TIE OPELETION AWD ECOHOTSS

OF TiLATGATION DEVLLOPGAT IN EGYPT
by
A.A. IHABAGI

A TAESIS SUBMITTED FOK Trid DEGAEE OF NASTEIC OF PHLLOSOHAY

IT BIGGINEELING AT THE UNIVERSITY OF SOUTAEdPTOH

MARCHI 1975

Note

The metric systen is used for all items throughout this thesis and monetary values are expressed in the United States Dollar.

The rate of exchange for the base year of 1972
was $\phi=$ L.E. O.4.
Contents i
Abstract iv
Acknowledgement vi
Cinapter 1. The Background and Reasons for Irrigation Devcloment in Eigypt. 1
1.1 Population Pressure. 1
1.2 Pieasures Taken by the Egyptian Government to Pieet the Population Problems. 3
1.3 The New hgricultural Policy adopted by the Egyptian Government. 5
1.4 Horizontal Expansion. 6
Chapter 2. The New hgricultural Lands in Egypt. 8
2.1 Governmental huthorities Responsible for Irrigation and Agriculture in Egypt. 8
2.1.1 The Ministry of Land Reclanation. 8
2.1.2 The ministry of hgriculture. 9
2.1.3 The Pinistry of Irrigation. 10
2.2 Stages of Irrigation Development in Egypt. 10
2.2.1 The Enginecring Stage. 10
2.2.2 The Agricultural Stage. 10
2.2.3 The Social Stage. 11
2.3 Planning of Villages. 12
2.3.1 Principles of Planning. 12
2.3.2 Services in Villages. 13
2.3.3 Peasant Housing. 14
2.4 Selection of the Settlers. 15
2.5 Problems Facing New Settlers. 16
2.6 Hdministrative Units. 17
2.7 Farmers' Organizations. 20
Chapter 3. Costs for the New Irrigation Projects in Egypt. 21
3.1 Capital Cost. 21
3.2 Annual Recurrent Cost. 23
3.2.1 Operation and Maintenance Costs. 23
3.2.2 Replacement Cost. 23
Chapter 4. Study of an Established Irrigation Project in Egypt: the Fayoum Governorate Project. 31
4.1 Historical Background. 31
4.2 Physical Geography. 34
4.3 Geological Formation. 37
4.4 Climate. 37
4.5 Administrative Divisions. 40
4.6 Distribution of Inhabitants. 40
4.7 Irrigation and Drainage Systems. 40
4.7.1 Miajor Irrigation Sources. 44
4.7.2 inotation System. 44
4.7.3 Means of Distributing Water. 48
4.7.4 Factors Lffecting a Fair Distribution of Irrigation Water in the Fayoum Governorate. 49
4.7.5 Drainage。 52
Chapter 5. Lecurrent Costs and Benefits for the
Established Irrigation Project in the Fayoum
Governorate. 54
5.1 Recurrent Costs. 54
5.1.1 The General Adninistration of Irrigation. 55
5.1.2 The General Ldministration of Agriculture. 60
5.2 Agricultural Production and Sale Price. 70
5.2.1 Crop Rotation. 70
5.2.2 Cropped irea. 70
5.2.3 Yields. 74
5.2.4 Prices of igricultural Output. 80
5.3 On-Farm Costs. 101
5.4 Calculation of Farmer Benefit. 120
Chapter 6. Economic Enalysis for a Typical Synthetic
Irrigation Project in the Fayoum Governorate. 127
6.1 The Purpose of the Economic Analysis. 127
6.2 The Synthetic Project. 128
6.3 Discount Measure of the Project Worth. 129
6.4 The Choice of Discount Rate. 130
6.5 Length of the Project Period. 131
6.6 The Currency Used. 132
6.7 Exclusion of Changes in Currency Value (Choice of the Base Year). 132
6.8 A study on the System Used for the Utilization of the Cultivated lands in Egypt. 133
6-0-1 The Various Assuned Cases. 133
6-i-2 Copital Cost. 136
6-2-3 Recurrent Cost. 140
6-6-4 3enefits. 143
6-3-5 Tee Economic hnalysis. 143
6-9 A study on Stete Ferres. 160
6-10 Discussion 162
Chepter 7. Conclusions 167
Appendix A. Soil Survey and land Clossification of the Fryoui Governorate. 169
Appendix B. Water Balance of the Fayoun Governorate.
Studying the Inflow and the Outrlow of Water. 134
References 206

ABSTRACT
FACULTY OF EMGTHERRTMG
AND APPLIED SCIEICE.

CIVIL BHGIMEEETHG.

Master of Philosophy

TIE OPERATION AND ECONOMICS
OF IRRIGATION DEVELOPIENT IN BGYPT.
by Adel Anwar Mhafagi

The aim of this research is to study the economics and operation of irrigation projects in Egypt at the present time in order that the best utilization of such projects may be reached. An economic analysis of an assumed synthetic project is made and the items of reference used with regard to its construction costs and annual expenditures, during the initial years are those of the new irrigation projects executed in Egypt, during the last twenty years. Meanwhile, the details of annual outputs resulting from the assumed synthetic project and its annual expenditures, early in the past, are taken from those of an old irrigation project constructed in Fgypt, namely that of the Fayoum Governorate.

For the economic anelysis of the said project the modern method of Benefit Cost analysis procedures is applied. This includes various elements, such as the capital cost, the annual recurrent costs and benefits, from the construction of the project to the end of its economic life.

The research presents the construction costs of the new Irrigation projects, their operation and naintemance systeas as well as their annual expenditures. It then gives a description of the Fayouri Governorate fron where most of the data were collected. In the meantime the size of agricultural production and its relevant cash velue and On-Farm Costs are explained. This is followed by an economic analysis of the synthetic irrigation project including several different cases.

[^0]
Acknowledgment

The duthor wishes to express his sincere appreciation and gratitude to Dr. J. H. Kydzewski, both for his supervision and his guidance of this work. Furthemore, he has constantly shown deep interest and has lent a strong impetus toward the completion of the thesis.

Acknowledgment is also given to the staff members of the Egyptian Ministry of Irrigation, Ministry of Agriculture and Land keclamation, from whom the author has obtained most of the Data, especially Prof. Dr. Mamoud Abdel Akhar Minster of Agricultuxe and Land Reclamation, Dr. Foad El-Kholly chairman of the General Egyptian Authority for Hile Waters, Dr. Abdel Fatah Fahny First Undersecretary, Ministry of Irrigation and Dr. Salah El-Abd, First Undersecretary Ministry of Agriculture and Land Reclamation, without their valuable help, the work would have been more difficult.

EGYPT

1.1 Population Pressure

The size of the population and its rate of growth are important factors in the complex of social and economic factors which affect the welfare of the people of any area. The rate of population growth is an especially important factor in densely populated areas where it is not so easy to extend the area under cultivation or to increase its yeild per additional units of labour. Under these circumstances, population growth may constitute an obstacle to economic and social deve pment.

The total population of the Near East in 1971 was 205 million and around $2 / 3$ of the population of the region depends for its livelihood on agriculture. In contrast with the low rate of production increase in these countries, averaging between one to two percent, population increase is at a high rate, reaching 2.7 percent in 1971. The rate of population increase in the region is even accelerating due to a static high birth rate and a decline in the death rate. It has been estimated that the population of the region will reach 270 million in 1985 . It is evident that the growing population needs more food, houses, education and health services as well as more employment opportunities.

During recent decades Egypt has witnessed a rapid rate of population growth. The population which was recorded at 10,542,000 in 1901 increased to $20,871,000$ in 1951, $26,650,000$ in $1961,(19,121,000$ by 1967 and was registered at $33,422,000$ in $1970 ;$ it is expected to reach 41 million by 1981. The population increased by 3 million between 1901 and 1921, by, 3,700,000 from 1921 to 1941, and registered a growth of 9 million between 1941 and 1961, the population is further expected to increase by 15 million during the two decades ending 1981.

The rapid increase in the rate of population growth is due, as has been said, to the birth rate, which is around

40 per 1,000 as against the declining death rate which has fallen from 26 to 13 per thousand during the last four decades.

Many cultural factors, such as early marriage, high fertility rate amongst rural women, low social and educational standards, ignorance of the methods of birth control, and the fear of divorce are responsible for the high birth rate. Anong Egyptians peasants the belief that one's behaviour is predetermined and under the control of a supreme power against whom one is powerless to interfere is still very strong today. This belief prejudices the peasant against any conscious efforts at birth control in the feat that such an action may be contrary to the will of that supreme power. Their thoughts and theories are to a great extent related to their theological philosophy. Furthermore, the practice of family planning and birth control is not simply dependent upon the knowledge and availability of contraceptive devices, but rather on the willingness to use them. Such willingness can only come with a new approach to life and broader horizens for the individual. Moreover, in traditional agricultural societies such as the Egyptians, children are economically productive and inexpensive to rear, in addition to being a social asset contributing to the further prestige of the individual family unit.

As a result of this social climate the birth rate in Egypt has remained largely unaffected by the factors that have brought about their reduction within industrial societies. On the other hand, the extension of modern health measures within rural Egypt has brought about a sharp decline in the death rate.

It is likely that the present trend in population growth will continue. Today, life expectancy is 51 years for males and 53 for females as compared with 32 for males and 34 for girls 30 years ego. Furthermore, the number of females in the most fertile age group (ages 10-29) is expected to double between 1960 and 1980. This is the result of the continued high fertility rate and the sharp decline in infant mortality
rate, which also means that the population has become younger. The country has at present 8.5 children under 15 to every 10 persons between the ages of 15 and 59. In 1947 there were only 7 under 15 per 10 over 15 years old. (1)

The population pressure on the land in Egypt is tremendous when we consider that only a minor part of the country's area is cultivable. Of a total area of about 1,000 square kilometers, only 24.5 square Kilometers, or about 2.5 percent of the total, are under cultivation. The population density is 860 persons per square kilometer of cultivated land.

The principal problem lacing Egypt today is the very low expansion of cultivated land area in comparison with the very rapid numerical increase of the humen sector. During the 70 years from 1097 to 1966 , the cultivated area increased by 17.6 percent (from 2.14 million hectares to 2.52 million) and the crop area by 53 percent (from 2.86 million hectares to 4.38 million), while the population increased by 216 percent (from 9.7 million to 30.1 million). As a result, the number of persons supported by each hectare of agricultural land rose from 5 to 12. By the end of this century each hectare will be supporting 24 individuals, causing a declining per capita income and a continuous lowering of the standard of living.

As a result of the high rate of population growth and the limited agricultural potentialities, intensive urbanization has taken place over the past 20 years (see Figure $1-1$). In 1882, the urban population of Egypt was 19 percent of the total population and it remained at this level during the first decade of this century. By 1972, it climbed to 23 percent, where it remained Por another decade, by 1947 it had risen to 31 percent. In 1960 the urban sector of the country made up to 38 percent of the total population. In 1970, the percentage reached 42. Urbanization is always associated with basic social and pathological problems. 1. 2 Measures Taken by The Egyptian Government to Meet the Population Problems.
The Egyptian Government has attempted to meet this problem by various industrial and agricultural development schemes,

Figure 1-1

When the first five year plan (1960-1965) was adopted in Egypt its most widely proclaimed objective was to double the National Income in a ten-year period. This plan and the one that followed it, the second five year plan (1965-1970), focused on both agriculture and industry.

In agriculture, an important objective was to increase the cultivable area while simultaneously increasing its productivity. As for industriel development, the plan hed the twin objectives of preparing the country to enter into an age of heavy industry while promoting the growth of importsubstitute aimed at conserving herd currency resources and providing new employment opportunities.

1.3 The New Agricultural Policy Adopted by The Egyptian Governnent:-

In 1972 the Minister of Agriculture proposed a new agricultural policy attempting to solve some major agricultural problems such as:
a) Many different varieties of crops grown in the same area, resulting in high unit cost of production.
b) Encroachment on agricultural land by towns and industries.
c) Competition between humans and animals in crop consumption.
d) Fragmentation of holdings resulting from the traditional law of inheritance.
e) Weakness of rural and agrarian institutions.

The new agricultural policy in Egypt is attempting to make
a shift in crop choices, from the traditional varieties to
other high income crops, especielly to export-oriented
crops such as vegetables, fruits and flowers. The new policy also calls for specialization in livestock production for products such as milk, meat, poultry and fish.

The new agricultural policy which has been implemented in Egypt since 1972 emphasizes four main areas:

1.3.1 Consolidation

Consolidating farming by fixing crop rotations for the main crops (cotton, wheat) ecross individual holdings in order to
achieve econonies of scale during such operations as cultivation, socdine, application of posticides, irrigetion, harvesting etc., and so reduce costs. The policy aims at inducing farmers to co-operate nore closely and benefit from the advontages of large scale agriculture by pooling their resources. Specialization of agriculture according to site conditions and market denand will optimize bencits for the farmers and the country.
1.3.2. Mechanization

The introduction of machines in the new policy is being implemented to replace draft animals and save the limited fodder resources of the country for meat and milk production. 1.3.3 Industrialization of Rural Areas

Industries are now concentrated in the towns. The new policy aims at establishing processing industries in the rural areas based on agricultural raw materials, thus taking advantage of proxinity to raw matericis and the availability of rural labour.

1.3.4. Strenpthening of Agricultural Institutions.

The co-operative structure and the crodit institutions are being refomed to delegate more anthority to local cooperatives and so encourage them to participate more actively in their own affairs.

1.3.5. Introduction of Iigh Yielding Varieties of Crops

Sowe high yielding varieties of wheat and rice have been introduced on a large scale and this will in the long run double the national production of these two crops.

1. 4 Horizontal Expansion

The Egyptian Government has made serious efforts during the last twenty years to find new nethods for lad reclametion by studying the availeble water resources, including investigations into the possibility of using excess drainage water for irrigation, either in its pure form or after mixing with ille water.

The principal water resources for horizontal agricultural expansion in Egypt are composed of the following:
1.4.1 Nile Water

Before the construction of the High Dan, only 40 billion of the 72 billion cubic meters of water passing through Aswan were utilized in cultivating 2.52 hectares of land, the remein-
ing 32 billion being wasted either through evaporation on or loss into the Mediterranean. The High Dam was built in order to store 20 billion cubic meters, 8 billion of which are to be utilized for irrigating 0.55 million hectares in Egypt; the renaining 12 billion cubic metres being utilized by the Sudan.
1.4.2 Artesion and Underground Wator

Various hydrological studies have shown that the eastern and western Deserts have an accumulation of undexground water. Nearly 20,000 hectares are presently irxigated by this means. More studies with the techmical assistance of the U.W. are being carried out to detemine the source of the artesian and underground water and to estimate their quantities, so that more lend could be cultivated by this neans.

1.4.3 Rainea11 Water

Anmal rainfell on the northern coast does not exceed 150 mm , and therefore it is only used for pesture and crops such as figs, olives and borley which do not require much water. Nevertheless, nearly 63,000 hectares on tho northern coast grow crops dependeat on rain and also the remaining 840,000 hectares in that aroa grow grass for grazing.

Between 1960 and 1973, a total area of 359,000 hectares has been reclaimed bused on the Nile Vater resources. 331,000 hectares are irrigated from the River Nile out of which 28,000 are scattered spots within the cultivated areas.

4lso, as a result of the construction of the Figh Dam, 393,000 hoctares were converted fron basin irrigation into perenaial irrigation.

CHAPTER 2

THE NEW AGKICULTURAL LANDS IN EGYPE

2.1 Governmental Authorities Responsible for Irrigation and Agriculture in Egypt:-

2.1.1. The Ministry of Lands Reclamation:

It is completely responsible for Land Reclamation projects
in Egypt from their inception to the distribution of the reclamed areas to famers once the marginal level is reached. The Ministry of Land Reclamation operates with the help of four autonomous bodies, namely:
(a) The General Egyptian Authority for Agricultural Development (ELAD).
(b) The Executive Organization for desert development (EODI).
(c) The General kuthority for Land Developnent (GiLD).
(d) The General Egyptian Organization for Cultivation and Development (GEOCD).
(EinND) is concerned with the design of irrigetion and drainage networks and the generel design plans for reclanation projects and new villages as woll as the paving of internal canals and the formulation of comunity infrastructm ure.
(EODD) deals with the exploration of artesion water and investigation into the agricultural and livestock production most suited to desert areas. The organization's main activities are centered in the New Valley, the Northern West Coastal, project North East Coastal, project in Sinai, Sinai projects East of the Suez Canal, and the Mariut Extension Project.

The main responsibility of the General Authority for Land Development (GaLD) is to look after the various land reclamation companies concerned with the execution of reclamotion projects.
(GEOCD)'s main Punction is to bring the reclaimed land areas to a level of soil fertility and productivity adequate for distribution to settlers. (GEOCD) further helps the latter by providing them with a number of comunity services
designed to bring about an improvenent in agricultural and social conditions.

2.1.2. The Ministry of Agriculture:

Increasing the productivity of the existing arable land after distribution to the farmers is the main responsibility of the Ministry of Agriculture. The work of the Ministry is directed towards increasing agricultural productivity through such various means as the improvement and conservation of soil fertility, the introduction of new crop varieties, intensive application of fertilizer, the control of insects and plant disenses, the improvement of livestock through selective breeding and the introduction of new hybrids, the control of animal diseases, and the use of agricultural machinery, Other neasures huve also been introduced such as the implementation of consolidated agriculture, the strengthening of co-operative societies and the raising of the prices of agricultural comodities.

The programe of the Ministry of Agriculture also includes plans for the improvement of agricultural practices and the dissemination of information through agricultural extension services.

As a result of the Ministry's policies for improving land productivity, the per hectare yield of mojor crops has bean significantly increased. As compared with 1950, the 1970 figures show a 38% increase in cotton (lint), 50% in whoat, 80% in corn, 45% in sorghum and 73% in rice. The hich yields in cotton aremainly due to the new hybrid strains introduced by the Ministry of Agriculture. The increase in wheat production is due to the introduction of the high yielding greiza 155 variety. Total wheat production was $1,516,000$ tons in 1970, as conpared with 1,089,000 tons in 1952. Tho high harvest of corn is due to the transfer of corn production fron the lilili season to the summer season as a result of which the plants receive more water and have a longer duration in the soil. Corn production reached $2,380,000$ tons in 1970 as conpared to 1,506,000 tons in 1952.

In every Governorate in Egypt, (Egypt consists of 25 Governorate) thexe is a General Administretion for Agriculture attached to the Ministry of Agriculture. This Administration, which includes a large state of agronomists, is responsible generally gor the cgriculture in that governorate.

2.1.3. The rinistry of Irrigation:

It is responsible tor providing sources of irrigation and drainage in adation to industrial activities and major water lifting stations.

In every governorate in Egypt there is a General sdministration for Irrigation atteched to the Ministry of Irrigation.

This Adainistration, which has a number of irrigation Engineers, is responsible for irrigation works and distributing water ctc. in that governorate. It is also responsible for solving the problens that may arise between Parmers over the distribution of the water.

Note:

In the year 1973, the Ministry of Agriculture and the Ministry of Lands Leclamation were combined into one ninistry called the hinistry of Agriculture and Lands Reclanation.

2. 2 Stages of Irrigation Development in Egypt: 2.2.1 The Enginecring Stage.

This stage includes the levelling of land, the implenentation of the major irrigation and drainage schemes, the construction of various types of internal canols and drainage, such construction works on the canals as the builaing of bridges, berrages, weirs, syphons, culverts, regulaters and distributors, the locating of villages, public utilities and the construction of roads.

2.2.2 The Agricultural Stage

The stage includes the treatment of the different soil types in order to increase their fertility. This stage consists
of two sub-stages:
(a) Soil Investigrtion

This operation is necessary to determine the physical ond chomicul structure of the soil in order to arrive at the most adequate type of soil treatment.
(b) Soil Inprovoment

This sub-stage aims at improving tho mechanical, chemical and biological structure of the soil. For instance, methods of leaching or washing of the soil aro employed on salty land, gypsum is adaod in the case of akkino soil, while on sandy soil the adition of mad or the growing of hlfalfa or Bersecta (Egyption clover) is used. Theso steps are the followod by the raising of the crops most suitable for the further inprovenent of the physical and biological conditions of the soil. As soon as the soil responds favourably to the crops, a suitable crop rotation is applied in order to extend further the quality of soil and to raiso its productivity to the lovel necessary for subsequent distribution to permant settlers. Although varying greatly with the type of soil, the iaitial stage of its fertility, and the time needed for this subsequent improvenent, newly reclained land enerally reaches a narginal lovel of productivity after a four to six yoor period of cultivation. During this stage hired migratory lebourers are used for cultivating tho soil.

2.2.3 the Social Stage

Land which has beon recleimed, developed and cultivated by the state, and which has reached a level of productivity sufficient to support afamily on an average of five fedans (about 2.1 hectares), is distributed to settlors from the neighbouring provinces who neet certain qualifications. They must be litcrate, able farmers, twonty-five to fipty years old, and of a maximum famy of five. Transport for trensforring farailios and their houschold goods is provided froe. Upon urrival in tho reclamod area onch fomily receives a house, a cow, some simplo turniture and a maximun of five cultivated foddans (awout 2.1 hecteres) of land.

The small-holdex villuge type of settlement is composed of approximately 200 houses. Fox every 300 tamilies an
agricultural comoperative society is organized to deal with the provision to the settlers of egricultural prequisites such as seeds, Pertilizers and agricultural eguipnent, also, a conmuity development council is rommaleted in each village to evolve standards of hygiene, informal education and aminol care as woll as to advance welfare and commuity spirit by means of self holp projects. Governmont services such as schools, clinics, and post offices are provided through the ministrios concomed.

2.3 Planning of Villages

2.3.1. Principlos of Plonning

The development bases in new mural areas aro concemed with the division of cach aroe into main dovelopment areas ranging from A, 200 to 5,000 hectares subsequently divided into 5 t 6 sorvice villagos one being centrel village for general services such as the hospital, markets, aninal breeding farms, administrations, schools, housing for labourers nd for employees, es distinct groth persant housing and servicos in every other village. Thus, the precinct allotted to each village is 840 hectares. This area was decided upon bearing in mind thot the maximuk walling distance of the peasont from his village to his land doos not exceed 2 kilometers, and thet the number of population per villege be proportional to the services allotted to them, e. g. the moscue, school, stores, etc.

In practico, the shapo of 1 and and its dimonsions do not easily permit tais idonl pattern, and sonetimes an arce exceeding 840 hectares, is allottod, in which cose there is a subsidiory small village dependent on the main one with sufficient houses and at such a location as to ensure that the max. Welking distonco of each peasant is not more than 2,000 meters approximetely.

It is clear that the sequence of development of the areas (divided into 4,200 to 5,000 hectares) necessitates that their contral villages should all be liaked to a main small town to serve e major area of trom 21,000 to 25,000 hectares, and which should provide the whin public services at this level, and that eventwally a bigger town should link these small towns and serve as a govemorate of the general areas
ranging from 100,000 to 150,000 hectares.

It was noticed in the service village (240 hectares lend ares) that it should acconnodate 200 peesant houses in the first stage and an extra 200 in the second stage on the assumption of 2.1 bectares per peesmat (5 feddans), aport from an area allotted for future extonsion of the village housing area, and fron housing mocossory for cmployees and labourers and public servico buildings for the peasents.

2.3.2. Servicos in Villeges

The service village plan thus accomodates:
(c) Housing:

- 400 persant houses.
- 26 housos for employees
- 40 specinlisod labourers dwellings of similer type to poesont houses.
(b) Services Buildings:
-1 Shool (primary stage)
- I S m 11 Mariat
- 1 Moscque
- 1 Main store for crops and fortilizers.
- Shed for agricultura machines.
- I haministration builaing for tho aree.
- I Sports ground.

The main (central) village has more units than atetea in the service village. It accomoodates secondary stege schools, a central nosque, a hospital and a medical troatront unit, a contre for votorinary medicine to cure animals, s station for animal production, a large market to sorvo the area, a general administration offico and a rest-house for omployees and visitors, apart fron a mill for grimding grain, a slaughterhousc, \quad fucl punp, a car ropair workshop and a garage, a public club mad post office and tolophono and telegraph officos had a police station, a pley-ground (Sports area) with the necossury buildings for it, and a fire brigode stetion etc.

As the developed axeas increased in number, it wos
realisod that the construction schoides should teill witnin the suns ullotted to thon in tire gencral plon of new land dovelopnont, thaing into necount tac man peascints needs for housing within the fram-wort of thoir thode of living and the main and essemtiol services necessury for then.

2.3.3. Possant Housing

The peasant's house now, in this practical new stage of developrent consists of:
(a) 2 roons suitable for him and his family.
(b) a wator closet.
(c) a cattlo stabio.
(d) a shod for the oven.
(c) on open court。
(a), (b) \& (c) are provided to tho farner by the goverment while tho rest are carried out by hinself later.

The gradual introduction of public services (water supply, draingge and electricity) is under consider tion. Meanwhie, the village at present is suppliod with groups of drinking water teps and with clectricity in its main buildings and roads.

Labourers necessary for the raintenamee of main buildings are housed in a similar way to peascats, but their houses are adapted to their particulor meeds.

Enployees' houses are lirited in nuber to employees resideat in the village and in the goneral area, for example, teachers, sanitary ond social supervisors, agricultural supervisors and adninistrotive employees etc. These builaings are of two types conthining oither 2 or 3 bedrooms to suit the needs of the engloyee and his fanily. The houso has a henl for living and dining, a kitchon and a bathroon. It has a suitablo gorden to supply vegetables and to dllow the raising of poultry in the now areas.

2-floor houses ore orected for directors and their like, with bedroon accomodation above, living and dining roons below and lavetory facilities.

In planing each arce the need wos rocognized for a rost 14.
house, on the lines of an hotel, for supervisors and visitors so thet they mieht heve temporary rosidonce when in that area. A rest house comprises a number of bodroons with the necessary bethroons, Jining roons, hollis, and services, and a rest house is also allottea to arivers together with a car sholter.

2.4 Seloction of the Settlers

Because of the pressure of population, it is impossible for the Zgyptian Govornaent to distribute moxe than 2.1 hectare (five feddans) per fomily watb, and while tho holding is nommolly sufficiont at presont, the ronl crux of the problem is whet is likely to happen in the futwre. the population will rise substontinily and there is bonnd to be pressure on the land. A pressure minich in the old lond brought about fregnontations of holdings and doprived the sons of land-holders of any inheritance of land. Mhis situation canot be allowed to develop in the new land. Tho obvious answer scens to be the introduction of agro-industries which Will both increase return from the land and provide employm ment for the settlers' families.

