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ABSTRACT

Over the past few decades, advances in digital technolo-
gies have allowed for the development of complex active
control solutions for both vibration and acoustic control
and have been utilised in a wide range of applications.
Such control systems are commonly designed using linear
filters which cannot fully capture the dynamics of nonlin-
ear systems. To overcome such issues, it has previously
been shown that replacing linear controllers with Neural
Networks (NNs) can improve control performance in the
presence of nonlinearities in both the system plant and pri-
mary path. However, the performance of the controller
across excitation levels has not been frequently explored.
Controllers with good performance across a range of ex-
citation levels would be essential in the control of many
real systems. In this paper, a method of training Mul-
tilayer Perceptrons (MLPs) for single-input-single-output
(SISO) feedforward acoustic noise control is presented. In
a simple time-discrete simulation, the performance of the
trained NNs is investigated for different excitation levels.
The effects of the properties of the training data and NN
controller on generalized performance are explored.
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1. INTRODUCTION

Unwanted noise and vibration can be problematic in both
engineering systems and in public and private spaces. Pas-
sive control solutions are capable of effectively eliminat-
ing high frequency components of noise and vibration but
are typically large or heavy, possibly exceeding the de-
sign constraints of a given application. Active control so-
lutions, by contrast, are capable of good control at low
frequencies, and are typically lightweight and small in
size. Historically, feedforward active noise and vibra-
tion control systems have been implemented using linear
control filters and linear plant models, commonly using
the famous FxLMS algorithm. However, it is well un-
derstood that nonlinearities present in either the plant or
primary path of the control system can have a significant
impact on control performance [1–4]. Many approaches
have been proposed to overcome this limitation, including
polynomial, cross-term or trigonometric expansion of the
reference signal [5, 6], genetic algorithms [7] and fuzzy
logic-based methods [8]. A further common approach,
which has been applied to active control over the past few
decades, is the use of machine learning. NNs in particu-
lar are known to possess the property of being ‘universal
approximators’ [9] and are therefore an attractive black-
box method for the modelling and control of unknown
or uncertain nonlinear systems. Many different uses of
NNs have been studied, including plant/system modelling
[4, 10–13], feedforward controller design [4, 10, 14], in-
verse modelling [15], signal prediction and feedback con-
trol [16–20], linear filter selection [21], adaptive param-
eter estimation for linear controllers [20, 22], frequency-
domain control [23], multichannel controller design [24],
and signal classification [25]. The similarity in structure
between NNs and linear filters provides good motivation
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for their use in both system modelling and feedforward
controller design. Inpevious work utilising NNs as feed-
forward controllers, however, it is uncommon to see an
exploration of the ability of the neural networks to gener-
alize across a range of excitation levels of the system in
question. This is clearly a desirable quality in any real im-
plementation of such a control system where the proper-
ties of the excitation, and therefore the effect of the system
nonlinearity, may change over time. In this paper, a time-
discrete simulation of a simple acoustic noise control sys-
tem using an MLP is studied. Section 2 defines the simu-
lation setup, system parameters and simulation method.
Section 3 explains the controller training methodology.
Section 4 presents simulated results in the time and fre-
quency domains. Finally, Section 5 discusses conclusions
and presents possible future research directions.

2. PROBLEM DEFINITION

2.1 Simulated system

The considered system consists of two acoustic sources.
The primary source, which generates the acoustic distur-

bance, is modelled as a damped Duffing oscillator, which
radiates as a monopole acoustic source. The secondary
acoustic source, which generates the cancelling acoustic
signal, is modelled as a simple harmonic oscillator, which
also radiates as a monopole source. Figure 1 shows a dia-
gram of the assumed arrangement.

The displacement of the Duffing oscillator, ya(t), is
caused by the motion of the floor to which it is attached.
The displacement x(t) of this floor is also taken to be the
reference signal passed to the feedforward controller. The
displacement yb(t) of the mass mb is caused by the control
force Fc(t) produced by the controller.

