Detection of locally adapted genomic regions in wild rice (Oryza rufipogon) using environmental association analysis
James A. Bedford1,2, Mark Carine2, and Mark A. Chapman1.
1. Biological Sciences, Life Sciences Building 85, University of Southampton, Hampshire, SO17 1BJ, United Kingdom
2. Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom

Contacts
J.A.Bedford@soton.ac.uk
M.Chapman@soton.ac.uk

Keywords
Local adaptation; Oryza rufipogon; Environmental Association Analysis; Climate; Abiotic stress; Genomics; Domestication; Wild rice 

Abstract
Oryza rufipogon is the wild progenitor of cultivated rice O. sativa and exhibits high levels of genetic diversity across its distribution, making it a useful resource for the identification of abiotic stress tolerant varieties and genes that could limit future climate-changed induced yield losses. To investigate local adaptation in O. rufipogon, we analyzed single nucleotide polymorphism (SNP) data from a panel of 286 samples located across a diverse range of climates. Environmental association analysis (EAA), a genome wide association study (GWAS)-based method, was used and revealed 15 regions of the genome significantly associated with various climate factors. Genes within these environmentally associated regions have putative functions in abiotic stress response, phytohormone signaling and the control of flowering time. This provides an insight into potential local adaptation in O. rufipogon and reveals possible locally adaptive genes that may provide opportunities for breeding novel rice varieties with climate change-resilient phenotypes.

