
Highlights

Extending Point-Based Deep Learning Approaches for Better Semantic Segmentation in CAD

Gerico Vidanes, David Toal, Xu Zhang, Andy Keane, Jon Gregory, Marco Nunez

• Modifications are proposed to extend point-based ap-
proaches to take advantage of the underlying b-rep data
and better process CAD models. The PointNet++ pipeline
is used as a case study.

• A simple solution to the geometric feature preservation
problem of point sampling is proposed.

• Best practices for applying point-based neural network
pipelines to CAD tasks are presented with empirical stud-
ies.

• Achieves state-of-the-art accuracy on the MFCAD++ ma-
chining features segmentation benchmark .

• Competitive performance on other CAD model segmenta-
tion benchmarks from literature and critical evaluation of
the datasets.



Extending Point-Based Deep Learning Approaches for Better Semantic Segmentation in
CAD

Gerico Vidanesa,∗, David Toala, Xu Zhangb, Andy Keanea, Jon Gregoryc, Marco Nunezc

aUniversity of Southampton, UK
bFalmouth University, UK

cRolls Royce plc., UK

Abstract

Geometry understanding is a core concept of computer-aided design and engineering (CAD/CAE). Deep neural networks have
increasingly shown success as a method of processing complex inputs to achieve abstract tasks. This work revisits a generic and
relatively simple approach to 3D deep learning - a point-based graph neural network - and develops best-practices and modifications
to alleviate traditional drawbacks. It is shown that these methods should not be discounted for CAD tasks; with proper implementa-
tion, they can be competitive with more specifically designed approaches. Through an additive study, this work investigates how the
boundary representation data can be fully utilised by leveraging the flexibility of point-based graph networks. The final configura-
tion significantly improves on the predictive accuracy of a standard PointNet++ network across multiple CAD model segmentation
datasets and achieves state-of-the-art performance on the MFCAD++machining features dataset. The proposed modifications leave
the core neural network unchanged and results also suggest that they can be applied to other point-based approaches.

Keywords: Point cloud, Deep learning, Feature recognition, Computer-Aided Design, Graph Neural Networks

1. Introduction

3D deep learning (DL) continues to mature towards applica-
bility for real use cases that add value to society. An explosion
of pioneering works brought countless new methods for pro-
cessing 3D data in different formats [1, 2, 3, 4]. More recently,
theoretical frameworks are being developed to consolidate the
research landscape [5] and work is being done to utilise these
methods in applied science [6, 7] and engineering [8, 9, 10, 11].
Building on this, the current work focuses on automated feature
recognition for computer-aided design (CAD) - commonly for-
mulated as the task of semantic segmentation within the DL
field. This capability is a critical building block in computa-
tional engineering applications, for example in process plan-
ning [12] or design optimisation [13]. While a system for auto-
mated feature recognition is useful in itself, it also serves as a
stage for developing a DL system that is able to learn internal
representations that are useful for arbitrary downstream tasks -
commonly referred to as ‘backbone’ networks [14].

Within CAD, boundary representation (b-rep) models are the
de facto digital encoding for geometry. However, due to the
data structure’s complexity, it was not until recently that this
3D data representation has been fully utilised by DL approaches
[9, 8, 10]. Some methods still use hand-crafted feature descrip-
tors to convert the raw b-reps to useable input to the network -
this arguably does not fully leverage the high ceiling of deep
representation learning [15]. Conversely, other methods ap-
ply more geometric approaches to CAD model understanding

∗Corresponding author
Email address: g.vidanes@soton.ac.uk (Gerico Vidanes)

[1, 11, 16] - giving hints that the neural networks can learn
sufficiently informative representations from the primitive 3D
data, and make useful predictions.

An advantage of using a more generic 3D shape representa-
tion is that it allows for easier application outside b-rep mod-
els. It is much easier to convert a b-rep model to a mesh, or a
voxel, or a point cloud representation than it is to reverse en-
gineer a parameterised b-rep model from these simpler repre-
sentations [17]. While the current work focuses on automated
feature recognition in applications that use b-rep models, other
domains could benefit from this capability. For instance, auto-
mated feature recognition on meshes or point clouds is required
for digital product life-cycle management [18, 19].

This work investigates whether a simple, geometry-first ap-
proach to CAD model understanding can achieve competitive
performance compared to approaches which are specifically de-
signed for b-rep processing. A point cloud representation is
chosen as the data structure for its simplicity and flexibility -
this is further elaborated on in section 2. Instead of presenting
a brand-new neural network architecture for semantic feature
recognition of CAD models, an additive study is performed. A
baseline approach is revisited and design decisions, both novel
and from recent literature, are critically analysed for potential
improvements before integration. This is inspired by work from
Liu et al. [20] and Qian et al. [21].

The paper is structured as follows. Section 2 reviews re-
lated work in the field of automated feature recognition, intro-
duces the framework of graph neural networks, and discusses
the purpose of the current work in relation to the field. Sec-
tion 3 describes the additive study - in terms of the baselines,

Preprint submitted to Computer-Aided Design October 6, 2023



benchmarks, and training and evaluation methods used. Sec-
tion 4 forms the bulk of the paper where a single public dataset
(MFCAD++ [10]) is used to build an ‘optimal’ model config-
uration. Because of the additive nature of the study, each sub-
section within section 4 contains both method descriptions and
immediate results before continuing with further system mod-
ifications. Finally, section 5 presents the ultimate results when
applying the proposed method extensions on a number of pub-
lic CAD semantic segmentation datasets [10, 22, 8, 11] - this
is discussed and compared with the results of approaches pre-
sented in those works.

2. Literature Review

2.1. Background

There has been much work over the past decades around au-
tomated feature recognition. This commonly centered around
the automated transition between CAD and computer-aided
manufacturing (CAM) or in the area of computer-aided process
planning (CAPP) more broadly. For a full historical review, see
Shah et al. [23]. There also exists the application for automated
transition between CAD and simulation. Where the identifica-
tion and location of features are used to aid in meshing, bound-
ary condition specification, and post-processing [24, 13]. The
majority of methods would now be classed as ‘algorithmic’ or
‘expert systems’ - in contrast to modern machine learning meth-
ods. Arguably the most prolific of these algorithmic methods
are topological or graph-based approaches [25]. A graph is con-
structed using b-rep faces as nodes and connected by their topo-
logical adjacency; these edges are also given attributes based on
the convexity of the b-rep edge connecting the faces. Geometric
features can then be recognised by matching known sub-graphs.

On the other hand, basic learning-based approaches have also
been attempted since the 1990s [26, 27]; these have mainly fo-
cused on the use of face adjacency graphs together with hand-
crafted features (shape descriptors) as inputs to fully-connected
neural networks. More recently, as large convolutional neural
networks (CNN) have dominated computer vision, these ideas
have increasingly been applied to feature recognition on 3D
shapes. A pioneering work by Zhang et al. [1] introduced a
dataset of CAD models each containing a single machining fea-
ture to be classified; a voxel-based 3D CNN was also presented
for learning on this dataset. This neural network is a classi-
fier - one semantic label per input shape - and therefore a rule-
based segmentation algorithm was used to recognise multiple
machining features in a part. Subsequent works also employed
the rule-based pre-segmentation and neural network classifier
combination: Shi et al. [28] used a multi-view approach with
2D CNNs while Yao et al. [16] used a PointNet++model as the
classifier network.

The aforementioned approaches tend to be limited by the
rule-based pre-segmentation step. To build a model which
is able to perform semantic segmentation directly, one needs
a dataset with these labels for training. A number of such
datasets have been publicly released in recent years. The MF-
CAD dataset from Cao et al. [22] was algorithmically generated

to create various CAD models containing multiple machining
features - each face is labelled with the machining operation
which created it. Colligan et al. [10] build on this with MF-
CAD++, which has more intersecting features and attempts to
ensure that each generated shape is physically manufacturable.
Zhang et al. [11] also make available a separate machining fea-
tures dataset with similar semantic labels, algorithmically gen-
erated with CATIA. Apart from machining features, there is also
the Fusion 360 Gallery segmentation dataset from Lambourne
et al. [8] - consisting of a variety of human designed shapes.
The b-rep faces are labelled with the CAD modelling operation
which was used to create them.

2.2. Geometric Deep Learning
To better understand the seemingly disparate geometry seg-

mentation approaches in the growing literature, this subsection
gives a brief overview of the geometric deep learning frame-
work of Bronstein et al. [5]. In this framework, most real world
data can be encoded as a graph. Where a graphG = (V,E) con-
sists of a set of nodes V, with some D-dimensional attributes
x ∈ RD, connected by a set of edges E = {e | e ∈ V × V}. In
this context, the task of geometry segmentation then becomes
node classification - where the nodes are geometric entities like
b-rep faces, mesh triangles, or points.

