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Abstract

Simulations of urban environments can have substantial benefits to public safety. This
can be in scenarios of danger assessment such as those related to the release of chem-
ical and biological hazards. The currently used simple, semi-analytical models have
trouble predicting realistic cases and hence require accurate aerodynamic simulations.
LBM is used here since it produces high-fidelity simulations within a reasonable
timescale. The LBM code is currently being developed based on the AMROC frame-
work, which uses adaptive mesh refinement. Simulations have been conducted on
cube configurations at various Reynolds numbers to simulate flow around buildings.
The results show that the solver with adaptive mesh refinement can be used to effi-
ciently solve atmospheric problems.
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1 Introduction

High-fidelity, unsteady aerodynamic simulations can help substantially in hazard pre-
dictions of urban environmental safety. The prediction for atmospheric dispersion can
come in the form of chemical, nuclear, or biological hazards. Examples could be an
accidental release from nuclear installations or petrochemical plants [1]. In scenarios
such as these hazard prediction within minutes or hours can become very useful in
preventing harm to public health. Many regulatory bodies from countries around the
world employ atmospheric dispersion models (ADM) to safeguard against and predict
these threats. The methods employed currently consider the source information and
the topography to portray the dispersion process but do not capture the full physics of
the turbulent behaviour required for a truly realistic, accurate assessment with detailed
time-dependent simulations [2, 3].

The current and most common method used by the industry and many of the reg-
ulatory bodies include the Gaussian models. These models – while fast – have many
weaknesses and limitations with regard to producing realistic cases. Some of these
include their inability to predict near a source, the simplification of turbulence and
meteorological effects, and the lack of accounting for the recirculation from multiple
buildings. These methods also use steady-state assumptions which do not calculate
the travel time of pollutants to receptors [4].

To get around this, more robust methods such as Computational Fluid Dynamics
(CFD) are increasingly used. Large-eddy simulation (LES) is used in these methods to
capture the turbulent dynamics of a problem. Traditional CFD methods can have very
large runtimes when solving large unsteady problems, with some taking days or weeks
to fully resolve all relevant scales. This makes them unrealistic for hazard assessments
which need to be conducted within much shorter timescales such as hours. Therefore,
the Lattice Boltzmann Method (LBM) with adaptive mesh refinement (AMR) is pro-
posed as a quicker solution while still preserving the accuracy provided by traditional
CFD. LBM is readily suited for parallel processing, thus, allowing for quick results.

The LBM code is developed based on the AMROC framework, which was initially
formed for finite volume schemes but was later adapted for the cell-based LBM. It
uses AMR which allows for dynamic local mesh adaptation. It uses a block-based
data structure with non-overlapping rectangular grids. The spatial mesh and time step
get refined by a given factor and these refined blocks overlay coarser ones. To allow
for synchronisation and creating boundary conditions, a layer of halo cells is used [5].

The following section briefly describes the methodology used in achieving disper-
sion simulations using LBM. For the validation cases in Section 3, we consider an
isolated cube in uniform flow and a set of cube arrays to simulate simplified urban
flows in a neutrally stable boundary layer flow [6, 7, 8].
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2 Method

2.1 Lattice Boltzmann Method

The Lattice Boltzmann method (LBM) is a novel approach to CFD. It solves the Boltz-
mann equations instead of the Navier-Stokes equations to produce the required macro-
scopic quantities of interest such as density or velocity. The Boltzmann equation is
defined as

δf(x, ϵ, t)
δt

+ ϵ · ∇f(x, ϵ, t) = Ω
(
(x, ϵ, t)

)
, (1)

where f is the probability distribution function and Ω is the collision operator. The
SRT-BGK model is used within the momentum operator to simulate the flow. The
SRT-BGK is a weakly-compressible isothermal model [9]. This provides us with the
discrete form of the Boltzmann equation as

fi(x + cei∆t, t+∆t) = fi(x, t)−
∆t

τf

(
fi(x, t)− f eq

i (x, t)
)
, (2)

where fi is the partial distribution function and τ is the relaxation parameter. The
solver also incorporates LES to capture the complex turbulent structures present within
urban environments. LES is achieved in LBM by constructing an effective relaxation
parameter locally instead of the standard relaxation parameters through [10]

τeff =
(ν + νt) +

c2s∆t
2

c2s
, (3)

where the eddy viscosity, νt, is defined using a LES model dependent constant, C,
spatial step, ∆ and characteristic time scale, OPLES as,

νt = (C∆)2OPLES (4)

2.2 Adaptive Mesh Refinement

The AMROC framework uses block-structured adaptive mesh refinement (SAMR) to
increase the accuracy of the simulations while maintaining lower computational costs.
The method is modelled after the work of Berger and Collela, which was tailored for
hyperbolic conservation laws on Cartesian meshes [11]. The grids contain a layer
of halo cells for implementing boundary conditions and synchronisation between the
overlying sub-meshes. In the current approach, cells are clustered together into non-
overlapping rectangular grids. A hierarchy of sub-meshes is created recursively as
shown in Fig. 1, where Gl is the domain of an entire level [12].

