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Abstract
Aim: The poleward range expansion of tropical species, and range contraction of tem-
perate species (known as tropicalisation) has mainly been studied from an ecological 
perspective, with little research on its genetic consequences. Here, we used distri-
butional and genetic data to document the consequences of tropicalisation in rocky 
shore gastropods and assess more broadly the future implications of tropicalisation 
on phylogeographic patterns.
Location: Nineteen sampling sites along >3000 km of the eastern Pacific rocky inter-
tidal zone, from the tip of the Baja California Peninsula to southern California.
Taxon: Temperate gastropods: Lottia conus, L. strigatella, Fissurella volcano and Tegula 
gallina.
Tropical gastropods: Fissurella rubropicta, Nerita funiculata and N. scabricosta.
Methods: We determine historical and modern distributions of tropical and temper-
ate species by combining historical records with current field surveys. Using a section 
of the cytochrome oxidase subunit I gene, we utilised comparative phylogeography, 
analysis of molecular variance, FST pairwise comparison, mismatch distributions of 
haplotype differences and neutrality tests to detect genetic signatures of tropicalisa-
tion and to better understand its consequences.
Results: We identified range contractions in two temperate species and range expan-
sion in all three tropical species. We detected genetic signatures of range expansion in 
the tropical species through unimodal distributions of pairwise haplotype differences 
and strongly negative values for the Fu and Li D and F* statistics. We found popula-
tion subdivision and phylogeographic breaks in three temperate species, although the 
geographic location of the breaks differed among species.
Main Conclusions: Genetic signatures and field surveys indicate recent range ex-
pansions in tropical species, supporting tropicalisation along the studied coastline. 
Conversely, we found phylogeographic breaks in temperate species, suggesting 
that tropicalisation may cause genetic erosion of evolutionary distinct lineages with 
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1  |  INTRODUC TION

Tropicalisation is characterised by the poleward range expansion of 
tropical species combined with contraction of temperate species 
(Vergés et al., 2014, 2016; Wernberg et al., 2012) and is occurring 
in marine ecosystems at mid- to low-latitude biogeographic transi-
tion regions (Horta e Costa et al., 2014). Until recently, tropicalisa-
tion has mostly been studied from an ecological perspective, with a 
focus on interspecific interactions, particularly changes in herbivory 
(Kumagai et al., 2018; Vergés et al., 2016; Zarzyczny et al., 2022) and 
consequent phase-shifts (Peleg et al., 2020; Vergés et al., 2019). For 
example, studies of intertidal ecosystems have shown shifts from 
saltmarshes to mangrove-dominated ecosystems (Guo et al., 2017) 
and changes in species composition on rocky shores (Hawkins 
et al., 2009; Mieszkowska et al., 2021). However, few studies have 
addressed the genetic consequences of tropicalisation (but see 
Arenas et al., 2012; Coleman et al., 2020; Fifer et al., 2022; Gurgel 
et al., 2020). Unravelling the genetic composition of expanding 
tropical or contracting temperate populations has the potential to 
advance our understanding of how species may respond to continu-
ing warming (e.g. species ability to adapt and acclimate to future 
conditions) and how their distributions may ultimately be affected. 
However, to our knowledge, no studies simultaneously investigate 
the genetic consequences of both range expanding and contracting 
species in a region undergoing tropicalisation.

Drawing from phylogeography and tropicalisation studies, we 
can unravel at least two general predictions regarding the effects of 
tropicalisation. First, for phylogeographic structure to exist, barriers 
to gene flow between populations must remain in place over many 
generations (Avise, 1987). Tropicalisation is expected to result in 
communities that consist of a mix of recently expanded species that 
have tropical origins and resident temperate species that have a long 
history of occupying the region undergoing tropicalisation (Horta e 
Costa et al., 2014). As a result, we predict that temperate species in 
a region undergoing tropicalisation are more likely to exhibit phylo-
geographic breaks (Zink et al., 2001) as temperate populations would 
have more time to be subjected to any barriers to gene flow than ex-
panding tropical species (Edwards et al., 2022; Fenberg et al., 2014; 
Riddle et al., 2000). Furthermore, such temperate species exhibiting 
phylogeographic breaks may be at risk of losing unique genetic di-
versity as their ranges contract in response to contemporary climate 
change (Fenberg et al., 2014).

Second, populations of recently expanded tropical species have 
had less time to be subjected to historical barriers to gene flow 

within the region of expansion (Zink et al., 2001). As such they are 
less likely to exhibit deep phylogeographic breaks in the region of 
tropicalisation, instead being more likely to exhibit genetic evidence 
of range expansions (Domínguez et al., 2023; Excoffier, 2004). Range 
expansions are often characterised by founder effects, where a lim-
ited number of individuals from a source population establish a new 
population with only a subset of original genetic diversity (Slatkin 
& Excoffier, 2012). This process decreases genetic diversity at the 
leading edge of the species range compared to populations at the 
range centre (Slatkin & Excoffier, 2012). Given the impact of founder 
effects, genetic diversity and the number of unique haplotypes 
within the expanded range of tropical species should be relatively 
low (Slatkin & Excoffier, 2012) unless sufficient gene flow between 
the source and the range-expanding populations persists (Ramos 
et al., 2018). For example, a range-expanding gastropod, shows 
reduced genetic diversity in its recently expanded range (Fenberg 
et al., 2014). However, to our knowledge, such pattern of reduced 
genetic diversity has not yet been observed in tropical, recently 
range-expanding species. We therefore predict that tropical species 
will not display phylogeographic breaks but may show evidence of 
reduced genetic diversity in the recently expanded range.