Hierarchical representations which are rich in semantic
meaning can be extracted from the graph by the learning sys-
tem. This is done by repeatedly aggregating the attributes (or
latent vectors) of connected nodes. The generalised operator
for this, first formalised by Gilmer et al. [29], can be defined as:

x′u = ϕ

xu,
⊕
v∈Nu

ψ(xu, xv)

 (1)

where xu is the latent vector of node u andNu is the neighbour-
ing nodes of node u, for some definition of neighbourhood. ϕ
and ψ are typically differentiable, parameterised functions - like
multi-layer perceptrons (MLPs) - and

⊕
is some symmetric

(permutation invariant) function. x′u is then the new latent vec-
tor of node u after the aggregation operation. This is referred to
as the message-passing formulation.

Equation 1 can then be made more specific and less expres-
sive depending on the application. Stacking these aggregations
in layers results in a graph neural network (GNN). From this,
Bronstein et al. [5] show that one can derive most other DL
architectures, even 2D grid CNNs and attentional-based Trans-
formers.

2.3. CAD Semantic Segmentation
With appropriate datasets, models for end-to-end semantic

segmentation can be developed. In the current literature, there
is no clear consensus on the best 3D representation to pair with
DL approaches. As the prevalent representation for CAD, it is
reasonable to try and directly use the b-rep data. However, the
data structure’s complexity also necessitates complexity within
the neural network structure. Jayaraman et al. [9] proposed a
graph-based approach to leverage topology paired with 2D con-
volution in the parameter domain to encode the b-rep geometry.

2



Lambourne et al. [8] introduced a unique convolution technique
using a topological neighbourhood of b-rep entities. Both Col-
ligan et al. [10] and Cao et al. [22] adopted a graph-based ap-
proach inspired by the attributed adjacency graphs popular in
b-rep processing. Hand-crafted shape descriptors were used
for graph nodes - for instance, face area or b-rep surface type.
While these methods are able to easily extract information from
the explicitly represented topology, geometric encoding is non-
trivial in comparison. The implicit representation of the surface
geometries is difficult to process - evidenced by the sophisti-
cated and specialised kernels needed to handle them in CAD
software. In addition, the trend in deep representation learning
favors allowing systems to learn from raw data rather than “en-
gineering by hand” [15]. This paper argues that the mentioned
b-rep methods lean towards the latter approach. Instead, this
work proposes to extend more general methods to fit the spe-
cific application rather than constructing specific architectures
from scratch. Thus allowing the exploitation of advances in the
wider field which will be discussed in the following.

Another frequently used representation in CAE is the polyg-
onal mesh. Mesh DL approaches in the literature [30, 3, 31] are
often focused on computer graphics applications with slightly
less precision requirements to CAE. Those found in the CAE
literature claim good results but often struggle with large, high
resolution meshes [24]. With the GNN formulation, mesh ap-
proaches and point approaches, discussed subsequently, can be
seen as variants of each other. However, this work is steered
away from mesh encodings for its relative inflexibility - with-
out remeshing, it is tied to the existing vertices. In addition,
vertices can often be on b-rep edges which results in labelling
ambiguity at the intersection of geometric features.

Point clouds are a popular 3D encoding in DL literature, in
large part due to autonomous navigation applications [32, 33].
As sets, they could be processed with purely invariant func-
tions [34, 35]. However, because of the underlying geometry,
the inherent metric space imparts local relationships. Thus, one
can utilise a GNN to process this implicit graph. The major-
ity of approaches simply use geometric Euclidean neighbour-
hoods as connectivity [2, 36, 37, 38, 39], illustrated in figure 1.
Alternatively, Wang et al. [40] uses Euclidean neighbourhoods
computed in the latent vector space. Viewing them as GNNs,
point-based approaches in the literature are mostly variants of
each other. The authors of this work advocate for this holistic
view which allows more focus on improving specific aspects
rather than proposing whole new architectures that introduce
confounding variables to any claimed result.

This work chooses a point cloud representation as the geom-
etry centric approach. Its simplicity and flexibility enables a
consistent core neural network architecture across applications.
The wide literature coverage of these methods speaks to its gen-
erality. Kashefi et al. [41] and Kashefi and Mukerji [42] use
a point-based approach to perform fluid flow predictions and
works by Zhang et al. [11] and Yao et al. [16] suggest that this
encoding is able to represent CAD geometry sufficiently for fea-
ture identification. Many works in the literature cite drawbacks
to point-based approaches as reasons to choose other represen-
tations. For instance, it is often incorrectly stated that these

Figure 1: Illustration of point convolution. Aggregating points within a Eu-
clidean neighbourhood - an implicit local graph.

approaches fundamentally require a fixed number of points as
input and thus sampling issues are faced - salient parts of a ge-
ometry can be missed or underrepresented. Colligan et al. [43]
tackle this problem but still struggle due to the fixed size in-
put assumption. When viewing point-based approaches in the
GNN framework, one can easily see that this is an unneces-
sary requirement. This and other perceived drawbacks will be
addressed in detail in this work to show that these approaches
should not be discounted for solid geometry processing. There-
fore, this work also serves to collate and develop the discussion
on best practices for applying point-based approaches.

3. Method

3.1. The PointNet++ Approach

The PointNet++ architecture, from Qi et al. [2], was chosen
as the core structure for the additive study. This applies the
PointNet set operator [35] - a pioneer in learning on irregular,
permutation invariant data - to a neighbourhood for building
hierarchical representations. It is arguably the simplest instan-
tiation of a point-based GNN. The opportunity is taken here to
summarise the PointNet++ approach in the lens of the geomet-
ric deep learning framework.

For PointNet++, equation 1 can be simplified to the ‘convo-
lutional flavour’ of aggregation [5]:

x′u = ϕ

xu,
⊕
v∈Nu

cuvψ(xv)

 (2)

where cuv is a constant weighting for each neighbour. To obtain
the PointNet++ aggregation function: max pooling is used for
the symmetric function

⊕
, Euclidean neighbourhood is used

for N , and xu is removed as a dependence of ϕ. Therefore,

x′u = ϕ
(
max
v∈Nu

ψ(xv)
)

(3)

In this approach, the latent vector, xv, is a concatenation of
the previous latent vector, z, and the point’s coordinate in the
neighbourhood frame: xv = [zv; pv −pu]. It is also worth noting

3



that self-loops are added to the implicit graph; in other words,
node u is within Nu.

The parameters of equation 3 are shared across nodes in a
layer which results in the familiar locality and positional in-
variance inductive biases of a convolutional-type, shape anal-
yser. Scale separation and hierarchical representations are also
useful for shape recognition [44, 45]. In 2D CNNs this is
achieved by pooling layers; in GNNs this is achieved by down-
sampling of nodes. A common approach is farthest point sam-
pling [46]. The nodes u in the aggregation for equation 3 are
taken from this downsampled subset, the ‘convolution centres’,
while the nodes v - for the neighbourhoods - are taken from the
original set. This aggregates the information from a ‘higher-
resolution’ point cloud to a ‘lower-resolution’ one, analogous
to CNN pooling layers.

3.2. Baseline Architecture
To implement a DL system, one needs to arrange layers into

an architecture which can learn from data and output relevant
predictions. The work by Qi et al. [2] presented a number
of PointNet++ architectures for different benchmark tasks; the
current work chooses the architecture proposed for ShapeNet
part segmentation [47]. Of the two segmentation tasks ad-
dressed in [2], this is likely the most relevant to feature recogni-
tion due to the use of a global shape descriptor. Intuitively, the
semantics of the shape as a whole should give an indication of
what types of features are present1.

The baseline architecture is illustrated in figure 2; it follows
a standard U-Net-like bottleneck architecture [48]. The layer
widths and downsampling sizes are those proposed for part seg-
mentation in the original PointNet++ work. Radii of 0.2 and
0.4 are used for the intermediate convolution layers, with the
input point cloud being normalised to a sphere of unit radius
centred at zero. It is worth noting that while the PointNet++
aggregation function allows for further transformation after the
symmetric function (ϕ in equation 3), in practice this is not
used (i.e. the identity function is used for ϕ). Therefore, the
MLPs shown in the convolution section of the architecture cor-
respond to the per-neighbour transformation, ψ. Furthermore,
every MLP layer is followed by a batch normalisation layer [49]
which is itself followed by a rectified linear unit (ReLU) [50]
acting as the non-linear activation function. This is except for
the final layer, which has a so f tmax function [45] instead of an
activation function to produce a conditional probability distri-
bution over the possible semantic classes. Lastly, dropout [51]
with probability 0.5 is used in the penultimate layer. This base-
line and subsequent modifications were implemented as graph
neural networks with the PyTorch [52] and PyTorch Geometric
[53] libraries.