Introduction
[bookmark: _Hlk104989111]Domestication and selective breeding are necessary to produce high crop yields, however, crops tend to have a restricted genetic diversity when compared to their wild relatives (Jovovic et al., 2020) due to large genetic bottlenecks and selection (Flint-Garcia, 2013). The reduction in diversity in domesticates is concerning for future food security as population genetic diversity is generally regarded as beneficial for adaptation to changing environments (Jump et al., 2009).
Rice (Oryza sativa L.) provides food for approximately 3.5 billion people, accounting for an estimated 50% of the caloric intake of half a billion people living in poverty in Asia (Muthayya et al., 2014). Globally, approximately 750 million tonnes of rice are produced per year, comparable with other cereal crops such as wheat (FAOSTAT, 2020). The high yields of cultivated rice are a result of selective breeding and O. rufipogon Griff., the wild progenitor of O. sativa, has greater levels of sequence diversity than both subspecies of O. sativa (subspecies japonica and indica; Caicedo et al., 2007; Huang et al., 2012). Analysis of rice yields in recent history (1979–2008) revealed that fluctuations in temperature and precipitation have had a considerable impact on yield (Ray et al., 2015) and climate modelling indicates that a 3°C increase in global mean temperature could reduce rice yield by up to 19% (Tao et al., 2011).
[bookmark: _Hlk101263045]Oryza rufipogon has a perennial life cycle and occurs in permanent wetland environments, including ponds, marshes, rivers and streams (Gao et al., 2012), preferring relatively deep water between 0.2 and 4 m (Vaughan, 1994). An annual ecotype, referred to by some authors as O. nivara S.D. Sharma & Shastry, is found in shallow water and seasonally wet environments (Chang, 1976; Li et al., 2006) and is recognized in this study as an O. rufipogon ecotype. Outcrossing rates of annual O. rufipogon ranges from 4% to 25.5% (Phan et al., 2012), whereas in perennial forms this can reach 56% (Barbier, 1989). The native range of O. rufipogon in its broad sense extends across East Asia, Indonesia and northern Australia, located between latitudes of approximately 20° S and 30° N (Vaughan, 1994), although the range is hypothesized to have shifted throughout its evolutionary history, coinciding with changes in climate patterns during the Holocene period (Dodson et al., 2021). 
[bookmark: _Hlk142038473]Oryza rufipogon is distributed widely across a range of ecological environments, potentially generating selection pressures resulting in locally adaptive variants in the genome, that is, genetic variants linked to increased fitness of populations in their native environment when compared to other introduced populations. This could stem from resistance to pests and pathogens, or the abiotic environment, for example, seasons, temperature and precipitation. In cultivated rice, crown root density is associated with high fitness under drought conditions (Groen et al., 2021) and flowering time varies across latitude, with locally adapted loss of function variants detected in key flowering time genes (reviewed by Shrestha et al., 2014). Investigations into the genetics of local adaptation in wild rice are limited but there may be some overlap of genes involved in local adaptation with those in cultivated rice, although this has not been investigated.
Climate modelling and archaeobotanical information have revealed that both domesticated and wild rice have been influenced by shifts in global climate patterns. Spatial and temporal niche modelling of the japonica subspecies and integration with archaeological data suggest that declines in temperature played a role in shaping its distribution with minor changes in temperature predicted to have caused a large decline of tropical japonica in Northeast China (d’Alpoim Guedes et al., 2015). It is also suggested that these changes in temperature generated adaptive pressure resulting in the formation of temperate japonica from the tropical subspecies (d’Alpoim Guedes et al., 2015) which is supported by modelling and archaeological rice records (Gutaker et al., 2020). Overall, previous studies have thus highlighted the significant impact of climate on rice evolution and distribution and have identified traits linked to local adaptation in the domesticated O. sativa and its wild relative O. rufipogon.
High genetic diversity is a main characteristic of crop wild relatives (Zhang et al., 2017) and makes O. rufipogon a suitable model for the identification of abiotic stress tolerant varieties and genes, with implications for the improvement of rice and other crops. There are multiple approaches to investigate the genetics of local adaptation in plant species, for example quantitative trait loci (QTL) mapping (Savolainen et al., 2013) or analysis of genetic markers though environmental association analysis (EAA) (Hoban et al., 2016). EAA uses statistical models to associate environmental variation with genetic variation, typically single nucleotide polymorphisms (SNPs), across hundreds of accessions or populations of a species (Rellstab et al., 2015). Genes for environmental adaptation will be located in, or near to, associated regions. These locally adaptive genes may be offset from significantly associated SNPs, as a result of linkage disequilibrium, and require further analysis to be confident of the adaptive value. 
Applications of EAA to investigate local adaptation and identify genetic variation associated with environmental conditions has been demonstrated in a few crop wild relatives, for example the wild progenitors of barley (Hordeum vulgare subsp. spontaneum (K. Koch) Thell; Lei et al., 2019) and soybean (Glycine soja Siebold & Zucc; Anderson et al., 2016). Therefore, EAA can be used for identification of genetic markers for crop breeding or identification of genes with potential functions in environmental response. 
[bookmark: _Hlk107467206]In this study we investigate local adaptation in O. rufipogon with a view to investigating the genetic basis of local adaptations associated with aspects of the abiotic environment, with potential for rice breeding for future or more varied climates. We analyzed genome-wide SNP data from a subset of the wild O. rufipogon accessions sequenced by Huang et al. (2012), using EAA to identify environmentally associated genomic regions. Genes within these regions were collated and their functions analyzed in the context of previous literature, with the aim of identifying consistencies or novel differences between domesticated rice and its wild relative. The study provides an insight into potential local adaptation in wild rice and highlights several genes that may be involved in adaptation to environmental conditions. 
[bookmark: _Hlk98937709]Methods
Diversity Panel