The equations of motion for the total system are

maÿa(t) + kap(t) + kNL
a p3(t) + caṗ(t) = 0 (1)

mbÿb(t) + kbyb(t) + cbẏb(t) + Fc(t) = 0 (2)

where p(t) = ya(t)−x(t) and the remaining variables are
defined in Figure 1. The error signal measured at the error
microphone is given by

e(t) = ya(t− δa) + yb(t− δb) (3)

Figure 1. The simulated two-source system, where ma is the mass of the primary oscillator, mb is the mass
of the secondary oscillator, ya(t) is the displacement of the primary oscillator, yb(t) is the displacement of the
secondary oscillator, x(t) is the displacement of the moving floor, ka is the linear stiffness coefficient of the
primary oscillator, kNL

a is the nonlinear stiffness coefficient of the primary oscillator, kb is the linear stiffness
coefficient of the secondary oscillator, ca is the damping coefficient of the primary oscillator, cb is the damping
coefficient of the secondary oscillator, and Fc(t) is the control force applied to the secondary oscillator.
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where δa and δb are the acoustic delays, in time, between
the primary and secondary sources and the error micro-
phone, respectively. In all cases, the signal x[n] is white
noise which has been passed through a low-pass filter with
a cut-off frequency of 200 Hz.

2.2 Simulation method

The motion of the two masses are simulated in the time
domain using the method of Antippa & Dubois [26]. This
method compares to the Euler method, in which discrete
systems may be simulated in the time domain by calcu-
lating accelerations in the current timestep from displace-
ments and velocities in the previous timesteps, then updat-
ing the velocities in the current timestep from the calcu-
lated accelerations, and displacements from the calculated
velocities. Unfortunately, this method is demonstrably un-

stable even if the system is unforced. Antippa & Dubois
suggested that, by reordering the calculations of acceler-
ation, velocity and displacement, simulation stability can
be improved. For the simulated system here, the accelera-
tions, velocities and displacements of the two masses are
calculated iteratively according to equations (4-9).

ẏa[n] = ẏa[n− 1] + ÿa[n− 1]∆t (4)

ya[n] = ya[n− 1] + ẏa[n]∆t (5)

ẏb[n] = ẏb[n− 1] + ÿb[n− 1]∆t (6)

yb[n] = yb[n− 1] + ẏb[n]∆t (7)

ÿa[n] =
1

ma
(−kap[n]− kNL

a p3[n]− caṗ[n]) (8)

ÿb[n] =
1

mb
(−kbyb[n]− cbẏb[n] + Fc[n]) (9)

Figure 2. The dual-network architecture used to train the controller
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where p[n] = ya[n]− x[n] and ṗ[n] = ẏa[n]− ẋ[n].

3. CONTROLLER DESIGN AND TRAINING

3.1 Controller training architecture

A simplified diagram of the NN architecture used for the
controller training is shown in Figure 2. Similarly to the
case of a linear controller, the NN controller and plant
model each take as input a tapped delay line of x[n] or
u[n], respectively. The plant model output y[n] is linearly
summed with the disturbance signal d[n] to generate the
error signal e[n] which is used to update the weights and
biases of the controller NN via backpropagation through
the full network. Given a tapped delay line of length L of
the reference signal x[n], given by

x[n] =


x[n]

x[n− 1]
...

x[n− L+ 1]

 (10)

the control signal u[n] can be generated by inputting x[n]
to the controller NN. If the NN architecture is that of a
Multilayer Perceptron (MLP) with a single hidden layer,
then the output of the NN is given by

u[n] =
∑
i

wc,o
i hc

i + bc,o (11)

where wc,o
i are the output weights of the NN, bc,o is the

NN output bias, and hc
i are the NN hidden layer node val-

ues, given by

hc
i = σc([Wx[n]]i + bc,hi ) (12)

where W is a matrix of weights between the input layer
and hidden layer, [Wx[n]]i is the ith element of the vector
Wx[n], σc(·) is the nonlinear activation function applied
to the controller hidden layer, and bc,hi is the bias of the ith

hidden layer node. In total,

u[n] =
∑
i

wc,o
i σc([Wx[n]]i + bc,hi ) + bc,o (13)