3.3. Benchmark Dataset(s)
As discussed in section 2, the authors of this work are aware

of four publicly available CAD datasets which have semantic

1This is the case for real geometries that have been designed by engineers
with intent, however this is arguably lacking from the shapes in the public ma-
chining features datasets.

segmentation annotations. Both for practicality and the oppor-
tunity to test the generality of the proposed modifications, only
one of these datasets was used during the additive study and the
rest were kept for final evaluation.

The MFCAD++ dataset was chosen through a process of
elimination. It was deemed that the Fusion 360 Gallery
dataset’s labels were semantically ambiguous; in the sense that
the shape does not uniquely determine the labels of each face2.
Therefore, analysis of model learning and predictions during
the additive study would likely be more difficult compared to
the available machining features datasets. The dataset from
Zhang et al. [11] was not chosen as the primary dataset since
it is only available in their chosen point format - this is not
amenable to the explorations in the current study. Lastly, MF-
CAD++ was chosen over MFCAD since it was deemed that the
former is simply an overall improvement on the latter. At the
time of writing, the b-rep method presented within the same
work [10] remains the state-of-the-art by default - obtaining an
overall face labelling accuracy of 97.37% on the testing set.

The shapes in the MFCAD++ dataset are primarily made
available in the STEP file format. Converting these to a point-
based format for this work is relatively trivial with the use of
Python libraries. To minimise information loss that can occur
with b-rep translation [54], the OpenCASCADE kernel3 was
used to load and triangulate the shapes - the same one used
in [10]. The Trimesh library4 was used to sample points from
these triangular meshes. Briefly, to obtain N points, N triangles
are sampled (with replacement) using a probability distribution
proportional to their areas. A point is then sampled from each
triangle using the method described in [55]. To facilitate neural
network training, and the additive study more broadly, meta-
data from the b-rep faces were extracted and propagated to the
triangles and the points. Critical metadata to be retained are
the semantic label of the b-rep face which the mesh triangle
and points belong to, and some identifier in order to aggregate
point predictions to b-rep face predictions - for direct compar-
ison with the b-rep method(s). Other metadata available in the
b-rep model can also be used and is explored in section 4.4. The
data flow and point cloud extraction is illustrated in figure 3.

One could also directly sample points from the continuous b-
rep surfaces, avoiding the approximation of curved surfaces by
the mesh faces. However, the use of the discretised mesh allows
the use of efficient, vectorised implementations. Sampling from
the b-rep surface directly is reliant on the specific CAD kernel.

3.4. Training and Evaluation Details
A standard neural network training approach was employed.

The ADAM optimiser was used [56] with an initial learning rate
of 0.001 and a weight decay of 0.0001. An exponential learning
rate scheduler was also used with a factor of 0.7 and a step size
of 20 epochs. These defaults were adapted from the original

2This is addressed in their work and is by design - the dataset is meant to
implicitly encode how humans model 3D shapes in CAD.

3Specifically, using the Python bindings: https://github.com/

tpaviot/pythonocc-core.
4https://trimsh.org/index.html

4

https://github.com/tpaviot/pythonocc-core
https://github.com/tpaviot/pythonocc-core
https://trimsh.org/index.html


Figure 2: Block diagram illustrating the baseline PointNet++ architecture. Arrangement and width of layers is shown. The bottleneck structure is also shown. N is
the number of input points, D is the input feature dimension, and C is the number of classes.

Figure 3: Illustration of information flow from b-rep model to triangular mesh to point cloud. The chosen b-rep metadata, qbx ∈ RD, is propagated to associated
triangles. The inherited mesh triangle metadata, q fx ∈ RD, is then also inherited by the sampled points; as well as the unit normal of the triangle, n̂x.

PointNet++ work [2]. By default, the cross-entropy [45] loss
across point predictions is used for optimisation; modifications
to this are explored in subsection 4.3. Overall face accuracy was
used as the primary performance metric following the literature.
By default, the b-rep face predictions for calculating this metric
were obtained by the modal prediction of the points associated
to the face. Later in the additive study, a modification to the
architecture allowed the model to make direct face predictions
and these were used instead when available.

The official training, validation, and testing split provided
with the MFCAD++ dataset was used. After each training
epoch, the validation set was used to track the out-of-sample
performance. The neural networks are trained with 300 epochs,
this was found to be sufficient for convergence, and the param-
eters which correspond to the maximum face accuracy across
the validation set were extracted, following the lead of Colligan
et al. [10]5. Due to the stochastic nature of neural network train-
ing, five training runs were done with different seeds for each
configuration to attempt to assess the statistical significance of
any performance improvements. When predictions or other re-
sults are scrutinised at an individual level, the model with the
median accuracy for that configuration was used.

Finally, following best practice [57, 58], the validation set is
used during the additive study when assessing the potential im-

provement of model configuration and the testing set is reserved
for final evaluation after an ‘optimal’ configuration is chosen.
This ensures that no data leakage occurs; to minimise progres-
sive overfitting and maximise the generalisation of the model,
information about the test data must not ‘leak’ into either model
training or configuration.

4. Additive Study

4.1. Baseline

To validate the experimental setup, a baseline was obtained
using the defaults described in subsections 3.2 and 3.4. It is also
worth noting that the unit surface normal at each point is used
as per-node input attributes following the literature. An average
overall face accuracy of 86.28% was obtained across five train-
ing runs with a standard deviation of 0.11%. This is slightly
higher than the PointNet++ result reported by Colligan et al.
[10] on their MFCAD++ dataset. They report the use of the

5This is not mentioned in their paper but was found to be the
case in their public code release: https://gitlab.com/qub_femg/

machine-learning/hierarchical-cadnet.

5

https://gitlab.com/qub_femg/machine-learning/hierarchical-cadnet
https://gitlab.com/qub_femg/machine-learning/hierarchical-cadnet


example PointNet++ implementation within the PyTorch Geo-
metric code base which has a different configuration to the ref-
erence architecture described in subsection 3.2. This and other
training hyperparameter differences likely account for the dif-
ference. The authors of this work accept this baseline going
forward.

4.2. Point Coverage

When applying a point-based neural network to CAD mod-
els, the literature often randomly samples a fixed number of
points from the surface of each shape with 2048 points nomi-
nally used. However, this is almost arbitrary when the full con-
tinuous surface of the CAD model is available and is merely a
choice left over from the 3D benchmarks that the point-based
methods were originally designed and tested against6. This
configuration is particularly problematic when working with
CAD models since they often have small faces which can be
missed by simple random sampling. For instance, across the
MFCAD++ validation set, it was found that 4.8% of b-rep faces
on average are not sampled. Since the performance metric be-
ing used is the labelling accuracy of b-rep faces, this imposes
an upper-limit to the neural network’s measured performance -
these faces are not processed and therefore no predictions are
made for them. To illustrate this, the baseline configuration
achieves an average overall point labelling accuracy of 97.67%
with a standard deviation of 0.03% - significantly better than
the b-rep face labelling accuracy. Additional analysis to illus-
trate the consequences of this simple random sampling is given
in Appendix A. One way to combat under-sampling of b-rep
faces is to simply use more points. It was found that the pro-
portion of b-rep faces which are not sampled decreases linearly
with increasing point cloud size - an R2 value of 0.993.

To assess the effect of different sampling strategies on the b-
rep face labelling accuracy, a single, trained, baseline model
was used. Training models from scratch for each sampling
configuration on top of evaluating performance was compu-
tationally impractical because of the amount of configurations
and, critically, the increasing size of the inputs. Using a model
trained on 2048 points randomly sampled from the surface and
evaluating on different sampling configurations acts as a sur-
rogate for the true performance. This is possible because the
shared weights and the symmetric function aggregation of the
convolution make the point-based GNN fundamentally agnos-
tic to point cloud size. To control the experiment, the down-
sampling sizes of the original architecture are kept constant -
i.e. regardless of input point cloud size, 512 points are sampled
to act as the convolution centres at the first layer. A limited
number of models were trained and evaluated on their ‘native’
sampling configuration to validate this surrogate approach - an
R2 value of 0.989 was found. Details of which configurations
were used to validate are given in Appendix B.