The diversity panel of wild rice used in this investigation is derived from a set of 446 O. rufipogon sensu lato accessions (i.e., including samples referrable to O. nivara) located in the OryzaGenome database release 1.0 (Ohyanagi et al., 2015) and originally sequenced by Huang et al. (2012). This sequencing data is a collection of low-coverage (average 1.9x) whole-genome sequence data, for which SNPs were previously called by alignment to the Oryza sativa reference genome (IRGSP 4.0) with Smalt (v 0.4), keeping uniquely mapping reads with >96% identity, and identified by the Ssaha Pileup package (v 0.5), removing low quality bases. Missing genotypes were imputed using a k-nearest neighbor imputation method with a reported accuracy of approximately 98% (Huang et al., 2010; Huang et al., 2012). 
Climate data
Initial checks of the 446 accessions resulted in the removal of 18 accessions without location data and correcting the country of origin for an additional 11 samples. Climate data was obtained from the WorldClim database version 1.4 (Hijmans et al., 2005) using the R package Raster (Hijmans et al., 2020) in RStudio (R Core Team, 2022). The WorldClim dataset contains global climate information interpolated from observed data collected between approximately 1960 and 1990 and organized into ca. 1 km2 grids (30 arc-second resolution grid, 0.86 km2 at the equator). Nineteen bioclimatic variables (nine temperature-associated, six precipitation-associated variables and four associated with both temperature and precipitation; Table S1) were retrieved from the dataset using the accession location coordinates from Huang et al. (2012) to download specific grid values. Elevation values for each sample were obtained using the Raster “getData” function and the SRTM 90 m resolution dataset. Three accessions were removed as elevation data could not be extracted for these locations.
Rellstab et al., (2015) recommended that populations showing extreme environmental values should not be included in analyses to reduce false positives arising through chance association with outliers. Consequently, rice accessions that were sampled from extreme climates (i.e., at least one variable was outside the 1.5X IQR) were identified and removed. This reduced the number of accessions to 286. 
Composite climate variables, principal component 1 (PC1) and PC2, were derived from the climatic data via principal component analysis (PCA) on all climate variables using the RStudio core stats function “princomp” with parameters cor and scores enabled. The first and second principal component values were then extracted. Correlations between variables at each sample location were analyzed with Spearman’s rank correlation and visualized using the R package “ggcorrplot” (Kassambara, 2019). Based on the correlation data, groups of highly correlated variables (ρ ≤ -0.8; ρ ≥ 0.8) were reduced to a single variable to limiting the effects of multiple testing. Therefore, thirteen environmental variables were analyzed here.
Oryza rufipogon accessions and processing of genetic data
SNP data from the 286 accessions was processed in RStudio version 3.6.0. Missing data was re-coded from “-” to “N” and the dataset was converted to “HapMap” style. SNPs were allocated IDs, e.g., ORRUF01_00001445T:A, detailing the species (ORRUF), chromosome (01), the location within the chromosome (00001445) and the reference/SNP base present (T:A). 
On average, accessions were missing 6.78% of SNPs after imputation, with a maximum of 13% missing data, therefore no further accessions were removed from the analysis because of missing data, resulting in a SNP count of 2,463,549. The proportion of missing data for each SNP ranged from 0% to 77.3% and SNPs with greater than 20% missing data were removed, in-line with previous studies (e.g., Lei et al., 2019), resulting in 2,267,618 SNPs. Finally, SNP minor allele frequency (MAF) was calculated and SNPs with a MAF of ≤0.05 were excluded, resulting in 1,898,737 SNPs for the EAA.
Environmental association analysis
[bookmark: _Hlk142038134]The genome-wide association study (GWAS) program GAPIT3 (Lipka et al., 2012) was selected for the environmental association analysis using the single locus mixed linear model (MLM). This approach has been used in other similar EAA studies (e.g., De La Torre et al., 2019; Lei et al., 2019). Typically, GAPIT identifies associations between phenotype and genotype data collected from a genetically and phenotypically diverse accession panel. This is achieved using mixed-linear models which account for underlying population structure using PCA of SNP data, in our case the first three principal components, and incorporating estimates of relatedness between accessions by producing a VanRaden kinship matrix. However, in EAA using GWAS programs, phenotype data is substituted with environmental data, adding the assumption that local adaptation is occurring in the studied population. Significant SNPs were corrected for multiple testing with False Discovery Rate (FDR) adjusted p values and use of the Bonferroni multiple test correction threshold. Manhattan plots (Figure S1 in File S1) and quantile-quantile (QQ) plots (Figure S2 in File S1) were produced to visualize the model outputs.
EAA SNP regions, gene identification and analysis
[bookmark: _Hlk137736797]SNPs significantly associated with the climate variables are often clustered into regions due to linkage disequilibrium (LD), including putatively neutral SNPs that are in close proximity to a selectively advantageous SNP variant. Regions were identified based on the 0.05 FDR corrected p-value and Bonferroni significance thresholds. Additional regions were identified from single SNPs if they were highly significant, passing the Bonferroni threshold. For gene identification, regions were extended by 10 kb to capture those that may be linked to the region by LD. Genes within regions were determined by comparing the chromosomal locations to the IRGSP Ver1.0 genome browser with MSU Osa1 gene model tracks (http://viewer.shigen.info/oryzagenome2/mapview/MapView.do).
Gene ontology (GO) term enrichment analysis was carried out on the genes present in the genomic regions identified from the EAA using AgriGO V2.0 (Tian et al., 2017), selecting singular enrichment analysis (SEA), an FDR significance threshold of 0.05 and using the MSU 7.0 gene ID reference consisting of 24075 genes with annotated “Complete GO” GO terms. Two sets of genes were analyzed, those associated with at least one temperature variable (BIO1, 4, 5, 8 and PC1) and those associated with at least one precipitation variable (BIO8, 13, 14 and PC1). Some overlap occurs between these categories due to a subset of the environmental variables being linked to both temperature and precipitation metrics. The temperature category input 59 genes, with 28 being annotated with GO terms, and the precipitation group inputting 52 genes with 24 annotated. Genic SNPs were also identified through alignment to the MSU Osa1 gene model and non-synonymous SNPs assigned a Grantham score to determine the impact of amino acid sequence changes (Grantham, 1974).