A survey is always mode of the prospective settlers, cliciting informetion in the following areas:
i) The denographic structure of oach family;
ii) The economic structuro oi each family, such as main production factors, quantity and availability of man-powor.
iii) Social structure of ench fomily, concoming levels of education and health standardig
iv) Attitudes towards settlement;
v) The current level of social ane conomic services in the departure area in the Pield of education, health and other government services.

Tho criteria preforrod for selocting prospective settlexs in the new lond on the Nile Volley basim are:
i) Citizens fron the neighbouring villages or provinces;
ii) Non-ownership of land or ownership of limited land;
iii) Piorried with supficiont number of aduits in the fomily to cope with tho needs of the form units;
iv) Previous experionce in lanc reclanation;
v) Literacy;
vi) Physicni ithoss in undortoking agriculturol works; vii) Age rameing botween 35 and 50 years
viii) Cloar police record, with appropriste proforence por obvionsly good conouct.

Obier besic requirmonts such as simcerity, morality, seriousness und desirability to more to the areas are considered. Tho roldeive importance of one factor as compared with another wader those criterin, is expressed in macrical weights and the applicants who receive the highest numericol weights are solected for lama titles.

As soon as the selected settlers uro trensforred to the mew land, anothor survey is conducted for each settled tamily overy two to threo years. Tho results of the survey made for the sme fonily provide infometion regaring changes in tio sociomeconomic conditions of the transferred fomilies, incluaing choages in incono levels, expenditure patterns, houschold positions, housime conditions, educotional standards, dogroes ane momers of paticipation in commaity lise, attitudes and volues and tho levels of aspiration and cmbition. This informotion is really very valumble in monsming progress and change, as well as revealing some factors which may hinder progressive dovelopment. These factors will be revicwed by members of the locel commaty councils and comperative societies in order to overcome dificulties of aevelopmeat encountered by the groups.

2.5 Problems Facing How Settlors

Though land reclamation and settlemont projects in Egypt for aroas irrigatod by the water of the figh Man arc considered as bho most importont socio-cconomic devolopment in Lgypt during tho last two decndos, thore aro still somo probloms which foco tho now sotylows and the devolopmont of the project as a whole. The rollowing are some of thom:
a) Low lond productivity. The nowly roclamed lond often lacks some of the major olemonts roquired for really high fertility and romunorative returns and these con16.
not be attainod until atter some years of cultivating the soil have elapsod.
b) Inadequate crodit and marioting pecilities. In most reclaimed areas, credit is hard to obtain and communcation betwocn the comanities for mametimg and other contacts is oftcn difpicult。
c) Pailuro to relate production to tho typo of lend and merketing demonds. Many now settlors are not aquainted with agricultural products for which the new lond is suited. Norecver, they know how to raise only ono or two of the traditional crops in most instances.
d) Hegative aspects of physical layout of settlemont. The group settlemont sousos in mony coses a waste in enorgy and timo due to the lone distance between the settlor and his ferm, while tho scettered settlement is not conducive to frequent socitil getheriags.
e) The hetcrogcacity of the settiers. The settibr may originally have bolonged to a honogenoous cultural and religious group but in the new settlonent anea he bocones part of what mey bo a heterogeneous group. We should, is such a caso know how to edjust to the now social structure.
f) The changed socinl status of tho setticr from tonant to landownex. The new pattern of social intoraction facing the settler on the new land thates a freat deal ot adjustment. The tenant's sudden transfer to the status of a londowner strongthens his sense of economic sccurity ond holps him to attoin the hanch aigity which is the right of every citizen. However, his suddon tronsfex from a poudat communty in which o man's rights and ditios depend on his ascribed status to a commity of new idenls where interroletions are determined by the individuel's capocity and porsonal. qualitios, demands a great aeal of adjustment on his pert.
E) The drains mat cancis which were previously owned by the Goverment ore now owned by a lorge number of smill holders. Their maintenance requires much orgenizationul mochinery.

2.6 Adaninistrotive Units

At the initinl stage of the project inplenontation, the

Hinistry of Land Reclanation is attempting to integrate the sottloment projocts with the adrinastrative units of the comotry. For this reason, coordinating comittees at both the nationel and the land reclanation zonos havo beon formed, enlisting the roprosentation of all functional minestrios to socure the participation op those ministries in installiag sorvicing units in tho now lard and also in managing such umits. Tho inctallation of a rural infrastructure in the not land is not considered as tho rosponsibility of one ministry or onc departmot. It roquixes the contribution of all the punctional techaical ministrics for supporting the dovolopmont of respocsible local citizenshin by ostablishing tho esscntial social inctitutions.

At tho operation stage, the Linistry of Land Roclamation is even noro aware of tho importanco of intograting now commuitios within the local administrativo machinery. This is achicved in two ways: -

Birst; from tho growad up, by cacouraging the village councils and coperative societios to seel out dad use availablo local resources at tho provincial 'wonhafa' lovel in the fulfinont of their noeds. Settlors malco tho move on thoir initietive, so the provincial mdministrative units Pool thoir rosponsibilitios towards then as to other areas within their jurisdiction.

Second; by starting from the top through a provincial coordinating comittee with the goverar 'houheroz' Es the chaimen, dologating power from the scttlemont authority to the cocrdineting committee, to doal with all aspects rolatod to settloment projects vithin tho govemorato administration.

Such gradual intograbion discouragos the sottlor to doal dixectly with the coctral govermment, rolying hoavily on the lover lovels of government which help the now settiement projects to morge gradually into tho provincial administration societies and communty councils to solve mutual problems
and to plan and erecute 100 l develoment projects.

Whough the commenty councils, such obtivities os smallscole mustries to provide mdithonol incone, Hadercartem, Iitcrocy classes Pox the elininction of illiterooy, and panily pamang activithes are conducted. It is hoped thet through commaity develomant activities there will olso ocour the formation of besje capital throuk the construction on physical Rocilities, gome of mheh, includime cottace ond smallschuo inautries an coopewative society centrean minl be of great value for the increase of production. Thexeas production will be stimathed by these novinstitutions, saving mill be acoureged thromg the cooperative societhes. Tho executive nembers of the cooperctive soctetien and commaty comacils fom a besis for a solid democratic way of life in the new villages in which each settler luovs his role and plays it effectivoly.

The man responsibilities of the cooperctive union are: (a) Erabling the locnl cooperatige to ise the existing agricultural machinery to the maximam.
(b) Irporting high yielding secas of crops and vogotables. (c) hareting the products of tho local cooperatives inside and outgide the comatry in order to obtain for the settlers the higheat profit in local as woll as foreign currencies. (a) Takimemearures for the strict control of the financial and accounting matters of coogentives in oxder to preserve their prosperity and protect the settlors rights.
(e) Orgarizimg guidias and carryitig out oducational canpaigna to popularize the cooperative principlos as well as to orgamzo the wom amoms momen settlors.

The Board of the Animal Rusbendry Union fomed of elocted settlexs deals with aspects of mimal husbeadry including the selection of cotrs and burfaloos to bo distributed to aew sottlers, the promotion of cattlo and sheop-breeding in the now land, the dovelopment of daimy industry on a large scale.

```
2.7 Earmers' Organizations:
Thon tho settlors move to the now lard, thoy are tramed to
work together in order to promote the econonic social and
political advancomont of tho nev commmities. This is
Achievod through the formation of agricultural cooperative
and the insurance of the sottlers' cattle against death or
serious sicmess.
```


3.1 Capital Cost

All capital expenditure, incluang the disbusenent of aid money, should bo incluaca in the discounted cesh flow onclysis os ma whon the nonoy is spent. Bividends, cmortisotion ond intorest paymonts should not bo included (although they are of course rolovent to the Pinancial Analysis). This treatacht is bosel on the assumption that the financial resources used would have boon available for investmont elsevhere in tho country if tho particular project concomed had not materiolised.

In the case of a large irrigation project, the true econonic cost of the project may well includo the value of such items as: main conals, drains, headworks, small works, smoll cenals, pumpirg stations, land washing, levelling, electrical works, trensportation, administrative builaings, housing, social services and moneties.

The costs of all these itoms of new irrigation projects in the different places in Pgyt are shown in Table 3-1. We note fron this teble that the highost capital cost value is Por estadishing projocts in Kom Ombo in Upper Bgypt ($\$ 2,355 / \mathrm{ma}$) and tho lowest capitel cost value is for cstablishing projects in klmahda in Vost Delta (\$1,751/ha). In Figuxe 1-1 we con see tho location of the places mentioned. The dieference between the Capital Costs fron place to place, is due to some foctors such as irrigation mothod, nature of soil, ground wator lovel and circuratances of planaing.
Table 3.1
Average Capital Cost of New Irrigation Projects in Different Places in Egypt (2)

3.2 Annual Recurrent Costs

3.2.1. Operction and Maintenance Cost

These are the costs involved in mantaining the capital cost itens in their perfect working order, so that they will run the total of theix expected economic life without incurring any extre expenditure.

These costs are included:

- Amual wages of all stofit dosignation such as professionals, tochnicians, clorical skilled and unskilled labours.
- Annual cost of power consumption such as electricity, diesel and oil.
- Annual mointenance cost of the differont itens such as head work, conveyance to project area, irrigation distribution system, drainage system, nochonical equipment, contral workshop housing, social services and project ameneties.

In nost cases, except possibly for pumping projects, the O. \& M. Costs generally pley a much smaller part in conomical anolysis or ploning than copital costs. This is becouse they are generally smallex than copital cost and also because their incidence is spread out over time, thus they are considerobly ofected by the discounting process.

3.2.2. Replacement Cost

The anmal replacement cost is only concernod with the recurrent cost of major items which need replacing at regular intervals, as in the case of pump which needs replacing every fifteen years, and not those items which are replaced manally.

This annual replacenent cost will be the amount of money which has to be put asido each yeer in order to replace a porticuler item at the ond of its econonic life. This sum will bo invested in some sort of fund and the total, together with the interest, which is realised after this period stipulated by the economic lipe, will be equal to the luap sum required to purchase the iten. This can best be illustrated by the following extmple:-

A puâp needs replacing every ten years (its economic Iito) कn costo $\$ 2,000$ och timo. Therofore by invosting $\$ 1,590$ each yoar at an interost rate of 5% after ton years the sun roazised will be $\$ 20,000$ tron which the now pung can be purchasod. This homever, doos not take into account tho selvoge volue of the pump but this is taron to be zoro in oconomical colysis. ds alroady montioned in section (a.1.1.) the GROCD is the Govermmont Orgonimation which is eatructod with the mamegemont and utilisetion of the now agricultural projects, in Epgpt, soow attox their construction is conpleted. This Orgenisetion abals with ali administwative and supexisory afRairs as voll ws all agriculturcl procosses. Therepore, its amanol expenditures iaclude supervisory and On-Durn Costo. Hovever, supervisory expenses only axe mentioned here, and will bo included in the economic analysis to be explained later in item 6.6.3. hs rogards On-Forn Costs, incurred by the Organization, they are aswuned to be equivalemt to thone whick fermers apend on tho old londs they possess, (such expenses rill be nontioned in detail in section 5.3). In as much as it concerss officials mar employrees engaged, at all stondards, with the Organizetion, redererce will be mate to those rospongible for supervinory works only, these beine of much the some neture as the responsibilities of the stafe woring with the agricultural and irrigation circles in the Governoratos, in the case of the old cultivated lands.
However, the rate of manal recurrent costs for the new irrigetion projects in Egyt are shown in Table 3.2.

T631e 3.2
Bete of knmat Recurrent Costs for
Let Irripation Projects in Egypt (3)

The overall figures for maintenance and service expenditures and cost of materials show in Table $3-2$, were found in the General Egyptian Organization for Cultivation and Developnent (GEOCD) but no further details could be obtained, and the overall figure for wages of eraployees in the same table is calculated on the adninistrative divisions of the new agricultural laads in Egypt during the early years of the projects. The new agricultural lands in Egypt are divided into a certain number of agricultural sectors releted to GEOCD. Every sector has an area of 25,200 hectares approximately which is divided into 12 farms. Every farm has an area of 2,100 hectares which is divided also into 4 agricultural units as shown in Figure 3-1. The administration staff of every sector is shown in Figure 3-2 while Figure $3-3$ represents the administration staff of the farn. The agricultural unit administration consists of one agronomist, one accountant, 8 technicians, 3 clerks, and 7 guards.

The annual costs of enployees in sectors, forms and agricultural units ere shown in Tables 3-3: 3-4 \& 3-5 successively.

Figure 3-1

DIVISIONS OF THE AGRICULTURAL SECTOR

Agr. Unit $=525$ ha
Farm $=6$ Agr.Unit
$=2,100 \mathrm{ha}$
Agr. Sector $=12 \mathrm{Farm}=48$ Agr. Unit
$=25,200 \mathrm{ha}$

Figure 3-3

28.
Table 3.3

Total Annual Costs an $14.31 / \mathrm{ha}$
29.

Table 3.4
Annual Costs of the Farm Administration Staff（4）

			$\begin{aligned} & \stackrel{H}{c} \\ & \mathbf{9} \\ & \stackrel{5}{3} \\ & 8 \\ & 8 \\ & 8 \end{aligned}$		$\begin{aligned} & \frac{5}{9} \\ & \frac{2}{6} \\ & \frac{0}{3} \\ & \frac{6}{8} \\ & 8 \end{aligned}$				要	号	免 2 \％	－	
Highest												－	－
First												－	－
Second												－	－
Third												－	－
Fourth	1											1	1，500
Fith			1									1	1,125
Sixth	2	1	1									4	4，000
Seventh			3	1	1	1						6	4，500
Eighth						8	7		2	1		18	9，000
Ninth							5	3	4		1	13	5，525
Tenth								10		7		17	5,100
TOTAL	3	1	5	1	1	9	12	13	6	8		60	30,750

Total Annual Costs $=14.54 / \mathrm{ha}$

Table 3.5
Annual Costs of the Agricultural Unit Administration Staff（4）

				$\frac{\boxed{Z}}{\stackrel{\rightharpoonup}{0}}$		－	
Highest						－	－
First						－	－
Second						－	－
Third						－	－
Fourth						－	－
Fifth						－	－
Sixth	1					1	1，000
Seventh			1			1	750
Eighth		1	1			2	1，000
Ninth			2	2	1	5	2，125
Tenth			4	1	6	11	3，300
TOTAL	1	1	8	3	7	20	8，175

Total Annual Costs $=\$ 15.57$／ha

STUDY OR GAN ESTABLISAED TRRIGATION PROJECT IN EGYPT:

ThE FAYOUM GOVERNOLATE PHOJECT

4.1 Historicel Background

The Fayoum Governorate is an ossis near the Nile Valley that looks like then whose stalk is attached to the Iile (see Figure 4-1). The origin of the work Fayoum in the ancient Egyptian language is Bayoan, meaning the land that is covered by water. It was given that name because, prior to the dynastic era, it was all covered by water like a huge lake. During the era of the 12 th dynasty, that is about the year 2000 B.C. , the ancient Egyptians introduced a new way to make use of the ilile's flood waters for the longest possible time in the irrigation of the delta lands. This was achieved through dams to store water in that huge lake. This great project which is considered the first artificiel dam ever known in history was constructed by Emnemhet 111, the Pharach of the 12 th dynasty who built it to be about 45 kilometers long, thus increasing the cultivable land to almost 12 thousand hectares. He built that Dan over a small opening in the Lybicn choin of mountains near Fayoum and about 110 kilometers awey from the head of the delta linking the Filo Valley to Fayoum. The north western part of this dar, which held water behind it, xtill exists as a water reservoir known as Qarun lake.

The Pharachs of the 12 th dynasty preferred living in Fayoun and chose it as the capital particularly because of its location between lover and upper Eyypt. During tho early years of their reign, the Pharachs of the 12 th dynasty established the city of Fayourd which the ancient Greeks called Crocodile Yloyolis, meansing the city of the crocodile. Then it was called Arsinos where a great temple for the god Spek, the crocodile god, was built.

An obelisk built by 'Senusert I' still stands in Abgeeg near Payoun as well as two great statues of 'Emnemhat III' near the great dam. Furthermore, a grand palace was built on tho northorn side of the dma which the oncient Grecks called the Labyrant, because of its vastness;

32.
and which was the headquarters of the central government. It is said that it had as many rooms as the districts in Egypt.

The great irrigation projects of the Middle Kingdon promoted the prosperity of the Fayoun Governorate until it became one of the most urban and flourishing governorates of ancient Egypt. Of this Emnerhat says: 'It was I who planted the seeds for the god 'Terry' god of the harvest. The Nile greets me, for during my reign no one was hungry and in my time no one was thirsty'; This governorate remained prosperous until the GrecoRoman era from 332 B.C. to 640 A.D., Remains found in this era and in Kum Oshiem (City in Payoun) prove that crops and fruits were cultivated there.
Qarun lake is one of the netural features of the Fayoum Governorate which was originally called Maurice lake. Herodot visited it in 450 B.C. and described it as a great lake. In 1809 Gaumord, one of the scientists of Nepoleon's expedition in Egypt of 1798 , proved that the existing Qarun lake was only part of hurice lake. He was unable to define exactly how for below the Nile level it was, but he said that in past history the level of the lake was higher 6 or may be 7 meters from its present level. He said that this drop is probably due to the decroase in the water that reached the lake and the gradual and slow rise of its base throughout the years as a result of the sodinentation of large amounts of the Nile silt.

In 1871 Roussow Bey drew a new map for Fayoum in which he proved that the level of the lake is about 41.7 meters below sea level and is 63.5 meters below the cultivated land on the banks of the Nile in the city of Wasta.
The Syrian historian Abu Othman Al Nabulssy, who was appointed govenor of Fayoum from 1245 to 1246 during the reign of the Fatimides, described the Payoun Governorate as including 22 large cities and about 80 villages, most of which still exist. The city of Fayoun was the most important city in the region and was the seat of government.

Nabulssy states in his book that Payoum was known for its fruit gardens and good agricultural products which
were irrigated by Bahr Youssof which has two branches ending at garun lake. There was a Barrage at Lahoune to stop the flow of water into the lake. This dam was built of stone in a most precise geometrical way to rise about 15 meters. This particular region was chosen to construct the Barrage because its bed was rocky and would not allow for the leakage of weter. The construction of this dan was a great architectural achievement which allowed for the drying up of large areas of the lake to be reclaimed and used for cultivation as well as securing the necessary waters for irrigation and cultivation.

The old Lahoune Barrage still stands as evidence of the past glory, and a new dam has been built next to it for the same purpose.

We can deduce from Nabulssy's memories that the water of garun Lake was sweet during the era of the Fatimides and that a bridge was built across it from the north to the south next to which a barrage was built to store water for the cultivation of the northern part of the lake. But this bridge foll to ruins, eroded by the waves of the lake, a matter which drove the peasants there to use water wheels to raise the water to their fields, Nabulssy himself had seen one of these wheels.

4.2 Physical Geography

The Payoum Governorate lies in the heart of the western desert 70 Kilometers south west of Cairo (see Pigure 4-1). It is a deep depression in the desert the southern part of which is about 45 reters below sea level, the rest of the depression extends towards Garun Lake which is also at this level. Furthermore, a number of depressions lie from east to west and extend to the northern part of the westeri desert includiug Siwa Aosis and Al Mattara Depression.

The Fayoum Depression resembles the other northern depressions of the western desert in many ways. Like them it is below sea level and its general slope is towards the north. Like them it is surrounded by walls
of high plateaux on almost every side. All these depressions are locally drained regions.

But the Fayoun Depression is characterized by its link to the River Nile through the Bahr Youssof canal, which was originally one of the old branches of the Nile which entered the depression from the eastern side through the natural opening of the depression known as the Lahourne Opening. Therefore, along with the common characteristics it shares with the depressions of the westerin desert it has other common characteristics with the delta and the Nile Valley.

The ared of the Fayoun Depression is alrost 1800 square kilometers and it slopes towards Qarum Lake in the north west. Qarun Lake is more than 200 square kilometers wide and the most outstanding feature of this region is the presence of high banks which decisively prove that the lake was much bigger in olden times.

Writers and researchers have differed on the history of the depression and how it was formed. Some of them state that erosion began to cut into it in the plabocinic age. Other writers believe that it could not have been created except after this age and during the age of transition between the plabocinic and the plastocinic ages. However the most credible opinion is that the depression started to be created at the end of the plabocinic age. Sone scientists believe that the formation of the Fayoum Depression was nade in a closed triangular basin which is due to the presence of two fractures on the eastern and western sides of the depression and other extending from the west to the east along garun Lake. There is no doubt that the fractures round the depression have facilitated its formation. Some scientists believe that the depression has been dug by runing water, although this alone could not have formed it.

Other scientists believe that winds played an inportant role in forming the depression, particularly that the rocks
which from the Lybian Desert in this region are not all of solid lime stone, but are penetrated by layers of clay and placticive. These soft materials have helped the winds to wear out the depression. The fractures that led to the depression of one part of the earth's crust as in this depression, are small, being no more than mere cracks which could have had no epfect on the formation of the depression.

All this shows that the formation of the depression has occurred following the sedimentation of line and iocinic elenents and that the Fayoun region has been subjected to great formative changes in the 0liogecinic age and later age which led to the creation of fractures and curves and the flow of Bezolt found in the northern part of the depression, which combined together to make the iocinic material incoherent, and to fragment it along the fractures. This in turn helped in the process of form ing the depression which was already taking place through the water falls which sloped eastward thus widening and deepening the depression.

The Bahr Youssof canal was one of the branches of the Nile, branching near the city of Dayrout (see Figure 4-1) and was characterized by its numerous curves. Some scientists believe that there was a small stream flowing fron the eastern edge of the depression and runcing westward towerds the bed of the depression. In the plastocine age, this small strean was able through recessive cutting to increase its length towards the east until it was separated fron Bahr Youssof only by a small thin wall which could not resist the pressure of Bahr Youssof during the flood season and it was through this smell stream that the Nile waters reached the depression. Thus it may be said that the Al Hawara opening (now called lahouna) has been formed as a result of this mater action.

When the Nile waters were let into the depression, they
almost filled it and the area that was covered with water anounted to almost 2800 square kilometers that is about 14 times the present area of Qorun lake. Then water in this land began to shrink grodually in the following ages, its level gradually dropping from 40 meters about sea level to 36 below sea level in the Ronan era (a contour map of the Fayoum Governorate is shown in Figuxe 4-2).

The fluctuations in the water levol of this lake and its area are due to the climatic changes which Egypt in general and the Fayoun region in particular underwent, and naturally the effect of these changes was more severely felt during the oges in which there was no direct contact between Feyoun and the Nile valley, a circumstance which made evaporation and rain water decisive factors in the fluctuation of the lake's level.

This fluctuation may also be due to the degree of contact between the Nile Valley and the lake. Perhaps this is the most decisive factor, for when the lake is linked to the Nile its level rises or drops according to the Nile at the Basic Bani Sweif region (refer to Figure 4-i). But, during the eras in which there was no such link, the lake gradually dried and the factor of evaporation became more decisive as it retained only the limited amount of water obtained through local rains.

It is worthy of mention that there is another depression south west of Fayoum separated from it by a thick wall of lime stone. This depression is known as wadi Rayon, and covers about 15 square kilometers. 4.3 Geological Formation

The borings conducted all over the Fayoum Governorate, show that the bottom rock of the governorate was formed in the Iosinic era from lime stone and Marl on top of which is a recent layer of mud and sand, the maximum depth of which is 18 meters near the city of Fayoum. This layer ranges in depth from 0 to 6 meters in the other parts of the governorate as shown in the geological sectors shown in Figure 4-3.

4.4 Climate

The Fayoum Governorate is known for its mild clinate which is similar to that of Cairo in summer. The average heat and air pressure in the winter season are somewhat

different from that of Cairo, while relative humidity between then differs a great deal, as it is 28% in Fayoum and 74% in Cairo. As a result, the average annual relative humidity differs.

Table 4-1 shows the Climatological Normals for Fayoun in the period from year 1944 to year 1972. 4.5 Adrinistrative Divisions

The Fayoun Governorate is made up of five administrative centres, namely Abshway, Atsa, Fayoun, Senoures and Tameya. Both the total area and the cultivable areas in these districts greatly vary. Table 4-2 shows the total area, the cultivable area, the barren land, area of Utilities and number of villages in each district. 4.6 Distifibution of Inhabitants

According to the 1972 census, as shown in Table 4-3, the number of inhabitants of the Fayoum Governorate is 1,024,000 out of the total inhabitants of Egypt numbering about $34,133,000$ that is 3%.

The inhabitants of the Fayoun Governorate amounting to $1,024,000$ according to the 1972 census, live in 233,000 houses; that is the average family includes 4.4 persons, and this too is less than the general average in Egypt. In 1907 the average members of a Fayoum family amounted to 5.6.

Table 4-4 shows the number of rustic inhabitants of the Fayoum Governorate classified according to their work in the years 1964, 1968 \& 1972.

4.7 Irrigation and Drainage System

The Fayoun Governorate is irrigated by the Nile water at the Lahoune Barrages through the Bahr Youssef canal which takes its water from the Ibrahemia canal at Dairoot city as shown in Figure 4-1 (map).

There are no artesian wells in Fayoum as its soil is made up of sedimentary materials formed on a rocky land.

Most of Fayoun's soil is porous and its drainage is good because of the steep slope towards Qarun lake in the north. For the land level at Lahoune is 24 meters above sea level, and at Fayoum it is 22.5 meters, while the lake is 44 meters below sea level. That is the difference between the land level at Fayour and the level at the lake is 66.5 meters in a distance not exceeding

Table 4.2
The Divisions of the Fayoum Governorate Areas and the Number of Villages in each District (1)

Administrative District	Cultivable Area (ha)	Barren Land (ha)	Utilities (ha)	Total Area (ha)	Numbe: of Villages
Abshway	31,506	9,287	2,116	42,909	33
Atsa	33,825	11,646	2,405	47,876	42
Fayoum	24,745	4,695	2,566	32,006	40
Senoures	20,768	2.446	1,540	24,754	26
Tameya	26,916	5,509	2,155	34,580	20
TOTAL	137,760	33,583	10,782	182,125	161

Table 4.3
Number of Inhabitants of the Fayoum Governorate
According to their Sex (Civil and Rustic)
in Years 1964, 1968 and 1972 (1)

Year	Sex	Civic	Rustic	Total
	Male	95.70	355.20	450.90
1964	Fernale	Total	95.30	355.80
1968	Male	191	451.10	
	Female	105.40	711	902
	Total	105.60	380.20	485.60

Table 4.4
Number of Rustic Inhabitants in the Fayoum Governorate Distributed in Different Works in Years 1964, 1968 and 1972 (Males and Females) (1)

35 kilometers, which is quite a steep slope amounting
to two meters per kilometex. And as the lands of Fayoun are in the heart of the desert, some of the waterways such as Bahr Wahbi, Al Haraga and the major ghorak drain as well as other auxiliary drains are often filled with sand.