Here, we focused on temperate and tropical grazing gastropods 
that are co-distributed along a rocky coastline undergoing tropi-
calisation. To this end, it is helpful to focus on a single taxonomic 
and functional group with broadly similar dispersal capabilities, 
living within the same habitat and region. This removes potential 
confounding factors such as depth, substrate type, and broad scale 
factors such as regional oceanography. We used comparative phylo-
geography combined with multi-species historical records from the 
literature, museum collections, and field surveys to understand how 
tropicalisation influences the distribution of genetic diversity in a 
transition between tropical and temperate ecoregions. Specifically, 
we tested for the presence of phylogeographic breaks in four tem-
perate and three tropical species and for genetic signatures of re-
cent range expansion in the tropical species. We were particularly 
interested in unravelling whether temperate gastropods are at risk 
of the genetic erosion of evolutionary distinct lineages and whether 
tropicalisation leaves a genetic footprint on tropical species. We 
predicted that temperate gastropods would display phylogeographic 
breaks and structure arising from past vicariant events and the vari-
able physical environment of the peninsula. In addition, we expected 
that tropical species would not display phylogeographic breaks due 
to their recent expansion into the region but would demonstrate ge-
netic evidence of recent range expansion.

range-contraction. The different locations of the phylogeographic breaks among tem-
perate species suggests that some barriers are species specific.

K E Y W O R D S
biogeographic barriers, Eastern Pacific, Gulf of California, landscape genetics, range shifts, 
rocky shores, tropicalisation
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2  |  MATERIAL S AND METHODS

2.1  |  Study region

The Baja California Peninsula separates the eastern Pacific Ocean 
from the Gulf of California and is a major region of phylogeographic 
research (e.g. Edwards et al., 2022; Lindell et al., 2006; Riddle 
et al., 2000). Its geography, combined with the influence of the 
California Current System (Checkley & Barth, 2009), and coastal 
upwelling (Fenberg et al., 2015; Zaytsev et al., 2003) makes the 
peninsula a temperate-tropical transition region, hosting species 
of both affinities (Lluch-Belda et al., 2003). The peninsula stretches 
across four distinct marine biogeographic regions (Figure 1): the 
Southern California Bight, the Mexican Tropical Pacific on the 
eastern Pacific coast (Blanchette et al., 2008; Fenberg et al., 2015; 
Spalding et al., 2007) and the Northern and Southern Gulf regions 
within the Gulf of California (Riginos & Nachman, 2001). Between 
the Southern California Bight and the Mexican Tropical Pacific is 
a biogeographic transition zone, the Magdalena Transition, where 
the southern range limits of many temperate species (Cavanaugh 
et al., 2019; Reid, 1996) meet the northern range limits of many 
tropical species (Keen, 1971; Reid, 2002). Within this transition re-
gion, several taxa exhibit phylogeographic breaks, including plants 
(Lira-Noriega et al., 2015), mammals (Leaché et al., 2007), reptiles 
(Harrington et al., 2018; Leaché et al., 2007), birds (Zink et al., 1997), 
fish (Riginos, 2005) and invertebrates from terrestrial (Crews & 
Hedin, 2006) and marine (Fenberg et al., 2014; Hurtado et al., 2010; 

Peterson et al., 2013) ecosystems. The mosaic of sandy beaches and 
rocky shores along the coasts of Baja California Peninsula further 
influences the biogeographic structure and species richness gradi-
ent of the rocky shore gastropods (Fenberg & Rivadeneira, 2019). 
Rocky habitat is abundant in the northern portion of the peninsula, 
with sandy beaches forming large gaps along the southern coasts 
(Figure 1) (Fenberg & Rivadeneira, 2019). Areas of significant up-
welling persist along the eastern Pacific coast (Zaytsev et al., 2003) 
and within the Gulf of California (López et al., 2006; Santamaría-
del-Angel et al., 1994; Figure 1). This combination of biogeographic 
structure, climate, habitat availability and oceanography make Baja 
California an exemplar study system for genetic consequences of 
tropicalisation.

2.2  |  Study species

We focused on abundant and co-existing temperate (Lottia conus, 
L. strigatella, Fissurella volcano and Tegula gallina) and tropical 
(Nerita scabricosta, N. funiculata and F. rubropicta) rocky intertidal 
gastropod grazers. We classified species as tropical or temperate 
based on whether the mid-point of their latitudinal distribution 
falls within a temperate or subtropical/tropical region (Fenberg & 
Rivadeneira, 2019). Larval durations for each study species are given 
in Table 1. Based on their respective genera, Lottia spp., Fissurella 
spp. and T. galina are expected to have a lecithotrophic larval type. 
For Nerita spp. the larval type and duration are unclear, with some 

F I G U R E  1  Marine biogeographic 
regions of the Baja California 
Peninsula, adapted from Spalding 
et al. (2007), Fenberg et al. (2015), 
Blanchette et al. (2008) and Riginos 
and Nachman (2001). Low rock cover 
is defined as <20% rock cover per 0.5° 
and is shown for the peninsula only 
(Fenberg & Rivadeneira, 2019). Regions 
of significant upwelling are adapted from 
López et al. (2006), Santamaría-del-Angel 
et al. (1994), and Zaytsev et al. (2003). 
The 19 study sites are marked with 
white rectangles where SD = San 
Diego, PB = Punta Baja, SR = Santa 
Rosalillita, PMSD = Punta Morro Santo 
Domingo, PCP = Punta Caballo de 
Piedra, PCL = Punta Clambey, BA = Bahía 
Asunción, PA = Punta Abreojos, SJ = San 
Juanico, LB = La Bocana, LBR = Las 
Barrancas, BM = Bahía Magdalena, 
PC = Punta Conejo, PMZ = Punta Marquez, 
CP = Cerritos Point, PDC = Pozo de Cota, 
LP = La Paz, AV = Agua Verde, and LG = La 
Gringa. Site coordinates and survey dates 
are listed in Table S1.
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studies suggesting the members of the genus can have short lived 
dispersal (Kano, 2006), and others suggesting they have long dis-
persal potential (Lesoway & Page, 2008; Underwood, 1974). In gen-
eral, more research is required on larval dispersal of tropical eastern 
Pacific gastropods (Fenberg & Rivadeneira, 2019).