Results
Oryza rufipogon is distributed across a diverse range of environments
The climate variables comprise 19 bioclimatic variables and elevation. Across the sample locations, average annual temperature (BIO1) ranges from 21.4°C to 28.1°C, generally decreasing with latitude (Figure 1a). Annual precipitation (BIO12) displays a more heterogenous pattern than the temperature variables and varies 3-fold across the sample range, between ca. 820 mm and 2430 mm (Figure 1b). There is a high degree of correlation between the climatic variables, latitude and longitude, with strong correlations between most temperature-associated variables and between precipitation variables (Figure S3 in File S1). Based on this correlation data, groups of highly correlated variables (ρ ≤ -0.8; ρ ≥ 0.8) were reduced to a single variable for the EAA, resulting in analysis of 13 variables.
Composite variables were derived from the climate data using PCA, and the first and second PCs used in the EAA. The greatest loadings for PC1 includes BIO1, 4, 9, 11, 14 and 17 (Figure 2; Table S2), which are measurements of temperature or precipitation in dry periods. Loadings for PC2 include BIO3, 6, 15 and 19 which are a variety of measurements related to isothermality and seasonality. In the environmental PCA (Figure 2), samples with low PC1/intermediate PC2 values are predominantly from China, with a cooler climate, large annual temperature variation and consistently higher precipitation. Samples with high PC1/intermediate PC2 values are from hot climates with average annual temperature range and maximum temperature, and low precipitation. The samples with the greatest PC2 have consistently warm temperatures throughout the year, and samples with low PC2 values are from environments with high annual temperature variation and the highest maximum temperatures. 
Previous population structure analyses on the SNP dataset using neighbor-joining method revealed three genetic groups, Or-I, II and III (Huang et al., 2012). These show patterns of geographic distribution, with Or-III predominantly found in China and west India, and Or-I and II displaying a more mixed distribution. This is reproduced in a PCA of the SNP data, revealing that the samples originating from China are more genetically distant and that the two genetic groups display mixed origins (Figure S4 in File S1).
Identification of genomic regions linked to environmental variables
The EAA was run using GAPIT, based on 1,898,737 SNPs across 286 individuals. Overall, 8 of 13 variables produced significant associations (Figure S1 in File S1). Variables that failed to produce significant associations in the EAA included PC2, elevation, annual range in temperature (BIO7), annual precipitation (BIO12) and precipitation seasonality (BIO15). PC1 produced associations similar to other highly correlated temperature variables and no genomic regions were associated with PC2.
[bookmark: _Hlk142039931]Regions (R) were named by chromosome and then sequentially if more than one region was present on a chromosome. In total, 15 regions across 9 of the 12 chromosomes were identified, with each passing at least the FDR threshold and most passing the more stringent Bonferroni threshold (Table 1). Two of these associations represent significant associations for two or more of the environmental variables. For example, environmentally associated region 2.1 (R2.1) was identified on chromosome 2 for variables PC1, BIO1 and BIO4 (Table 1), all of which are various measurements of temperature. Similarly, four variables were associated with region R5.1. 
The size of each significant region varied considerably, from a single significantly associated SNP to large regions of over 100 kb containing several significant SNPs after FDR correction. This could be a result of differences in sequence coverage or imputation in these regions, degree of linkage disequilibrium, or the presence of multiple genes that are associated with the environmental variables.
Identification of genes linked to environmental variables
Overall, 86 genes were present within or close to (within 10 kb) the 15 genomic regions (Table S3). Several of these genes demonstrate putative functions that could be involved in local adaptation. Of the genes located in the environmentally associated regions, seven contain an FDR-corrected SNP within their coding sequence, and three of these contain one or more non-synonymous SNP (LOC_Os01g05640, LOC_Os01g67500 and LOC_Os05g27670; Table 2). Grantham scores indicate that two SNPs present in a receptor-like protein kinase (LOC_Os01g05640) will have low impact on the structure, whereas the serine to cysteine substitution for the armadillo/beta-catenin repeat family protein (LOC_Os01g67500) and premature stop codon in the uncharacterized protein (LOC_Os05g27670) will likely have a larger effect on the protein function. A GO enrichment analysis was also conducted, comparing the GO terms of genes located within regions associated with temperature or precipitation variables against a reference dataset of GO terms. However, no significant enrichment was detected after correcting for multiple tests (Table S4).
Chromosome 1
Three environmentally associated regions were detected in Chromosome 1. R1.1 was associated with the precipitation of the driest month, another (R1.2) shows association with precipitation of the wettest month, and the third (R1.3) is in association with the warmest month.