4.7.1. Mejor Irrigation Sources:

The Fayoun Governorato is irrigated as we said before by Bahr Youssef bxanching from the Ibrahemia canol at Lahoune Barrages. Fayoum gets about 65.4% of the total araount of water at the Lahoune Barrages, while the Giza canal gets 34.6%. Fayoun gets its irrigation water from two mejor branches, Bohr Youssef behind the lahounc, giving it 70% of the required water, and the Bahr Hassan Wasef canal giving it 30%. The area of the land irrigated by Bahr Youssef behind the Lahoune Barrages amounts to 101,187 hectares, Bahr Youssef canal is 24.150 Kiloneters long and it ends at Fayoun. It has 12 branches; Bahr Wahbi, Arous, Baga, Soliman Dessouki, \&'alam, Tenhaha, Abour Secr, Al Hagara, Senoufer, Kohofa, Dar Al Ramad, and Senoures. The area of land irrigated by the Bahr Hassan Wassef cancl amounts to 41,598 hectares and it is about 13.755 Kilometers long. At the end it branches into two canals Al Gharak, which irrigates 16,682 hectares and is 28 kilometers long, and Bahr al Nazla which irrigates 24,203 hectares and is 59,700 kilometers (See Figure 4-4).

The amount of water which gets into Payoum ranges from 5 million cubic meters per day in sumer and 8 million cubic meters during the flood season. The amount of irrigation water which the Fayoum Governorate receives annually anounts to 2 Milliard dubic meters.

4.7.2. Rotation Systera:

The rotation system in the Fayoun Governorate is dual, with seven days high flow, and seven days low flow, for each half of the total irrigated area, the water duty for each hectare being 70 cubic meters. Winter rotations last from 18 Pebruary to 30 Harch, sumer rotations are from 1 April to 14 August and nilotic rotations from 15 August to 31 Decerber.

Water is distributed through private joint small canals so that each benericiary would irrigate his land in the

time suitable for its size. De owns the water of his canal during the set period and he must finish irrigating his land in that period. This is called the party system and listo of the parties are prepered by the irrigation authority. This systom is applied all year round with the excoption of the drought season which lasts throughout January.

The turns systen is applied during all irrigation seasons whether, spring sumacr or Nilotic. The only difference being in the anount of the water duty. During the sumer senson the water duty per hectare per day is limited according to the anount of irrigation water allotted to Foyoum and this duty is also subject to the relative distribution of water, set according to the mount of water that comes from the wile in the summer. However in determining the amount of wher needed for the irrigation of Fayoun, two factors are taken into consideration:
(1) Wost of its land is sand soil which needs a considerable quantity of water.
(2) The amount of selts in the soil is great thus necessitating a large amount of watex for the removal of these salts.
(3) The steep slope of its lands couses water to drain directly into Qarun lake so that the cultivable lands do not retain their humidity for long. This is another pactor which results in c constant need for irrigation water.
411 these factors must be taken into consideration when defining the quoto of Foyown in the relative distribution of the Nile water in sumer, particularly as all efforts to find terrestiol water which could be used for irrigation have failed till now. That nade the use of artesian water in the governorate to meot the deficiency of irrigation water, quite impossible.

During the sumer season when the natural water flow is abundant in the months of April and May Fayoum's quote amounts to 5 million cubic meters per dey according to the relative distribution of Mile waters. As the total area of cultivable lend in Fayoum amounts to 137,760 hectares, the averoge daily quota of irrigation water per
hectare during those two months is 35 cubic meters. According to the turn system epplied in Payoum which provides for the irrigetion of land every 14 days, each hectare gets 490 cubic meter every fortnight. This is much less then the water requirenents for the summer crops which anounts to 950 cubic meters every fortnight. Thus the irrigation water allotted for Payoun during the months of April and May is sufficient for the irrigation of half the cultiveble area only, and if the peasants exceed this anount there will not be enough water for the rest of the land, thus tho production of crops would drop.

By June the demand for water increases because of the planting of rice. This increase is met by the water stored by the Aswan Dam. During this month, Fayoum's quota rises to 7 million cubic meters per day, and this amount is completely used. The planting of maize is therefore postponed until the Nile floods in hugust. This causes a drop in the average production of maize in Fayoum to less than 3 tons per hectere. It is beliered that the average production per hectare could be increased if maize is planted earlier.

The Moheet drain used to have its ead at the Bahr Youssof canal beyond the barrage, and gave 1.5 million cubic neters to it daily. This large amount of water in adation to the already existing waters of Bahr Ioussof used to relieve the henvy demand on water in the Fayoum governorate. But this has becn changed in recent years when the Moheet drain was excaveted so as to pass its waters to the Mile, and Fayoun was then deprivec of this source of water. It would be better to give that water back to the Fayoun governorate so that maize my bo planted earlier, and its production increased.

During the flood season in the month of august denand for water is at its peak becouse all land is planted with summer crops such as cotton or Nilotic crops such as rice and maize. At this period, Fayoum needs about ten nillion cubic meters daily, but the actual quantity given never exceeds 8 million. The reason behind this deficiency in water is that the water level in Qarum lake may rise.

4.7.3. Means of Distributing water:

The slope between Fayoun and lake Qarun is, as we said before, about 66 meters, which is a very steep slope compared with the short distance between then. Thus the best method to ensure asir distribution of water would be the use of the free steps method. The iron gates are not used except at the mouths of major cancls such as Bahr Youssof, Bohr Hassan Wasif, Bohr Al Nazla to the Monya block; and Bahr Wahbi in front of the railway block. Distribution of water through these major canals is done through culverts and pipes becouse the water level cannot be irept under control to maintain the sane level by day and night. Host irrigation water in Fayoum is obtcined cither by gravity comaans or by means of water-wheels. Behind each of these mouths there is a step whose width is proportional to the land area.

To facilitate calculation of the necessary discharges behind the steps, the depths of water behind then have been standarized to 4 thicknesses, ench thickness being applied to the appropriate water way to suit the level of the irrigated soil and the slope of the adjacent land. These thicknesses are:
(1) thicknoss 0.24 meter: could irrigate 200 hectares
(2) " 0.36 " : " " 400 "
(3) " $0.54 \quad ": " \quad$ " $800 \quad$ "
(4) " 0.69 " : " " 1200 "

When the canal branches into smaller ones, distribution of water between then is done by a group of these steps called Nasbo and every bronch has a certain width represm enting the area served.

The direct distribution of water fron the branch to the fields is done through free smell united steps in accordance with the original Nasba at the mouth. Thus the total breadth of the steps of openings on the branch is equal to the breadth of the step of the major opening and are all designed for one water duty. These steps of openings are on a straight line parallol to the designed water level of the water way supplying the openings.

This ensures thot if the wetor lovel rises or falls in the major strean, it still flows equally into all
irrigation openings.
This ensures a just distribution particularly as the width of ench openimg is approximated to the nearest millimeter acording to the land it irrigates. This is contrary to the system appliod in other governorates which provides for example the eixing of a 55 cm pipe; ten meters long for any irrignted area of land ranging between 215 and 265 hectares. Thus an owner of land anounting to 265 hectares gets the same opening as thet allotted in an area of 215 hocteres; which is definitely unfair.

It is customary for oach weir on a public water way to be provided with a pipe placed on the canal bod level and called 'drinking weter pipe' ond supplied with an iron gate. The main purpose of this pipe is to filter the water at the bed of the water way when it is being dredged. The opening of those pipes during the process of irrigation is strictly forbidden as it upsets the distribution system.

4.7.4. Factors fifecting a Foir Distribution of Irrigation Water in the Fayoum Governorate.

In spite of all those precautions for ensuring a just distribution of water in Fayoun, some factors renain that affect justice in distributing irrigetion water, namely:
(a) The sedinentation of silt in the beds of public water ways or the appearance of islands which make the water-way narrower, and in turn affect the slope of woter in the region lying between two weirs which does not mantain an equal flow of water at oll steps of openings to the smac degree. Thus all watervays must bo continually dredged.
(b) The appearance of weeds in the bod of the waterway giving the sane results. Thus, each irrigation centre should be supplied with tean to remove these weeds as soon as they apperx.
(c) The beneficiories commit a large number of contraventions eithor by moking adaitionel openings next to the ones allotted to them, or by making holes in the buildings of weirs. These contraventions are important elements which disturb the turns system. This is whet drove the Ministry of Irrigation to punish 49.
those beneficiaries who conmitted such contraventions by making them poy the expenses of closing the opening and lining it to a distance of 20 neters on both sides with stones and morter, even if the place has no builaings. A contravention might cost $\$ 2000$ but this system is no longer applied.
(d) Giving licence to some of the benericiories plonting rice to put dom additionel pipes. This greatly prejudices the ojust distribution oxectly as contreventions do. It would be better to raise the water level in the wetemay which is used by those planting rice. This would be bettor than using additional pipes, thus giving furners an equal chance to use this water either in planting rico, in plantine maze corlier then August, or in improving sumer cultivation.
(e) The drinking woter pipes which are put at the control weirs become a source of upset in the water distribution syster in they are bady used and aro oponed to allow the flow of more water than thot at the steps of the weirs. These pipes should be continuously supervised to prevent their opening.
(f) Sone water ways are sometimes filled with sand, a matter which impedes irrigation.
All these factors may prevent the end weins from receiving their full quota of irrigation weter. It has been noticed for example that sone cmals give e duty of 43 cubic meters per hectare daily, and by these factors the water duty which recches the end woirs is 15 or 16 cubic meters only per hoctore daily. This means eithor leaving some of the cultivable arem uncultivated or deficioncy in its production. If these defects could be comboted, no irrigation systom would be better then thet at Foyoun.

It is noticcable that Ministry of Irrigation does not have full control over private joint irrigation canals except as regards their months only. For it provides theso openings with weirs of a limited volune which ensures a proper quota of woter. Tho beneficiturios using these joint private irrigation conals are left to propare the openings which peed their londs as they deem appropriate
so long as the distribution of weter betwoen then is fixed according to tables, kept by the central adninistration men, tho are rosponsible for their implemontation.

Those tobles deteraine the poriod in which each beneficiory becones oxclusively in full control of the irrigation conol wotor. Tho period allottec to cach benceicinty is actemined according to tho croa of his lond. If the sum of the lond ixrigetod by the conel is 200 hectares for extaple, thon onch hoctare would get 50 minutes in tho hivh ilow period which lasts for 7 days. The man who has 2.5 hecteres gets only 2 hours of irrigation during the high flow. The tablo doterminos the time of these two hours. They may bo from 12 midnight to 2 in the early morning. If the beneficiaxy does not use his shere of wator during his two hours, he loses his right and his successor on the teble is ontitled to use this whter from 2 o'clock. This issue is worthy of notice, for ur马ent circumstences may prevont tho former fron getting to his fiold in the fixod hour, and a famer with large property who sends one of his helpers to use the ixrigetion woter during his set tine, may be harmed as ofesult of the corclessness of this helper, or his collusion with othors to soll them tiois irrigetion water. This not only horms the land omer but offocts the production. Thus it would be botter if these privato joint irrigetion canals whose scope of irrignted land exceeds 100 hectares, bo tronsperred into public woterways so that oach beneficiary may easily use the onening which is specificd for the pornonant irrigetion of his land. This could be achievod if a certain monat of ronay is allotted for this purpose in the budgets of the next 10 years.

Tho high londs which are not irrigated by the plush systen me irrigated by the Roaring Wheals ox by a water wheel turned by animels or by simple liftimg instruments. The Roarine Theels are wheals turmed automatically by water folls at 'Nasbas' ostoblished on canols ond constantly tuming so long as the water is polling. Water falls are nlso used in running mills.

The steps established on the major waterway ore supplied vith pipes with iron getes which are fixed in
the stop at tho bod of tho woterway. These pipos are nover oponod except in casos of urgont omergoncy when the canals ure dredged, or for the mointainance of industrinl works. They are likewise opened during the drought, or the rice cultivetion soasons. 4.7.5. Draincge.

Droinege of most of the Ina of the Fayoun Governorato is done by elush drainage through two drains which are two ancient notural creaks; al Bets and Al Woui arains both Plowing into Qmun lake. The first drejns 57,480 hoctores, the second 73,530 (See Figure 4-5).

It is worthy of meation that tho mount of arainage water which llows into the leke anmunlly anounts to 350 million cubic neters. Al gharel region does not apply the notural ilush drairoge system because of its deap low level, thus the Ministry of Irrigetion hes built three dranoge stations to take the drainage woter to kl Hadi arain. These hove becn designed to tako the woter through pumps and mele it ilow with notural and reasonable slopes parallel to Al Wad drain which has very steep slopes. Whon the water renches El-Mortallote (lying about 10,300 kilometer from the lost pump), we find that the level of the trmsferred watex has reachod Zero or is exactly at sea level, while the surfoce of al Wadi drain is 25 moters below sea level. The Ministry of Irrigetion has meters of difference in water levels and the produced water folls are used in electricity generotion.

5.1 Recurrent Costs.

As we said before, in every governorate in Egypt there is a general administration for irrigation which belongs to the Ministry of Irrigation. This administration is responsible for the maintenance of canals, drains and irrigation structures in that governorate and also for distributing water between the farmers. In the Fayoun Governorate, there is a general adminism tration for irrigation responsible for the previous items.

Also, in every governorate, there is a general administration for agriculture belonging to the Ministry of Agriculture and this administration is responsible generally for agricultural production in that governorate, for guiding the farmers in choosing suitable crops, for the different types of soil and for the selection of crop rotation etc. (repor to 2.1.2). In the Fayoun Governorate, there is a general administration for agriculture responsible for the provious items.
If we make a comparison between the recurrent costs of the old agricultural lands and the recurrent costs of the new agricultural lands, we will notice that the recurrent costs of the old lands is very much less than those for the now lands. Wen we refer to Chapter 3 we find that the rate of arnual recurrent costs expended by The General Egyptian Organization of Cultivation and Development (GEOCD) for the new land is $\$ 67.32 / \mathrm{ha}$ (see Table 3-2), and when we refer to this Chapter (Chapter 5) we find that the whole andual recurrent costs expended on the old lands by both The General Administration of Irrigation and The General Administration of Agriculture of the Tayoum Governorate is $\$ 11.59 / \mathrm{ha}$. (see Table 5-14). The reason for that great difference in expenses refers to the fact that, in the case of newly cultivated lands, the Government is fully responsible for the management of the projects. This needs a large number of agronomists, engineers and vorkers of different standards, whether that
of the sector, farm or agricultural unit (as indicated in Chapter 3). This large number of employees entails the increase of Government expenses, with regard to salaries, transport allowances, for inspection, fuel consumption and cars, etc. - a fector which causes this evident rise in annual expenses. As regards the already cultivated lands in individual ownership, the Government function, in this case, is of a supervisery neture to be practised over major works only.

However, we are interested here to know the annual recurrent costs of both the general administration of irrigation and the general administration of agriculture in the Fayoum Governorate.

5.1.1. The General Administration of Irrigation:

Figure 5-1 shows the arrangenent of The General Administration of Irrigation in the Fayoun Governorate.

As we see, the head of the administration(an irrigation engineer) is aelled the General Maneger and he works with the help of some irrigation engineers.

The administration is divided into two departments one of them is for the East Fayoum and the other is for the West Payoum. The head of each department is called the Irrigation Inspector. Each department is divided into four irrigation centres, the chief of each centre is an irrigation engineer and he is responsible for the different ixrigation works in his centre.

However, The General Administration of Irrigation in the Fayoun Governorate consists of:
(1) 22 irrigation engineers.
(2) 2 mechanical engineers.
(3) 32 technicians, such as draftsmen and caligraphists.
(4) 89 vocationals, such as drivers, painters and mechanics.
(5) 464 service men, work in the general administration, in the irrigation centre and rest houses.
There are some transports, excavators and irrigation machines in the Administration which are shown in Tables $5-1,5-2,5-3$ successively.

It may be observed that the said administration has a staff of 22 civil engineers, including those of senior posts, such as the General Manager, his Deputy, Inspectors
Figure 5-1
FAYOUM IRRIGATION GENERAL ADMINISTRATION AUTHORITY

Manager of Works

Assistant Manager	

Ass. Managar for Fayoum
Ass. Manager for Tameya
Ass. Managerior Sanorus

Table 5.1
Transports Found in The General Administration of Irrigation in the Fayoum Governorate (6)

Type	Number	Model	Fitness	Use
Ford Limousine	1	1955	65	For Engineers Movements
Ford Station	1	1956	65	For Engineers Movements
Russian Jeep	4	1966	50	For Engineers Movements
Russian Jeep	3	1966	60	For Engineers Movements
Fargo	1	1951	55	For Transferring Provisions
Ford Pick Up	1	1953	35	For Transferring Provision
Ford Pick Up	1	1954	50	For Transferring Provision
Jeep Wiles	1	1950	45	For Transferring Provision
Scoda Truck	1	1966	65	For Transferring Provision
Ford Truck	1	1956	50	For Transferring Provisior

Table 5.2
Excavators Found in The General Administration of Irrigation in the Fayoum Governorate (6)

Type	Model	Number	Fitness \%
Big Polish	1966	9	65
Big Polish	1955	2	55
Small Polish	1966	3	60
Big English	1950	2	65
Small English	1950	2	65
Russian	1960	1	50

Table 5.3
Irrigation Machines and Other Equipment Found in
The General Administration of Irigation
in The Fayoum Governorate (6)

Kind	Type	Model	Number
Irigation Machine	Egyptian	1967	3
Irrigation Machine	American	1949	1
Irrigation Machine	German	1950	1
Irrigation Machine	English	1945	1
Irrigation Machine	Russian	1960	5
Lighting Machine	English	1945	1
Turning Machine	Egyptian	1968	1
Drill	Roman	1957	1
Whetstone	Russian	1965	1
Battery Charger	Russian	1966	1
Electric Welding Apparatus	Russian	2961	, 1
Oxyacetaline Welding App.	French	1965	1

and Managers of Works. It would be better to increase this number to 30 civil engineers, in order that every irrigation centre be staffed with 2 engineers instead of one, as the case is now, to supervise its irrigation works.

The phenomenon of the shortage in the number of engineers is common in irrigation circles in all the Governorates of Egypt, as well as in other authorities, This is due to the fact that they are badly needed in all sectors. This is contrary to the case of agronomists, engaged in agricultural circles, where they are available in excess numbers, as indicated in the following few pages.

It may be recognised from the previous tables, that most of the cars, excavators and irrigation machines, stocked at the administration have been in use for much longer than their economic life. For example, it may be observed that some of them have been used for more than twenty years. This, of course, results in huge annual expenses incurred for their operation and maintenance. Thus, it will be more profitable if they could be dispensed with and replaced by others. However, various studies were conducted by the Egyption Government to remedy such a state of affairs in all Ministries and Government Departments. Such studies deal with both the technicel and economic points of view. The first aim was to determine how to keep a Government machine, or car, in good condition, for the longest possible period. It has practically been proved that this cannot be achieved other than by drawing the attention of workers and drivers to the importance of the good use of the machine or car. Meanwhile, steps were taken to realize this aim. As regards cars, for example, the idea of giving, free of charge, the Government car, after a period equivalent to its economic life, or one or two years later, into the possession of the driver who works on it, came to mind. This, in fact, promotes the driver's efforts and care to a maximum, in order to keep the Government car, he works on, in good condition, because he knows that it will be his own property, after a few years. As regards the other machines, financial gratuities were
earmarked to be paid, in case their maintenonce costs foll, to their operating mechanicians. In general, the Egyptian Goverament should issue instructions to the authorities, under its control, to dispease completely with any car or machine, beyond its economic life, and replace it with a new one, in order to save the annual recurrent expenses.

However, the average annual recurrent costs of the Adninistration of Irrigation is equal to $\$ 688,255=$ $\$ 5.00 / \mathrm{he}$ as follows:
(a) Wages $=\$ 238,150=\$ 1.73 / \mathrm{ha}$ (details are shown in Table 5-4)
(b) irrigation and drainage works $=\$ 129,644=$ \$0.90/ha (details are shown in Table 5-5)
(c) service expenditures $=\not \$ 305,750=\$ 2.22 / \mathrm{ha}$ (details are shown in Table 5-6)
(d) Costs of materials $=\$ 14,671=\$ 0.11 / \mathrm{ha}$ (details are shown in Table 5-7)

5.1.2. The General Acministration of Agriculture

Figure 5-2 shows the arrangement of the General Adninistration of Agriculture in the Fayoun Governorate as we see, the head of the administration is an agronomist called the General Maragex and he worls with the help of two assistant Monagers and some agronomists.

This administration is devided into R'ive centres namely: Taneya, Serarus, Abshway, Atsa and Fayoum. The head of each centre is called the Inspector and he works with the help of two agents and some agronomists. However, The General Administration of Agriculture in the Gayoum Governorate consists of 1352 employees as follows:
(1) 239 agronomists.
(2) 4 lawyers.
(3) 5 administratives.
(4) 57 clerks.
(5) 875 technicians.
(6) 74 skilled.
(7) 98 unskilled.

Table 5.4
Annual Wages of Employees in The General Administration of Irrigation in the Fayoum Governorate (7)

Table 5.5
Annual Recurrent Cost of Irrigation and Drainage Works of The General Administration of Irrigation in the Fayoum Governorate (7)
U.S. $\$$

Improving irrigation and drainage system	94,313
Improving irrigation and drainage openings	3,659
Constructing bridges on water ways	21,276
Construction and demolition of weirs	5,460
Obtaining and operating parts for mouths of canals	4,936
	Total

Table 5.6
Annual Services Expenditures of The General Administration of Irrigation in the Fayoum Governorate (7)
U.S. $\$$

	Transportation and Communication:	
	Transport of equipment Transport of employees and labourers Fixed inspection allowances for engineers Telephone, telegram and mail	$\begin{array}{r} 178 \\ 5,179 \\ 8,524 \\ 8,233 \end{array}$
	Maintenance Expenses:	
	Maintenance and dredging for water ways Maintenance and restoration of buildings Maintenance of roads, bridges and banks Maintenance of equipment and machines Maintenance of means of transportation Maintenance of furniture and other office equipment	$\begin{array}{r} 265,380 \\ 1,505 \\ 480 \\ 11,579 \\ 3,647 \\ 144 \end{array}$
	Varied Service Expenditure: Printing costs Publication and advertisement costs Subscription to newspapers and magazines Aids given on occasions such as feasts and burials	$\begin{array}{r} 115 \\ 416 \\ 56 \\ 324 \end{array}$
	Total	305,760
	Total / ha	2.22

Table 5.7
Annual Costs of Materials of
The General Administration of Irrigation in the Fayoum Governorate(7)
U.S. ${ }^{\prime}$

Fuel, Oil and Power	
Spare parts and maintenance materials	9,713
Water and light	2,442
Stationery	1,820
Furniture and cooling and heating apparatus	99
Equipment for gardening and other implements	357
	Total
	Total / ha

Figure 5-2

There are some transports in the administration shown in Table 5-8 and Table 5-9.

As regards the 239 egronomists available within the agricultural circle, 20 of them occupy senior posts, such as the General Manager, his Assistants, Inspectors and Sub-Inspectors. The other 219 cgronomists are supposed to be specially assigned for ficld inspection to advise and instruct the farmers in all that concerns agricultural affairs. They should also supervise and control the execution of Government instructions, with regard to the various cultivations, and perform all the other supervisory worls. There are also, as already mentioned, 875 technicians, who assist and participote in such works.

In view of the fact that the cultivated area in the Fayoum Governorate covers 137,760 hectares, this means that an agronomist and 4 technicians are assigned for the supervision of cultivation in every stretch of 629 hectares. In our opinion, this number exceeds that required. In fact, one fourth of this number of agronomists and technicians is quite sufficient.

It may be noticed, from Tables $5-8$ and $5-9$, showing the number of cars and motor-cycles available at the administration, that the number of cars is 21 and the motor-cycles 51. Such cars and motor-cycles are supposed to be used for the field inspection of all areas. If it is assuned that there are 51 agronomists and technicians using these motor-cycles, a car will be assigned for every 50 persons, out of the remaining number of stafe, and this rate is abnormal. In our opinion, this does not represent a shortage in the number of cars and motor-cycles, but an evident excess in the number of agronomists and technicians.

The phenomenon of employing excess numbers of agronomists and agricultural technicions is comon in agricultural circles in all Governorates of Egypt.

Table 5.8
Transport Found in the General Administration of Agriculture in the Fayoum Governorate (8)

Table 5.9
Motor-Cycles Found in The General Administration of Agriculture in the Fayoum Governorate (8)

Type	Number	Use
With Side Car	10	For Agronomists Movements
B.S. Single	11	For Agronomists Movements
Gawa Single	30	For Agronomists Movements

This is due to the great numbers of agronomists who annually graduate fron the universities and Agricultural Institutions, and the Government responsibility to find posts for all of then - a situation that leads to this over-employment phenomenon.

Tho tendency now prevailing in the Government is to dispense with the services of these excessive numbers of agronomists and technicians, and put into their individual possession a stretch of the newly cultivated lands, in order that they themselves cultivate same and apply the latest modern methods of cultivation, they studied at the universities and institutions. This, of course, will lead to the increase of the land productivity, and offers a useful job to such graduates. Moreover, it will also result in the reduction of the annual recurrent expenses, which the Ministry of Agriculture incurs to pay their saleries.