However, a full tapped delay line u[n] is required to in-
put to the plant model to generate the plant model output
y[n] and therefore the error e[n]. It is therefore necessary
to have generate control signal values u[n− 1], u[n− 2],
. . . , u[n− I + 1] for a tapped delay line of length I . One

solution to this problem is to store the values of the con-
trol signal in memory, and call upon them when evaluat-
ing the output of the plant model and updating the con-
troller weights and biases. This approach has been used
previously [27]. However, this approach means that the
error signal e[n] does not accurately reflect the control
performance of the current iteration of the controller - it
is calculated from the outputs of the current and previous
L − 1 iterations of the controller. This could plausibly
lead to stability and performance issues in the training of
the controller NN. As illustrated in Figure 2, an alternative
approach is proposed here where the previous controller
outputs u[n−k] are generated as if the current iteration of
the controller had always been in place. In general,

u[n−k] =
∑
i

wc,o
i σc([Wx[n−k]]i+ bc,hi )+ bc,o (14)

where all weights and biases in equation 14 are those of
the current iteration of the controller during training. Ir-
respective of whether the values of u[n − k] are called
from memory or generated from the current iteration of
the controller, standard backpropagation techniques can
be used to update the weights and biases of the controller
to minimise a given cost function of e[n]. This approach is
clearly more computationally intensive than simply stor-
ing u[n] in memory. However, computing u[n] is only re-
quired during the training of the controller. The controller
NN is assumed here to be fixed during operation and so,
for the same sized NN controller, the computational cost
to produce u[n] from x[n] in operation is independent of
the training method.

3.2 Controller training details

The controller NN was trained to minimise the cost func-
tion defined as

J(e[n]) = e2[n]. (15)

The backpropagation method used was the ADAM
method [28] with parameters α = 0.0001, β1 = 0.9,
β2 = 0.99, and ϵ = 10−7. All networks were trained
for 2500 epochs with a batch size of 128 using 30 seconds
of simulated data at a sample rate of 2 kHz. An L2 norm
regularisation was applied to the controller hidden layer
weights with a loss given by l2

∑
i(h

c
i )

2 with l2 = 0.0003,
which was found to give good generalisation without com-
promising performance greatly.

In all cases, the plant model used was an FIR filter
(equivalent to an MLP with no hidden layer), which was
capable of achieving high levels of modelling accuracy
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due to the linear nature of the simulated secondary acous-
tic source.

4. RESULTS

4.1 Effect of training range

In a given application, the range of magnitudes of excita-
tions of the nonlinear system which generates the distur-
bance will vary over a finite range. Over this range, the
behaviour of the nonlinear system will vary in terms of
the spectrum and statistics of its response. In this section,
a NN controller with 30 hidden nodes is trained over a fi-
nite range of magnitudes of x[n]. The controller weights
and biases are then fixed, and its performance is tested, in
simulation, at a set of excitation magnitudes. The testing
magnitudes are defined over a range of [0, 10−5] m.

Figure 3. Performance of the NN controller as train-
ing width varies. The lower boundary of the grey re-
gion represents the maximum simulated control per-
formance achieved using the FxLMS algorithm. The
upper boundary represents the maximum control per-
formance achieved by a NN with 30 hidden nodes
trained and tested at a single magnitude of x[n].

Figure 3 shows the control performance of 5 NN con-
trollers trained over different excitation ranges. As a re-
sult of their finite size, the networks have limited mod-
elling capacity. Therefore, none of the individual net-
works is capable of achieving optimal performance over

a wide range of excitation magnitudes. Compared to the
performance of the FxLMS algorithm, the networks gen-
erally achieve the highest level of performance just below
the upper limit of their training range, with the relative
performance dropping off as the magnitude of x[n] is in-
creased or decreased. This may be partly explained by
the cost function used in training, given by Equation (15).
This cost function is not normalised with respect to the
training inputs to the NN controller. Therefore, the train-
ing algorithm will prioritise controlling the largest distur-
bances within its training set, which correspond to distur-
bances with magnitudes at, or just below, the upper bound
of the training range. It is also notable that the networks
tend to perform poorly at very low magnitudes of input
to the nonlinear system. This may similarly be a result
of the chosen cost function. However, it should be noted
that small inputs to a nonlinear system will generally cor-
respond to small outputs. As such, control of the most
linear behaviour of the system is unlikely to be important,
as the disturbances caused by low magnitude inputs will
themselves be small.