Figure 4 shows that simply increasing the number of points
sampled from the surface makes a significant positive impact

6The ShapeNet part segmentation dataset is distributed as point clouds with
on average around 2000 points per object.

Figure 4: Validation set performance of a single trained model when faced
with different point sampling configurations. Simple random sampling and b-
rep stratified sampling is shown across a range of point cloud sizes. Different
maximum point neighbourhood sizes are also shown.

on face labelling accuracy up to a point. Once ‘full coverage’ is
reached, extra points do not add information - especially when
considering the max pooling aggregation. However, this is not
a computationally efficient way to encode the surface.

An alternative is to perform stratified sampling with the b-rep
faces being used as the strata. Specifically, the desired number
of points is spread out across the b-rep faces based on area, with
a minimum of one point per face being enforced. The process
is illustrated in algorithm 1. For each stratum, the standard pro-
cess described in subsection 3.3 can then be used to obtain the
desired amount of points per b-rep face. This retains the same
local point densities of simple random sampling but ensures that
all b-rep faces are sampled at least once.

It is worth noting that because of the one point minimum
constraint (and general rounding up), the point clouds are no
longer a fixed size - the ‘desired’ amount of points is merely an
estimate. As discussed in section 2, it is common in literature
to assert a uniform size requirement. This is merely an imple-
mentation constrain for efficient mini-batching. With modern
techniques developed for graph learning[53], one is able to per-
form mini-batching training with non-uniform sized examples.

Figure 4 also compares the accuracy resulting from using the
two sampling strategies, with the green dashed lines being the
nominal model configuration. At smaller point cloud sizes, it
is observed that b-rep stratified sampling significantly outper-
forms simple random sampling at a given approximate number
of points. At larger point cloud sizes, both sampling strategies
converge towards the same asymptotic value. This is because
the stratified sampling particularly makes a difference among
the smaller b-rep faces when using a smaller point cloud en-

6



Algorithm 1: B-rep stratified sampling
Data: N points desired (minimum)

Mesh,M = (V,F ), annotated with associated
b-rep faces and other features

Result: Point cloud,V = {v | v ∈ RD}

V = {}

n← N ÷ sur f aceArea(M)
foreach b-rep face in shape do
M′ ← mesh faces associated with this b-rep face
N′ ← sur f aceArea(M′) × n
N′ ← ceiling(N′)

V′ ← extractPointCloud(M′,N′)
appendV′ toV

end

coding. When using larger point clouds, missing faces with
simple random sampling becomes less likely and the advantage
of stratified sampling diminishes. Further details of this analy-
sis and empirical results are given in Appendix C.

As previously noted, the stratified sampling approach results
in slightly larger point clouds which could be contributing to
the accuracy improvement. However, it was found that for
the smallest point budgets investigated (approximately 512 and
1024 points) there was only an average increase in point cloud
size from simple random sampling of 3% and 1% respectively.
This difference further diminishes as point budget increases7.
The results in figure 4 suggest that such a small increase in input
point cloud size would not account for the significant accuracy
improvement observed.

With the aim of collating best practices for applying point-
based GNNs, it is worth addressing a common implementation
detail found in the code literature. Because the PointNet++ ag-
gregation uses a radius neighbourhood, there is no limit to the
size of the setNu. Traditional implementations adapted 2D ma-
trix convolutions with a 1x1 matrix size. An upper limit was set
on the number of points each convolution could use, and radii
which had less than this were padded to form the dense ma-
trix. Neighbourhoods which exceeded the limit were sampled
to a random subset. In theory, this affects the receptive field
of the neural network since salient features could be missed by
the convolution; albeit not as severe as the previously discussed
sampling since predictions are still generated via interpolation
and feature propagation for all input points. To balance com-
putational and memory restrictions, previous implementations
treated the maximum size of the set Nu as a dataset specific
hyperparameter. With the availability of optimised ‘gather and
scatter’ operations for GNNs [53], this is less of an issue and
one has more freedom in choosing the maximum size of Nu.

Figure 4 illustrates that the upper limit set for the size ofNu,
k, affects the maximum accuracy achieved similarly to the sam-
pling of input points - proportional at lower values and level-
ling off when a sufficient value is reached. In addition, peaks

7Interestingly, the absolute increase stays at around 15 points on average.

in accuracy are observed which are more prominent at smaller
point cloud sizes. Essentially this is a balance of enough points
to represent the surfaces, while not having too much to satu-
rate the neighbourhoods. Further analysis of this is given in
Appendix D. Since the effect of the maximum neighbourhood
size can be evaluated after a model has been trained, the au-
thors of the present work suggest simply increasing the value
until maximum accuracy no longer increases.

To summarise this subsection, it was found that the optimal
sampling strategy in terms of the face labelling accuracy metric
(for this task and dataset) is to use b-rep stratified sampling with
a point budget of approximately 4000 points. In addition, the
upper limit set for the number of points in each neighbourhood
should be at least 128. The following subsection will treat this
as the baseline configuration for further optimisation.

4.3. Aligned Loss Function

The standard loss function used to optimise the parameters
of a PointNet++ style GNN is the cross-entropy loss computed
across point predictions. Effectively, this is optimising for the
labelling accuracy of individual points. Each b-rep face pre-
diction is then obtained by the modal prediction of the points
associated to it. Since the performance metric being used for
comparison is the face labelling accuracy, the gradient descent
algorithm is only indirectly optimising the metric of interest.

Ideally, the cross-entropy loss should be calculated across
b-rep face predictions in the present application. Since the
argmax operation to obtain the point predictions and the modal
operation are not strictly differentiable, one can not simply use
these aggregated face predictions to calculate the desired loss
and backpropagate. The present work instead utilises an almost
multi-task approach8. Similar to Zhang et al. [11], an extension
to the PointNet++ architecture is made. An additional predic-
tion branch is added which uses the same feature extractor as
the upstream input. This allows conditional probability vectors
to be predicted directly for the b-rep faces, and a cross-entropy
loss can be calculated on the outputs of each branch.

To be specific, the PointNet++ feature extractor produces la-
tent vectors for each point. The ‘pointwise’ prediction branch
can then directly apply shared MLPs to this. For the ‘facewise’
prediction branch, the latent vectors of associated points first
need to be aggregated so that each b-rep face has its own latent
vector. An obvious choice for this aggregation is the same set
abstraction being used upstream. Equation 3 can be modified to
give

x f = ϕ

(
max
v∈F f

ψ(xv)
)

(4)

where x f is the obtained latent vector for face f and F f are the
set of points associated to face f . Subsequent MLP layers can
then be applied to x f to obtain differentiable class probability
vectors for the b-rep faces.

8Strictly, both branches are performing the same task of semantic segmen-
tation; however, the entities being segmented are different.

7



Figure 5: Box plots showing multiple metrics on the MFCAD++ validation
set achieved by different loss function configurations across five training runs.
‘Epoch extracted’ refers to the training epoch which achieved the maximum
validation face accuracy during training - where model parameters were saved.

Figure 6: Predicted point labels illustrated as colours, superimposed on the in-
put CAD model. Both show the same set of points. The left points are coloured
based on the direct predictions from the ‘pointwise’ branch. The right points
are coloured based on predictions propagated from the ‘facewise’ branch.

Unsurprisingly, it is observed from figure 5 that incorpo-
rating the b-rep face cross-entropy loss improves the face la-
belling accuracy. It is also worth noting that the labelling ac-
curacy per point can also be increased using this. Where avail-
able, the point predictions to obtain the point accuracy metric
in figure 5 were obtained by propagating from the predictions
of the ‘facewise’ branch - i.e. the predicted label of a b-rep
face was also given to its associated points. This was found to
give better accuracy than taking predictions directly from the
‘pointwise’ branch (for the configurations which jointly opti-
mise those branches). Figure 6 illustrates the reason for this -
point predictions are of course more coherent across b-rep faces
since all associated points are given the same predicted label.

In addition, it was found that combining the losses from
both branches actually improves labelling accuracy overall -
this agrees with other multi-task results in literature [59, 60].
Simple addition and averaging of the losses were investigated;
it is observed that averaging the point and face cross-entropy
losses gives the best labelling accuracy. A small grid search
was also performed across the relative weightings when com-
bining the two losses - no noteworthy differences or trends were
observed (more details in Appendix E). Finally, it is also worth
noting from figure 5 that the speed of convergence during train-
ing is decreased significantly when using a ‘facewise’ loss in
some way. Intuitively, this is not surprising since the optimiser
is now directly trying to maximise the ‘convergence’ metric -
recall from subsection 3.4 that the validation face accuracy is
being used as the convergence criteria.