What was said about the General Administration of Fayoum Irrigetion, with regard to using old-fashioned cars and machines, should also be said here about the Agriculturol Circle, where such cars have been in use for nearly 20 years. Such usage is absolutely uneconomic. The Government shoula pay attention to this fact, issue instructions to dispense with these cars and equipment, the economic life of which has gone far beyond the usuel known limits, and replace them by other new ones. This will, undoubtedly, lead to minimizing the annual maintenance costs. However, the average annual recurrent costs of the administration is equal to $\$ 908,054=\$ 6.59 /$ ha as follows
(a) Wages $=\$ 238,158=\$ 6.15 /$ ha (details are shown in Table 5-10)
(b) Service expenditures $=\$ 37,377=\$ 0.27 /$ ha (details are shown in Table 5-11)
(c) Costs of materials $=\$ 23,552=\$ 0.17 / \mathrm{ha}$ (details are shown in Table 5-12)

The total annual recurrent cost of both the General Administration of Irrigation and the General Administration of Agriculture is equal to $\$ 1,291,779=\$ 9.38 / \mathrm{ha}$ (details are shown in Tables 5-13 \& 5-14)

Table 5.10
Annual Wages of Employees in the General Administration of Agriculture in the Fayoum Governorate (9)

				$\begin{aligned} & \stackrel{.}{6} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$			$\begin{aligned} & \text { 菏 } \\ & \overline{=} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\stackrel{\text { ¢00 }}{\stackrel{\text { ¢ }}{\circ}}$	\%
First	1							1	3,500
Second								-	-
Third	8		1					9	18,000
Fourth	9		1					10	15,000
Fifth	26				5			31	34,875
Sixth	54	2	2	1	53			110	110,000
Seventh	141	2	1	10	195	13		361	270,750
Eighth				43	611	50	3	707	353,500
Ninth				3	11	8	22	44	18,700
Tenth						3	73	76	22,800
Total	239	4	5	57	875	74	98	1,352	847,125
Total / ha									6.15

Table 5.11
Annual Service Expenditures of The General Administration of Agriculture in the Fayoum Governorate (9)

Table 5.12
Annual Cost of Materials of The General Administration of Agriculture in the Fayoum Governorate (9)
U.S. $\$$

Fuei, Oil and Power	13,005
Spare parts and maintenance materials	5,750
Water and light	1,873
Stationery	1,188
Furniture and cooling and heating apparatus	1,363
Equipment for gerdening and other implements	Total
	Total /ha

Table 5.13
Total Annual Recurrent Cost of both The General Administration of Irrigation and The General Administration of Agriculture
in The Fayoum Governorate (9)
U.S. $\$$

Item	Administration of	Irigation	Agriculture	Total
1	Wages	238,150	847,125	$1,085,275$
2	Irrigation and Drainage Works	129,644		
3	Service Expenditures	305,760	37,377	343,137
4	Cost of Materials	14,671	23,552	38,223

Table 5.14
Total Annual Recurrent Cost / ha of both The General Administration of Irrigation and The General Administration of Agriculture in the Fayoum Governorate (9)
U.S. $\$$

Itam		Irrigation	Agriculture	Total / ha
1	Wages	1.73	6.15	7.88
2	Irrigation and Drainage Works	0.94	-	0.94
3	Service Expenditures	2.22	0.27	2.49
4	Cost of Materials	0.11	0.17	0.28
	Total / ha	5.00	6.59	11.59

5.2 Africultural Production and Sale Price in the Fayour Governorate.

5.2.1. Crop Rotation:

The basis of establishing the annual area croped is first, the water arailability and secomdly the selection of a suitable crop rotation, having regard to both ecological and humen factors. The ecological liaitations are probably the rore easily deterrined. The developnent of a cropping pattera can merely reflect the analyst's best judgrent as to what is leasible in the light of demand and chaages in cultivation practices. In rany cases it may be desirable to plan initially on introducing as little change as possible into the present systen of agriculture; this way not be the best tecknically possible, but it tends to facilitate the transition fron dryland farming. Also it may be the best feasible pattem having regard to the time element. Undiscounted benefits may be shaller but discounted benefits larger if a cropping pattern is adopted which provokes arongst farners the least resistance to change. The turns irrigation systen in the Fayoun governorate is dual, with seven days high, and seven days low for each half of the total irrigated area. The water duty of each hectare being 70 cubic neters. Winter turn starts froi: 16 February to 30 Harch, Sumer turn sterts from 1 April to 14 August, Milotic turn starts from 15 August to 31 December. The Crop rotation for the main crops cultivated in the Fayoun Governorate is shown in Figure 5-3.

5.2.2. Cropped Area:

There is a whole series of definitions in current usage relating to the area served by an irrigation scheme. Gross Area: is defined as the total crea within the extrene linits set for irrigation by a project. This area nay include lend which is neither commanded (by the canal systen) nor culturable, as well as land which is unsuitable for irrigation.
Gross Cominded Area: is that portion of the gross area which is comanded by flow irrigation.
Culturable Comanded Area: is that portion of the

Figure 5_3
Crop Rotation in Fayoum Governorate

			$\begin{aligned} & \lambda \\ & \frac{\lambda}{n} \\ & 2 \\ & \frac{2}{0} \\ & \stackrel{2}{u} \end{aligned}$	$\begin{aligned} & \frac{c}{i} \\ & 0 \\ & \frac{\pi}{2} \end{aligned}$	$\begin{aligned} & \vec{c} \\ & \frac{a}{a} \\ & \hline \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & \sum \end{aligned}$	$\stackrel{0}{5}$	$\stackrel{\lambda}{3}$	$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & 0 \\ & 0 \\ & \frac{0}{4} \end{aligned}$		$\left\|\begin{array}{c} 1 \\ \hline \\ \therefore \\ 0 \\ \hline 0 \\ 0 \end{array}\right\|$	$\begin{array}{\|c} a \\ 0 \\ 0 \\ \tilde{c} \\ 0 \\ 0 \\ z \end{array}$	¢
1	Wheat												
2	Barley												
3	Beans												
4	Fenugreek												
5	Continual clover												
6	instigation clover												
7	Winter vegetables												
8	cotton												
9	Summer Rice												
10	Peanuts												
11	Summer Indianmillet												
12	Summer Syrain Maize												
13	Summer vegetables												
14	Fruits												
15	Nilotic Rice												
16	Nilotic Indian Millet												
17	Nilotic Syrain Maize												
18	Nilotic Vegetables												

gross comended area which is suitable for cropping and thus excludes villages, graveyards, roods and canals, etc.
Area Irrigated: is the area of land thet receives water in any one year. This may excced the area actually sown or cultivated.

Cropped Area: is the area of crops grown each year. Cropping Intensity: is the ratio of the sums of the cropped areas each year to culturable commanded Area.

While all of the above terms are of importance in the design of irrigation schemes, the two most important from the point of view of project evaluation techniques are: cropped areas and cropping intensity. Table 5-15 represents cropped areas and cropping intensity in the Fayoum Covernorate from year 1961 to year 1972.

We notice from that table that the greatest areas is cultivated with clover (which is used as a food for animals) then syrien maize, wheat and cotton. In the year 1972 for example we find thet the area cultivated with clover in the Fayoun Governorate reached 59,200 ha and the areas cultivated with syrian maize, wheat and cotton reached 40,$600 ; 31,100$ and 31,100 ha successively.

We notice also from that table (5-15) that the average cropping intensity in the youm Governorate is 1.78 between years from 1961 to 1972.

Every year, the Egyptian Governnent should issue periodical decisions, defining the areas where wheat and cotton crops are to be cultivated. In the meantime, such areas should be distributed to the various localities throughout the Republic, due to the significant value of these very same crops. Consequently, cultivators will be obliged to execute the Governnent instructions, with regard to the areas where they must grow cotton and wheat every year. Agricultural circles in governorates should have supervision and control over the execution of these instructions. As regards the other crops, cultivators should be free to assign every year the areas of their cultivation; but with some coordination on the part of agricultural circles in the Governorates. The extension of these 72.
Table 5.15
The Cropped Areas and Cropping Intensity in the Fayoum Governorate from Year 1961 to Year 1972 (10)

	Yea	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	Wheat	42,500	41,400	36,200	38,500	37,100	36,100	36,400	38,400	34,900	34,400	34,700	31,100
2	Beans	7.420	8,200	9,250	11,420	11,200	10,200	8,500	7,500	9,720	9,900	8,230	10.080
3	Barley	1,300	1.635	1,560	2,060	2,400	2,020	2,200	1,880	1,470	1,460	1,040	1,660
4	Fenugreek	1,920	1,940	1,900	3,010	2,970	2,200	2,140	2,660	2,315	2,810	2,380	2,540
5	Cotton	36,900	32,400	32,900	33,50	37,700	36,400	36,300	36,300	35,100	33,000	31,100	31,100
6	Rice	5,020	8,220	7,600	7,900	6,920	5,800	7,420	10,400	11,200	10,300	8,350	8,200
7	Peanuts	784	1,080	1,260	920	1,065	768	545	740	915	520	475	371
8	Indian Millet	27,600	22,800	20,600	24,500	21,200	24,100	23,200	24,600	24,500	26,200	23,500	22,500
9	Syrian Maize	39,400	54,500	54,000	51,200	54,000	47,800	42,500	40,800	41,000	39,500	42,000	40,600
10	Clover (seeds)	11,400	7,550	6,090	.5,770	5,400	8,700	7.500	7,350	7,200	7,350	9,000	7,700
11	Sesame	153	193	274	287	291	402	275	341	395	585	600	632
12	Onions	860	852	1,210	860	675	630	590	677	1,620	630	1,195	790
13	Vegetables	7,350	7.600	8,800	9,800	10,000	9,750	9,740	8,200	10,820	11,500	12,550	9,000
14	Fruits	4,650	4,620	4,780	4,820	5,000	5,220	5,400	5,400	5,600	5,900	6,150	5,320
15	Clover	61,300	61,000	61,300	55,000	53,200	60,000	61,800	46,500	51,000	55,400	58,700	59,200
16	Others	1,234	624	855	2,079	532	887	1,577	1,784	2,118	1,857	2.222	3,750
	TOTAL	243,791	254,614	248,579	251,626	249,653	250,977	246,087	233,532	239,853	241,312	242,192	234,550
Cropping Intensity		1.77	1.85	1.80	1.83	1.81	1.82	1.79	1.70	1.74	1.75	1.76	1.70

areas, which are cultivated yearly, depends on the price of crops in the previous year. For example, if the price of peanute, in one year, is high, cultivators are encouraged to increase its cultivated area in the following year. The case is the same with other crops. Sometimes, the Government issues decisions prohibiting the growing of certain crops in certain areas, due to special circumstances connected with irrigation and drainage, or, to various environmental conditions. In Figure 3-4, showing the major cropped areas in the Fayoum Governorate, during the period from 1961 to 1972, vibretions in all cropped areas, during various years, may be recognized. It may also be observed that the stress of these vibrations decreases with regard to cotton and wheat crops, the assignment of whose areas is subject, as already mentioned, to the Government control and runs with the countries requirements of the produce as well as with the import and export conditions of the year.

5.2.3. Yields

Projections of the expected increase in crop yields over time, which constitute a vital part of the project evaluation procedure, are frequently hampered by the lack of reliable historical statistical data pertinent to the area. This is particularly true of the developing countries where the statistical date, even if available, are often unrelable. A procedure frequently adopted in these cixcumstances is to base the projections on statistical data obtained from other countries.

Table $5-16$ represents the different yields per cropped hectare in the Fayoun Governorate from the year 1961 to the year 1972, we notice from this table that the yield/ha for all crops is swinging between high and low from year to year but by low percentage, i.e we could say that the yield/ha in the Fayoum Governorate is approximately constant for the different crops in the different years, and this is natural for the old agricultural land as it

Figure 5.4
The Major Cropped Areas in Fayoum Governorate
Table 5.16
The Different Yields per Cropped Areas in the Fayoum Governorate from Year 1961 to Year 1972 (10)

		1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	Wheat	2.27	2.28	2.34	2.32	2.40	2.66	2.61	2.46	2.26	2.37	2.82	2.67
2	Beans	1.30	2.34	1.43	1.77	1.84	2.05	1.14	1.86	1.98	1.67	2.14	2.28
3	Barley	1.92	2.01	2.03	2.38	2.54	2.32	2.18	2.37	2.39	2.47	2.46	2.50
4	Fenugreek	0.47	1.14	0.96	1.08	1.11	1.16	1.18	1.19	1.29	1.31	1.37	1.42
5	Cotton	1.16	1.68	1.66	1.54	1.38	1.62	1.51	2.82	3.20	3.39	4.17	1.82
6	Rice	3.60	4.12	3.33	3.60	3.35	3.39	4.05	4.03	3.97	3.75	4.10	4.20
7	Peanuts	1.64	1.68	1,67	1.59	1.67	1.38	1.64	1.65	1.59	1.66	1.65	1.62
8	Indian Millet	3.00	3.10	3.12	3.15	3.29	3.50	3.65	3.72	3.80	3.95	4.10	4.16
9	Syrian Maize	3.02	2.93	2.78	2.81	3.09	3.05	3.00	3.31	3.36	3.42	3.00	2.79
10	Clover (Seeds)	0.31	0.39	0.50	0.51	0.38	0.45	0.44	0.49	0.49	0.54	0.56	0.58
11	Sesame	0.58	0.61	0.64	0.65	0.67	0.60	0.59	0.62	0.82	1.15	1.28	1.36
12	Onions	14.90	13.80	14.10	15.00	15.30	15.40	13.00	11.90	12.50	12.10	14.10	15.30
13	Vegetables	15.80	16.20	15.50	16.00	16.60	17.20	15.00	15.80	16.00	17.00	17.20	17.00
14	Fruits	11.80	12.00	12.90	12.70	12.80	12.90	14.20	11.70	11.60	9.00	9.30	12.50
15	Clover	38.12	38.20	38.55	38.58	38.24	38.43	38.47	38.53	38.51	38.64	38.77	38.82

has reached a point of fertility where its annual production is nearly constant. But there ore some factors such as weather and the quentity of blights which may affect the crop production.

We notice as and example from Figure 5-5 that the productio: of cotton in the Payoun Governorate in the year 1972 is noticably lowar thon its production in the year 1971, the yield was 4.17 ton/ha in the year 1971 and it dropped to 1.82 ton/ha only in the year 1972, the reason for that drop is the cotton worm which is a great danger to cotton production in Egypt, but this noticeably great drop is a very special case as the cotton worm was to be found in greet quantities in the year 1972 and in a surprising shape that lowered the production. We consider also that the comperison between cotton yield in the year 1972 and its yield in the year 1971 is not at all representative because the cotton yield in that year gave a remarlable amount in the high production.

We notice in the relevant tobles of crops that we mentioned vegetables and fruits cultivated in the Fayoum Govermorate as a whole min we used average values of yields and sale price etc. We wish to mention here that the most important vegetables cultivated in the Fayoun Governorate are Tonato, Cabbages, Orra, Pepper, Neloa and Cucumber, and the most important fruits cultivated in that Governorate are Dates, Oranges, Lemons, Grapes, Mongo and Apricots.

Table 5-17 represents total yield of the different crops cultivated in the Fayoum Governorate in years from 1961 to 1972.

Figure 5_5
Yields per cropped Areas for Some crops cultivated in Fayoum Governorate
Table 5.17
Total Yield of the Different Crops Cultivated in the Fayoum Governorate (10)

		1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	Wheat	96,475	94,392	84,708	89,320	89,040	96,026	95,004	94,464	87,874	81,528	97,854	83,037
2	Beans	9,646	19,188	13,228	20,213	20,608	20,910	9,690	13,950	19,246	16,533	17,612	22,982
3	Barley	2,496	3,450	3,167	4,903	6,096	4,686	4,796	4,456	3,518	3,606	2,558	4,150
4	Fenugreek	902	2,212	1,824	3,251	3,297	2,552	2,525	3,165	2,986	3,681	3,260	3,607
5	Cotton	42,804	54,432	54,614	51,590	52,026	58,968	54,813	102,366	112,320	111,870	129,687	66,602
6	Rice	18,072	33,862	25,308	28,440	23,182	19,662	30,051	41,912	44,464	38,625	34,235	34,440
7	Peanuts	1,285	1,814	2,104	1,463	1,779	1,060	894	1,221	1,455	863	784	601
8	Indian Millet	64,800	70,680	64,272	77,175	69,748	84,350	84,680	91,512	93,100	103,490	96,350	93,606
9	Syrian Maize	178,988	159,685	150,120	143,872	166,860	145,790	127,500	135,048	137,760	135,090	126,000	113,274
10	Clover (Seeds)	3,534	2,945	3,045	2,943	2,052	3,915	3,300	3,602	3,528	3,969	5,040	4,466
11	Sesame	89	118	175	187	195	241	162	211	324	673	768	860
12	Onions	12,814	11,758	17,061	12,900	10,328	9,702	7,670	8,056	20,250	7,623	16,850	12.087
13	Vegetables	116,130	123,120	136,400	156,800	166,000	167,700	146,100	129,560	172,800	195,500	215,860	153,000
14	Fruits	54,870	55,440	61,662	61,214	64,000	67,338	76,680	63,180	64,960	53,100	56,888	66,500
15	Clover	2,336,756	2,330,200	2,363,115	2,121,900	2,034,368	2,305,800	2,377,446	1,791,645	1,964,000	2,140,656	2,275,799	2,298,144

5.2.4. Prices of Agricultural Output.

The value of agricultural output is usually converted to monetary units by using the local market or farmgate prices, except in the case of export crops for which export prices are considered. The local market prices, however, are frequently distorted by a more or less elaborate set of constraints in addition to which variation in transport costs and malfunctioning of the distribution system can introduce further abnormalities. It is evident that, from a national point of view, investment decisions based on such distorted prices may prove to be misleading. Also, local market prices are subject to seasonal variation unless adequate storage facilities are available to regulate the flow of commodities according to maxket requirements. Market prices, even if not basically distorted, have therefore to be carefully analysed.

To overcome these difficulties shadow prices, based on import or export prices, are frequently developed whether or not the output in question is intended for export or actually to displace imports. In arriving at the shadow prices or, in the case of export crops, their value, it is necessary to include in the export price the cost of transport to the port of shipment, (the f.o.b. price is strictly speaking required). Here again, however, it is necessary to ensure that the real costs are used and not the costs in items of market prices. Por instance, if transport facilities are not fully utilized and the cost of additional transport is consequently very small, only these small costs should be deducted and not the perhaps much higher freight charges actually paid. In other instances the adjustment necessary may be in the reverse direction. The established transport charge may for political or other reasons be such as to favour unduly the conveyance of agricultural commodities. In this case the analysis should take into consideration the real cost of transportation and should not be based on the subsidized rates.

However, agricultural world markets are also subject to distortion through quotas, subsidies, international agreements, regional preferences etc., and in the case
of comodities of a purely 'national' characher relevant international (border) prices may be impossible to establish.

It is therefore considered that the local market or farm-gate prices will in nearly all cases provide the most meaningful basis of evaluation, and may be adjusted if necessary to take account of any distortions. The degree to which such distortions exist should be assessed in the light of export or import substitution prices.

Forecasts of future price levels are sometimes developed as they are required by legislation to evaluate the stream of benefits over time. Such forecasts, however, are difficult particularly in respect of international comodities and may be subject to a considerable margin of exror. Frequently it will be found that changes in relative prices may cause a change in the cropping pattern and this secondry effect may compensate for chenges in price level.

It must be borne in mind that what is required is a forecast of any variation in the true value to the nation of the particular commodity, and not en estimate of possible changes in the price that the farmer will in fact receive for his crop. Thus it would appear to be more reasonable to prepare forecasts of supply and demand for the particular crop concerned in order to assess whether the true value of a unit of the scheme's output will alter whea taken within the context of the national econony and population growth. Within this framework it is felt that in most cases present-day prices will be found to be an adequate representation because it is unlikely that notional agencies will purposely plan for deficiencies in food production to such an extent as to cause marked increase in the 'value' of particular agricultural commodities.

Table 5-18 shows the Farm-Gate Price of the different crops cultivated in the Fayoum Covernorate during the period from 1961 to 1972. It may be observed, from this table, that the prices rise from one year to another. This is a normal thing, and is due to the annual increase in labour wages and the rise in prices of machines, pesticides, etc. In case a comparison, between the 1972
Table 5.18
Farm-Gate Price of the Different Crops Cultivated in the Fayoum Governorate for Years from 1961 to 1972 (10)

prices and those of 1961, is made, a big difference may be clearly noticed. For example, the price per ton of onions, reached in 1972, more than twice and a half that of 1961, as indicated in Table 5-18. Mennwhile, the price of one ton of peanut, amounted, in 1972 , to more than double that of 1961, while the price of one ton whether of barley, rice, Indian millet, Syrien maize snd sesame, rose, in 1972 to more than one and a half times that of 1961. However, it may bo noticed, in this table, that in a few cases, the price per ton of a certain crop, in one year, falls below that of the year before. For example, the price per ton of wheat reached in 1967, $\$ 88.5$ and, then in 1968 , it fell to $\$ 76.5$ and so does the price per ton of barley, in 1967 it amounted to $\$ 108,75$ and then decreased in 1968, to $\$ 76.25$. This is due to the fact that although crop prices rise, as a result of the increase in wages and prices of materials, yet there are other factors; the value of such an increcse hampers its occurrence, or leads to a reduction, such as marketing conditions, offer and demend, and the quantity, etc. However, the common feature is that prices are continually increasing.

Table 5-19 and Table 5-20 represent the Gross Benefit and the Total Gross Benefit for the different crops cultivated in the Fayoum Governorate. We note from this table that the greatest values of the Gross Benefit resulted from cultivating vegetables, fruits, onions and cotton. For example, in the year 1972, we find that the values of Gross Benefit from cultivating vegetables, fruits, onions and cotton are $\$ 1,802 ; 1,208,10$; 645.70 and $606.70 /$ ha respectively. This is does not mean that those yields are greater in benefit for the farmer, because we have to obtain the Farmer Benefit after subtracting the On-Farm Costs for the different crops.

The Tables from 5-21 to 5-35 represent the Cropped Areas, Agricultural Production, Farm-Gate Price and Gross Benefits for the different crops cultivated in the Fayoum Governorate in the period from 1961 to 1972.
Table 5.19

		1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	Wheat	148.20	155.30	162.60	164.70	174.00	215.50	231.00	188.20	199.20	214.80	263.70	259.30
2	Beans	156.70	290.80	179.00	231.90	237.40	265.50	147.10	136.60	203.90	173.10	310.30	343.10
3	Barley	119.00	132.70	143.10	195.20	146.70	169.70	237.10	180.70	159.50	195.80	242.90	257.30
4	Fenugreek	51.80	129.00	109.90	128.00	141.00	153.70	180.50	160.10	189.60	174.90	195.20	220.10
5	Cotton	266.80	399.80	398.40	385.00	331.20	377.30	370.00	727.60	848.00	898.40	1,117.60	505.70
6	Rice	151.20	176.10	144.00	164.80	193.40	227.10	303.90	320.40	300.50	268.90	278.10	324.00
7	Peanuts	208.30	218.40	220.40	211.50	375.80	310.50	369.00	371.30	311.60	332.00	330.00	450.40
8	Indian Millet	162.00	179.00	192.70	200.80	194.90	237.20	320,30	232.50	257.50	331.80	310.60	372.30
9	Syrian Maize	185.00	183.20	175.10	190.40	198.50	260.00	295.50	326.90	283.10	298.40	234.00	277.60
10	Clover (Seeds)	75.30	95.60	125.00	131.60	123.50	139.50	128.90	119.10	170.50	183.60	155.70	185.60
11	Sesarne	119.30	128.40	137.00	142.70	154.10	148.50	172.60	167.40	232.70	355.10	400.00	435.20
12	Onions	227.20	220.80	225.60	249.80	357.00	446.60	396.50	343.70	347.30	363.00	516.80	645.70
13	Vegetables	1,165.30	1,211.00	1,178.00	1,248.00	1,311.40	1,307.20	1,222.50	1,337.20	1,271.70	1,480.70	1,642.30	1,802.00
14	Fruits	749.30	807.00	944.90	958.90	872.80	941.70	1,072.10	907.70	852.60	693.00	728.90	1,208.10
15	Clover	135.30	137.10	139.60	142.40	144.50	151.00	158.50	167.00	176.40	186.60	193.10	205.50
16	Others	155.10	188.20	181.00	181.50	213.20	238.60	254.90	264.70	283.10	305.90	349.80	343.20

Table 5.20

10^{3} U.S. $\$ / \mathrm{ha}$													
		1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	Wheat	6,299	6,429	5,886	6,341	6,455	7,780	8,408	7,227	6,952	7.389	9.150	8,064
2	Beans	1,163	2,385	1,656	2,648								
						2,659	2,708	1,250	1,125	1,982	1,714	2,554	3,458
3	Barley	155	217	223	402	352	343	522	340	235	286	253	427
4	Fenugreek	100	250	209	385	419	338	385	426				
5	Cotton	9,845	12,954							439	492	742	559
			12,954	13,107	12,898	12,486	13,741	13,431	26,412	29,765	29,647	34,757	15,727
6	Rice	759	1,448	1,094	1,302	1,338	1,317	2,255	3,332	3,366	2770	2322	2657
7	Peanuts	163	236	278	195	400							
8	Indian Millat						239	201	275	285	173	157	167
8	Indian Millet	3,499	4,081	3,970	4,920	4.132	5,714	7,431	5,720	6,309	8,693	7,299	8,377
9	Syrian Maize	7;289	9,984	9,455	9,749	10,720	12,428	12,559	13,338	11.607	11787	9828	
10	Clover (Seeds)	858	722	761	759	667							
11	Sesame					667	2,137	967	875	1,228	1,349	1,401	1,429
	Sesame	18	25	38	41	45	60	48	57	92	208	240	275
12	Onions	195	188	273	215	241	281	234	233	563	229	618	510
13	Vegetables	8,565	9,204	10,366	12,230	13,114	12,745	11,907	10,965	13.734	17.028		
14	Fruit	3,484	3,728	4,517	4,622	4,364	916					20,611	16,218
15	Clover	8,294	8,363					5,78	4,902	4,775	4,089	4,483	5,470
			8,363	8,558	7,832	7.687	9,060	9,795	7,766	8,996	10,338	11,335	12,166

Table 5.21
Agricultural Production in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Area (ha)	42,500	41,4000	36,200	38,500	37,100	36,100	36,400	38,400	24,900	34,400	34,700	31,100
Yield (ton/ha)	2.27	2.28	2.34	2.32	2.40	2.66	2.61	2.46	2.26	2,37	2.82	2.67
Total Yield (ton)	96,475	94,382	84,708	89,320	89.040	96,026	95,004	94,464	87,874	81,528	97,854	83,037
Farm-Gate Price (U.S. / ton)	65.25	68.13	69.50	71.00	72.50	81.00	88.50	76.50	88.13	90.63	93.60	97.13
Gross Benefit (U.S. \$/ha)	148.20	155.30	162.60	164.70	174.00	215.50	231.00	188.20	199.20	214.80	263.70	259.30
Total Gross Benefit (10^{3} U.S. \$)	6,299	6,429	5,886	6,341	6,455	7,780	8,408	7.227	6,952	7,389	9,150	8,064

Table 5.22
Agricultural Production in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Area (ha)	7,420	8,200	9,250	11,420	11,200	10,200	8,500	7,500	9,700	9,900	8,230	10,080
Yield (ton/ha)	1.30	2.34	1.43	1.77	1.84	2,05	1,14	1.86	1.98	1.67	2.14	2.28
Total Yield (ton)	9,646	19,188	13,228	20,213	20,608	20,910	9,690	13,950	19,246	16,533	17,612	22,982
Farm-Gate Price (U.S. 8/ton)	120.50	124.25	125.20	131.00	129.00	129.50	129.00	125.75	103.00	103.75	145.00	150.50
Gross Benefit (U.S. \$/ha)	156.70	290.80	179.00	231.90	237.40	265.50	147.10	136.60	203.60	173.10	310.30	343.10
Total Gross Benefit $\left(10^{3}\right.$ U.S. $\left.\$\right)$	1,163	2,385	1,656	2,648	2,659	2,708	1,250	1,125	1,982	1,714	2,554	3,458

87.