2.3  |  Sample and data collection

We collected whole snails from 16 sites on the eastern Pacific coast 
between Pozo de Cota (23.0° N) and San Diego, California (32.7° N) 
between 2017 and 2022. These sites span the three eastern Pacific 
ecoregions (Figure 1). We also sampled three sites in the Gulf of 
California, between La Paz (24.1–24.3° N) and La Gringa (29.1° N). 
Snails were preserved in 70% ethanol in the field and transferred 
to absolute ethanol in the laboratory for processing and storage at 
room temperature.

2.4  |  DNA extraction, amplification and sequencing

We extracted DNA from foot tissue using the DNeasy Blood and 
Tissue Kit following the manufacturer's instructions (Qiagen), apart 
from one minor modification; tissue samples were soaked in UV-
treated Milli-Q water for 30 min, followed by blotting on Kimwipe 
to remove excess liquid prior to using the kit to soften the tissue 
and remove ethanol. For all species, we amplified a fragment of 
Cytochrome Oxidase Subunit I (COI). We chose COI as a genetic 
marker for our study for two reasons. First, as a mitochondrial DNA 
(mtDNA) marker, COI is non-recombining and highly variable in 
comparison to nuclear markers (Ballard & Whitlock, 2004) making 
it useful for distinguishing closely related populations and species. 
Second, COI has been widely used for phylogeographic and popu-
lation genetics studies of marine and terrestrial species within our 
study region (Dawson et al., 2011; Fenberg et al., 2014; Hurtado 
et al., 2007; Riddle et al., 2000). This makes the molecular result of 
our study directly comparable with others from the Baja California 
peninsula, a hotspot of phylogeographic research using COI data 
(Supplementary Material S1). For example, future comparative phy-
logeographic studies can use the commonly calibrated molecular 
clock of COI to infer evolutionary and phylogeographic patterns 
along the peninsula. Furthermore, by focussing on a common marker 
across our study species, we can more clearly compare differences in 
molecular results between temperate and tropical species to detect 
phylogeographic differences without confounding issues, like dif-
ferences in mutation rate across multiple markers. In addition, many 
historical phylogeographic studies in the region relied on mtDNA and 
are now only available as online DNA sequences (i.e. on GenBank). 
These studies can be re-sampled in the future using the same mark-
ers (usually COI) to identify temporal genetic change as tropicalisa-
tion progresses. However, we acknowledge that it is important to 
interpret phylogeographic and population genetics analyses inferred 
from a single genetic marker with caution, as relying solely on a single 

genetic marker increases the likelihood of bias introduced by various 
evolutionary processes (Ballard & Whitlock, 2004).

Primers and optimal PCR conditions varied among the species 
(Tables S2 and S3). PCR amplicons were then cleaned using AppMag 
PCR clean up beads (Appleton Woods) at 1.8× PCR reaction volume 
and sequenced using BigDye 3.1 on an ABI 3730 DNA Analyser 
at the Natural History Museum, London. For T. gallina only, PCR 
products were purified using an ethanol-EDTA precipitation proto-
col, and sequences using BigDye 3.1 on an ABI Analyser 3130xl at 
Louisiana State University.

2.5  |  Establishing historical species ranges

We estimated the historical northern range limits of tropical spe-
cies and the southern limits of temperate species by using museum 
collections (and correspondence with curators) from the Natural 
History Museum of Los Angeles, Global Biodiversity Information 
Facility (GBIF, https:// www. gbif. org/ what- is- gbif), primary lit-
erature searches, books, and historical surveys that include pub-
lished and unpublished data up to 1996 (Keen, 1971; Fenberg & 
Rivadeneira, 2019; L. Groves, personal observations, November 
2022; J. Slapcinsky, personal observations, February 2023; A. Kittle, 
personal observations, March 2023).

2.6  |  Establishing modern species ranges

To determine present-day species' ranges, we surveyed 16 sites 
along the Eastern Pacific coast and three sites within the Gulf of 
California (Figure 1). We estimated the abundance for each spe-
cies through two-hour, exhaustive surveys using semi-quantitative 
SACFOR scale (S = Superabundant, A = Abundant, C = Common, 
F = Frequent, O = Occasional, R = Rare, and not observed). Semi-
quantitative exhaustive surveys allow for rapid abundance assess-
ment over expansive habitats when survey time is restricted (Strong 
& Johnson, 2020). In the case of our study, all surveys were car-
ried out at low tide which restricted each survey to 2 h. Moreover, 
semi-quantitative assessments are thought to be better at detecting 
rare species in comparison to less expansive, quantitative methods 
(Strong & Johnson, 2020). All surveys were conducted between 
September and October 2017, March 2018, and December 2021 
and January 2022.

We used the survey data to determine the modern northern 
range limits for tropical species, and modern southern range limits 
for temperate species. We confirmed modern species identification 
of all sampled species by barcoding a section of mitochondrial COI 
gene and compared the sequenced samples with GenBank (https:// 
www. ncbi. nlm. nih. gov/ genba nk/ ) using Nucleotide BLAST (https:// 
blast. ncbi. nlm. nih. gov/ Blast. cgi). To refine the location of the range 
limits, we assessed independent species entries on iNaturalist 
(https:// www. inatu ralist. org) and GBIF (https:// www. gbif. org/ what- 
is- gbif). We confirmed species identification using the photographs 
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6  |    ZARZYCZNY et al.

associated with the species recording and extracted the latitude and 
longitude data.