With this, the following subsections will use an average of

the cross-entropy losses from the face prediction and point pre-
diction branches as the overall loss function to be optimised.

4.4. Input Attributes

The final aspect of the data and training pipeline to investi-
gate is the set of input attributes being used. Equation 3 can ag-
gregate arbitrary latent vectors, thus the input point cloud can
be generalised to be P = {p | p ∈ RD}. The contents of the
vectors are application dependent, for instance, surface colour
can be used when available [61]. However, this paper empha-
sises their availability since some works in literature disregard it
when comparing against point-approaches. For instance, Poule-
nard and Ovsjanikov [31] only use coordinates.

The unit surface normal at each point has been used in this
paper so far. A nested, mini additive study has been done to
explore whether the use of any other attributes from the geome-
tries in the MFCAD++ dataset can be used to improve the la-
belling accuracy of the neural network. Colligan et al. [10] use
shape descriptors extracted from the CAD kernel which sum-
marise the geometry of each b-rep face. As illustrated in figure
3, this can be propagated to be used as per-point attributes as
well. In addition, this work assigns an arbitrary index to each
b-rep face in a geometry, which is then normalised to the inter-
val [0,1], for use as an attribute - with the aim of delineating
points belonging to different b-rep faces.

This nested study progressed by separately adding attributes
to a baseline and observing the resulting accuracy improve-
ment, if any. In the spirit of gradient-based optimisation, the
best performing configuration is taken as the baseline for the
next stage, where the other attributes are added again. For com-
pleteness, at the first stage, the baseline is taken as a model
which uses only point coordinates - to confirm the usefulness
of surface normals. Figure 7 shows the results of this mini ad-
ditive study.

It can be clearly observed that the use of surface normals is
essential for reasonable labelling accuracy. This information
implicitly defines the connectivity of the points and implies the
shape of the manifold surface. Oriented surface normals are
extremely useful for surface reconstruction from point clouds
[62], and thus it is unsurprising that they are also very useful
for the neural network’s geometry understanding.

The b-rep surface type information subsequently resulted in
a statistically significant improvement in face labelling accu-
racy. This is perhaps surprising since Colligan et al. [10] re-
ports an almost negligible effect when removing this attributes
in their approach, because of the imbalance of surface type
across the dataset (89.27% of b-rep faces are planar). How-
ever, it was found that the current approach was able to leverage
this information within the point clouds - with an improvement
of +0.89% on the mean face labelling accuracy. This is es-
pecially evident when analysing the labelling accuracy of the
model variants across only non-planar faces - the improvement
then becomes +1.95% when using surface type as an additional
attribute.

The last attribute which makes a sufficiently significant im-
provement is the b-rep face index. As previously stated, this

8



Figure 7: Box plots showing the face labelling accuracy on the MFCAD++ validation set of different configurations. Each plot starts with a base configuration and
adds input attributes separately.

encodes information in point space of the sharp separation be-
tween discrete b-rep faces. The model then has this information
available throughout the feature extractor section, rather than
only at the ‘facewise’ prediction branch - which seems to im-
prove semantic segmentation accuracy. As before, the baseline
configuration to be used in the following will be the best per-
forming so far. The neural networks will now use unit surface
normals, b-rep surface type, and face index as per-point input
attributes.

4.5. Scaling

Now that the current approach has been brought to equal
footing with a specialised b-rep approach in terms of input data
and training signals. It is also interesting to consider scale. The
current model has 1.4M learnable parameters compared to Hi-
erarchical CADNet [10] which has 9.8M.

The two main ways to scale a neural network is through depth
and width. In the PointNet++ approach, the former refers to the
number of set abstraction modules in the network - a block of
neighbourhood aggregation and subsequent transformation via
MLPs. The latter refers to the number of parameters (‘neurons’)
being used in the pointwise MLPs. Both of these options nat-
urally change the number of parameters of the network; how-
ever, for most point-based approaches, changing the number
of convolution centres could also be seen as scaling the model
while keeping the number of parameters the same. This hy-
perparameter could equally be addressed in subsection 4.2, es-
pecially because it can be changed at evaluation of a trained
model. However, modifying the number of convolution centres
of the network significantly increases memory usage - a sim-
ilarly extensive input coverage study that includes this would
have been computationally impractical. It was decided that this
hyperparameter would be tackled at this stage, after a sampling
configuration had already been chosen. This may not result in

an optimal model configuration - a larger number of convolu-
tion centres may have revealed a different peak in figure 4 - but
the main purpose of this work is to explore best practices for
applying point-based methods to ‘real’ applications, rather than
maximising performance on artificial benchmarks.

A simple implementation of model scaling was used in this
work. When ‘widening’ the network, only the number of pa-
rameters of the first of the three MLPs in the first layer is spec-
ified; with the three MLPs getting sizes of M,M, 2M, where M
is the number of parameters of the first MLP. M is then dou-
bled for subsequent set abstraction modules. This geometric
sequence of parameter numbers is extended when ‘deepening’
the model by adding layers.

It is worth stressing that this subsection does not aim to
find the optimal architecture configuration for the MFCAD++
dataset. One could perform a full grid search or some other
meta-optimisation method of the network structure to get an op-
timal and efficient configuration; however, this is computation-
ally impractical and likely dataset specific. Instead, this sub-
section simply serves to illustrate the potential improvements
of scaling this relatively simple network - with the conjecture
that a moderate portion of performance gain of newly proposed
architectures can be attributed to scale rather than fundamental
changes, an idea shared by [21].

Figure 8 shows the performance gain when individually scal-
ing up the hyperparameters described above. The performance
of a model with all three hyperparameters scaled is also shown.
It was decided that a nested additive study was not necessary
here since all three hyperparameters more or less just increase
the model’s representation power. The ‘All Scaling’ configu-
ration now has 10.9M learnable parameters and so is not sur-
prising that it also consistently takes longer to train. Noting the
y-axis range of the face accuracy and point accuracy plots, the
significant network scaling has not made a very significant per-
formance improvement. On the other hand, the ultimate scaled

9



Figure 8: Box plots showing multiple metrics on the MFCAD++ validation achieved by scaled configurations across five training runs.

model (as well as the widened model with 5.1M learnable pa-
rameters) has now surpassed the reported accuracy of Hierar-
chical CADNet [10] as measured by the validation set. This is
an important result which supports the hypothesis of the cur-
rent work - extending generic methods to fit applications can
not only be competitive but surpass specifically designed ap-
proaches. This result is confirmed using the official testing set
in subsection 5.1.

5. Results

This section applies the final model configuration resulting
from the additive study, to give evidence that the proposed mod-
ifications result in a general improvement of the approach rather
than being specific to the dataset they were optimised against.
An instance of the final model configuration was trained on
each dataset’s training split and evaluated on their testing splits.
Table 1 shows that the modifications presented in this work sig-
nificantly improve on the result obtained by a standard Point-
Net++ implementation. In addition, the model configuration
presented here obtained state-of-the-art performance on one
dataset and competitive results on another. The potential rea-
sons for the relatively poor performance on the Fusion 360
Gallery dataset are discussed in subsection 5.3.

5.1. MFCAD++ Dataset

Figure 9 summarises the predictions across the MFCAD++
testing split of a version of the final model configuration which
achieved the median overall accuracy among the five training
runs. The values of the confusion matrix are normalised across
the rows to account for the imbalance of classes. No significant
failure cases are observed across the semantic classes. The low-
est accuracy class, the ‘rectangular through slot’, is correctly
identified 91% of the time - being confused with the ‘rectan-
gular passage’ class 8% of the time. This and the two other

Dataset Method Face Accuracy
(%)

MFCAD++
Standard PointNet++ 86.28 ± 0.11

Hierarchical CADNet [10] 97.37
Modified PointNet++ 97.79 ± 0.05

Zhang Machining
’Standard’ PointNet++ 97.89 ± 0.10

Zhang Hybrid Model [11] 99.84
Modified PointNet++ 99.12 ± 0.08

Fusion 360 Gallery
Standard PointNet++ 70.78 ± 0.12

BRepNet [8] 92.52 ± 0.15
Modified PointNet++ 84.52 ± 0.13

Table 1: Summary table of predictive accuracy of final model configuration
against different segmentation datasets. Accuracy of a standard PointNet++
implementation is also shown. Results for representative state-of-the-art mod-
els are taken from literature.

semantic classes with less than 95% accuracy tend to be con-
fused with semantic classes which are geometrically similar to
them.