Table 5.23
Agricultural Production in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Area (ha)	1,300	1,635	1,560	2,060	2,400	2,020	2,200	1,880	1,470	1,460	1,040	1,660
Yield (ton/ha)	1.92	2.01	2.03	2.38	2.54	2.32	2.18	2.37	2.39	2.47	2.46	2.50
Total Yield (ton)	2,496	3,450	3,167	4,903	6,096	4,686	4,796	4,456	3,513	3,606	2,558	4,150
Farm-Gate Price (U.S. $\mathbb{S} /$ ton)	62.00	66.00	70.50	82.00	57.75	73.13	108.75	76.25	66.75	79.25	98.75	104.50
Gross Benefit (U.S. \$/ha)	119.00	132.70	143.10	195.20	146.70	169.70	237.10	180.70	159.50	195.80	242.90	257.30
Total Gross Benefit $\left(10^{3}\right.$ U.S. \&)	155	217	223	402	352	343	522	340	235	286	253	427

88.

Table 5.24
Agricultural Production in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Area (ha)	1,920	1,940	1,900	3,010	2,970	2,200	2,140	2,660	2,315	2,810	2,380	2,540
Yield (ton/ha)	0.47	1.14	0.96	1.08	1.11	1.16	1.18	1.19	1.29	1.31	1.37	1.42
Total Yield l (ton)	902	2,212	1,824	3,251	3,297	2,552	2,525	3,165	2,986	3,681	3,260	3,607
Farm-Gate Price (U.S. $\$ /$ ton)	110.25	113.00	114.50	118.50	127.00	132.50	153.00	134.50	147.00	133.50	142.50	155.00
Gross Benefit (U.S. \$/ha)	51.80	129.00	109.90	128.00	141.00	153.70	180.50	160.10	189.60	174.90	195.20	220.10
Total Gross Benefit $\left(10^{3}\right.$ U.S. 8)	100	250	209	385	419	338	385	426	439	492	742	559

89.

Table 5.25
Agricultural Production in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

90.
Table 5.26

	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Area (ha)	5,020	8,220	7,600	7,900	6,920	5,800	7,420	10,400	11,200	10,300	8,350	8.200
Yield (ton/ha)	3.60	4.12	3.33	3.60	3.35	3.39	4.05	4.03	3.97	3.75	4.10	4.20
Total Yield (ton)	18,072	33,862	25,308	28,440	23,182	19,662	30,051	41,912	44,464	38,625	34,235	34,440
Farm-Gate Price (U.S. $/$ /ton)	42.00	42.75	43.25	46.33	57.73	67.00	75.03	79.50	75.68	70.65	67.83	77.13
Gross Benefit (U.S. $8 / \mathrm{ha}$)	151.20	176.10	144.00	164.80	193.40	227.10	303.90	320.40	300.50	268.90	278.10	324.00
Total Gross Benefit $\left(10^{3} \text { U.S. } \$\right)$	759	1,448	1.094	1,302	1,338	1,317	2,255	3,332	3,366	2,770	2,322	2,657

Table 5.27
Agricultural Pruduction in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

Table 5.28
Agricultural Production in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Area (ha)	21,600	22,800	20,600	24,500	21,200	24,100	23,200	24,600	24,500	26,200	23,500	22,500
Yield (ton/ha)	3.00	3.10	3.12	3.15	3.29	3.50	3.65	3.72	3.80	3.95	4.10	4.16
Total Yield (ton)	64,800	70,680	64,272	77,175	69,748	84,350	84,680	91,512	93,100	103,490	96,350	93,600
Farm-Gate Price (U.S. \%/ton)	54.00	57.75	61.75	63.75	59.25	67.75	87.75	62.50	67.75	84.00	75.75	89.50
Gross Benefit (U.S. / ha)	162.00	179.00	192.70	200.80	194.90	237.10	320.30	232.50	257.50	331.80	310.60	372.30
$\begin{aligned} & \text { Total Gross Benefit } \\ & \left(10^{3} \text { U.S. } \$\right) \end{aligned}$	3,499	4,081	3,970	4,920	4,132	5,744	7,431	5,720	6,309	8,693	7,299	8,377

93.

Table 5.29
Agricultural Production in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

94.
Table 5.30
Agricultural Production in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Area (ha)	11,400	7,550	6,090	5,770	5,400	8,700	7,500	7,350	7,200	7,350	9,000	7,700
Yield (ton/ha)	0.31	0.39	0.50	0.51	0.38	0.45	0.44	0.49	0.49	0.54	0.56	0.58
Total Yield (ton)	3,534	2,945	3,045	2,943	2,052	3,915	3,300	3,602	3,528	3,969	5,040	4,466
Farm-Gate Price (U.S. \$/ton)	243	245	250	258	325	310	293	243	348	340	278	320
Gross Benefit (U.S. \$ / ha)	75.30	95.60	125.00	131.60	123.50	139.50	128.90	119.10	170.50	183.60	155.70	185.60
Total Gross Benefit 110^{3} U.S.	858	722	761	759	667	2,137	967	875	1,228	1,349	1,401	1,429

Table 5.31
Agricultural Production in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Area (ha)	153	193	274	287	291	402	275	341	395	585	600	632
Yield (ton/ha)	0.58	0.61	0.64	0.65	0.67	0.60	0.59	0.62	0.82	1.15	1.28	1.36
Total Yield (ton)	89	118	175	187	195	241	162	211	324	673	768	860
Farm-Gate Price (U.S. \$/ton)	205.75	210.50	214.00	219.50	230.00	247.50	292.50	270.00	283.75	308.75	312.50	320.00
Gross Benefit (U.S. \$/ha)	119.30	128.40	137.00	142.70	154.10	148.50	172.60	167.40	232.70	355.10	400.00	435.20
Total Gross Benefit $\left(10^{3}\right. \text { U.S. \$) }$	18	25	38	41	45	60	48	57	92	208	240	275

96.

Table 5.32
Agricultural Production in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

Table 5.33
Agricultural Production in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Area (ha)	7,350	7,600	8,800	9,800	10,000	9,750	9,740	8,200	10,800	11,500	12,550	9,000
Yield (ton/ha)	15.80	16.20	15.50	16.00	16.60	17.20	15.00	15.80	16.00	17.00	17.20	17.00
Total Yield (ton)	116,130	123,120	136,400	156,800	166,000	167,700	146,100	129,560	172,800	195,500	215,860	153,000
Farm-Gate Price (U.S. $\$ /$ ton)	73.75	74.75	76.00	78.00	79.00	76.00	81.50	84.63	79.48	87.10	95.48	106.00
Gross Benefit (U.S. \$/ha)	1,165.30	1,211.00	1,178.00	1,248.00	1,311.40	1,307.20	1,222.50	1,337.20	1,271.70	1,480.70	1,642.30	1,802.00
Total Gross Benefit $\left(10^{3} \text { U.S. } \$\right)$	8,565	9,204	10,366	12,230	13.114	12,745	11,907	10,965	13,734	17,028	20,611	16,218

Table 5.34
Agricultural Production in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

Table 5.35
Agricultural Production in the Fayoum Governorate and Values of Outputs from Year 1961 to Year 1972 (10)

5.3 On-Farm Costs

The study of the On-Fara Costs of the different agricultural crops aims at reaching a general average of the On-Farm Cost for each crop each year.

The studies related to the On-Farr Costs constitute one of the most important subjects in economic research and help draw up the policy of agriculture. In the governorates of Egypt, employees of the Ministry of Agriculture collect data on the cost of production of each crop from the field by asking a number of farmers in every centre of the governorates, so that they may represent all the cases in which cost of production varies from one crop to another. This means that one and the same agricultural operation may be carried out with diverse means of ploughing. Thus, there may be areas in which this process would be carried out mechanically, and where it is carried out by means of cattle, with the result that cost differs in both situations. Therefore, data are compiled from farmers whose lands are ploughed mechanically and others in which this is done by means of cattle, and on the basis of the area which is ploughed mechanically and that ploughed by cattle, it becomes possible to find the average cost of ploughing a unit area.

What is said of ploughing may also be said of irrigation, for some areas at the centre are irrigated by falling waters and others by manpower. The latter may use the sakieh, or the Archimendan screw or machines etc. and expenses vary in each case. This is taken into account when selecting the sample of farmers who will be questioned by the employees in charge of ascertaining the cost of irrigation per Unit area for any crop, and on the basis of the area which is irrigated by one of these methods, it would be possible to find out the average cost of irrigation per Unit area, as well as the cost of fertilization. Thus, for each crop the fertilizer used differs as well as the anount used per Unit area whether for swall or large land-owners. All these ore taken into account when selecting the sample of faxmers from whom the data on average fertilization will be taken, and from these date it will be possible to find the average amount of fertilizers used per

Unit area in small handholdings or large handholdings separately. On the basis of the area of land cultivated by each group, it would be possible to find the general average of fertilizers used for a crop in the centre as a whole. Threshing and sowing are also among the agricultural operations which may be conducted by manpower or cattle or threshing machines, but expenses vary in each case. Thus, the sample of farmers selected is taken from those who use various methods and on the basis of the area grown in the centre with a certain crop and on the basis of the method used, it would be possible to find the general average of cost for this operation per Unit area.

The final results are recorded on a statistical form in each centre of the governorate, indicating the average cost of each of the agricultural operations including ploughing, irrigation and fertilization. An overall statistical form is laid down for the governorate indicating the average cost of each operation on the level of the governorate in general.

Figure 5-6 shows the number of agricultural-working days, with regard to men and boys, during the various months of the year. From this figure, it may be seen that the biggest number of agricultural-working days, with regard to men, come within the months of May and September, every year, and, as regards boys, they fall within the months of June, July and September. This is because in May, June and July, work is at full swing in resisting cotton pests, and this needs a large number of men and boys to fulfil. In addition to this, the month of Septembex, every year, is the time of harvesting cotton crop, which also needs a large number of men and boys. This, in turn, leads to the rise of wages of agricultural workers, during these very same months more than at any other time in the whole year.

The same Figure also shows that the least number of agricultural-working days, with regard to men and boys, comes within the months of December and January, due to fewer agricultural functions, such as the irrigation of wheat and harvesting some clover, during this time of the year. As a result, the wages of agricultural workers fall during these months more than at any other time of

Figure 5_6
Number of Agricultural Working Days for Men and Boys in the Different Months 103.
the year. Figure $5-7$ shovs the mead average of labour necessery for every hectare of the verious crops cultiveted in the Foyour Govermorate. It moy be concluded, fron this Rigure, that the greatest nuber of wormen required is for fruit production, onion and peanats, whilst, the stiallest nubber is for barley, whet and fenugreek. It mey also be observed that the greatest nuber of worken and boys needeg, is for cotton and then for vegetables and peanuts, and the siallest nubber is for clover, femucreek, whect and barley. Keanwhile, Figure 5-0 illustrates the average of daily veces poid to agricultural workers (nen and boys in the Foyoun Governorate), duriag the verious years from 1961 to 1972. The figure also shows thet the wages hove risen from one year to mother, until they reach, with regord to rex, e climax, in l966, then the sverage of the daily woges per han anounted to $\$ 0.40$. As Por boys, the weges reached a maxinum, in 1969, when their dsily averege (pex boy) ornometod to po. 24. The reason why the waces of employed worlers slightly decreased, during the lest fed years, is the use of ecriculturol machios in cextain locelities. This hos led to en excess in lebour power; thus, the woges decreased accordingly, though such a decrease is hordly undistincuishable, as shom on the Figure. It csur also be noticed that the daily woge of the erployed agriculturel Forker, in the Foyow: Govermorote, is low. Iz 1972 , it reached $\$ 0.4$ yer man wad $\$ 0.19$ per boy. In certain other Governorctes, te wage is higher than thet, due to the relatively available mapower in the Fayour Governorate. Tajles fror ino. 5-36 to $10.5-48$ include On-Fara Costs of the various crops grown in the Fayoun Govenorete, during the poriod fron 1961 to 1972. Every teble is divided irto two parts, one of which presents these expenses, according to the various agriculturcl processes, such as the preporetion of the lad for cultivotion, seedirg, field irrigotion, Pertiliziag, etc., whilst the other shows theso id eccordece With the worlers ${ }^{\text {Whege }}$, Trices of fotericls, such as livestocts, nachiaes, plast seeds, fertilizers and pesticides. Fron these tobles, it may be generally noticed thet the costs rise, from one year to mother, with regorc to the verious crops. If a comprisoun, between the figures of 1972 and those of 1961, is mede, a bie dificreace will be clenrly observed.

Number of Boys/ha
Number of Men /ha

Figure 5-7
Rate of Agricultural Workers per hectare for the Different crops
cultivated in Fayoum Governorate

Figure 5_8
Average Daily Wages for the Agricultural Workers in the Different Years in Fayoum Governorate

Table 5.36
On-Farm Costs for the Main Crops Cultivated in the Fayoum Governorate from Year 1961 to Year 1972 (10)
(1) Wheat
U.S. \$/ha

On Farm Costs classified according to Agricultural Operations												
Item Ye	61	62	63	64	66	66	67	68	68	70	71	72
Preparation of land	9.00	9.00	9.00	9.20	12.50	13.90	14.80	13.80	14.10	13.60	13.60	9.80
Seeds \& Cultivation	17.60	17.10	16,50	14.60	14.90	14.50	18.40	18.30	18.30	18.30	18.30	21.90
Irrigation	0.90	1.50	1.50	1.50	3.00	2.70	2.20	1.80	2.20	2.20	2.20	2.20
Fertilizing	21.50	26.00	28.80	37.50	41.00	54.30	55.00	55.50	55.00	54.50	54.50	60.00
Others	26.30	27,00	27.30	27.70	50.00	40.60	45.00	43.80	42.50	46.80	47.50	45.50
Total	75.30	80.60	83.10	90.50	121.40	126.00	13540	133.20	13210	135.40	136.10	13940
On Farm Costs classified according to Rents and Costs												
Item	61	62	63	64	65	66	67	68	69	70	71	72
Hire of labour	16.30	16,80	17.80	18.30	36.30	32.00	34.30	32.00	32.00	33.70	33.70	32.50
Hire of Animals	17.40	17.80	17.30	17.30	27.00	23.30	27.00	27.00	22.80	25.00	26.20	20.30
Seeds	17.40	17.20	16.30	14.30	14.30	14.30	14.30	17.90	17.90	17.90	17.90	21.50
Organic Fertilizer	6.00	8.60	11.90	11.90	14.90	17.90	17.90	17.90	17.90	14.90	14.90	22.30
Chemical Fertilizer	14.30	17.00	16.30	25.00	25.00	34.50	34.50	34.50	34.00	36.60	36.60	34.50
Rent of Machines	-	-	-	-	-	-	-	-	4.30	1.60	1.10	2.40
Pesticides	-	-	-	-	-	-	-	-	-	-	-	-
Others	3.90	3.20	3.50	3.70	3.90	4.00	3.80	3.90	3.20	5.70	5.70	5.90
Total	5.30	80.60	83.10	90.50	121.40	126.00	135.40	133.20	132.19	135.40	136.10	139.40

Table 5.37
On-Farm Costs for the Main Crops Cultivated in the Fayoum Governorate from Year 1961 to Year 1972 (10)
(2) Beans
U.S. $\$ /$ ha

On-Farm Costs classified according to Agricultural Operations												
Year	61	62	63	64	65	66	67	68	69	70	71	72
Preparation of land	6.30	6.30	7.20	7.50	12.10	13.00	11.60	11.60	11.60	12.30	12.30	12.30
Seeds \& Cultivation	21.60	36.70	29.50	29.00	29.30	30.90	30.00	29.00	29.00	29.00	29.00	30.60
Irrigation	0.60	0.70	0.70	0.70	0.90	0.90	1.40	1.40	1.30	1.40	1.40	1.40
Fertilizing	3.90	4.50	7.20	7.80	7.80	8.40	8.40	8.80	8.20	8.20	8.50	8.50
Others	16.80	17.50	17.60	23.70	30.00	29.40	30.30	30.30	30.30	33.80	34.50	35.50
Total	49.20	65.70	62.20	68.70	80.10	82.60	81.70	81.10	80.40	84.70	85.50	88.30
On-Farm Costs classified according to Rents and Costs												
Item Year	61	62	63	64	65	66	67	68	69	70	71	72
Hire of labour	10.30	11.60	12.50	13.30	22.80	23.60	23.30	24.40	24.50	26.50	31.10	30.50
Hire of animals	10.70	10.90	10,80	10.80	15.30	15.30	18.00	17.70	17.70	16.40	16.40	17.70
Seeds	20.70	35.50	28.50	28.00	27.50	28.30	28.30	26.50	26.50	26.50	26.50	28.30
Organic Fertilizer	-	-	-	-	-	-	-	-	-	-	-	-
Chemical Fertilizer	3.60	4.20	7.20	7.49	7.40	7.90	7.90	8.30	7.80	7.80	7.90	7.90
Rent of Machines	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides	-	-	-	-	-	-	-	-	-	3.80	-	-
Others	3.90	3.50	3.20	9.20	7.10	7.50	4.20	4.20	3.90	3.70	3.60	3.90
Total	49.20	65.70	62.20	68.70	80.10	82.60	81.70	81.10	80.40	84.70	85.50	88.30

Table 5.38
On-Farm Costs for the Main Crops Cultivated in the Fayoum Governorate from Year 1961 to 1972 (10)
(3) Barley
U.S. $8 /$ ha

On-Farm Costs classified according to Agricultural Operations												
\bigcirc Year	61	62	63	64	65	66	67	68	69	70	71	72
Preparation of land	6.30	6.30	6.00	6.30	10.50	10.50	13.70	14.30	14.30	13.80	13.80	12.4
Seeds \& Cultivation	7.70	7.40	7.50	10.50	10.90	12.90	14.80	14.80	13.00	12.90	13.00	14.80
Irrigation	1.20	1.20	1.10	1.20	1.80	1.80	2.20	2.20	2.20	1.80	1.80	1.80
Fertilizing	7.60	8.50	8.50	17.00	17.10	26.20	26.20	26.20	26.20	18.00	18.00	18.00
Others	16.80	17.80	22.10	22.70	36.50	36.50	39.00	39.50	41.00	39.00	35.50	29.70
Total	39.60	41.20	45.20	57.70	76.80	37.90	95.90	97.00	96.70	85.50	82.10	76.70
On-Farm Costs classified according to Rents and Costs												
Item Yea	61	62	63	64	65	66	67	68	69	70	71	72
Hire of labour	12.00	12.20	13.20	14,40	22.50	21.70	27.60	27.20	27.60	24.60	24.80	23.00
Hire of animals	11.00	11.40	14.50	12.60	23.70	24.00	24.00	25.20	26.00	26.00	22.60	17.20
Seeds	7.40	7.20	7.20	10.40	10.40	12.40	14.20	14.20	12.40	12.40	12.40	12.40
Organic Fertilizer	-	-	-	-	-	-	-	-	-	-	-	-
Chemical Fertilizer	7.40	8.30	8.30	16.60	16.60	25.70	25.70	25.70	25.70	17.50	17.50	17.50
Rent of machines	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides	-	-	-	-	-	-	-	-	-	-	-	-
Others	1.80	2.10	2.00	3.70	3.60	4.10	4.40	4.70	5.00	5.00	4.80	4.80
Total	39.60	41.20	45.20	57.70	76.80	87.90	85.90	97.00	96.70	85.50	82.10	76.70

Table 5.39
On-Farm Costs for the Main Crops Cultivated in the Fayoum Governorate from Year 1961 to Year 1972 (10)
(4) Fenugreek
U.S. \$/ha

On-Farm Costs classified according to Agricultural Operations												
	61	62	63	64	65	66	67	68	69	70	71	72
Preparation of land	-	-	6.00	6.00	8.90	10.10	10.10	9.50	10.80	11.80	11.80	10.20
Seeds \& Cultivation	7.30	18.00	16.49	16.20	16.20	16.20	16.40	16.40	14.80	14.80	14.80	14.80
Irrigation	0.60	0.60	0.60	0.60	0.90	0.90	1.40	1.50	1.30	1.30	1.30	1.30
Fertilizing	-	-	-	8.60	8.80	8.50	8.60	8.50	8.50	8.50	8.00	8.00
Others	16.00	16.20	17.00	16.20	18.80	21.90	28.00	28.70	26.50	29.00	29.00	27.50
Total	23.90	34.80	40.00	47.60	53.60	57.60	64.50	64.60	61.90	65.40	64.90	6180
	On Fa	m Cos	classifi	ed accor	ding to	Rents	and Cos					
Yea	61	62	63	64	65	66	67	68	69	70	71	72
Hire of labour	7.90	7.90	8.90	9.60	12.40	13.60	18.30	21.60	18.80	18.50	18.50	15.20
Hire of animals	6.60	6.80	11.20	11.40	16.50	17.00	19.00	16.20	17.80	21.50	21.50	21.70
Seeds	17.10	17.80	17.40	16.00	16.00	16.00	16.00	16.00	14.20	14.20	14.20	14.20
Organic Fertilizer	-	-	-	8.30	-	-	-	-	-	-	-	-
Chemical Fertilizer	-	-	-	-	8.30	8.00	8.20	8.00	8.00	8.00	7.80	7.80
Rent of Machines	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides	- -	\cdots	-	- '	-	-	-	-	-	-	-	-
Others	2.30	2.30	2.50	2.30	0.40	3.00	3.00	2.80	3.10	3.20	2.90	2.90
Total	23.90	34.80	40.00	47.60	53.60	57.60	64.50	64.60	61.90	65.40	64.90	61.80

Table 5.40
On-Farm Costs for the Main Crops Cultivated in the Fayoum Governorate
from Year 1961 to Year 1972 (10)
(5) Cotton
U.S. $\$ /$ ha

On-Farm Costs classified according to Agricultural Operations												
Year	61	62	63	64	65	66	67	68	69	70	71	72
Preparation of land	18.40	17.80	18.40	23.701	27.00	28.70	22.50	25.00	25.70	32.00	29.70	31.00
Seeds \& Cultivation	8.30	7.10	7.70	8.20	9.10	9.40	9.80	9.50	8.60	9.20	8.60	8.60
Irrigation	3.60	3.60	3.60	5.00	6.40	7.20	7.20	7.20	5.40	5.40	5.40	5.40
Fertilizing	32.00	36.50	44.20	47.506	60.00	73.00	70.00	74.00	76.80	73.20	91.00	86.00
Others	57.20	70.00	77.80	83.509	99.50	122.001	11.00	124.001	142.00	127.00	130.00	94.00
Total	119.50	135.00	151.40	167.6020	202.00	240.30	219.50	239.70	258.502	246.80	264.70	225.00
On-Farm Costs classified according to Rents and Costs												
Ye	61	62	63	64	65	66	67	68	69	70	71	72
Preparation of land	45.00	56.20	59.50	$77.5 ¢$	96.00	111.00	116.00	124.00	124.00	108.00	105.00	91.00
Hire of animals	15.20	14.20	13.70	16.60	20.30	26,40:	13.10	12.80	16.30	15.80	15.50	13.70
Seeds	6.00	5.00	5.30	5.86	5.80	5.80	6.30	6.30	6.30	6.30	6.30	6.30
Organic Fertilizer	17.80	17.80	23.70	10.20	30.00	30.00	30.00	30.00	30.00	30.00	37.20	37.20
Chemical Fertilizer	14.90	17.00	19.00	29.90	28.50	39.60	35,70	39.40	42.00	40.20	46.20	44.50
Rent of Machines	-	-	-	-	-	-	3.20	6.59	3.00	10.00	10.10	11.50
Pesticides	8.00	21.80	29.50	23.70	19.70	27,20	8.80	15.30	31.60	30.50	34.50	14.80
Others	12.60	3.00	0.79	4.40	3.70	5.40	6.40	5.40	5.30	6.00	9.90	6.00
Total	119.50	135.00	151.40	167.60	202.00	240.30	219.50	239.70	258.50	246.80	264.70	225.00

Table 5.41
On-Farm Costs for the Main Crops Cultivated in the Fayoum Governorate from Year 1961 to Year 1972 (10)
(6) Rice
U.S. $\$ /$ ha