To estimate the coastline extent of modern range changes for 
species with reliable historic data, we plotted the historic and mod-
ern range limits (southern range limits for temperate species and 
northern range limits for tropical species) onto the coastal transect 
produced by Fenberg and Rivadeneira (2019). We then calculated 
the coastline distance between historic and modern range limits to 
estimate modern range change.

2.7  |  DNA sequence data analysis

We visually assessed the quality of chromatograms and removed 
poor-quality sequences from the analysis. We used MEGA 11 
(Tamura et al., 2021) to manually align the sequences for each spe-
cies and trimmed non-variable, ragged ends to obtain sequences of 
the same length (634 bp for L. conus, 642 bp for L. strigatella, 632 bp 
for F. volcano, 614 bp for F. rubropicta, 639 bp for T. gallina, 575 bp for 
N. scabricosta, and 624 bp for N. funiculata). The resulting sequences 
(L. conus: n = 142; L. strigatella: n = 120; F. volcano: n = 114; T. gallina: 
n = 157; F. rubropicta; n = 63; N. scabricosta: n = 87; and N. funiculata: 
n = 89; see Table S4 for site details) were used in phylogeographic 
analyses.

We created haplotype networks using R Studio 4.2.0 follow-
ing the workflow and packages from Toparslan et al. (2020). We 
grouped sequences first by collection site, then by northern and 
southern populations as informed by the haplotype network and 
geographic location. We conducted an analysis of molecular vari-
ance (AMOVA) with pairwise differences and 1023 permutations for 
both groupings. When phylogeographic structure was not detected, 
we conducted an AMOVA for site groupings only. For species exhib-
iting significant population differentiation, we conducted a pairwise 
FST comparison using Arlequin (3.5.2.2; Excoffier & Lischer, 2010) 
to determine which sites show population structure. To reduce the 
chances of type I errors, we applied a Bonferroni correction to pair-
wise FST comparisons. Nucleotide diversity and haplotype diversity 
were calculated for all species, across all sites using DnaSP 6.12.03 
(Rozas et al., 2017).

For tropical species, we tested for evidence of a recent range 
expansion using a pairwise differences mismatch distribution anal-
ysis and extracted the Harpending raggedness index in Arlequin. 
Stationary populations are characterised by a multi-modal mis-
match distribution and low raggedness (Harpending, 1994). In 
contrast, a population which has undergone a recent population 
or range expansion is expected to present a smooth, unimodal 
mismatch distribution. To test for signatures of a range expansion 
further, we calculated the sum of squared deviation with 10,000 
bootstrap replicates, between pairwise differences of observed 
and expected distributions under a spatial expansion model as 
described in Excoffier and Lischer (2010). We also conducted 
two neutrality tests; Fu and Li's statistics, D and F* (Fu & Li, 1993; 
Ray et al., 2003), to test if allelic distribution deviates from the 

Wright-Fisher model, as expected for range expanding population, 
in DnaSP (Rozas et al., 2017). We did not test for range expansion in 
temperate species, as we did not obtain samples from the northern 
range limit of those species.

3  |  RESULTS

3.1  |  Species ranges

Comparing our field surveys with historical data revealed a recent 
range contraction of ~144 km in two temperate species: F. volcano 
and T. gallina (Table 1). All three tropical species have recently ex-
panded their ranges north by as much as 480 km in about 50 years 
(Table 1). We also reported new baseline ranges for temperate L. 
conus and L. strigatella, but we are unable to confirm whether these 
species have undergone range contractions due to the absence of 
reliable historical records.

For T. gallina and F. volcano, the range contraction occurred from 
Punta Marquez (24.0° N) to Bahía Magdalena (24.6° N) between 
1996–2022 and 1979–2022, respectively. For tropical species,  
F. rubropicta has expanded northward by ~240 km, from “Lagoon 
Head” (27.9° N–28.1° N) to between Santa Rosalillita and Punta Baja 
(29.23° N) between 1971 and 2022. Nerita scabricosta and N. funicu-
lata have both expanded their northern range limit since the 1970's by 
~288 km from Punta San Hipolito (27.0° N) and ~480 km Punta Santo 
Domingo (26.3° N) respectively, to Punta Caballo de Piedra (27.8° N).

Our surveys and DNA barcoding confirmed the modern south-
ern limit of L. conus as Bahía Magdalena (24.6° N). Simison and 
Lindberg (2003) suggested the range of congeneric L. strigatella at 
the time of their study extended from Sonora (28° N), throughout 
the Gulf of California, and along the eastern Pacific coast, north to 
southern California (no exact location provided). Our field surveys 
and COI barcoding suggested the northern range limit of L. strigatella 
is around Punta Baja (29.6° N), and the southern range limit is Pozo 
de Cota (23.0° N) on the eastern Pacific coast. We did not detect 
any L. strigatella in the Gulf of California, along the studied coast-
line. Although we identified several specimens from San Diego that 
closely resemble L. strigatella, COI sequences confirmed these as 
small morphs of L. limatula and L. austrodigitalis.

3.2  |  Phylogeographic structure of 
temperate species

We found phylogeographic breaks for three of the four temperate 
gastropods (Figure 2). Lottia strigatella and F. volcano both exhibited 
a single phylogeographic break, while L. conus displayed two. Tegula 
gallina was the only temperate gastropod that did not show any evi-
dence of phylogeographic structure.