4.2 Frequency and time domain performance

Figure 4 presents an example of the control performance
of an NN controller compared to the FxLMS algorithm
in the frequency domain. The equivalent time domain re-
sults are presented in Figure 5. The NN controller has
30 hidden layer nodes and was trained over the range
[0, 6 × 10−6] m. The controllers were tested at an in-
put magnitude of 5 × 10−6 m. The linear FxLMS con-
troller achieves a total attenuation of 16.4 dB, wheras the
NN controller achieves a total attenuation of 28.0 dB.
Both controllers achieve broadband control up to 200 Hz
with similar shaped error spectra, with the NN controller
achieving 10-15 dB greater performance across this entire
range.

4.3 Effect of network size

It is well known that increasing the number of hidden
nodes in a NN can improve its capacity for generalisa-
tion in a given task, up to the point where the network
begins to overfit. In this section, the effect of changing the
number of hidden nodes in the controller NN on the con-
trol performance is investigated when the training range is
fixed.

Figure 6 shows the control performance of 6 net-
works, with a range of number of hidden layer nodes,
trained over the same range of excitation magnitudes. The
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Figure 4. Performance of an NN controller and
FxLMS linear controller in the frequency domain

region over which the networks were trained is shown by
the red region, and the grey region represents the same
performance envelope as described in Figure 3. As dis-
cussed in the previous section, all networks achieve the
highest level of performance compared to FxLMS just be-
low the upper bound of the training range. Within the
training range, with the exception of very low input mag-
nitudes, increasing the number of hidden nodes within the
controller NN increases control performance. Above the
training range, the networks still tend to generalise quite
well, with networks with greater than or equal to 5 hid-
den nodes still consistently performing at least as well as
FxLMS. However, the results also show that increasing
the number of hidden nodes in the NN does not necessar-
ily improve generalised performance in this region.

4.4 Performance under changes input magnitude

In the previous sections, the performance of the trained
controllers is tested at fixed magnitudes of x[n]. However,
in a real application, the magnitude of the excitation may
vary over time. Therefore, in this section, the performance
of a given trained NN controller is tested as the excitation
magnitude is varied over time within a range where the
controller is known to have acceptable performance.

Figure 7 shows the performance, in the time domain,
of a NN controller with 30 hidden nodes which has been
trained in the range [0, 6× 10−6] m tested in a simulation
where the magnitude of the input to the nonlinear system
switches instantaneously between a level of 3 × 10−6 m

Figure 5. Performance of an NN controller and
FxLMS linear controller in the time domain

and 5× 10−6 m. In each simulation, the switching occurs
at t = 5 s. The residual error from the NN controller is
not dramatically affected by sudden changes in the mag-
nitude of the input compared to control under a constant
magnitude input.

5. CONCLUSIONS

In this paper, the performance of neural network-based
feedforward active acoustic control has been compared
to the FxLMS algorithm in a set of time-discrete simu-
lations. The generalised performance of the controllers
across a range of system excitation magnitudes has been
investigated. It has been shown that the fixed NN con-
trollers have the ability to generalise well across a range of
magnitudes of excitations of the simulated nonlinear sys-
tem. Relative to the performance of the FxLMS algorithm,
the control performance of the NN controllers is generally
highest close to the upper limit of the range of magnitudes
of excitation over which the controllers are trained. It is
speculated that this is a result of the chosen cost function
during the training of the NNs. Increasing the training
range generally improves performance at higher excita-
tion magnitudes, but compromises performance at lower
magnitudes. Increasing the number of hidden nodes in the
NN controllers improves performance within the trained
range, with some evidence that generalised performance
is improved above the trained range. The residual error
of a NN controller under sudden changes to the system
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Figure 6. Performance of the NN controller as the
number of hidden layer nodes is varied

excitation level has been investigated, with the controller
showing robust behaviour over this transition.
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