R1.1 contains a receptor-like protein kinase of unknown function, a disease resistance (R) gene PYRICULARIA ORYZAE RESISTANCE T (PIT; LOC_Os01g05630) and a metallothionein gene (MT2a; LOC_Os01g05650) ca. 2kb downstream of this region. R1.2 is ca. 6 kb from a sulphate transporter (SULTR3;6; LOC_Os01g52130), which has previously been shown to be upregulated in drought and salinity stresses (Kumar et al., 2011). Additional genes within the region include those encoding hypothetically expressed proteins and a heavy metal associated protein (HMP5; LOC_Os01g52160). Finally, R1.3 contains three genes with the annotations DNA binding protein (LOC_Os01g67480), OTU-like cysteine protease (LOC_Os01g67490), armadillo/beta-catenin repeat family protein (LOC_Os01g67500) and a GDP-L-galactose phosphorylase (GGP; LOC_Os01g67520) is located downstream of this region and is predicted to function in the biosynthesis of ascorbic acid (Akram et al., 2017).
Chromosome 2
Three environmentally associated regions were detected in chromosome 2. R2.1 is associated with several highly correlated temperature-associated variables. This region contains several retrotransposons and a gene encoding an F-box/Kelch repeat protein (OsFBOX84; LOC_Os02g21110), which is differentially expressed under light and dark conditions (Jain et al., 2007). The non-reference allele is predominantly in regions with low PC1 values, which corresponds to regions with lower temperatures.
The final two regions in chromosome 2 are associated with temperature of the wettest quarter and mean diurnal range, respectively. R2.2 contains an uncharacterized gene encoding an expressed protein (LOC_Os02g35860) and R2.3 has a terpene synthase gene, ent-isokaur-15-ene synthase (OsKS6; LOC_Os02g36264), which is located 1.9 kb upstream of the single significant SNP in this region.
Chromosome 3
In chromosome 3, a single significant SNP peak was detected and associated with the mean temperature of the wettest quarter (BIO8). This SNP is near a gene encoding an ethylene receptor, ETHYLENE RESPONSE SENSOR 1 (OsERS1; LOC_Os03g49500). 
Chromosome 5
R5.1 is associated with the precipitation of the driest month (BIO14), PC1, annual temperature and temperature seasonality. This region contains a single gene encoding an expressed protein (LOC_Os05g27680) and a transposon protein.
Chromosome 6
In chromosome 6, two significant regions were detected. R6.1, associated with the precipitation of the wettest month (BIO13), contains a predicted growth regulator, O-fucosyltransferase (LOC_Os06g13215) and R6.2, associated with the mean temperature of the wettest quarter (BIO8), is close to a predicted MADS-box transcription factor (LOC_Os06g40609) and an ESCRT-III complex SNF7 component (LOC_Os06g40620).
Chromosome 7
R7.1 was found to be associated with the maximum temperature of the warmest month (BIO5). This large 147 kb region contains 26 genes, 22 of which are genes of unknown function or transposons. Genes with functional annotations include genes putatively related to flowering time (OsGHD7-like; LOC_Os07g15770), reactive oxygen species (ROS) antioxidant activity (LOC_Os07g15670) and leaf and spikelet development (NAL8; LOC_Os07g15880). OsGhd7 is linked to adaptation of rice to higher latitudes (Koo et al., 2013) and a SNP within Ghd7 associated with BIO5 is found in accessions located in environments with high maximum temperatures (Figure 3).
Chromosome 8
R8.1 is associated with precipitation of the wettest month (BIO13) and contains a glutamate decarboxylase (OsGAD1; LOC_Os08g36320), with the SNP allele present in accessions found in climates with relatively low precipitation in their wettest month. OsGAD1 has high sequence similarity to AtGAD1 (AT5G17330: 94% coverage; 86.97% identity), which is implicated in the response to heat, drought and hypoxia stresses, through production of GABA (Kinnersley and Turano, 2000). 
Chromosome 10
Analysis of the precipitation of the driest month produced an additional SNP peak in chromosome 10 (R10.1) near genes encoding ubiquitin-conjugating enzyme 10 (OsUBC10; LOC_Os10g31000) and mRNA adenosine methylase 4 (OsMTA4; LOC_Os10g31030). Although the function of these proteins in rice is largely unknown, expression of OsUBC10 is upregulated by the phytohormone abscisic acid (E et al., 2015).
Chromosome 12
In chromosome 12 there are two significant regions both associated with BIO14. R12.1 consists of three genes with unknown functions and R12.2 does not contain any genes within 10 kb. The closest gene is 11.2 kb downstream and is predicted to encode a 9-cis-epoxycarotenoid dioxygenase (NCED2; LOC_Os12g42280). 
Overall, a large proportion of the environmentally associated SNPs were near genes with unknown functions, highlighting the importance of gene annotation in model systems. Despite this, 11 of the 19 regions identified contain genes with putative functions linked to response to abiotic/biotic conditions or hormone signaling. This included genes known to be regulated by or implicated in ethylene and abscisic acid (ABA) signaling and the GABA shunt pathway. Genes functioning in response to temperature, drought, UV and hypoxia were present in several of the significant regions. Whilst there was no significant enrichment of GO terms, this may indicate that the various adaptations are controlled by a range of processes.