Lottia conus and L. strigatella displayed a phylogeographic break 
between La Bocana and Bahía Magdalena (~25–26° N), with a sec-
ond phylogeographic break between Punta Baja and Santa Rosalillita 
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    |  7ZARZYCZNY et al.

(~28.6–29.6° N) in L. conus. We also detected a phylogeographic  
break for F. volcano between Punta Baja and San Diego (~29.6–
33.0° N). The populations separated by the phylogeographic breaks 
were significantly differentiated (Table S5; AMOVA, p < 0.001). 
We detected weak (albeit significant, AMOVA, p < 0.010, Table S5) 

subdivision among all eight populations of T. gallina. We also de-
tected significant population differentiation among sites for L. conus, 
L. strigatella and F. volcano (Table S5; AMOVA, p < 0.001).

We detected population structure between the sites for L. conus, 
L. strigatella and F. volcano (Figure 3; Pairwise FST, p < 0.05). We did 

F I G U R E  2  Haplotype networks of four temperate gastropod species, with three showing phylogeographic breaks along the Baja 
California coast. Site codes correspond to Table S1. Sizes of the haplotypes are proportional to the number of individuals. Colours within 
haplotypes correspond to the sites where individuals of that haplotype were sampled where SD = San Diego, PB = Punta Baja, SR = Santa 
Rosalillita, PMSD = Punta Morro Santo Domingo, PCP = Punta Caballo de Piedra, PCL = Punta Clambey, BA = Bahía Asunción, PA = Punta 
Abreojos, SJ = San Juanico, LB = La Bocana, LBR = Las Barrancas, BM = Bahía Magdalena, PC = Punta Conejo, PMZ = Punta Marquez, 
CP = Cerritos Point, PDC = Pozo de Cota. Dashes correspond to the number of mutations separating the haplotypes. The locations of 
phylogeographic breaks are marked with dashed lines on the map. H5 = Haplotype 5 which was closest to the southern haplotypes, yet it 
was found in Punta Baja, in the northern peninsula. LD = larval duration; n = sample size.
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    |  9ZARZYCZNY et al.

not detect any population structure between the sites for T. gallina 
(Figure 3; p > 0.05).

Both nucleotide and haplotype diversity were lower in the 
northern population, compared with the southern population of L. 
strigatella (Figure S1). For L. conus, the nucleotide diversity appears 
to be similar across the north, central and south regions but hap-
lotype diversity is much lower in the north, in comparison to cen-
tral and southern regions (Figure S1). Both F. volcano and T. gallina 
displayed similar nucleotide and haplotype diversity throughout the 
sampled range (Figure S1).

3.3  |  Phylogeographic structure of tropical species

Nerita funiculata and N. scabricosta did not display any obvious phy-
logeographic breaks within the haplotype networks (Figure 4a,b). 
Fissurella rubropicta did not display any deep phylogeographic 
breaks (Figure 4c). However, populations from the two southern 
sites (Cerritos Point and San Juanico) are significantly differenti-
ated from the northern populations (Figure 3; p < 0.05) albeit the 
sample sizes in the two southern sites were low (Table S4). We 
did not detect any population differentiation between the sites 
for N. scabricosta but we did identify weakly significant differen-
tiation for N. funiculata (Table S5; p < 0.05), including significant 
pairwise FST pairwise comparison between Cerritos Point and La 
Paz (Figure 3; p < 0.05).

Given population differentiation for F. rupropicta, mismatch dis-
tribution and neutrality tests were only conducted on the northern 
population of this species. All tropical species showed a unimodal 
distribution of pairwise haplotype differences (Figure 4d), suggest-
ing recent range expansion. The left-skewed mismatch distribution 
for F. rubropicta and N. scabricosta suggests a more recent range ex-
pansion (Harpending, 1994; Jenkins et al., 2018). Additionally, both 
of those species did not display significant sum of squared deviation 
and the raggedness statistic was low for N. scabricosta indicating a 
good fit of the spatial expansion model (p > 0.05; Table 2). The dis-
tribution of the pairwise differences deviated significantly from the 
spatial expansion model for N. funiculata (p < 0.02; Table 2) but the 
raggedness value was low and weakly significant (p < 0.05; Table 2). 
Moreover, the sum of squared deviation value for N. funiculata was 
significantly higher than expected (p < 0.05), displaying a poor fit 
against the spatial expansion model.

Although mismatch distributions and Fu and Li's neutrality tests 
have their limitations (Grant, 2015), together with our survey data 

they can provide collective information on past population dynam-
ics. The allelic distribution for all three tropical species displayed 
significant deviation from the Wright-Fisher model, as determined 
by the Fu and Li's D, and Fu and Li's F* neutrality tests (for both 
Nerita species p < 0.02, for F. rubropicta p < 0.05; Table 2). Moreover, 
all three species presented with strongly negative D and F* statistics, 
suggestive of range expansion (Table 2).

4  |  DISCUSSION

In this study, we assessed phylogeographic patterns of multiple tem-
perate and tropical species in a region undergoing tropicalisation 
and simultaneously investigated the potential genetic consequences 
on range expanding and contracting species. We hypothesised that 
in a region undergoing tropicalisation, temperate species would dis-
play phylogeographic breaks, as they had more time to be subjected 
to any historical barriers to gene flow (Edwards et al., 2022; Fenberg 
et al., 2014; Riddle et al., 2000). Conversely, we expected that range 
expanding tropical species would not exhibit deep population subdi-
vision over the area of expansion as they are less likely to have been 
subjected to historical barriers to gene flow, given their relatively 
short time occupying the region (Zink et al., 2001). Furthermore, we 
predicted that tropical species may exhibit genetic evidence of range 
expansions (Domínguez et al., 2023; Excoffier, 2004).