On-Farm Costs classified according to Agricultural Operations												
Item	61	62	63	64	65	66	67	68	69	70	71	72
Preparation of land	13.50	13.60	13.20	15.40	24.60	25.00	23.49	23.80	21.70	21.60	22.70	22.40
Seeds \& Cultivation	39.70	41.70	45.00	47.70	53.10	56.80	60.00	63.40	62.59	62.00	61.00	57.74
Irrigation	4.00	4.00	4.00	4.20	4.20	4.20	4.30	4.30	4.30	4.40	4.40	4.49
Fertilizing	31.00	29.70	36.70	35.50	42.00	60.80	61.20	63.10	64.10	64.10	62.80	64.00
Others	36.80	37.50	32.30	60.00	47.80	65.00	65.00	68.20	66.30	66.30	69.80	69.20
Total	125.00	126.50	131.20	162.80	171.70	211.80	213.90	222.80	218.90	218.40	220.70	217.71
On-Farm Costs classified according to Rents and Costs												
Item	61	62	63	64	65	66	67	68	69	70	71	72
Hire of labour	47.40	51.10	58.70	82.00	78.80	86.00	86.00	90.00	87.40	76.40	75.00	73.54
Hire of animals	29.60	30.50	32.00	33.40	36.50	51.40	49.09	51.40	17.00	23.20	26:80	24.78
Seeds	17.20	16.90	17.60	17.80	20.20	22.90	24.70	26.70	27.80	25.70	25.50	23.44
Organic Fertilizer	7.40	7.10	3.10	6.30	10.90	17.80	17.50	18.00	17.60	16.40	16.49	16.70
Chemical Fertilizer	17.80	17.10	17.20	21.20	22.00	30.00	30.00	30.70	30.70	33.70	32.50	32.70
Rent of Machines	3.40	1.40	-	-	-	-	3.70	3.60	36.70	40.00	41.00	43.50
Pesticides	-	-	-	-	-	-	-	-	-	-	-	-
Others	2.20	2.40	2.60	2.10	3.30	3.70	3.00	2.40	1.70	3.00	3.50	3.20
Total	125.00	126.50	131.20	162.80	71.70	211.80	213.90	222.80	218.90	218.40	220.70	217.74

Table 5.42
On-Farm Costs for the Main Crops Cultivated in the Fayoum Governorate
from Year 1961 to Year 1972 (10)
(7) Peanuts
U.S. \$/ha

On-Farm Costs classified according to Agricultural Operations												
Year	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Preparation of land	13.00	13.80	13.30	17.20	12.00	10.76	11.60	11.60	12.50	12.50	9.50	9.50
Seeds \& Cultivation	12.50	13.20	12.80	14.50	12.00	11.36	23.70	21.50	21.50	$21.5 ¢$	19.00	19.00
Irrigation	2.40	2.40	2.40	3.60	3.00	3.60	5.40	5.30	5.40	5.49	3.60	360
Fertilizing	34.00	34.00	34.00	30.50	27.70	21.70	21.70	24.60	24.60	24.60	18.80	19.00
Others	24.00	33.00	31.90	40.50	38.00	44.00	52.00	53.00	51.20	51.20	67.10	67.20
Total	85.90	96.40	94.40	106.30	92.70	91.30	114.40	116.00	115.20	115.20	118.00	118.30
On-Farm Costs classified according to Rents and Costs												
	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Hire of labour	30.50	40.00	31.50	44.00	38.50	45.50	62.00	62.00	61.00	61.50	76.70	76.70
Hire of animals	13.10	14.20	14.20	17.80,	11.60	8.90	14.00	14.00	14.80	14.60	10.40	10.40
Seeds	7.20	7.90	7.40	7.40	8.40	9.50	16.60	14.20	14.20	14.20	11.80	11.80
Organic Fertilizer	23.70	23.70	23.70	23.70	18.40	14.80	14.80	17.80	17.80	17.80	11.80	11.80
Chemical Fertilizer	8.30	8.30	8.30	4.20	6.30	4.10	4.10	4.20	4.20	4.20	4.20	4.50
Rent of Machines	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides	-	-	7.20	6.80	7.00	6.00	-	0.80	-	-	-	-
Others	3.10	2.30	2.10	2.40	2.50	2.50	2.90	3.00	3.20	2.90	3.10	3.10
Total	85.90	96.40	94.40	106.30	92.70	91.30	114.40	116.00	115.20	115.20	118.00	118.30

Table 5.43
On-Farm Costs for the Main Crops Cultivated in the Fayoum Governorate
from Year 1961 to Year 1972 (10)
(8) Indian Millet
U.S. \$/ha

On- Farm Costs classified according to Agricultural Operations												
	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Preparation of land	9.40	9.60	10.00	11.60	14.80	11.30	11.30	11.30	11.30	11.30	11.30	11.30
Seeds \& Cultivation	3.60	2.60	2.60	2.70	3.40	3.40	5.40	5.40	4.20	4.20	2.80	2.90
Irrigation	2.40	2.40	2.40	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60
Fertilizing	27.00	26.50	28.20	31.50	47.00	48.20	49.50	49.50	49.50	57.80	56.50	56.50
Others	22.00	22.70	22.50	28.00	27.30	27.30	28.80	28.80	28.80	31.50	31.50	33.00
Total	64.40	63.80	65.70	77.40	96.10	93.80	98.60	98,60	97.40	108.40	105.70	107.30
On-Farm Costs classified according to Rents and Costs												
Item	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Hire of labour	26.50	26.00	26.70	34.60	35.50	34.70	37.00	37.00	37.00	39.80	41.00	40.20
Hire of Animals	7.50	8.10	9.90	8.30	10.70	8.60	8.60	8.60	8.60	8.10	6.00	8.30
Seeds	2.40	2.40	2.40	2.40	2.40	2.40	3.60	3.60	2.40	2.40	2.40	2.40
Organic Fertilizer	10.00	9.60	6.60	11.90	14.40	11.90	11.90	11.90	11.90	11.90	11.90	11.90
Chemical Fertilizer	14.90	14.90	19.00	16.60	29.70	33.50	34.50	34.50	34.50	4.30	4.17	4.17
Rent of Machines	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides	-	-	-	- :	\cdots	-	-.	-	-	-	-	-
Others	3.10	2.80	1.10	3.60	3.40	2.70	3.00	3.00	3.00	3.20	2.70	2.80
Total	64.40	63.80	65.70	77.40	96.10	93.80	98.60	98.60	97.40	108.40	105.70	107.30

Table 5.44
On-Farm Costs for the Main Crops Cultivated in the Fayoum Governorate from Year 1961 to Year 1972 (10)
(9) Syrian Maize

US K Y han

On-Farm Costs classified according to Agricultural Operations												
	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Preparation of land	8.60	8.30	9.50	11.30	13.70	12.00	11.40	13.00	13.00	13.00	13.20	13.70
Seeds \& Cultivation	10.80	9.50	7.90	7.70	8.10	8.10	8.40	8.40	6.60	6.60	7.30	6.30
Irrigation	2.30	2.20	2.20	3.60	3.60	4.80	3.60	3.60	3.60	3.60	3.60	3.60
Fertilizing	37.30	39.40	36.00	37.70	54.50	56.80	61.00	60.50	49,20	49.20	64.00	66.00
Others	19.10	28.50	20.00	28.50	27.80	29.00	28.00	29.10	30.30	30.20	28.70	28.30
Total	78.10	87.90	75.60	88.80	07.70	10.70	12.40	14.60	102.70	102.60	116.80	117.90
On-Farm Costs classified according to Rents and Costs												
	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Hire of labour	21.70	23.20	23.10	32.70	29.50	31.50	35.20	36.20	37.60	37.50	36.20	36.50
Hire of animals	8.40	6.80	8.10	8.40	11.30	10.40	10.40	11.60	11.90	11.90	11.00	10.40
Seeds	9.50	8.80	7.30	7.20	7.20	7.20	7.20	7.20	4.80	4.80	6.30	5.30
Organic Fertilizer	20.50	22.40	19.00	17.80	26.70	18.60	17.80	17.80	23.70	23.70	21.00	23.50
Chemical Fertilizer	14.80	14.80	14.80	16.60	24.50	34.70	38.60	38.60	21.40	21.40	38.70	38.70
Rent of Machines	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides	-	8.30	0	2.70	4.70	5.40	-	-	-	-	-	-
Others	3.20	3.60	3.30	3.40	3.80	2.90	3.20	2.90	3.30	3.30	3.60	3.50
Total	78.10	87.90	75.60	88.80	9707.70	110.70	112.40	114.64	1702.70	102.60	116.80	117.90

Table 5.45
On-Farm Costs for the Main Crops Cultivated in the Fayoum Governorate
from Year 1961 to Year 1972 (10)
(10) Clover (Seeds)
U.S. $8 / \mathrm{ha}$

On-Farm Costs classified according to Agricultural Operations												
Item \triangle Year	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Preparation of land	-	-	-	-	-	-	-	-	-	-	-	-
Seeds \& Cultivation	16.20	13.20	9.80	12.20	18.40	18.30	18.30	18.30	13.80	13.80	13.80	13.80
Irrigation	2.30	2.30	2.30	2.40	3.30	3.60	5.40	5.40	5.40	5.40	5.40	5.40
Fertilizing	8.70	8.60	8.60	8.50	8.60	8.70	8.70	8.70	8.90	8.90	9.00	8.90
Others	15.80	28.70	31.70	29.00	38.20	37.50	45.20	44.70	36.70	36.70	37.00	36.29
Total	43.00	52.80	52.40	52.10	68.50	68.10	77.60	77.10	64.80	64.80	65.20	64.30
On-Farm Costs classified according to Rents and Costs												
Ye	1961	1962	1963	1964	1965	1966	1987	1968	1969	1970	1971	1972
Hire of labour	11.80	16.20	17.70	18.00	30.20	26.00	34.20	30.50	28.20	28.20	28.50	28.30
Hire of animals	5.00	5.10	5.70	6.00	9.20	8.00	9.10	11.20	11.60	11.60	11.60	7.80
Seeds	16.00	13.10	9.60	10.80	17.80	17.80	17.80	17.80	13.40	13.40	13.40	13.40
Organic Fertilizer	-	-	-	-	-	-	-	-	-	-	-	-
Chemical Fertilizer	8.60	8.50	8.30	8.30	8.30	8.30	8.30	8.30	8.40	8.40	8.40	8.40
Rent of Machines	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides	-	8.30	9.30	6.00	-	5.40	5.40	7.20	-	-	-	-
Others	1.60	2.00	1.80	3.00	3.00	2.60	2.80	2.10	3.20	3.20	3.30	6.40
Total	43.00	52.80	52.40	52.10	68.50	68.10	77.60	77.10	64.80	64.80	65.20	64.30

Table 5.46
On-Farm Costs for the Main Crops Cultivated in the Fayoum Governorate from Year 1961 to Year 1972 (10)

> (11) Sesame
U.S. $8 /$ ha

On-Farm Costs classified according to Agricultural Operations												
Item \triangle Ye	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Preparation of land	7.20	7.30	7.30	8.40	11.50	10.80	10.80	10.80	10.80	10.80	9.60	9.68
Seeds \& Cultivation	4.00	4.40	4.40	4.70	4.60	5.00	5.00	5.40	5.00	5.00	5.50	6.30
Irrigation	2.20	2.20	2.30	3.60	3,60	3.60	3.60	3.60	3.60	3.60	3.60	3.60
Fertilizing	-	-	-	-	17.10	18.20	18.20	24.50	28.70	33.50	17.80	17.80
Others	18.50	18.90	20.80	25.00	26.40	26.80	28.50	28.50	28.50	28.50	28.50	28.50
Total	31.90	32.80	34.80	41.70	63.20	64.40	66.10	72.80	76.60	81.40	65.00	65.80
	$\mathrm{On}-\mathrm{Fa}$	m Costs	classifi	ied acco	rding to	Rents	and Cost					
Ye	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Hire of labour	21.60	22.40	23.50	30.70	31.70	32.20	32.80	33.00	33.00	33.00	32.00	32.00
Hire of animals	6.30	6.00	6.60	6.90	9.50	9.50	9.80	10.10	10.10	10.10	8.90	8.90
Seeds	1.90	2.20	2.30	2.20	2.20	2.30	2.30	2.00	2.30	2.30	2.90	3.60
Orgainc Fertilizer	-	-	-	-	-	-	-	6.00	11.90	14.90	-	-
Chemical Fertilizer	-	-	-	-	16.60	17.20	17.20	17.20	15.50	17.30	17.30	17.3
Rent of machines	-	\cdots	-	-	-	-	-	-	-	-	-	-
Pesticides	-	-	-	-	-	-	-	-	-	-	-	-
Others	2.10	2.20	2.40	1.90	3.20	3.20	4.00	4.50	3.80	3.80	3.90	4.00
Total	31.90	32.80	34.80	41.70	63.20	64.40	66.10	72.80	76.60	81.40	65.00	65.80

Table 5.47
On-Farm Costs for the Main Crops Cultivated in the Fayoum Governorate from Year 1961 to 1972 (10)
(12) Onions
U.S. S/ ha

On-Farm costs classified according to Agricultural Operations												
Item	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Preparation of land	14.20	14.30	14.30	14.30	23.80	26.26	18.20	21.90	19.00	20.00	20.90	27.79
Seeds \& Cultivation	55.80	56.00	63.20	51.20	70.00	74.10	94.00	68.50	69.00	80.10	83.10	85.80
Irrigation	1.70	1.80	1.80	1.80	2.70	2.70	2.70	3.60	3.60	3.60	2.70	2.70
Fertilizing	32.50	33.50	45.00	46.00	38.00	45.50	38.00	57.80	57.80	69.50	102.00	102.00
Others	25.00	25.70	26.00	25.80	44.00	45.20	35.00	35.50	43.00	78.10	90.00	74.00
Total	129.20	131.30	150.30	139,10	178.50	193.70	187.90	187.30	192.40	251.30	298.70	292.20
On-Farm Costs classified according to Rents and Costs												
Item	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Hire of labour	31.40	32.50	32.40	32.10	58.00	57.00	44.80	51.80	51.00	58.00	65.80	66.00
Hire of animals	11.70	11.80	11.90	11.90	21.50	25.00	15.60	17.80	15.50	16.60	22.40	22.60
Seeds	52.50	52.50	59.50	47.70	60.90	65.50	98.30	59.50	61.20	71.50	71.50	71;50
Organic Fertilizer	13.70	14.80	26.20	19.20	17.80	17.80	11.90	11.90	11.90	17.80	29.70	29.70
Chemical Fertilizer	16.90	16.90	16.60	25.00	16.60	25.00	21.50	43.10	43.10	49.00	67.00	67.00
Rent of Machines	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides	-	-	-	-	-	-	-	-	7.20	35.70	35.80	29.70
Others	3.00	2.80	3.70	3.20	3.70	3.40	4.80	3.20	2.50	2.70	6.50	5.70
Total	129.20	131.30	150.30	139.10	178.50	193.70	187.90	187.30	192.40	251.30	298.70	292.10

Table 5.48
On-Farm Costs for the Main Crops Cultivated in the Fayoum Governorate
from Year 1961 to Year 1972 (10)
(13) Vegetables
U.S. \%/ha

On-Farm Costs classified according to Agricultural operations												
	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Preparation of land	17.60	18.40	19.00	20.70	30.20	31.70	30.50	29.50	30.20	31.40	33.00	31.70
Seeds \& Cultivation	10.00	10.20	11.80	12.50	15.20	17.70	19.80	22.00	22.60	25.00	29.20	26.70
Irrigation	3.80	3.80	5.00	5.00	5.00	6.00	6.00	6.00	7.20	7.20	7.20	7.20
Fertilizing	44.50	47.00	48.20	49.00	71.80	78.06	77.00	77.50	78.50	76.70	77.00	83.00
Others	42.70	45.90	46.50	47.90	74.00	79.20	80.00	81.30	85.00	90.50	97.00	97.01
Total	118.60	126.00	130.50	135.10	196.20	212.60	213.30	216.30	223.50	230.80	243.40	245.61
On-Farm Costs classified according to Rents and Costs												
	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
Hire of labour	41.60	44.30	46.50	48.20	76.10	79.10	79.80	81.80	84.00	92.00	100.00	97.70
Hire of animals	16.20	16.80	17.60	18.20	20.50	25.70	26.80	27.50	30.70	31.20	32.80	33.20
Seeds	6.60	6.90	7.20	7.40	10.70	11.60	11.60	11.60	11.40	12.70	13.30	13.50
Organic Fertilizer	22.60	26.00	26.00	25.20	39.00	42.50	42.10	43.00	42.00	40.30	40.80	42.00
Chemical Fertilizer	18.50	20.00	20.90	21.70	31.20	34.00	33.20	34.00	36.00	34.50	35.00	38.10
Rent of machines	-	-	-	-	-	-	-	-	-	-	-	-
Pesticides	8.30	8.80	9.20	9.50	13.90	14.80	15.00	15.10	15.80	16.20	16.80	17.20
Others	4.80	4.20	3.10	4.90	4.80	4.90	4.80	3.30	3.60	3.90	4.70	3.90
Total	118.60	126.00	130.50	135.10	196.20	212.60	213.30	216.30	223.50	230.80	243.40	245.60

It will be seen, for example, that the On-Farm Costs, in 1972, of fenugreek per hectare rose two and a hall above that of 1961. Meanwhile, in 1972 production costs, per hectare, of sesame, onion and vegetables amounted to more than double those of 1961. As regards the other crops, with the exception of peanut, their On-Farm Costs per hectare, in 1972, rose to more than one and a half those of 1961. Figure 5-9 shows the On-Farm Costs, per hectare, of the important crops cultivated in the Fayoum Governorate, during various years. From this Figure, it may be seen that such costs generally rise from one year to another, as already mentioned. However, it may be observed that the 1972 On-Farm Costs, per hectare, of cotton noticeably decreased below those of 1971. Such costs were $\$ 264.7$ in 1971, and, in 1972, they decreased to $\$ 225$ only. This is because the Government decided to incur yearly, and as from 1972, half the costs of cotton-pest resistance. This has led to the decrease in cotton production costs incurred yearly by farmers.

5.4 Calculation of Parmer Benefit

What is meant by the Farmer Benefit are the returns to the farmer fron the crops sale price after subtracting the On-Fara Costs. We calculate here the Faraer Benefit per hectare from the cropped areas of the different crops for the years from 1961 to 1972. After this, we calculate the Farmer Benefit per hectare from the command cultivated areas for each crop every year as follows:

$$
\begin{aligned}
\text { Average Farmer Benefit } & =\frac{\text { Total Benefit }}{\text { Command Area }} \\
& =\frac{(D(A-B))}{\text { Command Area }} \text { U.S. \%/ha }
\end{aligned}
$$

Figure 5.9
On-Farm Costs for Some Impcrtant crops cultivated in Fayoum Governorate

Winere:

$$
\begin{aligned}
& A=G r o s s \text { Benefit for a certain crop in a } \\
& \text { certain yeex (From Table 5-20) } \\
& B=O_{n-F r m} \text { Costs for a certain crop in a } \\
& \text { certain yaur (From Table 5-49) } \\
& A-B=\text { Fenmer Bencitit for a comain arop in a } \\
& \text { certain year (From Table 5-50) } \\
& D=C r o p p e d \text { Area for a certain crop in a } \\
& \text { certain yeur (Fron Table 5-15) } \\
& \text { Command Area }=137,760 \mathrm{ha}
\end{aligned}
$$

We obtain the average Parmer Benefit per year by dividing the Figures of the Total Benefit (shown in Table 5-51), by the Comand Area (137,760 ha). These averages of the Farmer Benefit are shown in Toble 5-52 for years from 1961 to 1972.

In the next chapter, we transier the values of these benefits to 1972 prices, for use in the economic analysis.
Table 5.49
On-Farm Costs for Different Crops Cultivated in the Fayoum Governorate from Year 1961 to Year 1972 (10)

U.S. \$ / ha													
		1961	1962	1963	1964	1966	1966	1967	1968	1969	1970	1971	1972
1	Wheat	75.30	80.60	83.10	90.50	121.40	126.00	135.40	133.20	132.10	135.40	136.10	139.40
2	Beans	49.20	65.70	62.20	68.70	80.10	82.60	81.70	81.10	80.40	84.70	85.50	88.30
3	Barley	39.60	41.20	45.20	57.70	76.80	87.90	95.90	97.00	96.70	85.50	82.10	76;70
4	Fenugreek	23.90	34.80	40.00	47.60	53.60	57.60	64.50	64.60	61.90	65.40	64.90	61.80
5	Cotton	119.50	135.00	151.40	167.90	202.00	240.30	219.50	239.70	258.50	246.80	264.70	225.00
6	Rice	125.00	126.50	131.20	162.80	171.70	211.80	213.90	222.80	218.90	218.40	220.70	217.70
7	Peanuts	85.90	96.40	94.40	106.30	92.70	91.30	114.40	116.00	115.20	115.20	118.00	118.30
8	Indian Millet	64.40	63.80	65.70	77.40	96.10	93.80	98.60	98.60	97.40	108.40	105.70	107.30
9	Syrian Millet	78.10	87.90	75.60	88.80	107.70	110.70	112.40	114.30	102.70	102.60	116.80	117.90
10	Clover (Seeds)	43.00	53.00	52.50	52,10	68.50	68.10	77.60	77.10	64.80	64.80	65.20	64.30
11	Sesame	31.40	32.80	34.80	41.70	63.20	64.40	66.10	72.80	76.60	81.40	65.00	65.80
12	Onions	129.20	131.30	150.30	139.10	178.50	193.70	187.90	187.30	192.40	251.30	298.70	292.20
13	Vegetables	118.60	126.00	130.50	135.10	196.20	212.60	213.30	216.30	223.50	230.80	243.40	245.60
14	Fruits	103.70	115.30	119.20	127.50	144.10	152.90	171.50	169.80	177.70	179.80	178.40	186.70
15	Clover	52.20	64.80	64. 10	68.20	72.30	74.40	78.80	81.30	81.00	82.30	88.70	91.70
16	Others	70.60	78.00	80.80	89.90	106.50	115.60	119.00	122.00	121.40	126.30	131.70	128.20

Table 5.50
Farmer Benefit per Cropped hectare from the Different Crops Cultivated in the Fayoum Governorate

Table 5.51
Total Benefit from the Different Crops Cultivated in the Fayoum Governorate

01t＇st9＇9s	869＇8zt＇zL	て¢でGしt＇t9	$\angle \angle 0^{\prime} \mathrm{G} 1 \nabla^{\prime} 8 \mathrm{~S}$	$\angle 68^{\prime} 089^{\prime} 19$	$1 \angle 1^{\prime} 1$ ¢ $8^{\prime} \mathrm{Sb}$	$811 / \varepsilon \tau 9^{\prime} \downarrow$	$\square ¢ 9^{\prime} \angle 69^{\prime} \mathrm{S}$ ¢	090＇t29 ${ }^{\prime} 0$	$289 ' \downarrow 90{ }^{\prime} 6 \varepsilon$	9＜1＇081＇8ع	806＇8tc＇z	$(18-\forall) 017$	
g9L＇L08	819＇ャ8t	LIS＇ع¢๕	18ヵ＇こも¢	L＜s＇tsz	カビャレて	101＇601	t94＇99	9ct＇06ı	129＇98	994＇89	عLz＇tol	sıayıo	91
096＇98 ${ }^{\prime} 9$	08て＇821＇9	ozて＇8LL＇s	00ヵ＇S98＇t	OS0＇986＇${ }^{\text {c }}$	096＇6Lく‘9	000＇965＇b	0600° เ $68^{\prime} \varepsilon$	$000{ }^{\prime} 180^{\prime \prime}$	OS 1 ＇829＇t	008＇01t＇t	0¢0＇t60＇s	далоэы	st
8tて＇9くロ＇b	SLS＇S8E＇	088＇LZO＇ε	00t＇6LL＇	099＇v86＇ε		$9 \varepsilon G^{\prime} \angle 1 し ゙ 力$	009＇${ }^{\prime}$ ¢ 9^{\prime} ¢	$80 \varepsilon^{\prime} \angle 00{ }^{\prime}$	$908^{\prime} 9766^{\prime} \varepsilon$		$0 \square G^{\prime} \mathrm{Sc} 6^{\prime} \mathrm{L}$	Sunns	ol
009＇ $200{ }^{\prime} \mathrm{bl}$	961＇99s＇く1	Os8＇$\varepsilon<\varepsilon^{\prime} \downarrow 1$	099＇02ع＇い	088＇ $161^{\prime} 6$	809＇6z8＇6	osc＇z $\angle 9001$	000% ¢1＇レ	OZも＇906＇01	000＇81て＇6	000＾9ャで8	Gヶて＇E69＇L	sэperaton	$\varepsilon 1$
S9z＇6Lz	0¢9＊09z	$1 \angle \varepsilon^{\prime} 0<$	886＇0¢	£88＇s01	－ 20 ¢ ¢ ¢	L $2 \varepsilon^{\prime} 6 \mathrm{G}$ ！	88t＇021	20Z＇96	\＆1＇16	t¢z＇9L	08て＇t8	suopuo	21
19t＇ε ¢	000＇102	Sll＇091	189＇19	69z＇ze	88z＇6z	808＇ε ¢	zst＇9z	L86＇8z	ع00＇8z	15t＇81	zLE＇$¢$	awesas	11
	009＇レ18	081＇${ }^{\text {c }}$	070＇192	001＇80¢	OSL＇t8E	081＇L29	000＇ 262	914＇89＊	GZs＇レロ\％	0¢9＇เてะ	0てて＇898	（spaes）дало门口	01
0乙8＇¢8\％＇9	00 ¢＇ $276 ' ь ~_{\text {¢ }}$	$001^{\prime} \downarrow \varepsilon L^{\prime} L$	00t＇ $96 \varepsilon^{\prime} L$	080＇t 29 ＇8	OGL＇18L＇L	ObG＇9El＇L	00z＇E06＇\quad	OZ6＇10z＇9	$000{ }^{\prime} \varepsilon \angle \varepsilon^{\prime} \mathrm{S}$	OS8＇E61＇s	098＇しでメ	aziew ue！as	6
009＇296＇s	OSI＇S18＇t	080＇عธ8＇s	09t＇zz6＇	$006^{\prime} \varepsilon 6 \zeta^{\prime} \varepsilon$	06t＇cti＇s		099＇560＇z	$00 \varepsilon^{\prime} \varepsilon z 0^{\prime} \varepsilon$	00z＇919＇z	099＇9z9＇z	091＇801＇z	2ข1！w ue！pul	8
60て＇とてし	00＜＇001	9¢L＇てい	901＇6L1	226＇881	LGL＇8El	$9 \downarrow \varepsilon^{\prime} 891$	zos＇108	ャ8L＇96	09L＇8G1		Z96＇96	sinuead	\angle
099＇1＜8	062＇6Lb	ost＇ozs	026＇عı6		008 299	0才L＇88	0ε く＇6セレ	008＇S	08て＇＜6	lLL＇0t	ャZg＇เย	әэ！	9
OLL＇6ZL＇8	061＇szs＇9z	008＇209＇レ	$09 \cos ^{\prime} 169^{\prime} 00$	OLLOOL＇LI	091＇E9b＇s	080＇ャ66＇t	0t8＇0L8＇t	OS8＇てLZ＇L	00と＇9Z1＇8	0ZG＇6LG＇8		प02105	9
280＇zot	－	S69＇L0	929＇¢6z	0¢0＇ь¢	Otて＇8tz	Oても゙いて	8Ls＇6gz	カ00＇zヤて	018＇zع1	8tL＇z81	Z96\％$¢ 9$		b
96L＇662	て£でく91	880＇191	9 $488^{\prime} 16$	9sع＇LSI	079＇018	0¢9＇t91	091＇L91	O¢Z＇£8Z	ャZL＇zG！	ع09＇6ヶt	0zて＇801	人өィлея	ε
t88＇89s＇z	tol＇0s8＇1	091＇s $\angle 8$	0zt＊00て＇し	osz＇91t	006＇gcs	089＇998＇\downarrow	094＇196＇1	㠸く＇E98＇し	00t＇080＇ 1	0z8＇str ${ }^{\text {¢ }}$	OS9＇L6L	sureg	2
068＇8zL＇ε	OZL＇くてが力	098＇1EL＇乙		$000{ }^{\circ}$ ¢いして	0日L＇L0E＇ε	OS6＇0¢Z＇${ }^{\prime}$	09t＇ıS6＇	00L＇998＇z	$006^{\prime} \angle \angle 8^{\prime} Z$	089＇Z60＇ε	OSて＇860＇${ }^{\circ}$	јеучм	1
1261	1261	0＜61	6961	8961	$\angle 961$	9961	9961	\＄961	£961	2961	1961		

Table 5.52
Average Annual Benefit
from The Established Irrigation Project in the Fayoum Governorate for Years from 1961 to 1972

Year	Annual Benefit U.S. \$/ha
1961	234.80
1962	277.20
1963	283.50
1964	294.90
1965	258.40
1966	303.10
1967	332.80
1968	375.20
1969	424.00
1970	467.60
1971	525.80
1972	411.20

6.1 The Purpose of the Economic Analysis.

We heve already mentioned that the Egyption Government proceeds with the construction of irrigation projects by GALD. Such projects are then managed and their lands are governmentally cultivated by GEOCD. When these lands reach their maximum productivity, after intervals, ranging between 4 to 7 years, the Government then puts them into the farmers' possession to continue their cultivation and benefit by their use with the help of Cooperative Societies.