Discussion
The aim of the analysis was to identify genetic markers associated with variation in environmental conditions across the native range of O. rufipogon. Genes predicted to be in close proximity to these markers were identified and their biological functions analyzed bioinformatically. This has allowed us to detect genomic regions potentially involved in the local adaptation of O. rufipogon and to highlight genes and mechanisms predicted to contribute to response to environmental conditions. 
The diversity panel used in the analysis extends across most of the species’ range, although with limited sampling in Indonesia and west India. The environmental dataset was summarized with a PCA, revealing that variables contributing the most to the PC1 loadings include those relating to temperature. This is similar to a previous analysis of Chinese O. rufipogon, which found that the variables annual temperature, temperature seasonality and mean annual radiation were the main factors contributing to variation in climate across the population (Zhou et al., 2013). Whilst some of the genome regions identified were associated with a single variable, others were associated with multiple (e.g., R2.1 and R5.1), meaning the specific environmental factor underlying the association cannot be confirmed, and in many cases multiple overlapping EAA regions are likely due to the correlation between variables. It should also be noted that the climate variables may also correlate with variables not analyzed in this investigation, such as soil factors, exposure or salinity. Here, we focus on genes potentially underlying local adaptation to temperature and precipitation.
Detection of the heading date gene Ghd7, known to be involved in local adaptation in domesticated rice
One of the candidate genes in a region associated with temperature variables encodes the heading date gene Ghd7. In O. sativa, Ghd7 is a key component of the flowering time pathway (Shrestha et al., 2014). Sequence differences in Ghd7 are associated with adaptation to long-day conditions (Shrestha et al., 2014) and naturally occurring haplotypes of OsGhd7 have been associated with variation in heading dates and latitudes (Xue et al., 2008; Koo et al., 2013; Cui et al., 2020). Cultivars from the most northern latitudes (beyond the northern limits of O. rufipogon) are often associated with non-functional Ghd7 variants (Xue et al., 2008).
In our analysis, populations with the non-reference allele were from locations with high maximum temperatures. Because high temperature stress during reproductive stages causes sterility (at least in domesticated rice; Jagadish et al., 2007), natural variation in Ghd7 could alter flowering time, functioning to escape high temperature stress. Lifecycle shifts for stress avoidance are known to occur in A. thaliana in response to a broad range of abiotic and biotic factors (Kazan and Lyons, 2015), and in the wild oat species Avena barbata Pott ex Link (Sherrard and Maherali, 2006). OsGhd7 is also responsive to other stress conditions (Weng et al., 2014; Du et al., 2018) and hence could be involved in adaptation to other conditions.
Detection of phytohormone-associated genes
Some of the EAA candidate genes are associated with phytohormones, which are often involved in stress response and developmental processes, for example ABA (Shi and Yang, 2014; Muhammad Aslam et al., 2022) and ethylene (Müller and Munné-Bosch, 2015). OsGhd7, mentioned before, is repressed by ABA and jasmonic acid (Weng et al., 2014). The gene ERS1 is a predicted negative regulator of ethylene signaling, influences root length in O. sativa (Ma et al., 2014) and is upregulated in salinity (Hossain et al., 2016).
Finally, the ubiquitin conjugating enzyme UBC10 is associated with precipitation of the driest month and quarter. UBCs are involved in the ubiquitination of target proteins (Ciechanover, 1994) and can function in a variety of processes including developmental processes, hormone signaling (Dreher and Callis, 2007), flowering time (Xu et al., 2009) and abiotic stress response (Lyzenga and Stone, 2011). In O. sativa, UBC10 expression is increased in response to ABA (E et al., 2015), which is usually associated with the regulation of developmental processes (Rodríguez-Gacio et al., 2009) and response to abiotic stresses (Seki et al., 2002). In rice, ABA has also been linked to drought escape pathways through regulation of flowering time genes (Du et al., 2018). Therefore, UBC10 may function in ABA signaling to regulate developmental or stress response processes. 
Detection of abiotic stress related genes
Some of the EAA candidate genes have possible functions in response to various abiotic stresses. A previous drought study in O. sativa identified large transcriptional changes in root and shoot tissue between drought and control conditions (Groen et al., 2021). Four of these differentially expressed genes were identified in this EAA, OsMT2a, a cytochrome p450, an expressed protein and GAD1. In addition to differential expression under drought, two genes are induced under other stress conditions too; OsMT2a expression is induced by heat shock (Hsieh et al., 1996) and SULTR3;6 is responsive to salinity stresses (Kumar et al., 2011). It is possible that these genes confer local adaptation in O. rufipogon.
