(
K̄1ηk(p)+K2ěk−1(p)−Fwk(p)−ψk(p)

)
> 0

(54)

Choosing Vk(p) = wk(p)Pα wk(p) as a Lyapunov function,
computing its increment, and adding the quadratic constraint
(54) via the S-procedure, gives inequality (55). Now, since
it is assumed there exists a k̄ and p̄ such that

Dz[unom
k (p)] = 0 ∀k > k̄−1, p > p̄



∆pVk(p)≤
[

wk(p)
ψk(p)

]′ [
(A+BF)′Pα(A+BF)−Pα (A+BF)′Pα B−F ′W

? B′Pα B−2W

][
wk(p)
ψk(p)

]
+2wk(p)′(A+BF)′Pα BDz[unom

k (p)]+2ψk(p)′W
(
K̄1ηk(p)+K2ěk−1(p)

)
(55)

then it follows from this and the matrix inequality in Propo-
sition 1 that there exist constants c1,c2 > 0 such that

∆pVk(p)≤−c1‖wk(p)‖2 + c2(‖ηk(p)‖2 +‖ěk−1(p)‖2)

∀k > k̄−1, p > p̄ (56)

Now since ηk(p) and ěk(p) are exponentially convergent
(Assumption 2), from the above inequality it thus follows
Vk(p) is convergent for all k ≥ k̄− 1, p ≥ p̄ and thus that
wk(p) is also convergent eventually. This then implies ek(p)
converges as claimed in the proposition. ��

Proposition 2 ensures that, if the nominal control signal
(that produced by the system with no saturation) eventually
falls to levels within the saturation limits, the error ek(p)
will converge to zero, despite the presence of the constraints.
This condition is reminiscent of the 1D case, where “linear
performance” is recovered asymptotically if, in steady-state,
the nominal control signal lies within the saturation bounds.

Remark 2: The LMI in Proposition 1 is solvable if and
only if the matrix A is Schur; this can be proved using the
Projection Lemma [23]. Again this mirrors the 1D case. If
the matrix A is not Schur, a local version of the anti-windup
problem is solvable, whereby stability only holds with a
certain region of attraction. �

IV. SIMULATION EXAMPLE

The following continuous-time system is considered

Gc(s) = 23.7
s+661.2

(s+0.05)(s+426.7s+1.74×105)
(57)

This system is stable and, when discretized, the “A” matrix
is Schur. The system was discretized using the zero-order
hold method with a sample time of 0.01s.

[
A B
C 0

]
=

 0.7855 0.3997 0.2243 0.0312
0.5000 0 0 0

0 0.1250 0 0
0.0261 0.0164 0.0169 0

 (58)

A nominal ILC control system (6) was designed with

L = [0.5437 0.0031 0.0113]′ (59)
K1 = 0.04 [−20.8 −16.9 −6889] K2 = 210 (60)

Without saturation this controller provides good performance
and the error ẽk(p) converges rapidly over trials.

A. Saturated system
For demonstration purposes, the reference depicted by the

dashed line in Figure 2 is considered and it is assumed that
the control signal saturates at ±50 units. Figure 1 shows
the system response (nominal controller with saturation)
over 50 trials. Although at first it appears that the nominal
ILC control is robust to saturation, as the trials continue,
the tracking of the reference actually degrades. For clarity,
Figures 2 and 3 show the output response and the saturated
control signal after 50 trials: observe the poor tracking and
transient periods of rapid oscillation in the control signal.

Fig. 1. Output yk(p) response over 50 trials, with saturated control input
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Fig. 2. Output yk(p) response at trial 50, with saturated control input
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Fig. 3. Saturated control ûk(p) response at trial 50

B. Anti-windup design
An anti-windup compensator of the form (17) was de-

signed using Proposition 1, to try to recover the behaviour of
the un-saturated system as far as possible. However, instead
of solving the LMI (41), the following LMI (61) was solved:

−Q Y ′ 0 QC′ QA′+Y ′B′
? −2U I 0 UB′
? ? −γI 0 0
? ? ? −γI 0
? ? ? ? −Q

< 0 (61)



Fig. 4. Output yk(p) response over 50 trials, with saturated control input
and anti-windup
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Fig. 5. Output yk(p) response at trial 50 with saturation and anti-windup
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Fig. 6. Control uk(p) response at trial 50 with saturation and anti-windup

in the variables Q,Y,U and scalar γ > 0. This LMI guarantees
that (41) is satisfied, but also (in 1D systems) guarantees an
L2 gain bound which measures the deviation from linear
behaviour. This seems to be useful in the ILC context too.

Figure 4 shows the the system output over 50 trials: the
system response gradually converges to the reference as the
trials progress. Again, for clarity, Figures 5 and 6 show the
time histories of the output and control signal at trial 50: the
addition of anti-windup improves both the transient response
in the trials, and also the convergence of the error over trials.

V. CONCLUSION
This paper has proposed an anti-windup algorithm for ILC

systems. The anti-windup compensator has a similar form
to 1D systems and is able to ensure that the error between

the reference and the output converges as k, p→ ∞, despite
the presence of control signal constraints. Currently, the
technique is restricted to stable systems since these systems
are globally null controllable. Extensions to unstable systems
are envisaged but this will require careful translation of local
stability results [15] to 2D systems.
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