As hypothesised, we detected deep phylogeographic structure 
for most (three out of four) temperate species but not in any tropi-
cal species. While all three tropical species have recently expanded 
northward, only one (F. rubropicta) revealed a genetic signature of a 
recent range expansion, with the other two maintaining a high level 
of genetic diversity within their recently expanded ranges. Ongoing 
tropicalisation may result in an enhanced risk of the genetic erosion 
of evolutionary distinct lineages of temperate species, but studies 
using more genetic markers are needed. Conversely, the range ex-
pansion of tropical species may not always result in populations pri-
marily characterised by low genetic diversity, especially if dispersal 
ability is high.

4.1  |  Genetic patterns of temperate species and 
future consequences

Under projected carbon emission scenarios, taxa globally are ex-
pected to undergo range shifts or contractions (Alsos et al., 2012; 

F I G U R E  3  A heatmap showing the pairwise FST comparison between populations grouped by the site of sample collection where 
SD = San Diego, PB = Punta Baja, SR = Santa Rosalillita, PMSD = Punta Morro Santo Domingo, PCP = Punta Caballo de Piedra, PCL = Punta 
Clambey, BA = Bahía Asunción, PA = Punta Abreojos, SJ = San Juanico, LB = La Bocana, LBR = Las Barrancas, BM = Bahía Magdalena, 
PC = Punta Conejo, PMZ = Punta Marquez, CP = Cerritos Point, PDC = Pozo de Cota, LP = La Paz, AV = Agua Verde, and LG = La Gringa. The 
blocks are ordered by the order of the sites along the coastline. Dark blue square indicates FST = 1, and white square indicates FST = 0. A cross 
in the square indicates no significant population structure between the two populations, determined by the FST pairwise comparison where 
Bonferroni corrected p > 0.05. Heatmaps were plotted using a modified R script from The Banta Lab (https:// sites. google. com/ site/ theba 
ntalab/ tutor ials).
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10  |    ZARZYCZNY et al.

Cavraro et al., 2023; Sopniewski et al., 2022). Landscape genetic 
analyses of temperate plants show that species exhibiting genetic 
differentiation among populations are more vulnerable to the 
loss of genetic diversity resulting from range contraction (Alsos 
et al., 2012). Consistent with our prediction, the temperate limpets 

L. conus, L. strigatella and F. volcano displayed clear genetic differen-
tiation between northern and southern populations.

The deep phylogeographic breaks identified within the temper-
ate species indicate persistent barriers to gene flow, albeit at dif-
ferent locations for different species. The breaks for L. conus and 

F I G U R E  4  (a–c) Haplotype networks of three tropical gastropod species. Site codes correspond to Table S1. Sizes of the haplotypes are 
proportional to the number of individuals whilst the haplotype colour corresponds to sampled SR = Santa Rosalillita, PMSD = Punta Morro 
Santo Domingo, PCP = Punta Caballo de Piedra, PCL = Punta Clambey, BA = Bahía Asunción, SJ = San Juanico, LB = La Bocana, BM = Bahía 
Magdalena, PMZ = Punta Marquez, CP = Cerritos Point, PDC = Pozo de Cota, LP = La Paz, AV = Agua Verde, and LG = La Gringa. Dashes 
represent the number of mutations separating the haplotypes. LD = larval duration; n = sample size, X = species not detected, R = species 
is rare, ? = presence of the species is uncertain. (d) Mismatch distribution of pairwise haplotype differences for the three tropical species. 
Grey bars depict the observed distribution; red line indicates the expected distribution modelled under spatial expansion as in Excoffier and 
Lischer (2010).
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F. volcano were located north of Punta Eugenia, a mid-peninsular 
break hotspot for several taxa of Baja California (Dolby et al., 2015; 
Riddle et al., 2000). Meanwhile, haplotype 5 of L. conus was closest 
to the southern haplotypes, yet it was found in Punta Baja, in the 
northern peninsula (Figure 2). This outlier haplotype may suggest 
recent gene flow between the northern and southern populations 
or that insufficient time has passed since isolation for the two dis-
tinct haplogroups to sort (You et al., 2022). Meanwhile, the southern 
phylogeographic break for L. conus and L. strigatella coincided with 
the Loreto break, previously documented only for terrestrial species 
(Harrington et al., 2018; Lindell et al., 2005).

The potential causes of barriers to gene flow in this region are a 
source of controversy and debate which extends beyond the scope 
of our study (e.g. Grismer, 2002; Riddle et al., 2000). Here, we focus 
only on upwelling and large habitat gaps as potential barriers to 
gene flow (Fenberg et al., 2015; Knutsen et al., 2022; Krumhansl 
et al., 2023), as these have implications on coastal marine popula-
tions currently experiencing tropicalisation. However, we explore 
historical vicariant events and the phylogeographic patterns of our 
studied gastropods in the Supporting Information (Data S1).