GAD1 encodes an enzyme in the GABA-shunt pathway and was detected in association with precipitation. The GABA-shunt pathway is branched from the TCA cycle and is thought to function to support the respiratory metabolic system, as well as during stress responses by promoting seedling growth (Lee et al., 2021) and though ROS scavenging (Bouché and Fromm, 2004), a mechanism used to maintain ROS homeostasis (Gill and Tuteja, 2010). GAD1 in O. sativa is upregulated during heat (Cao et al., 2013; Liao et al., 2015), drought (Groen et al., 2021) and cold stresses (Zeng et al., 2022), supporting the association identified in the EAA. 
Finally, FBOX84, predominantly associated with temperature variables in our EAA, is downregulated in white light compared to dark conditions, but not for other stresses (Jain et al., 2007). It is possible that these environments correlate with UV, exposure or shading, although the specific function of this gene remains unknown. 
Evaluation of the EAA method
[bookmark: _Hlk137737096]It should be noted that GWAS-based methods have reduced detection power when analyzing complex traits as these are likely controlled by multiple additive loci with weak effects. Although the number of accessions is reasonably high in this study, the SNP sequence data is limited by low coverage, which would have provided less detection power in certain regions. This would especially occur if these regions are characterized by higher recombination rates breaking up the association between SNP alleles and causative genes. Due to the low coverage, the SNP data does not include heterozygous sites, which will be present in a wild species such as this, and so missing possible associations. The proportion of heterozygous sites has previously been calculated to range between 0.1% and 5.4% for five O. rufipogon accessions with greater than 9x sequencing depth (Huang et al., 2012). Further, the resequencing data was mapped to an older congener reference genome than is available now (e.g., Xie et al., 2021; Que et al., 2022) and so there may be genes in O. rufipogon that are missing from our analysis, although this can occur even within species (Zhao et al., 2018). Therefore, in future investigations, greater sequencing depth and either a new reference genome or conspecific reference could be used. Despite these limitations, the O. rufipogon SNP dataset has previously been successfully analyzed using GWAS for traits such as tiller angle (Huang et al., 2012). The removal of multiple accessions during filtering steps may also reduce detection of associations, however, it increases the likelihood that the significant SNPs detected here are true positive results, providing a more conservative approach of detecting SNP-environment associations. Optimization of EAA analyses more broadly in terms of outlier removal, both in terms of SNPs and individuals, should be prioritized to ensure these analyses achieve the optimal balance between removing false positives and reducing false negatives.
The EAA only detects associated genomic loci and is unable to detect transcriptional responses to the environment. Related to this, linkage disequilibrium (LD) can result in the causative gene being distant from a significantly associated SNP, adding to the challenge of confidently selecting candidate genes. LD decays relatively quickly in rice, dropping to half at around 20 kb (Huang et al., 2012), therefore we assume that the causative genetic changes are physically relatively close to the outlier SNPs identified. The association between Ghd7, a gene known to be involved in local adaptation, and maximum temperature in the EAA (see Figure 3) provides confidence that at least a subset of our associated genes and regions are true positive associations. 
The absence of significant GO terms may be explained by LD; only a single gene may be causative in each environmentally associated region, but our GO analysis necessarily included all genes in EAA regions. In addition, for a significant portion of the associated genes the annotations were weak, hence some adaptively important genes may have been uncovered but remain with unknown function. Regardless of this limitation, associated regions could be used in marker assisted selective breeding.
Taking these caveats into account, the O. rufipogon EAA revealed 15 regions of the genome associated with environmental variables and are predicted to contain several genes with functions potentially associated with abiotic stress, flowering, developmental processes and hormone signaling. The investigation looks at the association between environmental conditions and genetic variation, and consequently focuses on the abiotic component of local adaptation. Therefore, additional genomic regions may be detected in association with biotic factors. Although requiring confirmatory analysis, these loci provide significant potential for adaptive variation in the wild progenitor of one of the world’s most widely grown crops. Going forward, alleles at these genes have the potential for being incorporated into breeding programs to ensure rice adaptation for a future climate.
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Tables
	Table 1 – Fifteen environmentally associated regions, each assigned a chromosome/region ID. Listed are the associated trait(s), the genomic position of region boundaries, whether the region is formed from a single SNP or forms a peak region of multiple SNPs, the number of genes found within each region or in/within 10 kbp of the region, excluding transposable elements, details on the most significant SNP in each region and the most stringent threshold passed.