The relationships of the spatial and temporal widths ∆x and ∆t between the coarser
and finer meshes can be reduced to

∆xc

∆xf

=
∆tc
∆tf

= r, (5)

3



Figure 1: Hierarchy of sub-meshes used within AMR [12].

where c and f relate to the coarser and finer mesh, respectively [13]. r relates to the
refinement factor, which can be set to any positive integer between each refinement
level. The distribution functions of the finer cells are averaged when transitioning
to a coarser cell. Whereas spatial and temporal interpolation is done to create the
distribution functions for the transition from coarser to finer cells. The rescaling of
the distribution functions between the levels is done using the approach described by
Dupius and Chopard [14]. The implementation of AMR within the AMROC frame-
work is detailed in previous works [15, 16].

3 Isolated Cube

The first validation case is based on an isolated cube in uniform flow to represent a
simplified building. This validation is compared to the works of Castro and Robins
[6] and only utilises the momentum operator. The cube has dimensions of h = 2.5m
and is placed on a flat surface with an incoming uniform flow of 3m/s.

Figure 2: Set up image of isolated Cube cases. Case A and Case B represent the
uniform flow and neutrally stable boundary layer flow, respectively [6].

The domain dimensions for the x, y and z planes are set to a value of 28h ×
14h × 26h, respectively. The larger domain size was used to remove the blockage
effects. The centre of the cube is placed at 30h from the inlet and 20h from the
sides. Sponge zones were placed at all domain boundaries except the bottom with a
thickness of 20 cells at the coarsest level, to absorb the pressure fluctuations which
occur at the startup of the simulation. Standard sea-level conditions were assumed
and the boundary conditions for the domain were set to:

• Front: Inlet (uniform velocity profile)
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• Back: Pressure

• Bottom: Symmetry (before cube). No-Slip Wall (after cube)

• Sides and Top: Outlet

The boundary condition on the bottom domain face was set to symmetry to pro-
duce a stress-free region to best simulate a cube in a wind tunnel placed on a false
floor which has negligible boundary layer height before the cube. The boundary con-
dition for the cube itself was set to Bouzidi bounce-back. The domain used 4 levels
of refinement with each having a refinement factor of 2. The simulated pressure co-
efficient from the centre-line of the cube was measured against the experimental data
from case A with the false floor. The experimental data were measured at a Reynolds
number slightly larger than 1 · 105. The blockage ratio experienced in the experiment
was shown to be 1.5%. The simulations were conducted at a lowered Reynolds num-
ber of 2 ·104 with a smaller blockage ratio. The simulations were conducted using 160
processors and required 39.585 h wall clock time to complete.

Figure 3: Domain layout with boundary conditions and sponge zone (yellow) set up
around the cube. Frontal, x/h = 0 (left); Side, z/h = 0 (right)

Figure 4: Mesh setup around cube using adaptive mesh refinement.

The Cp curve for the setup for case A of the isolated cube is shown in Fig. 7. The
pressure coefficient is obtained along the centreline of the cube starting at the bottom
of the front face and ending at the bottom of the back face. As can be seen from the
image, the general trend of the pressure coefficient matches the experimental findings,
however, there are minor shortcomings in particular areas of the Cp curve. The front
face has a Cp value that is marginally higher than that registered in the experiments.

5



The front face Cp curve adheres to the experimental findings much more readily past
this initial point and matches the transition in Cp seen at the leading edge of the top
face. This can even be seen in the velocity images shown previously, where a recir-
culation region is formed in front of the cube in a more circular nature, displacing
the attributes of the horseshoe vortex and sticking closer to the cube. The region past
the leading edge of the top surface is highly Reynolds number dependent and the dif-
ference in the velocity profiles can be attributed to the high Reynolds number, mesh
resolution, and the boundary condition of the cube. A greater agreement was obtained
in the detachment region due to the use of the more complex boundary condition com-
pared to a simple no-slip boundary and a higher resolution. The agreement can be seen
using the mean velocity variation above the cube shown in Fig. 7. It shows that the
minimum value of the velocity close to the wall still does not reach the value achieved
in the experiments. However, the boundary layer height seems to be very close to the
experimental value. The maximum velocity achieved, and the location of the inflection
point is also comparable to the experimental findings, with the simulation returning to
the free-stream velocity at a slightly higher height than in the experimental findings.