However, there are, in fact, two different opinions, with regard to the methods of utilizing the cultivated lands in Egypt, at present:
(1) The first favours the nethod, which is actually followed, i.e. the management of projects by the Government during the early years, and then comes the distribution of the lands to farmers, when the land productivity reaches a maxinum, in order that they themselves proceed with their cultivation, under the cooperative regime. Some of those who support this opinion suggest the distribution of the lands to farmers be effected imediately after the completion of the project, or the elapse of one or two years only from date of completion, i.e. before the land productivity reaches a maximun. This is on the basis that farmers themselves then utilize the lands by the help of Cooperative Societies.
(2) The second opposes the method followed at present, and suggests thet the Government goes on with the management of projects, without distributing the lands to farmers, i.e. the new cultivated lands to be utilized as State farms.

The object of the economic analysis of the synthetic irrigation project of the Fayoum Governorate is:

Firstly to know whether or not the irrigation projects in Egypt are successful, from the economic
point of view;
Secondly: To know the best economic utilization possible of such projects. Is it the distribution of lands to farmers, in order that they themselves proceed with their utilization by the help of the services the Cooperation Societies offer, i.e. the method of individual land ownership, or, the application of the State Farm method.

6.2 The Synthetic Project:

The reason of assuming the synthetic irrigation project of the Fayoum Governorate is the unavailability of full and complete data on the benefits and costs of any individual irrigation project in Egypt. This is because irrigation projects in Egypt are divided into two parts, viz:- The major part of irrigation projects "as erected hundreds of years ago, in the Nile Delta as well as along its banks from north to south. Furthermore, the Nile Valley is of a cultivable fertile soil that reached its full production long ago. An example of this is the old irrigation project constructed in the Fayoun Governorate. The data concerning the agricultural production and the annual return as well as the annual expenditure of this project (elready mentioned in Chapter 5) are available. As regards the information about the construction costs of this project it is, of course, unknown to us, due to its execution hundreds of years ago.

The other part of the irrigation projects is that which concerns those recently constructed in various regions in Egypt, during the last twenty years only. The dat., concerning the construction costs of these projects and their annual expenditure are available. However, as regards the information and annual return, it is not available in a fully complete and clear condition, due to the recent execution of same and certain problems they faced, when first initiated.

The assumed base of the synthetic irrigation project of the Fayoum Governorate is that the fertility of the lands of the new irrigation projects, recently executed, becomes the same as that of the lands of the old project of the Fayoum Governorate, i.e.yield the same output, when they reach their full production, a few years later. 128.

Details of the construction costs of the synthetic irrigation project and its annual recurrent costs, during its early ycars, were taken from those of the new irrigation projects constructed in Egypt, during the last twenty years. As for the details concerning the annual return of the synthetic project and its annual expenses, during the remainder years, they were taken from those of the old irrigntion project of the Fayoun Governorate.

The reason, why the Fayoum Governorate itself is selected as a reference in detcils and informetion, is thet its scil is considered f eir in quality, if compared with the other types of soil in Egypt. It is neither very good, as that of Monofic Governorate, nor bad, as in the case of El-Behaira Governorate. Thus, the annual return of the Fayoum Governorate's land may be considered, in approximation, representative of the annual return of the cultivated lands elsewhere in Egypt.

6.3 Discounted Meesure of the Project Worth

The most important discounted measures of project worth in comon use is the benefit/cost ratio. That is to say,

```
Present worth of Benefits
Present worth of Costs = Benefit/Cost Ratio (11)
```

The benefit-cost ratio is used almost exclusively as a measure of social benefit for cconomic anolysis and most commonly for water resource projects. It is alinost never used for private investment analysis.

The formal mathematical statements of this measure are

$$
\begin{array}{r}
\text { Benefit/Cost Ratio }=\frac{\sum_{t=1}^{n} \frac{B_{n}}{(1+i)^{n}}}{\sum_{t=1}^{C_{n}}} \frac{\sum_{n}}{(1+i)^{1}} \\
\text { Net present worth }=\sum_{t=1}^{n} \frac{B_{n}-C}{(1+i)}
\end{array}
$$

Internal rate of return is that discount rate, i, such that

$$
\sum_{t=1}^{n} \frac{B_{n}-C_{n}}{(1+i)}=0
$$

Where

$$
\begin{aligned}
& B_{n}=\text { benefit in each year } \\
& C_{n}=\text { Costs in each year } \\
& n=\text { number of years } \\
& i \quad \text { interest (discount) rate }
\end{aligned}
$$

In practice, it is probably more common not to compute the Benefit/Cost Ratio using gross costs and gross benefits, but rather to compare the present worth of the net benefits with the present worth of the investment cost plus operation, maintenance and replacement costs. This reflects United States government practice where the Benefit/Cost ratio hes been a common measure applied to assess the "national economic development" effect of water resources projects.

The ratio is computed by taking the present worth of the gross benefits less the On-Farm Costs and comparing it to the present worth of the project economic costs (operation, maintenance and replacenent costs).

The accounting convention is that 011 costs and all benefits are discounted for the first year and for each year thereafter. To many people, this seems inconsistent. Investment must be made before the first year is ended, they say, so how can you assume that they be dis-counted-that is, that their present worth is something less than their actual face value? The answer is somewhat arbitrary; first, in projects lasting over several years, it makes no difference in the relative ranking; second, costs in actual practice are paid out during the course of each year and not all on January 1 and to allow for this on something like a day-to-day basis is just too complicated to be worth the effort. In any event, we note that World Bank usage is to discount both costs and benefits beginning with the first year but that some international lending agencies discount costs beginning with the second year. In our analysis we edopt the World Bank convention.
6.4 The Choice of Discount Rate

In principle the discount rate should be set at that level at which the total cost of all the potential projects in a country which could show a positive present value (however small) at that discount rate, and which
could be implemented in a particuler period, is just equel to the total amount of investible resources available; this is called the 'Accounting Rate of Interest'. In practice it is very difficult to estimate what this rate is, end it is recomended that 8% be used unless there are good indications that is too high or too low (e.g. if the recipient country uses a test rate of discount considerably above or below 8%) in which case a different rate can be used and the rationale for doing so should be included in the appraisal. (12)

In our economic analysis of the synthetic irrigation project in the Feyoum Governorate in Egypt, we used discount rates of $6 \%, 8 \%$ and 10% for the assumed thirtytwo cases (shown in Tabie 6-1), to know the effect of changing discount rates upon the project's economy. 6.5 Length of the Project Period. Where the whole project, or a very major part of it, has an obvious finite economic life, then benefits and costs should be normally calculated year by year over the duration of that life, or over thirty years whichever is the less. In the case of exceptionally long lived assets, e.g. dans, a period of up to fifty years may be taken. If should be remmbered that is a discount rate of 8% or more is used, the costs or benefits expected to accrue after thirty years or so, will be so reduced by the discounting procedure that even the grossest errors in estimating their amount, will make little difference to the final result. It is therefore often satisfactory to assume an economic life of say thirty years even if the physical life of the project is expected to be much longer that this. Another inference is that there is little point in incurring expenditure today to save money many years hence (e.g. in a hydroelectric project where the maximum capacity may not be required for many years ahead). At 8% discount rate, for instance, it would be worth spending only $\$ 2$ now in order to save $\$ 100$ in pifty years time. (12)

In some cases, where the project's economic life is not obviously finite, it is difficult to foreccust the pattern of capitel expenditure in the future, e.g. it is known that the switchgear of a hydro-electric schene
will need replacing in due course but one cannot say exactly when, perhaps every twenty years, perhaps every twenty-five. In such circumstances it is convenient to assume that once the project has achieved its long term level of operational efficiency, its net benefits will remain constant to infinity. This can be achieved by expressing the discreet capital inputs (such as the switchgear) from this 'Plateau' point onwards as an annual average cost.

However, in the economic analysis of the synthetic irrigation project in the Fayoum Governorate in Egypt, we assumed that the economic life of this project is forty years, for more accuracy, because it is a big project (covering an area of $137,760 \mathrm{ha}$)

6.6 The Currency Used:

The currency used in the process of economic analysis of the synthetic irrigation project of the Fayoun Governorate is the United States Dollar, on the grounds that it is of an international nature and used by the World Bank as well as all the international economic authorities. All the values of the synthetic project's expenses and revenues are transformed from the Egyptian Pound to the United States Dollar, on the basis that the Dollar's price $=0.4$ Egyptian Pound (according to official price at Bank Misr, in 1972, which is the base year assumed in the process of economic analysis of the said project). 6.7 Exclusion of Changes in Currency Value (Choice of the Base Iear)

When comparisons are made with regard to the values of benefits and costs of any project, for many different years, or, in case such values are used in the economic analysis of a project, it is wrong to use such values free just as they are, because the currency value changes, according to circumstances from one year to another, either by rising or falling. Therefore, such a change in currency value should be excluded through the transformation of all the currency values in the various years to any one year and the consideration of some as the base year.

As any other international currency, the value of the Egyptian Pound is exposed to rise or fall, from one year 132.
to another. Hevertheless, as regeras the process of the econonic analysis of the synthetic irrigation project of the Fryoum Governorate, the year 1972, is considered the base year. All the values of benefits and costs were tramsfomed to those of the said year, in accordance with the values of the Egyptian Pound in the various years show on Figure 6-1 (1)

6.8 A Study on the System Used for the Utilization of the Cultivated Lazds in Eeqpt

6.8.1. The Various Assuned Cases:

The econonic analysis of the synthetic irrigetion project is mace hereon the bnsis of the method, now in use in Pgypt, of the utilization of cultivated lands, i.e. the Government to manage the project for sone gears and then the distribution of the project lands to fumers. Thirty-two cases, wherein the Government distributes the lands to faners imediately aften the construction of the project, or cifter the elapse of one year, two yenrs and so on till seven years, are assumed. In all these cases, it is assuned that the land reaches its full productioñ after periods of $4,5,6$ or 7 years, as shown on Table 6-1. This enables us to distinguish between the best and the worst of these cases, and put then in order, starting with the best and ending with the worst.

It may seen that the assumed 6 or 7 years, following the construction of the project, for the land to reach its marginal level of production, are relatively long periods; but, in foct, they are not so, because most of the recently reclained lands are not of good quality.

Table 6.1
Different Cases Considered in
Benefit/Cost Analysis

$X=$ Number of years required to reach full crop production
$Y=$ Number of years of directing the project by the Government before distributing the lands to the Settlers

Some of then need all these years to reach theix marginal level of production, specially as it is assumed that such level of production is equivalent to that of the fertile cultivated lands, represented by the ancieat ones of the Payour Governorate.

6.8.2 Capital Cost

The capital cost estimate should include the value of all the resources and activities required to design, construct and put the project into operation, whether such costs are incurred on the site itself or elsewhere. (14).

In the case of a large irrigation project, the true economic cost of the project may well include the value of such items as: preliminary investigations; design and direct construction costs; housing for the construction workers; new access roads and specialized rail Wagons for the tronsport of bulk cement; increased maintenance costs of existing roads arising solely from the project trafic; new harbour facilities; administrative costs; land acquisition and resettlenent of the population displaced by the inundation of reservoir areas; relocation of highways and other services in the reservoir area; new police stations and post offices including the salaries of necessery staff; schools and hospitals. All of these facilities or services, in so far as they are provided specifically for or are occasioned by the undertaking of the project are in fact part of its cost because they represent the diversion of nctional resources to the project. However, certain iteras enunerated above are conmonly not specifically accounted for in the eononic capital cost estimate as they can more easily be dealt with by offset against other items.

In the past, very fow estinates used for the purpose of economic analysis have included all the true items of cost for instance, increased naintenonce on existing roads within the project is generally from the budget of the 'roads department' and thus fails to appear as a cost itern in the project estimate. Also, the cost of new police stations and post offices are carried by the relevant government departaents and are rarely charged to the project. The omission of such items may frequently result in a considerable underestination of the project costs and introduces a degree of error at least equal to, if not greater thon, any errors that nay exist in the estimate of the direct cost of the structure itself.

Noxmally considerable time and effort are spend in the preparation of reliable estimates of project capital costs, principally because they are used in making the necessary arrongenents for the fincncing of a schene. Such financial estinates, however, have to be modified for the purpose of economic anclysis. The importance of accuracy in such estinates is great because they have a nearly direct effect on the results of the economic analysis. The capital cost of every iten of the new irrigation projects in the Fayoun Governorate are shown in Table 6-2 and Figure 6-2 from which we note that the highest value is for levelling which represents 26.90% from the total capital cost and the lowest value is for land Weshim which represents 1.11% from the total cost.

In the economic anclysis of the synthetic irrigation project in the Foyoun Governorate, we assume that the project is completely estiolished throughout the first three years of its econonic life and the expenses throughout those three years represent $30 \%, 40 \%$ and 30% from the total capital cost i.e. $\$ 700 / \mathrm{ha}, \$ 935 / \mathrm{he}$ and \$700/ha respectively.

Table 6.2
Average Capital Cost of New Irrigation Projects in the Fayoum Governorate (2)

6.8.3. Annual Fecurrent Costs.

6.8.3.1 Operation and Maintenance Costs.

The operation and maintenance (0.8 cm .) costs of irrigation projects are usually very small in comparison with capital cost, particularly in the case of large projects. The $0 \& M$ costs must, however, be estimated and their incidence taken into account in the oconomic analysis so as to arrive at the full cost of making the specific facilities available.

In the irrigation projects, large costs are likely to be incurred in the annual maintenance of canals. These costs are frequently not borne directly by the project agency but by the irrigators themselves or by a separate irrigation cuthority responsible for distribution of water provided frof the storage reservoir. Because such costs represent a use of resources, even though they may not be reflected in the operational budget of the dam authority, they must be taken into account in accessing the merits of the propssed development.
The $0 \& M$ costs generally play a much smaller part in economic analysis or planning than capital cost. This is because they are generally smeller than capital cost and also because their incidence is spread out over time, thus they are considerably affected by the discounting process.

It must, however, be borne in mind that $0 \& M$ costs may be much more important from the financial point of view then from the economic standpoint. Capital costs are usually financed as a 'one shot' operation at a time when the project has the support and interest of those sponsoring it. In later years, however, when the project may have becone an accepted part of the local infrastructure, $0 \& M$ costs have to be met from the annual revenue of the project and the project will then, in most cases, have to be self-sufficient. Therefore, even though $0 \& \mathrm{M}$ costs may have but a minor effect on the Benefit-Cost Katio, they should be studied closely in connection with the financial viability of the scheme.(13). 6.8.3.2 Replacement Costs. The analysis of normal business undertakings requires that considerable sums be provided for the replacement of worn and obsolete equipment. Of these two causes perhops
obsolescence is the most usual reason for replacement. Machine tools and other manufacturing devices produced today are generally of such quality that, provided they are well naintained, replacements due to excessive wear and tear are seldom called for. Technological progress is, however, proceeding at such a rapid pace that machines are frequently obsolescent and uneconomic to operate long before the end of their physical operating life.

The physical structures associated with Irrigation projects are unusual in this regerd; they seldon becone obsolete even though their life span greatly exceeds that of the majority of other physical production means. Also, replacements are seldon required because the major structures are built to last, as their replacement would Prequently be impracticable. This of course, does not apply to all mechanical items associated with Irrigation projects. Pumps, valves, pipelines and screens require replacing at reguler intervals and the costs thereof must be provided for in the project estimates.

There are a few notable exceptions to the statement in the previous paragraph relating to obsolescence of water resources structures; The hswan Dam in Egypt, in this case the original structure is being superseded by more modern structure (the Saad-el-ali project). It is suggestec that in this case obsolescence of the original structure arises not from an inherent defect of the structure or from any inadequacy in its ebility for fulfilling efficiently and economically the purpose it was originally designed to fulfil but rather from startling changes in the economic development of the area which it serves. filthough such changes are difficult to foresee, adequate planning and foresight should usually serve to ensure that such obsolenscence is avoided. (13)

The annual recurrent costs which are used in our economic anclysis of the synthetic irrigation project in the Flayoum Governorate is divided into two parts:
-the Government expenses through the period of its complete operation of the project before distributing the land to the farmers. We assume that this period is ranged between 1 to 7 years due to the different assumed cases shown in Table 6-1. These mentioned expenses are equal to $\$ 72.32 / \mathrm{ha}$ as shown in Table 6-3.

```
- the Government supervision expenses through the other years after distributing the land to the farmers. These expenses are equal to \(\$ 11.59 / \mathrm{ha}\), as shown in Table 6-4.
```

Table 6.3
Rate of Annual Recurrent Costs for New Irrigation Projects in the Fayoum Governorate

Item	U.S. $\$ /$ ha
Expenditure of Ministry of Irrigation (details are shown in Table 5.14)	5.00
Expenditure of (GEOCD) (details are shown in Table 3.2)	67.32

Table 6.4
Rate of Annual Recurrent Costs for An Established Irrigation Project in the Fayoum Governorate

Item	U.S. $\$ /$ ha
Expenditure of Ministry of Irrigation (details are shown in Table 5.14)	5.00
Expenditure of Ministry of Agriculture (details are shown in Table 5.14)	6.59

6.8.4. Benefits

The values of benefits used in our econowic ancilysis of the synthetic irrigation project in the Fayoun Governorate are colculated on the value of the yearly average benefit of the established irrigation project in the governorate and this velue is equal to $\$ 465 /$ ha at 1972 prices, as shown in Table 6-5. We assuned also that the mentioned value represents the mximun output per hectare from the cultiveted land in this governorete becouse this land had reached its narginal level o very long time ago. In the case of the new irrigation projects in the Fayoun Governorate, we assuned that the cultivated land gives its noxinun output ($\$ 465 / \mathrm{ha}$) after a period ranging between 4 and 7 years in the assuned thirty-two cases show in Table 6-1.

We assured in our economic analysis of the syathetic irrigation project thet the increase to full output is linear between the output value at the begiming of the project operation (which equels zero) and the maximun output value (which equals $\$ 465 / \mathrm{ha}$.)

Figure 6-4 represents the distribution of benefits and costs for case No. 1 during the economic life of our synthetic irrigation project in the Fcyoun Governorcte (40 years) while Figure $6-5$ represents the distribution of benefits oud costs for case fo. 32 .

6.8.5. The Economic Analysis

Were we use discounting to help us compare the cost end benefit streans of our synthetic irrigation project in the Foyoun Governorate. We must first discount each strean in order to find its present worth. The streams of benefits for the different coses, mentioned in Table 6-1, are shown in Tables from $6-6$ to $6-9$ and also in Figure 6-6 at discount rates of $6 \%, 8 \%$ and 10%. The streans of costs cre show in Tables from 6-10 to $6-17$ and in Figure 6-7 at the some discount rotes. Ve can see thot this hes been done for the total costs cad the net benefits. Dividing the present worth of the net benefits by the present worth of the total cost we find the benefit - cost ratio.

Table 6.5
Average Annual Benefit from The Established Irrigation Project in the Fayoum Governorate

Year	Annual Benefit U.S. ${ }^{\text {F / / ha }}$	Conversion Factor for 1972 Prices	Annual Benefit at 1972 Prices U.S. \$/ ha
1961	234.80	1.61	378.03
1962	275.00	1.61	442.75
1963	283.50	1.65	467.78
1964	294.90	1.58	465.94
1965	258.40	1.51	390.18
1966	303.10	1.36	412.22
1967	332.80	1.32	439.30
1968	375.20	1.32	495.26
1969	424.00	1.27	538.48
1970	467.60	1.21	565.80
1971.	525.80	1.09	573.12
1972	411.20	1.00	411.20
		Average	465.00

Table 6.6
Benefit/Cost Analysis
for a Typical Synthetic Irrigation Project in the Fayoum Governorate

\bigcirc Year	Annual Net Benefit	Present Worth at Discount Rate of		
		6\%	8\%	10\%
1-4	-	-	-	-
5	155	116	106	96
6	310	219	195	175
7-40	463	4,710	3,395	2,522
		5,045	3,696	2,793

Table 6.7
Benefit/Cost Analysis
for a Typical Synthetic Irrigation Project in the Fayoum Governorate
Stream of Benefits for Cases from 9 to 16
U.S. \$ / ha

Year	Annual Net Benefit	Present Worth at Discount Rate of		
		6\%	8\%	10\%
1-4	-	-	-	-
5	116	87	79	72
6	233	164	147	132
7	349	232	204	179
8-40	465	4,401	3,124	2,284
		4,884	3,554	2,667

Table 6.8
Benefit/Cost Analysis
for a Typical Synthetic Irrigation Project in the Fayoum Governorate

- Year	Annual Net Benefit	Present Worth at Discount Rate of		
		6\%	8\%	10\%
1-4	-	-	-	-
5	93	70	63	58
6	186	131	117	105
7	279	186	163	143
8	372	233	201	174
9-40	465	4,109	2,873	2,067
		4,729	3,417	2,547

Table 6.9
Benefit/Cost Analysis
for a Typical Synthetic Irrigation Project in the Fayoum Governorate

Year	Annual Net Benefit	Present Worth at Discount Rate of		
		6\%	8\%	10\%
1-4	-	-	-	-
5	78	58	53	48
6	155	109	98	88
7	233	155	136	120
8	310	195	168	145
9	388	230	194	165
10-40	465	3,834	2,640	1,869
		4,581	3,289	2,435

Table 6.10
Benefit/Cost Analysis
for a Typcial Synthetic Irrigation Project in the Fayoum Governorate
Stream of Costs for Cases 1,9,17 \& 25
U.S. \$/ ha

Year	Capital Cost	Recurrent Cost	Total Annual Cost	Present Worth at Discount Rate of		
	700	5	705	6%	8%	10%
2	935	5	940	837	653	641
3	700	5	705	592	806	777
$4-40$	-	11.59	11.59	143	560	530

Table 6.11
Benefit/Cost Analysis
for a Typical Synthetic Irrigation Project in the Fayoum Governorate
Stream of Costs for Cases 2, 10, 18 \& 26
U.S. I / ha

Year	Capital Cost	Recurrent Cost	Total Annual Cost	Present Worth at Discount Rate of		
1	700	5	705	665	8%	10%
2	935	5	940	837	653	641
3	700	5	705	592	806	777
4	-	72.32	72.32	57	560	530
$5-40$		11.59	11.59	134	53	49

Table 6.12
Benefit/Cost Analysis
for a Typical Synthetic Irrigation Project in the Fayoum Governorate
Stream of Costs for Cases 3, 11, 19 \& 27
U.S. 8 / ha

Year	Capital Cost	Recurrent Cost	Total Annual Cost	Present Worth at Discount Rate of		
1	700	5	705	665	8%	10%
2	935	5	940	837	653	606
3	700	5	705	592	560	777
$4-5$	-	72.32	72.32	111	102	530
$6-40$	-	11.59	126	92	94	

Table 6.13
Benefit/Cost Analysis for a Typical Synthetic Irrigation Project in the Fayoum Governorate

Stream of Costs for Cases 4, 12, 20 \& 28
U.S. $8 /$ ha

Year	Capital Cost	Recurrent Cost	Total Annual Cost	Present Worth at Discount Rate of		
				6\%	8\%	10\%
1	700	5	705	665	653	641
2	935	5	935	837	806	777
3	700	5	705	592	560	530
4-6	-	72.32	72.32	162	148	135
7-40	-	11.59	11.59	117	85	63
				2,373	2,252	2,146

Table 6.14
Benefit/Cost Analysis
for a Typical Synthetic Irrigation Project in the Fayoum Governorate
Stream of Costs for Cases 5, 13, 21 \& 29
U.S. \%/ha

Year	Capital Cost	Recurrent Cost	Total Annual Cost	Present Worth at Discount Rate of		
	700	5	705	665	653	10%
2	935	5	940	837	806	777
3	700	5	705	592	560	530
$4-7$	-	72.32	11.59	210	190	172
$8-40$	-	11.59	11.99	110	78	57

Table 6.15
Benefit/Cost Analysis
for a Typical Synthetic Irrigation Project in the Fayoum Governorate
Stream of Costs for Cases 6, 14, 22 \& 30

Year	Capital Cost	Recurrent Cost	Total Annual Cost	Present Worth at Discount Rate of		
				6\%	8\%	10\%
1	700	5	705	665	653	641
2	935	5	940	837	806	777
3	700	5	705	592	560	530
4-8	-	72.32	72.32	256	229	206
9-40	-	11.59	11.59	102	72	52
				2,452	2,320	2,206

Table 6.16
Benefit/Cost Analysis
for a Typical Snythetic Irrigation Project in the Fayoum Governorate
Stream of Costs for Cases 7, 15, 23 \& 31
U.S. \$ / ha

Year	Capital Cost	Recurrent Cost	Total Annual Cost	Present Worth at Discount Rate of		
				6\%	8\%	10\%
1	700	5	705	665	653	641
2	935	5	940	837	806	777
3	700	5	705	592	560	530
4-9	-	72.32	72.32	299	265	237
10-40	-	11.59	11.59	96	66	47
				2,489	2,350	2.232

Table 6.17
Benefit/Cost Analysis for a Typical Synthetic Irrigation Project in the Fayoum Governorate

Stream of Costs for Cases 8, 16, 24 \& 32

| \because Year | Capital
 Cost | Recurrent
 Cost | Annual
 Cost | Present Worth at Discount Rate of | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 700 | 5 | 705 | 665 | 8% | 10% |
| 2 | 935 | 5 | 940 | 837 | 806 | 641 |
| 3 | 700 | 5 | 705 | 592 | 560 | 777 |
| $4-10$ | - | 11.59 | 72.32 | 11.59 | 89 | 530 |
| $11-40$ | - | | | 2,522 | 2,378 | 265 |

Figure 6_6
Present worth of Benefit for the Different Cases

Trble 6-18 represents preseat worth of benefit, present worth of cost and benefit/cost ratio for the different cases at discount rates of 6%, 8% and 10%. In Table $6-19$ and Figure $6-8$, the value of benefit/cost ratio are arranged fron the higher value of the lower value. We can see fron these tables and figures that the best case is case number 1 which has values of benefit/cost ratio equal to 2.23 at D.R. of $6 \%, 1.74$ at D.R. of 8% and 1.37 at D.R. of 10%. We also note that the worst case in our analysis is case number 32 which has values of benefit/cost ratio equal to 1.82 at D. ik. of $6 \%, 1.38$ at D.R. of 8% and 1.08 at D.R. of 10%.