	Chr/Region ID
	Associated trait
	Region start position (kbp)
	Region end position (kbp)
	Region size (kbp)
	Region type
	Gene count (in region)
	Gene count (within 10 kb)
	Lowest FDR adjusted p value
	Threshold passed

	R1.1
	BIO14
	2688
	2691
	3
	region
	1
	5
	2.8x10-4
	Bonferroni

	R1.2
	BIO13
	30002
	30003
	1
	single
	0
	5
	1.2x10-2
	Bonferroni

	R1.3
	BIO5
	39215
	39235
	20
	region
	1
	5
	8.4x10-3
	FDR

	R2.1
	PC1; BIO1; BIO4
	12523
	12550
	27
	region
	1
	2
	1.1x10-2
	Bonferroni1

	R2.2
	BIO8
	21547
	21548
	1
	region
	0
	2
	6.2x10-3
	Bonferroni

	R2.3
	BIO2
	21901
	21902
	1
	region
	0
	3
	2.2x10-3
	Bonferroni

	R3.1
	BIO8
	28175
	28176
	1
	single
	0
	3
	1.7x10-2
	FDR

	R5.1
	PC1; BIO1; BIO4; BIO14
	16122
	16140
	18
	region
	2
	3
	2.8x10-4
	Bonferroni2

	R6.1
	BIO13
	7257
	7258
	1
	single
	0
	4
	1.2x10-2
	Bonferroni

	R6.2
	BIO8
	24219
	24220
	1
	single
	0
	6
	7.4x10-3
	Bonferroni

	R7.1
	BIO5
	9098
	9247
	147
	region
	7
	9
	1.0x10-3
	Bonferroni

	R8.1
	BIO13
	22882
	22883
	1
	single
	1
	4
	1.2x10-2
	Bonferroni

	R10.1
	BIO14
	16192
	16195
	3
	region
	0
	2
	2.8x10-4
	Bonferroni

	R12.1
	BIO14
	4400
	4425
	25
	region
	3
	4
	2.6x10-3
	Bonferroni

	R12.2
	BIO14
	26256
	26257
	1
	region
	0
	0
	4.3x10-3
	Bonferroni

	1. PC1 (Bonferroni); BIO1 (Bonferroni); BIO4 (FDR)
2. PC1 (Bonferroni); BIO1 (FDR); BIO4 (Bonferroni); BIO14 (Bonferroni)


	

	Table 2 - details about the FDR-significant SNPs located within predicted coding sequences of seven genes and predicted sequence changes for the non-synonymous SNPs.

	Gene model
	Strand
	Annotation
	SNP
	Amino acid change
	Grantham score

	LOC_Os01g05640
	-
	receptor-like protein kinase 5 precursor
	ORRUF01_02688980G:C
	
	

	
	
	
	ORRUF01_02689466G:A
	
	

	
	
	
	ORRUF01_02689630A:T
	phe > ile
	21

	
	
	
	ORRUF01_02690264T:C
	lys > arg
	26

	
	
	
	ORRUF01_02690615C:T
	
	

	
	
	
	ORRUF01_02690861A:G
	
	

	
	
	
	ORRUF01_02690885G:A
	
	

	LOC_Os01g67500
	-
	armadillo/beta-catenin repeat family protein
	ORRUF01_39223051G:C
	ser > cys
	112

	
	
	
	ORRUF01_39224857G:A
	
	

	LOC_Os02g35860
	+
	expressed protein
	ORRUF02_21547147T:C
	
	

	LOC_Os05g27670
	+
	expressed protein
	ORRUF05_16124784G:A
	trp > stop
	*

	LOC_Os06g13215
	+
	growth regulator related protein
	ORRUF06_07257355C:T
	
	

	LOC_Os07g15680
	-
	phospholipase D
	ORRUF07_09109350G:A
	
	

	LOC_Os08g36320
	-
	Glutamate decarboxylase
	ORRUF08_22882132G:A
	
	

	*Premature stop codon results in a predicted 11 amino acid truncation.





Figures
Figure 1 - (a) Mean annual temperature (°C; BIO1) and (b) Mean annual precipitation (mm; BIO12) across the 286 O. rufipogon sample locations.
Figure 2 - Accession distribution based on primary and secondary principal components derived from the environmental data. Points correspond to individual rice accessions and arrows are the variable loadings, annotated with the variable name. Percentages represent the amount of variation explained by each axis. 
Figure 3 - (a) Distribution of SNPs across the diversity panel. Points represent the approximate locations of accessions (overlapping points offset for clarity), separated by the SNP ORRUF07_09153554T:C in the region R7.1 which is associated with BIO5 and contains 26 genes including the flowering time gene Ghd7. (b) Association between the SNP and BIO5 maximum temperature of the warmest month (°C). Each point represents an individual accession, with mean +/- 1 SD overlayed.
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Figure S1 - SNPs associated with the 10 bioclimatic variables, principal components one and two, and elevation. Each point represents a SNP. The dashed line is the Bonferroni significance threshold and colored SNPs pass FDR.
Figure S2 - Observed versus expected SNP p-values for each environmental variable input into the GAPIT mixed linear model. The red line illustrates a 1:1 relationship.
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