5.2. Other Machining Dataset
Figure 10 summarises the predictions of a median model on

the testing split of the machining features dataset from Zhang
et al. [11]. It is worth noting that the dataset which is made pub-
licly available is only a subset of the one used in their work9;
only containing four semantic labels - stock, pocket, holes, and
slots. A version of their model that was pre-trained on this sub-
set is made available and is used for the comparison in table 1
instead of the result stated in the paper.

In addition, the dataset is only distributed as pre-sampled
point clouds. The full surface is lacking, therefore the sam-
pling scheme presented in subsection 4.2 could not be applied.
32 points have been sampled from each b-rep face regardless
of size, resulting in a non-uniform coverage across the surface
geometry as shown in figure 11. Note that this also ensures

9https://github.com/HARRIXJANG/ASIN-master

10

https://github.com/HARRIXJANG/ASIN-master


Figure 9: Confusion matrix summarising the prediction accuracy of the final
model configuration on the MFCAD++ dataset testing split.

Figure 10: Confusion matrix summarising the prediction accuracy of the final
model configuration on the Zhang et al. machining features dataset testing split.

Figure 11: An example of a geometry from the Zhang machining features
dataset represented as a point cloud.

that no b-rep faces are left unsampled and likely explains the
relatively high result of the ‘standard’ PointNet++ implemen-
tation shown in table 1. Because the b-rep data is not available
for this dataset, only the surface normals and arbitrary b-rep
indices could be used as per-point input features. Potentially
the modified PointNet++ method presented in the current work
could achieve higher prediction accuracy given the full b-rep
data. However, this result gives evidence to the generality of
the method; it is able to process point cloud inputs without the
need to reconstruct a surface mesh or reverse engineer a b-rep
model.

5.3. Fusion 360 Gallery Segmentation Dataset
Figure 12 summarises the predictions of a median model on

the Fusion 360 Gallery segmentation dataset [8] official testing
split. The most confused classes reflect the ambiguity within
the dataset discussed in subsection 3.3. Specifically, faces
which were created with revolve or cut modelling operations
are confused as being the result of extrude operations.

The model’s performance as illustrated by the overall face
accuracy metric or the confusion matrix could be seen as mis-
leading for this dataset. Figure 13 shows examples of model
predictions which are technically incorrect when comparing to
the dataset’s ground truth labels. However, these labels are ac-
tually valid - the shape could be equivalently created with the
modelling operations shown. Fundamentally, the ambiguity is
present because there is no information about the 2D sketches
used to create the geometries within the dataset.

This is not to say that all the model’s confusion is to do with
the ambiguity - figure 14 shows an example of incorrect and
non-coherent predictions from the model. In this case, the 3D
shape has been created by revolving a sketch in the shape of the
number two with a large radius - as evidenced by the ground
truth labels and the change in thickness across the numeral. A
straight extrusion, as predicted by the model, would not pro-
duce this exact shape with the curve in the depth-wise direc-
tion. Interestingly, the model predicts the side faces towards the

11



Figure 12: Confusion matrix summarising the prediction accuracy of the final
model configuration on the Fusion 360 Gallery segmentation dataset testing
split.

Figure 13: Example of geometries where the model’s predictions are techni-
cally incorrect but are equally valid for creating the shape.

Figure 14: Example of geometries where the model’s predictions are actually
incorrect.

Variation Testing split face accuracy (%)
MFCAD++ Fusion360 Gallery

Baseline 84.74 68.15
with stratified sampling 89.76 (+5.02) 72.60 (+4.45)

with b-rep face loss 94.98 (+10.24) 75.57 (+7.42)
with extra point attributes 95.85 (+11.11) 80.46 (+12.31)

Table 2: B-rep face labelling accuracy of different variations of the Point Trans-
former approach. The improvement from the baseline model is shown in green.

thicker side as fillets instead of the sides of extrusions; perhaps
noticing the curvature.

The b-rep neural network presented by Lambourne et al. [8]
is meant to learn how users design shapes from this dataset. At
this time, it is unclear to the authors of the current work how
their model is able to learn this, but it is speculated that explicit
b-rep face topology may be very important. This is currently
lacking from the face prediction branch of the approach pre-
sented here and is left as future work.

5.4. Alternative Base Neural Network: Point Transformer

The majority of the proposed extensions are largely agnostic
to the underlying point-based neural network used. This section
provides some evidence for this by applying the modifications
to another state-of-the-art point-based neural network from lit-
erature - Point Transformer from Zhao et al. [39]. A key charac-
teristic of this approach is the use of a self-attention mechanism
in the ϕ function of equation 1. For details of this approach, the
interested reader is referred to the original work.

The implementation found within PyTorch Geometric is used
here which constructs a model with 4.6M learnable parameters,
larger than the default PointNet++ architecture. This was then
extended by using b-rep stratified sampling, b-rep face loss, and
extra point attributes without changing the core architecture or
code. Table 2 suggests the generality of the proposed exten-
sions to other point-based approaches. It is observed that the
labelling accuracy of the Point Transformer model is signifi-
cantly improved when properly taking advantage of the avail-
able b-rep data.

6. Conclusions

The current work shows that point-based approaches should
not be discounted when it comes to 3D CAD applications. The
point cloud representation is flexible enough to accommodate

12



the rich information available within b-rep models. In addi-
tion, the graph neural network formulation seems to be able to
learn internal representations that are sufficiently descriptive as
to make useful predictions using simple Euclidean locality. The
additive study explores modifications to a baseline PointNet++
neural network to give better performance in CAD applications.
The most important can be summarised as three key concepts:
full surface coverage, a loss function aligned with the task, and
taking advantage of b-rep features.

With these modifications, the approach was able to achieve a
new state-of-the-art result on the MFCAD++ machining fea-
tures dataset. Outperforming a b-rep neural network which
uses ‘hand-crafted’ features. It provides competitive results on
the machining features dataset presented by Zhang et al. [11]
as compared to a hybrid b-rep/point approach. And it signif-
icantly improves on the performance of the ‘standard’ Point-
Net++ model on the Fusion360 Gallery segmentation dataset.
Results were also presented which suggest that the improve-
ments afforded by the proposed extensions are not specific to
the PointNet++ network and can be used for other point-based
approaches.

The key contributions of this work are as follows:

• Extensions are presented for properly applying point-
based neural networks to CAD tasks involving surface ge-
ometry. Particularly how to take advantage of available
b-rep information within the relatively simple data repre-
sentation.

• These extensions significantly improve the performance of
a point-based approach. State-of-the-art accuracy is illus-
trated on the MFCAD++ machining features dataset when
applying proposed extensions.

• Experimental results are provided through an additive
study to document the construction of the system and to
explore the behaviour and performance effect of individual
modifications. This also serves as best-practices for those
seeking to use point-based networks for their application.

• Significant critique of the literature is presented and ev-
idence is given to counter some incorrect assumptions
about point-based methods for solid geometry applica-
tions.

7. Future Work

The additive study explores best practices and presents work
towards optimal model configurations; however, it is acknowl-
edged that there are complex interactions between the various
hyperparameters being studied. An attempt was made to or-
der the improvements in such a way as to minimise dependen-
cies. Nevertheless, the optimal model configuration for a given
dataset is likely to require a combinatorial search over all hy-
perparameters and this is suggested as future work.

Some evidence has been given for the application of the pro-
posed extensions to other point-based approaches. With the

flexibility of the geometric deep learning framework, other ap-
proaches could be studied. It is left as future work to inves-
tigate whether changing other aspects of the learning systems
would be useful for CAD applications. For instance, changing
the neighbourhood selection [40].

A motivation for utilising a geometry-first approach in this
work is to allow for applications outside b-rep models. This
has only been hinted at in the current paper and would be inter-
esting to address in a future work - specifically, can the same
architecture, if not the same trained model, perform well across
3D domains.

Declaration of competing interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Acknowledgement

The authors gratefully acknowledge support from the UK
Defence Science and Technology Labs via contract DSTLX-
1000152302, and special thanks to Dr. Fred Witham for his
support in this research.

Appendix A. Baseline model predictions with random
sampling

A confusion matrix of face predictions is shown in figure
A.15. On top of the 25 machining feature labels, a ‘NULL’ class
was also added to denote the b-rep faces for which the neural
network produced no label - because they were not sampled.
Of course the true label row for this class is empty since this is
not an actual ground truth label. However, it is observed that its
column for ‘predicted’ label makes up a noticeable mass of the
matrix - the pocket classes seem to consistently be missed by the
sampling and thus obtain a ‘NULL’ label. These classes seem
to also commonly be misclassified as passages, likely linked
to the fact that they are under-sampled - the neural network is
shown these classes less in training. Subsection 4.2 in the main
text seeks to alleviate this.