Both upwelling (Fenberg et al., 2015) and large habitat gaps 
(Knutsen et al., 2022; Krumhansl et al., 2023) can create barriers to 
larval dispersal. Habitat availability and fragmentation affect dispersal 
success of plants and animals and consequently influence genetic di-
versity (Gibbs, 2001; Wort et al., 2019). However, rocky shore habitats 
for L. conus and F. volcano are abundant where the phylogeographic 
breaks occur (Figure 1; Fenberg & Rivadeneira, 2019), suggesting that 
habitat gaps are not responsible for the population structuring we see 
in these species. The phylogeographic pattern may be better explained 
by strong upwelling in this region (Figure 1), as associated offshore 
flow could transport planktonic larvae away from the coast (Menge 
& Menge, 2013), thus preventing larval dispersal alongshore (Zaytsev 
et al., 2003). For example, on the Gulf side of the peninsula, phylogeo-
graphic breaks of coastal fish and molluscs are associated with upwell-
ing near Bahía de Los Angeles (~29° N) (Deng & Hazel, 2010; Riginos & 

Nachman, 2001). Strong upwelling also occurs both north and south 
of Punta Baja (Figure 1), with both upwelling zones coinciding with the 
phylogeographic breaks. As gene flow persists between Punta Baja 
and southern sites for F. volcano, the larvae of this species can cross the 
upwelling region, south of Punta Baja. It is unclear whether the larger 
upwelling region located between San Diego and Punta Baja is acting 
as a barrier to gene flow for F. volcano. However, for upwelling to create 
a barrier to dispersal, the timing of larval release and seasonal patterns 
of upwelling would need to coincide—which is currently unknown for 
our studied species.

Tegula gallina did not show any evidence of phylogeographic 
structure (Figure 2). As we were unable to obtain T. gallina samples 
north of Punta Baja, we cannot exclude the presence of a phylogeo-
graphic break coinciding with that of F. volcano. However, given the 
consistently high haplotype diversity (Figure S1), the lack of popula-
tion structure between sites, and the highly complex haplotype net-
work (Figure 2), we do not expect the presence of a phylogeographic 
break in this species along the Baja Peninsula. The geographic origin 
of T. gallina is unknown but its sister species T. rugosa is geograph-
ically restricted to the warmer Gulf waters (Hellberg et al., 2012). 
Thus, T. gallina may not be a truly temperate species. A better un-
derstanding of the evolutionary history of this species, and its fossil 
record, are needed to test this hypothesis. Alternatively, high genetic 
diversity and absence of population structure in T. gallina could be 
attributed to its high abundance and large population size, as has 
been suggested for other taxa (e.g. Williams & Benzie, 1996). Tegula 
gallina was very abundant at the sites where we confirmed its pres-
ence, more so than any other species. Large populations can harbour 
more genetic variation than small ones and take longer to sort vari-
ation between populations should they become isolated (Lande & 
Barrowclough, 1987).

Many rocky shore gastropods, including T. gallina and F. vol-
cano, have undergone a contraction at the southern end of their 
range in recent decades (this study, Table 1; Hawkins et al., 2009; 
Mieszkowska et al., 2021), although whether this is true for L. conus, 

Species
Fissurella 
rubropicta Nerita funiculata Nerita scabricosta

Population Northern group Entire sampled range Entire sampled range

n 49 89 86

Neutrality tests

Fu and Li's D test −3.01012* −3.80294** −3.45463**

Fu and Li's F* test −3.04517* −3.67367** −3.47352**

Spatial expansion

Rag 0.59498 NS 0.01469* 0.00845 NS

SSD 0.00011 NS 0.00263** 0.00233 NS

Note: Raggedness index (Rag) and sum of square deviations (SSD) were conducted with 10,000 
boot replicates between the observed and expected mismatch distributions, under a spatial 
expansion model. Not significant (NS) Rag and SSD indicate a good fit of the observed values to the 
spatial expansion model.
Abbreviation: NS, not significant.
*p < 0.05; **p < 0.02.

TA B L E  2  Fu and Li's D and F* statistics 
show the allelic distributions of the three 
tropical species deviate from the Wright-
Fisher model.

 13652699, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jbi.14744 by T

est, W
iley O

nline L
ibrary on [20/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12  |    ZARZYCZNY et al.

and L. strigatella is not known due to the absence of reliable histori-
cal species records. The southern populations of temperate species 
displaying phylogeographic breaks may be at risk of genetic erosion 
as tropicalisation progresses. If significant range contraction occurs, 
unique genetic diversity held by the southern populations may be 
lost unless gene flow between the populations to either side of phy-
logenetic breaks resumes. Such risk is more apparent for L. conus 
which experiences two phylogeographic breaks, with one break 
close to its southern range limit at Bahía Magdalena. The second 
phylogeographic break for L. conus, and the breaks for L. strigatella 
and F. volcano occur further north on the peninsula and would re-
quire a range contraction of 4–5° in latitude for significant genetic 
erosion to occur. As T. gallina does not display a phylogeographic 
break, it is unlikely to be affected. Genetic erosion could occur as 
a direct effect of thermal stress, where genetically unique popula-
tions became locally extinct as they are unable to cross barriers to 
dispersal (Buonomo et al., 2018). On the other hand, genetic erosion 
could also occur due to altered interspecific interactions. For exam-
ple, range expanding tropical predators can exert strong selection 
pressure on naïve prey (Fenberg et al., 2023; Ingeman, 2016) and can 
cause local extinction of prey populations.

While mtDNA is mostly neutrally evolving (Ballard & 
Whitlock, 2004), some evidence suggests COI can harbour adaptive 
variation (Little et al., 2018) and may experience natural selection 
(Ballard & Kreitman, 1995). Although caution is necessary when infer-
ring population genetic patterns from a single genetic marker (Ballard 
& Whitlock, 2004), patterns revealed by COI are frequently reflected 
within other (including nuclear) genetic markers (Avise, 1994; Zink & 
Barrowclough, 2008). Most temperate gastropods displayed phylo-
geographic breaks, and some species showed greater genetic diver-
sity in the southern portions of their range (Figure S1). If this pattern 
of genetic diversity is reflected by other genetic markers, tropicalisa-
tion may have evolutionary consequences in the future. High genetic 
diversity facilitates the resilience of populations facing disturbances 
by enhancing the adaptive potential (Wernberg et al., 2018). Such 
adaptive potential is particularly important for ecosystem resilience 
against the effects of climate change and increasing environmental 
stress (Hughes & Stachowicz, 2004; Wernberg et al., 2018). Our 
study suggests that as tropicalisation progresses, loss of genetic di-
versity could lead to reduced evolutionary potential, leaving popula-
tions of temperate species more vulnerable to future environmental 
stressors (Nicastro et al., 2013; Wernberg et al., 2018). Thus, the con-
servation of high diversity populations of temperate species should 
be a priority for the management of regions undergoing tropicalisa-
tion. However, more studies using multi-loci approaches should be 
utilised to support our findings.