Figure 5: Profile view of instantaneous velocity around isolated cube case A. Side,
z/h = 0; (left) Topdown, y/h = 0 (right)

Figure 6: Profile view of mean velocity around isolated cube case A. Side, z/h = 0;
(left) Topdown, y/h = 0 (right)

The back surface seems to display a divergence from the experimental findings. As
mentioned in the literature, the back face is very sensitive to the flow conditions from
the front of the cube. As the boundary condition, that was chosen for the bottom face
of the domain, is not entirely representative of the experiment, the turbulent structures
interacting with the wake are not truly accurate. The lack of refinement further down-
stream in the wake region and the presence of large horseshoe vortices on the sides of
the cube also lead to the discrepancy.
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The simulation as a whole, however, shows a strong agreement and trend with the
experimental findings especially close to the cube. The major regions of difference
are near the recirculation region along the top surface and the wake region, where the
lack of resolution is not able to fully capture all turbulent details.

Figure 7: Simulated (line) vs experimental data (dashed) around isolated cube case A.
Cp curve around centreline (left), Mean velocity variation for centreline at
x/h = 0 (right).

4 DIPLOS Cube Array

The next set of cases was conducted on an array of cubes based on Project DIPLOS
(Dispersion of Localised Releases in a Street Network). The DIPLOS project aimed to
determine the nature of the flow and dispersion process in street networks that contain
localised scalar sources [8].

Figure 8: Top down view of DIPLOS cube array setup.

The simulations of the flow around the cube array were compared to the experi-
mental works such as those shown by Castro et al. [7]. The computational setup for
the simulations considers a small section of the experimental setup. The cubes them-
selves have a dimension of h×2h×h, where h = 70mm. The domain dimensions for
the uniform array case are set to 12h×12h×12h w.r.t the x, y and z planes. The cube
itself has dimensions as detailed in the experiment. Within the domain is an array of
4×6 cubes spaced at one cube length, h, away from each other. The streets are differ-
entiated as ”short streets” which are 1h long and parallel to the x-axis, while the ”long
streets” are 2h long and parallel to the y-axis. The velocity was set to 2m/s with the
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incoming wind direction of 0o. The Reynolds Number was Reτ = uτh/ν ≈ 1000 for
this problem. The domain boundaries were set to be periodic in the x and y planes,
while the top of the domain was set to an outlet and the floor to a no-slip boundary
conditions. The flow itself was then driven using pressure forcing methods, taking into
account the friction velocity stated by the Reynolds number above. The mesh itself
used 3 layers of static refinement with a refinement factor of 2 which encapsulated
the cube layer. The simulations were conducted using 512 processors and required
28.743 h wall clock time to complete.

Figure 9: Instantaneous velocity distribution of DIPLOS case at x = −0.2 (right)
y = −0.1 (left).

Figure 10: Velocity distribution of DIPLOS case at z = 0.05. Instantaneous (left),
averaged (right).

The velocity distribution for the DIPLOS array is shown in Figs. 10 and 9. The
mean velocity profiles are shown in Fig. 11. The profile is obtained by spatially and
temporally averaging the velocity profile. The initial region within the array layer
(below z/h = 1) is more sensitive to the boundary conditions of the cubes and there-
fore the mean velocity curve do not correlate as strongly with the experimental data
as in the region above the array layer. This can be seen in both normalised velocity
curves. The data within the layer above the cube array between 1 < z/h < 4 agrees
far more strongly with the experimental findings than even the LES data when look-
ing at the normalisation with the freestream velocity. This behaviour is not seen in the
profile normalised with the friction velocity, however, this may be due to the method
in which the friction velocity was defined. The profile at the very top of the domain,
nonetheless, still agrees quite well to the experimental findings.
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Figure 11: Mean velocity variation (in space and time) for the DIPLOS cube array
from experimental and comparison. Normalised with freestream velocity
(left) and friction velocity (right).

5 Concluding remarks

This papers described an approach to predicting simplified urban flows using Lattice
Boltzmann Method. The cases conducted on the AMROC framework used a block-
based adaptive mesh refinement alongside LES capabilities to produce an efficient
solver for high-fidelity aerodynamic simulations. Two cases were investigated to sim-
ulate simplified urban flows. The isolated cube in uniform flow and the DIPLOS cube
array were able to show good computational accuracy in comparison to the experi-
mental results. The intricate turbulent structures present within the cases highlight the
need for such a method in producing realistic, unsteady, physics-based cases for works
involving urban flows and hazard predictions.
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