On top of under-sampling, the simple random sampling is
actually causing the dataset to become more imbalanced over-
all, from the neural network’s point of view; illustrated in fig-
ure A.16 by the significant proportion of the confusion matrix
mass concentrated within the stock class. While the MFCAD++
dataset has a reasonable class balance when measured in terms
of b-rep face labels, as reported by Colligan et al. [10], because
the number of points sampled from a face is proportional to its
size, machining features which tend to be larger will be over-
represented in the dataset (and vice-versa). This is further illus-
trated by the fact that the pocket and slot classes have a disap-
pearing amount of true labels in figure A.16. Subsection 4.3 in
the main text seeks to alleviate the effect of this imbalance on
the training.

13



Figure A.15: Confusion matrix for b-rep face predictions of a trained baseline
model configuration.

Figure A.16: Confusion matrix for point predictions of a trained baseline model
configuration.

Figure B.17: Evaluated b-rep face labelling accuracy of a single trained model
with different sampling strategies against the accuracy of models trained and
evaluated on the ‘native’ resolution. Data in red are simple random sampling
and in blue are using b-rep stratified sampling. Solid circles use a maximum of
64 point neighbours during point convolution while starred data use 128. Data
points are annotated with point cloud size.

Appendix B. Sampling study surrogate validation

Figure B.17 shows the correlation of the single trained model
surrogate approach with a limited number of results corre-
sponding to neural networks trained and evaluated on a given
sampling configuration.

Appendix C. Advantages of b-rep stratified sampling for
small point budgets

The stratified sampling particularly makes a difference
among the smaller b-rep faces when using a smaller input point
cloud. Whereas when using larger point clouds, the distribu-
tion of points across the faces created by the sampling methods
become very similar. This is shown for one geometry in figure
C.18.

Quantitatively, one can define a dissimilarity metric between
the two discrete distributions and compute summary statistics
across the entire validation set for each point cloud size. The χ2

histogram distance [63] is used here:

D(X,Y) =
∑

i

(Xi − Yi)2

(Xi + Yi)
(C.1)

The elementwise natural log of the corresponding distribu-
tions are used for Xi and Yi, this further biases the metric to-
wards the differences in the lower values and therefore smaller
b-rep faces - a necessity suggested by figure C.18. Figure C.19
confirms the aforementioned trend across the MFCAD++ val-
idation set. Showing that the distribution of points created by
b-rep stratified sampling and simple random sampling is similar
when using large point budgets and very dissimilar when using
small point cloud encodings.

14



Figure C.18: Histograms showing the number of points sampled from each b-
rep face in a single MFCAD++ example. B-rep faces are sorted in order of
surface areas. The distribution resulting in using b-rep stratified sampling and
simple random sampling are shown side-by-side for comparison. Two input
point cloud sizes are also shown for comparison.

Figure C.19: Box plots summarising the χ2 histogram distance of point dis-
tributions obtained by b-rep stratified sampling and simple random sampling,
across the MFCAD++ validation set. For each point budget, each geometry is
sampled once with each sampling method. The two point distributions obtained
are then used to calculate a χ2 metric for each geometry. These values are then
used to create the box plot for each point budget

.

Figure D.20: Histograms showing the number of points from each b-rep face
which were used in at least one convolution, in a single MFCAD++ example.
The maximum size of set N has been set to 64. B-rep faces are sorted in order
of surface areas. The input points were obtained with b-rep stratified sampling.
Three input point cloud sizes are shown.

Figure D.21: Histograms showing the number of points from each b-rep face
which were used in at least one convolution, in a single MFCAD++ example.
The maximum size of set N has been set to 16. B-rep faces are sorted in order
of surface areas. The input points were obtained with b-rep stratified sampling.
Three input point cloud sizes are shown.

Appendix D. Effect of insufficient downsampling neigh-
bourhoods

One can plot the distribution of points being used in the con-
volutions across the b-rep faces to see the effect of insufficient
maximum size of the set N relative to the total number of in-
put points. Figure D.20 shows that, for this specific shape and
sampling, an upper limit of 64 aggregated points per convolu-
tion is sufficient even up to around eight thousand input points.
However, at extreme input point cloud sizes, the neighbourhood
saturation results in multiple faces not being represented in any
of the convolutions. In figure D.21, it is observed that even at
medium point cloud sizes, an upper limit of 16 is potentially
not sufficient - one of the small faces is not represented in the
convolutions.

Appendix E. Multi-Branch Loss Weighted Combinations

The effect of different weightings for the combination of the
cross-entropy losses from the point prediciton and face predic-
tion branches was investigated using a small grid search. Fig-
ure E.22 shows that there is no advantage to unbalanced com-
binations. Interestingly, accuracy decreases when summing
the losses with unequal weightings. It is also observed that
weighted averages do not make a significant difference com-
pared to standard averaging of the two losses from the predic-
tion branches.

15



Figure E.22: Box plot showing the different face labelling accuracies achieved
by different total loss function configurations. The configuration with only
pointwise loss has been omitted for clarity - it’s significantly lower than the
rest as shown in 5.

References

[1] Z. Zhang, P. Jaiswal, R. Rai, Featurenet: Machining feature recognition
based on 3d convolution neural network, Computer-Aided Design (2018).

[2] C. R. Qi, L. Yi, H. Su, L. J. Guibas, Pointnet++: Deep hierarchical feature
learning on point sets in a metric space, Advances in neural information
processing systems (2017).

[3] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, D. Cohen-Or,
Meshcnn: a network with an edge, ACM Transactions on Graphics (TOG)
(2019).

[4] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view convolu-
tional neural networks for 3d shape recognition, in: Proceedings of the
IEEE international conference on computer vision, 2015, pp. 945–953.

[5] M. M. Bronstein, J. Bruna, T. Cohen, P. Veličković, Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges, arXiv preprint
arXiv:2104.13478 (2021).

[6] Y. Chen, F. Zhang, C. Zhang, T. Xue, L. R. Zekelman, J. He, Y. Song,
N. Makris, Y. Rathi, A. J. Golby, et al., White matter tracts are point
clouds: Neuropsychological score prediction and critical region local-
ization via geometric deep learning, arXiv preprint arXiv:2207.02402
(2022).

[7] J. M. Jackson, R. Liu, E. L. Dyer, Building representations of different
brain areas through hierarchical point cloud networks, in: Medical Imag-
ing with Deep Learning, 2022.

[8] J. G. Lambourne, K. D. Willis, P. K. Jayaraman, A. Sanghi, P. Meltzer,
H. Shayani, Brepnet: A topological message passing system for solid
models, in: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2021, pp. 12773–12782.

[9] P. K. Jayaraman, A. Sanghi, J. G. Lambourne, K. D. Willis, T. Davies,
H. Shayani, N. Morris, Uv-net: Learning from boundary representations,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 11703–11712.

[10] A. Colligan, T. Robinson, D. Nolan, Y. Hua, W. Cao, Hierarchical cadnet:
Learning from b-reps for machining feature recognition, Computer-Aided
Design (2022).

[11] H. Zhang, S. Zhang, Y. Zhang, J. Liang, Z. Wang, Machining feature
recognition based on a novel multi-task deep learning network, Robotics
and Computer-Integrated Manufacturing (2022).

[12] M. Al-Wswasi, A. Ivanov, H. Makatsoris, A survey on smart automated
computer-aided process planning (acapp) techniques, The International
Journal of Advanced Manufacturing Technology (2018).

[13] X. Zhang, D. J. Toal, N. Bressloff, A. Keane, F. Witham, J. Gregory,
S. Stow, C. Goddard, M. Zedda, M. Rodgers, Prometheus: a geometry-

centric optimisation system for combustor design, in: Turbo Expo: Power
for Land, Sea, and Air, 2014.

[14] A. Benali Amjoud, M. Amrouch, Convolutional neural networks back-
bones for object detection, in: International Conference on Image and
Signal Processing, Springer, 2020, pp. 282–289.

[15] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature (2015).
[16] X. Yao, D. Wang, T. Yu, C. Luan, J. Fu, A machining feature recogni-

tion approach based on hierarchical neural network for multi-feature point
cloud models, Journal of Intelligent Manufacturing (2022).