4.2  |  Genetic patterns of tropical species

We detected no strong phylogeographic breaks (Figure 4a–c) and 
found evidence of range expansions in all three species using field 
studies and genetic evidence for one species. This suggests that 

there are few modern barriers to gene flow for these species within 
our study region. This also suggests that continued range expansion 
could be rapid as tropicalisation progresses.

While there are no deep breaks in any of the tropical species, 
F. rubropicta showed some phylogeographic structure, separating 
northern and southern haplogroups by only two mutational differ-
ences (Figure 4c). The northern haplogroup is dominated by a single 
haplotype, which is a likely result of a stepwise range expansion and 
localised dispersal around Bahía Asunción (Figure 4c). The southern 
haplogroup appears to have low genetic diversity but this may be an 
artefact of the low sample size in the south (n = 14), in comparison to 
the north (n = 49; Figure 4c; Table S4). This low sample size can be 
attributed to the patchy distribution of this species in the southern 
portion of the peninsula (Figure 4c), which may be related to the low 
habitat availability in the south (Figure 1). Meanwhile, both Nerita 
species exhibited a greater number of haplotypes in comparison to 
F. rubropicta, which could be attributed to greater larval dispersal 
potential and higher population abundances in comparison to F. ru-
bropicta, but more research on larval development of the Nerita spe-
cies is required (Table 1).

Range expansions are typically expected to result in reduced 
genetic diversity at a species' leading range margin (Domínguez 
et al., 2023; Pujol & Pannell, 2008), which has been widely observed 
in many taxa (usually as a result post-glacial range expansion), includ-
ing flowering plants (Ehrich et al., 2007; Pujol & Pannell, 2008), sea 
snakes (Lukoschek et al., 2007), crabs (Deli et al., 2019) and snails 
(Hellberg et al., 2001). Using this logic, we would expect range ex-
panding populations of tropical species with low diversity to even-
tually replace genetically unique populations of temperate species 
within regions undergoing tropicalisation. Our results provide equiv-
ocal support for this hypothesis, with one tropical species having rel-
atively low genetic diversity at its leading edge (for F. rubropicta the 
newly occupied sites Punta Caballo de Piedra, Punta Morro Santo 
Domingo and Santa Rosalillita are largely dominated by a single hap-
lotype) and the other two not showing a reduction in genetic diver-
sity (N. scabricosta and N. funiculata). In fact, an increasing number 
of studies assessing modern range expansions have not detected a 
reduction in genetic diversity within the new range. For example, 
microsatellite analysis of a range expanding damselfly identified 
only a marginal reduction in genetic diversity (Swaegers et al., 2013). 
Similar absence of major reduction in genetic diversity has been ob-
served in European beech populations (Lander et al., 2021) and an 
invasive fish (Bernos et al., 2023).

Colonising species can evade a reduction in genetic diversity 
if high gene flow persists between the source and newly settled 
populations (Wallingford et al., 2020). Species which have avoided 
reduction in genetic diversity during modern-day range expansions 
are often high-dispersing species which are able to maintain gene 
flow to the leading edge of their range (Lander et al., 2021; Swaegers 
et al., 2013). Naturally, dispersal ability is correlated with greater dis-
persal potential which allows species to track climate change and 
thus keep pace if suitable habitat is available (Hughes et al., 2007). 
Therefore, the factors which facilitate range expansion of species, 
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are also the same factors which allows species to maintain high lev-
els of gene flow and thus, allow species to maintain relatively high 
levels of genetic diversity. We suggest that a similar explanation is 
causing the genetic patterns found in N. scabricosta and N. funicu-
lata (Figure 4). It is also likely that both Nerita species experienced a 
sudden spatial expansion during the Pleistocene warming (Hurtado 
et al., 2007) and are now undergoing further range expansion in re-
sponse to current climate change (as supported by our field surveys), 
while maintaining high levels of gene flow in the recently expanded 
range. Furthermore, suitable rocky shore habitat for grazing is plen-
tiful north of their current range limits (Figure 1), indicating that con-
tinued expansion would not be habitat limited.

4.3  |  Conclusions

Marine tropicalisation research has largely focussed on documenting 
species range shifts and its ecological impacts (Kumagai et al., 2018; 
Vergés et al., 2016; Zarzyczny et al., 2022), whereas the potential ge-
netic impacts of tropicalisation have not yet been well studied. Here, 
we used a comparative phylogeographic approach to highlight that 
ongoing tropicalisation may lead to erosion of genetic diversity within 
southern haplogroups of temperate species as their ranges contract 
in response to climate change. Conversely, tropical range expanding 
species can maintain relatively high levels of genetic diversity, pos-
sibly due to higher dispersal capabilities. However, to fully capture 
the potential genetic consequences of tropicalisation, we highlight 
the need for (i) greater understanding of the ecological and biological 
factors that affect tropical versus temperate species dispersal in tran-
sition regions, and (ii) the assessment of modern gene flow rates by 
assessing single-nucleotide polymorphisms and multi-locus studies.
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