[17] T. Várady, R. R. Martin, J. Cox, Reverse engineering of geometric mod-
els—an introduction, Computer-Aided Design (1997).

[18] W. N. Dawes, N. Meah, A. Kudryavtsev, R. Evans, M. Hunt, P. Tiller,
Digital geometry to support a gas turbine digital twin, in: AIAA Scitech
2019 Forum, 2019, p. 1715.

[19] H. Salval, A. Keane, D. Toal, Multiresolution surface blending for detail
reconstruction, Graphics and Visual Computing (2022).

[20] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, S. Xie, A convnet
for the 2020s, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 11976–11986.

[21] G. Qian, Y. Li, H. Peng, J. Mai, H. A. A. K. Hammoud, M. Elhoseiny,
B. Ghanem, Pointnext: Revisiting pointnet++ with improved training
and scaling strategies, in: Advances in Neural Information Processing
Systems, 2022, pp. 23192–23204.

[22] W. Cao, T. Robinson, Y. Hua, F. Boussuge, A. R. Colligan, W. Pan, Graph
representation of 3d cad models for machining feature recognition with
deep learning, in: International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference, 2020.

[23] J. J. Shah, D. Anderson, Y. S. Kim, S. Joshi, A Discourse on Geometric
Feature Recognition From CAD Models , Journal of Computing and
Information Science in Engineering (2000).

[24] A. H. Nobari, J. Rey, S. Kodali, M. Jones, F. Ahmed, Conformal predic-
tions enhanced expert-guided meshing with graph neural networks, arXiv
preprint arXiv:2308.07358 (2023).

[25] S. Joshi, T. Chang, Graph-based heuristics for recognition of machined
features from a 3d solid model, Computer-Aided Design (1988).

[26] S. Prabhakar, M. R. Henderson, Automatic form-feature recognition us-
ing neural-network-based techniques on boundary representations of solid
models, Computer-Aided Design (1992).

[27] V. Sunil, S. Pande, Automatic recognition of machining features using
artificial neural networks, The International Journal of Advanced Manu-
facturing Technology (2009).

[28] P. Shi, Q. Qi, Y. Qin, P. J. Scott, X. Jiang, A novel learning-based feature
recognition method using multiple sectional view representation, Journal
of Intelligent Manufacturing (2020).

[29] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural
message passing for quantum chemistry, in: International conference on
machine learning, 2017, pp. 1263–1272.

[30] J. Masci, D. Boscaini, M. Bronstein, P. Vandergheynst, Geodesic convo-
lutional neural networks on riemannian manifolds, in: Proceedings of the
IEEE international conference on computer vision workshops, 2015, pp.
37–45.

[31] A. Poulenard, M. Ovsjanikov, Multi-directional geodesic neural networks
via equivariant convolution, ACM Transactions on Graphics (TOG)
(2018).

[32] L. Huang, Review on lidar-based slam techniques, in: 2021 International
Conference on Signal Processing and Machine Learning (CONF-SPML),
2021, pp. 163–168.

[33] Y. Li, J. Ibanez-Guzman, Lidar for autonomous driving: The principles,
challenges, and trends for automotive lidar and perception systems, IEEE
Signal Processing Magazine (2020).

[34] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
A. J. Smola, Deep sets, Advances in neural information processing sys-
tems (2017).

[35] C. R. Qi, H. Su, K. Mo, L. J. Guibas, Pointnet: Deep learning on point
sets for 3d classification and segmentation, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 652–
660.

[36] Y. Xu, T. Fan, M. Xu, L. Zeng, Y. Qiao, Spidercnn: Deep learning on
point sets with parameterized convolutional filters, in: Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 87–102.

[37] Y. Liu, B. Fan, S. Xiang, C. Pan, Relation-shape convolutional neural net-

16



work for point cloud analysis, in: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2019, pp. 8895–8904.

[38] S. Lan, R. Yu, G. Yu, L. S. Davis, Modeling local geometric structure
of 3d point clouds using geo-cnn, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 998–
1008.

[39] H. Zhao, L. Jiang, J. Jia, P. H. Torr, V. Koltun, Point transformer, in: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision,
2021, pp. 16259–16268.

[40] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, J. M. Solomon,
Dynamic graph cnn for learning on point clouds, Acm Transactions On
Graphics (tog) (2019).

[41] A. Kashefi, D. Rempe, L. J. Guibas, A point-cloud deep learning frame-
work for prediction of fluid flow fields on irregular geometries, Physics
of Fluids (2021).

[42] A. Kashefi, T. Mukerji, Physics-informed pointnet: A deep learning
solver for steady-state incompressible flows and thermal fields on multi-
ple sets of irregular geometries, Journal of Computational Physics (2022).

[43] A. R. Colligan, T. T. Robinson, D. C. Nolan, Y. Hua, Point cloud dataset
creation for machine learning on cad models, Comput. Aided Des. Appl
(2021).

[44] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard,
L. Jackel, Handwritten digit recognition with a back-propagation net-
work, Advances in neural information processing systems (1989).

[45] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[46] Y. Eldar, M. Lindenbaum, M. Porat, Y. Y. Zeevi, The farthest point strat-

egy for progressive image sampling, IEEE Transactions on Image Pro-
cessing (1997).

[47] L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang,
A. Sheffer, L. Guibas, A scalable active framework for region annotation
in 3d shape collections, SIGGRAPH Asia (2016).

[48] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for
biomedical image segmentation, in: International Conference on Medical
image computing and computer-assisted intervention, 2015, pp. 234–241.

[49] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, in: International conference
on machine learning, 2015, pp. 448–456.

[50] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann
machines, in: Proceedings of the 27th international conference on ma-
chine learning (ICML-10), 2010, pp. 807–814.

[51] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, The
journal of machine learning research (2014).

[52] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: An imper-
ative style, high-performance deep learning library, Advances in neural
information processing systems (2019).

[53] M. Fey, J. E. Lenssen, Fast graph representation learning with pytorch
geometric, arXiv preprint arXiv:1903.02428 (2019).

[54] L. Dimitrov, F. Valchkova, Problems with 3d data exchange between cad
systems using neutral formats, Proceedings in Manufacturing Systems
(2011).

[55] E. W. Weisstein, Triangle point picking., 2006 (accessed
Sept 21, 2022). URL: https://mathworld.wolfram.com/

TrianglePointPicking.html.
[56] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv

preprint arXiv:1412.6980 (2014).
[57] S. Kapoor, A. Narayanan, Leakage and the reproducibility crisis in ml-

based science, arXiv preprint arXiv:2207.07048 (2022).
[58] M. A. Lones, How to avoid machine learning pitfalls: a guide for aca-

demic researchers, arXiv preprint arXiv:2108.02497v2 (2021).
[59] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn, in: Proceedings

of the IEEE international conference on computer vision, 2017, pp. 2961–
2969.

[60] T. Standley, A. Zamir, D. Chen, L. Guibas, J. Malik, S. Savarese, Which
tasks should be learned together in multi-task learning?, in: International
Conference on Machine Learning, 2020, pp. 9120–9132.

[61] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, L. J.
Guibas, Kpconv: Flexible and deformable convolution for point clouds,
in: Proceedings of the IEEE/CVF international conference on computer
vision, 2019, pp. 6411–6420.

[62] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud,
J. A. Levine, A. Sharf, C. T. Silva, A survey of surface reconstruction
from point clouds, in: Computer Graphics Forum, 2017, pp. 301–329.

[63] O. Pele, M. Werman, The quadratic-chi histogram distance family, in:
Computer Vision – ECCV 2010, Berlin, Heidelberg, 2010, pp. 749–762.

17

https://mathworld.wolfram.com/TrianglePointPicking.html
https://mathworld.wolfram.com/TrianglePointPicking.html

	Introduction
	Literature Review 
	Background
	Geometric Deep Learning
	CAD Semantic Segmentation

	Method
	The PointNet++ Approach
	Baseline Architecture
	Benchmark Dataset(s)
	Training and Evaluation Details

	Additive Study
	Baseline
	Point Coverage
	Aligned Loss Function
	Input Attributes
	Scaling

	Results
	MFCAD++ Dataset
	Other Machining Dataset
	Fusion 360 Gallery Segmentation Dataset
	Alternative Base Neural Network: Point Transformer

	Conclusions
	Future Work
	Baseline model predictions with random sampling
	Sampling study surrogate validation
	Advantages of b-rep stratified sampling for small point budgets
	Effect of insufficient downsampling neighbourhoods
	Multi-Branch Loss Weighted Combinations