There is an important point about the computation in that we camot take the total of the discount factors and wultiply it by the total of the cost or benefit strean to cone out with the present worth. Taking the total cost strean of bay case, we cannot reach the present worth of that case by multiplying the undiscounted total of the costs, by the total of the discount factors. We rust follow the yecr--bj-year procedure.

We note from Table 6-19 that the absolute value of the Benefit/Cost ratio varies depending on the discount rate chosen. The higher the discount rate, the swaller the resulting benefit-cost ratio. For the assumed thirty-two cases, we note from the saue table that all values of benefit/cost ratio are greater than one at the chosen discount rates of 6%, 8% and 10%. If a high discount rate is chosen, the benefit/cost ratio will be driven to less than one. For exarple, if the discount rate is greater than 13% in case No.1, as shown in Figure 6-9, the benefit/cost ratio will be driven down to less than one. The same thing is shown in the sane figure for case 10.32 if the discount rate is greater than 10.7% 。

Table 6.18
Calculation of Benefit/Cost Ratio for the Different Cases

$\stackrel{め}{\overleftarrow{0}}$	Present Worth of Benefit at Discount Rate of			Present Worth of Cost at Discount Rate of			Benefit / Cost Ratio at Discount Rate of		
	6\%	8\%	10\%	6\%	8\%	10\%	6\%	8\%	10\%
1	5,045	3,696	2,793	2,237	2,127	2,033	2.23	1.74	1.37
2	5,045	3,696	2,793	2,285	2,172	2,074	2,21	1.70	1.35
3	5,045	3,696	2,793	2,331	2,213	2,111	2.16	1.67	1.31
4	5,045	3,696	2,793	2,373	2,252	2,146	2.13	1.64	1.30
5	5,045	3,696	2,793	2,414	2,287	2,177	2.10	1.62	1.28
6	5,045	3,696	2,793	2,452	2,320	2,206	2.07	1.59	1.26
7	5,045	3,696	2,793	2,489	2,350	2,232	2.04	1.57	1.24
8	5,045	3,696	2,793	2,522	2,378	2,255	2.00	1.54	1.22
9	4,884	3,554	2,667	2,237	2,127	2,033	2.18	1.67	1.31
10	4,884	3,554	2,667	2,285	2,172	2,074	2.14	1.64	1.30
11	4,884	3,554	2,667	2,331	2,213	2,111	2.10	1.61	1.26
12	4,884	3,554	2,667	2,373	2,252	2,146	2.07	1.58	1.24
13	4,884	3,554	2,667	2,414	2,287	2,177	2.03	1.55	1.22
14	4,884	3,554	2,667	2,452	2,320	2,206	2.00	1.53	1.21
15	4,884	3,554	2,667	2,489	2,350	2,232	1.96	1.51	1.18
16	4,884	3,554	2,667	2,522	2,378	2,255	1.96	1.50	1.18
17	4,729	3,417	2,547	2,237	2,127	2,033	2.10	1.61	1.26
18	4,729	3,417	2,547	2,285	2,172	2,074	2.07	1.57	1.24
19	4,729	3,417	2,547	2,331	2,213	2,111	2.03	1.54	1.22
20	4,729	3,417	2,547	2,373	2,252	2.146	2.00	1.52	1.19
21	4,729	3,417	2,547	2,414	2,287	2,177	1.95	1.49	1.16
22	4,729	3,417	2.547	2,452	2,320	2,206	1.93	1.47	1.16
23	4,729	3,417	2,547	2,恩89	2,350	2,232	1.90	1.45	1.14
24	4,729	3,417	2,547	2,522	2,378	2,255	1.88	1.44	1.12
25	4,581	3,289	2,435	2,237	2,127	2,033	2.03	1.55	1.22
26	4,581	3,289	2,435	2,285	2,172	2,074	2.00	1.51	1.18
27	4,581	3,289	2,435	2,331	2,213	2,111	1.96	1.49	1.16
28	4,581	3,289	2,435	2,373	2,252	2,146	1.93	1.46	1.14
29	4,581	3,289	2,435	2,414	2,287	2,177	1.90	1.44	1.12
30	4,581	3,289	2,435	2,452	2,320	2,206	1.87	1.42	1.10
31	4,581	3,289	2,435	2,489	2,350	2,232	1.84	1.40	1.09
32	4,581	3,289	2,435	2,522	2,378	2,255	1.82	1.38	1.08

Table 6.19
Benefit/Cost Ratio for the Different Cases
Arranged from the Higher Value to the Lower Value

$\begin{aligned} & \stackrel{y}{6} \\ & \text { B } \end{aligned}$	Benefit/Cost Ratio at Discount Rate of			\%	Benefit/Cost Ratio at Discount Rate of		
	6\%	8\%	10\%		6\%	8\%	10\%
1	2.23	1.74	1.37	8	2.00	1.54	1.22
2	2.21	1.70	1.35	14	2.00	1.53	1.21
9	2.18	1.67	1.31	20	2.00	1.52	1.19
3	2.16	1.67	1.31	26	2.00	1.51	1.18
10	2.14	1.64	1.30	15	1.96	1.51	1.18
4	2.13	1.64	1.30	16	1.96	1.50	1.18
5	2.10	1.62	1.28	27	1.96	1.49	1.16
11	2.10	1.61	1.26	21	1.95	1.49	1.16
17	2.10	1.61	1.26	22	1.93	1.47	1.16
6	2.07	1.59	1.26	28	1.93	1.46	1.14
12	2.07	1.58	1.24	23	1.90	1.45	1.14
18	2.07	1.57	1.24	29	1.90	1.44	1.12
7	2.04	1.57	1.24	24	1.88	1.44	1.12
13	2.03	1.55	1.22	30	1.87	1.42	1.10
25	2.03	1.55	1.22	31	1.84	1.40	1.09
19	2.03	1.54	1.22	32	1.82	1.38	1.08

Cases
Figure 6_8
Benefit/Cost Ratio for the Different Cases
at Discount Rates of $6 \%, 8 \%, 10 \%$

Figure 6_9
Present Worth of Benefits and Present Worth of Costs for the Best and the Worst Cases at the Different Discount Rates

Figure 6_10

"the Synthetic irrigation Project in Fayoum Governorate" Retation between Benefit/Cost Ratio and Number of Years for Directing the Project by the Government

If the benefit-cost ratio, in sone cases, worked out to be less than one, this is because we have cases where at the discount rate assumed, the present worth of the benefits is less than the present worth of the costs and the investment is not recovered. In these cases, it would be better to put the money in a bank at the assumed interest rate than to invest it in the project.

6.9 A Study on State Farms

State farms are those where the Government practises, through a governmental organization, the hanagement and utilization of agricultural projects. As regards the economic analysis of the synthetic irrigation project of the Fayoun Governorate, we assuned the application thereto, of the state farm systen, on the basis that this project be managed and utilized by the Government, during its expected economic life (40 years), through the GEOCD.

Table 6-20 shows the Present Worth of the benefits in this case, when the Discount Rate $=6 \%, 8 \%$ and the value of $X=3,4,5,6$ and 7 (where $X=$ the number of years necessary for the land to reach its maximum production).

From $T \mathrm{ple}=5-21$, it is evident that the annual recurreat costs $=\$ 72.32 / \mathrm{hs}$, on the assumption that they are stable all the operation years round.

Table 6-22 shows the values of Benefit-Cost Ratio, reduced to a certain extend. It may be noted thet when $X=7$, i.e. in case the land production reaches its moximua, after 7 years and when the Discount Ratio $=10 \%$ the value of Beaefit/Cost Ratio then $=0.98(1$ ess than 1).

This means that the State fam systen, in this case, will be uneconomic.

Therefore, the value of Benefit/Cost Ratio decreases under 0.98 , the more the value of X rises over 7 , and also when the Discount Rate increases.

In such cases, it will be much better to invest the capital cost in any other project, or to deposit it with any Bank at the sane value as Discount Rate.

Table 6.20
Benefit/Cost Analysis
for a Typical Synthetic Irrigation Project in the Fayoum Governorate Benefits for the Case of Governmental Farms U.S. $\$ /$ ha

X	P.W. at D.R. of		
	6%	8%	10%
4	5,045	3,696	2,793
5	4,884	3,554	2,667
6	4,729	3,417	2,547
7	4,581	3,289	2,435

Table 6.21
Benefit/Cost Analysis
for a Typical Synthetic Irrigation Project in the Fayoum Governorate Stream of Costs for the Case of Governmental Farms U.S. / ha

Year	Capital Cost	Recurrent Cost	Total Annual Cost	P.W. at D.R. of		
1	700	5	705	665	8%	10%
2	935	5	940	837	853	641
3	700	5	705	592	560	530
$4-40$	-	72.32	72.32	895	676	527

Table 6.22
Benefit/Cost Ratio
for the Case of Governmental Farms at Discount Rates of $6 \%, 8 \%$ \& 10%

\times	B/C Ratio at D.FF. of		
	6%	8%	10%
4	1.69	1.37	1.13
5	1.63	1.32	1.08
6	1.58	1.27	1.03
7	1.53	1.22	0.98

Following the economic analysis of the synthetic irrigation project in the Fayoum Governorate we made, and after obtaining the value of Benefit-Cost in the 32 assumed cases, with regard to the nethod used for the utilization, at present, of tho newly cultivoted lands in Egypt, i.e. that which concerns putting the lands into the possession of farmers, many years after the completion of projects, we have observed, from Table $6-19$ and Ficure 6-10 and by referring to Table $6-1$, that the value of Benefit-Cost Ratio generally increases the nore the value of Y decreases, i.e. the more the number of years during which the project is managed by the Government. It was also found that the value of Benefit-Cost Ratio reaches its maximurn when $Y=0$, i.e. in case where the lands are put into faraers' possession, soon after the completion of the project. The value of Benefit-Cost Ratio that decreases the more the value of \bar{Y} increases, i.e. the raore the number of years, during which the project is managed by the Governaent, increases. We found that the value of Benefit-Cost Ratio reaches a naximun in case No. 1 , where $Y=0$ and $X=4$, (whereas X is the number of years needed for the land to reach maximum production). Furthermore, we have found that the value of Benefit-Cost Hatio reached its minimum in the case No. 32, where $\bar{X}=7$ and $X=7$.

As regards State farms, assumed in this research, it was found that the value of Benefit-Cost Ratio, in this case, was relatively less than the values of the 32 other cases concerning the vesting of the cultivated-land ownership to farmers. \mathbf{H}, mise auch a comparison between a case of putting the lands into the possession of farmers, inwedictely after the completion of the project (case Ho. 1 of the economic analysis) and that of State farms, wherein the project is managed by the Government until the end of its economic life. It may be observed, however , that the value of Benefit-Cost Ratio in the former case exceeds that in the case of State farms at different values of Discount Rates. It increases at a rate of 25% when $D . R_{0}=6 \%$, at 21% when $D_{.} R_{0}=8 \%$ and at 18% when $D_{0} R_{0}=10 \%$.

As regards State farms, it may be noted that when the land production reaches its maximum after 7 years, when D.R. $=10 \%$, the project, in this case, becomes uneconomic, as the value of Benefit-Cost Ratio $=0.98$ (Less than 1).

And so, figures have shown that the best possible method of economic utilization of the newly cultivated lands in Egypt is to put them into the possession of farmers, immediately after the completion of projects, and that the worst economic utilization of such lands is the Stete farm method.

It may be observed that in the comparison previously made, the value of X was constant. This means that the new cultivated lands, when put into farmers' possession, reach their maximua production after the same number of years of that in the case of State farms. This, in fact, is absolutely countrary to reality. Practice in Egypt has proved that where lands are put into the farmers. possession, they reach their maximum production, a few years after the completion of projects. In the case of State farms, practice has proved that the land needs many years to reach its maximum production - a situation that causes damage to such farms.

The cause of this lies in the beliefs and traditions of the Rgyptians as well as in their inherited cultural backcround and their understanding of freedom. The significance of freedom to the Egyptian farmer is meaningless without private ownership. In a case where a stretch of land is made available to a farmer and his family for private owership, he will exert all his efforts to obtain, as urgently as possible, the maximum return of his new land. Purthermore, he does all he can to realize the best utilization of the land and to increase its production, as he feels that this production will be for him solely. In fact, the creation of this personal incentive and its fruitful effort cannot be realized if the farmer is employed as a paid worker on another's land.

There is too, a further reason. The farmer migrated to a new land to become its owner, he and his faaily members establish themselves within an integrated social enviroment, and all contribute to the development of economic and sccial
life. This is contrary to what happens in State farms, where
seasonal workers are employed. They live in the new land away from their families, thus causing may conplicated social and psychological problens to arise and refloct their results in tho amount of effort exerted in land service.

In tho case of State farms, the personal motice to exert the maximum effort is lacking, and all formers becone paid workers, who receive their wages whether for major or for minor efforts. This is clearly evident in the new irrigation projects in Egypt. These projects for long arter completion have been managed or their lands have been cultivated by the Government, which failed to develop then to the range of productivity, even after many years have clapsed. This, in fact, has disturbed the economis value of these projects.

Consequently and as a romedy for such a state of affairs, the Egyptian Govermment put these lands into the farmers' possession so that they might themselves proceed with their cultivation. Thus, after being put into the farmers' possession, the lands actually realized more than expected. Sone of these lands are situated in the following areas:Abis, Kom Ombo, El-Mataana, Lrmant, The Tahrir Province, Wadi Natroun and the New Valley (14).

From the forogoing, it is clear that the mothod of putting the cultivated lands into the farmers' possession not only gives a more economic return than the State farms, as evidenced by the results of the economic anelysis of the synthetic irrigation project, but it also has another advantage that raises the economic value of projects. This is the fact that the productivity of the lands in the farmers' possession, reaches its maximum in less time than that of State farms.

From this fact, we may conclude that the best possible method for the utilization of the new cultivated lands in Egypt is to place them in the farmers' possession, in order that they themselves use then from the very beginning, with the help of the cooperative regine, which provides the various requirenents of production, such as machines, seeds, fertilizers, pesticides, etc. and help in marketing the different crops.

However, there is only one disadvantage with regard to
individual landownership in Egypt. It is that the distribution of cultivated lands to farmers, in small stretches of about 2 hectares each, means fragmentizing the cultivated lands, particularly if we take into consideration that such areas are liable to be sub-divided amongst the inheritors and the descendants of the successive generations, or pertially sold in some ceses, such as marriage or payment of debts.

Undoubtedly, the phenomenon of fragmentizing the ownershic of the cultivated lands has its harmful effects on agricultural production, due to the difficulty of applying a suitable agricultural rotation and the infeasibility of using the mechanical agricultural tools, on a large scale, in the small areas of the land owned. There is also the difficulty of serving the land, particularly if the adjacent areas are growing different crops, each of which requires special treatment.

To remedy the problen of fragmentizing the ownership of cultivated lands in Egypt, protective neasures against further minimization and dispersion of these ownerships should be taken. Moreover, measures should also be taken to assemble and to integrate the scattered landlordships.

As regards protection against the decline of the ownership of cultivated lands, the Government has decided that in a case where the landlord dies and the division of his land amongst his inheritors results in reducing the areas of the inherited land to less than 1.25 hectares, such division shall be prohibited, and the land shall be owned by one or two of the inheritors, according to its area. The reminder of the inheritors shall be compensated in cash payments, to be incurred by those who possessed the land.

In our opinion, should the inheritor who possesses the land according to this system, fail to pay the compensation promptly in cash money to the other inheritors, the Government should do so on his behale, provided that he repays the compensation to the Government in annual instalments. It is also necessary that this scheme be administered by an official independent authority, provided with all the technical and finencial resources required.

As regards the measure taken by the Government to re-
asserable the scattered lands in private ownership, it adopted a method, namely 'method of accurulating the fragnentized cultivated lands and organization of the agricultural rotetions.'

In short the said accumulation method invites farmers to agree themselves, through their Agricultural Cooperative Societies, to divide all the village lands, considering then as being one unit, into two or three parts, and to apply a doubled or tripled rotation, suitable to the conditions of the lands and their owners. They should also agree on the crop to be cultivated in each part of the rotation. Each farmer will then cultivate the whole of his land to grow the crop already determined for the area where his land is situated. In order to give the opportunity to formers to benefit by the dirferent rotation crons, an agricultural exchange takes place between themselves. Thus, every farmer con benefit by the kinds of crops, which were grown outside his own land.

This method was applied for the first time in Egypt, in 1956, in Nawag village area, Gharbia Governorate. The result wes truly encouraging. The yield of the cotton crop, in this village area, increased during the following three years, from 1.61 tons per hectare, in the first year, to 2.55 tons per hectare in the second, and to 2.89 tons per hectare in the third.

Cinapter 7

CORCLUSIONS.

7.1.

From the forggoing, it may be concluded that the best oconomic utilization possible with regard to the new irrigation projects in Egypt is to put the cultivable lands into the possession of farmers imediately after the completion of projects in order that they themselves may proceed with the utilization of the lands with the assistance of Agricultural Cooperative Societies, which provide them with machines, seeds, fertilizers, etc. It has been proved thet the utilization of lands in this way has a significant economic value for two main reasons; the first is that because no administrative expenses are incurred the annual expenses for the land are reduced and the second is the large and swiftly gained yield obtainable from the land, due to the aveilability of the farmer's personal incentive to exert all efforts to serve his land. This is because he feels that he is its proprietor and that its yield will solely be for him.

7.2

From the foregoing, it may culso be concluded thot the more the years of govemment management of agricultural projects increases, the more their economic value decreases. This is due to the huge administrative expenses incurred and to the lack of personal incentives offered to officials and employed labours to work as hard as they can; the lands then fail to reach their maximum production.

7.3

It may also be concluded that the utilization of irrigation projects in Egypt, through the application of State Farm system is unprofiteble from the economic point of view and may expose the investment of such projects to become a real loss.

From the above the following suggestions could be considered: (1) It is suggested with regard to irrigation projects that the Agyptian Government proceeds with the landlordism of the newly cultivated lands immediately after the completion of such projects. Meanwhile, it is proposed that the Government also proceeds with the liquidation of the present State Farms and distributes its lands to farmers, in order
to obtain the maximum benefit at the lowest cost.
(11) It is proposed that the Egyptian Government should encourage the foundation and propagation of Agricultural Cooperative Societies anongst farmers in the country, and should offer thon the necessary aids, having regerd to the important role such socicties play in serving farmers, and, in other words, the agricultural production. (111) In order that the individual landownership system, which is recomended becones exemplary, it is suggested that agricultural rotations in villages be systematized, through the application, in all villages, of the already-mentioned system, namely, 'the integration of Irittered lands and systemetization of the agriculturel rotation' with a view to benefiting from its advantages.

SOIL SURVEY and LIND CLiSSIFTCATION
 OF THE RAYOURS GOVERNORATE (15)

A. 1 Land Clossification According to Productivity:

Land productivity classification of the Fayour Governorate includes six classes, according to the three major following foctors:

1. Present productivity.
2. Cherical and physical properties of the soil.
3. Costs of management.

The land classes are:
A.1.1. Class 1 land.

At the south east of Ibshwai and the south wost of Sinoris, the soil is alluvial, loamy or clay loari. The majority of these soils are very suitable for raising all kinds of field crops and fruit trees. The area amounts to 4,535 hectares or 2.49% of the total area.
A.1.2. Class 2 land.

Those soils are in the middic of the Governorate. Thoy are fertile soils and raise good crops, supplied with adequate canals and drains and free from injurious soluble selts, the electrical conductivity does not exceed 4 mahos/cn at 25 . C and are froe from alkolinity. The area is ebout 27,173 hectares i.e. 14.92% of the total area.
4.1.3. Class 3 land.

These lands are in the north east, north west and south of the Governorate. They give rather moderate yields. The soils are alluviel light to heavy clay. These soils contain a moderate amount of salts and fair alkalinity due to the inadequate means of drainage. These soils do need an efficient drain system along with proper field operations. The area is nearly 32,612 hectares or 45.36% of the total area.

A.1.4 Cless 4 land.

These soils are rather poor, just newly cultiveted or under reclanation; they are located on the north part of the Governorate adjacent to Qarun lake and at the eastern and southern parts adjacent to the hilly area, beside some scattered spots in the middle and western parts of the

Governorate.
Sone are sendy or under reclamation. These need leaching and efficient irrigotion and drainage systems.

These soils give poor yields ine. much less than the total average yields. The area is nearly 24,059 hectares or 13.21% of the total area.

A. 1. 5 Class 5 land.

The majority of this area is in the east, south, north and north-west of tho Governorate. The soils under this class are barren and swampy soils:
(a) The barren scils hove not been put under reclamation and are in need of irrigation and drainage projects. The total area of these lands is about 21,709 hectares i.c. 11.92% of the total area.
(b) Swowps: theso are the low-lying soils which are highly impregnated with salty water. The reclamation of these areas needs a good system of drainage to get rid of the high ground water level. The total arca of the swarips is 1,475 hectares i.e. 0.81% of the total area. A. 1.6 Class 6 land.

This compromises the following:
(a) Area occupied by public utilities such as roads, drains, railways and cities. It amounts to 9,562 hectares i.e. 5.25% of tho total area.
(b) Uncultivable land including rocky and shallow soils and this is about 11,000 hectares i.e. 6.04% of the total area.

Figure A-1 (racp) comprises the soil classes as mentioned above.
A. 2 Land Classification ccording to the Soil Texture.

After the field investigation and laboratory analysis, the soils of the Fayoun Governorate could be classified, according to the description of the major kinds of soil profiles, into the following groups:

A.2.1. Heavy Texture Soils:

(a) Deep soils, light to heavy clay. The top soil may be light clay underlein by a heavy clay or the topsoil may be clay loam or sandy loam and the subsoil is clay. The structure is columar or blocky. The water saturation capacity is 50-100\%.

The calcium carbonate content is $2-4 \%$, the clay is $50-80 \%$, silt is $10-15 \%$, fine sand is $10-25 \%$ and coarse sand is $4-15 \%$.

(b) Deep soils, heavy or light clay soils, rother calcarcous, the calciua carbonate content is about 10%.

The water saturation capacity is $100-150 \%$. The hydraulic conductivity is less than $0.01 \mathrm{Cm} . /$ hour. (c) Light to heavy clay and highly calcareous, gypsum is widely scattered in the profile either as craystals or in alternate layers of 1-5 Cm. thickness. These layers are found at 25 Cm . from the soil surface.

Table A-1 shows the chemical and mechanical analysis of some representative profiles of the heavy soils. 4.2.2 Mediun Textured Soils:
(a) Deep clay loca or loamy soils. The top layer may be medium texture of clay loan, sandy clay or sand followed by clay loan or loand.

The structure is gramular, the colour is brown to dark brown, CaCO_{3} content is $2-4 \%$. The water saturation capacity is $30-60 \%$, the hydraulic conductivity is rather moderate i.e., 0.1 Cm . Per hour. The clay content is $15-40 \%$ silt is $10-25 \%$, fine sand is $12-25 \%$ and the coarse sand is $2-19 \%$.
(b) Deep soils, loony clay or calcarcous loany soils, the $\mathrm{Ca} \mathrm{CO}_{3}$ content is 10%, gypsum crystals or clusters are apread through the whole profile. The soil is rather compacted with granular structure and yellowish colour, the water saturation capacity is more than 60% while the water permeability is less than $0.1 \mathrm{Cm} / \mathrm{hour}$.

Table A-2 shows the chemical and nechanical analysis of some representative profiles of the medium texture soils.

A.2.3. Coarse Textured Soils.

(a) Deep soils, coorse textured, i.e. sandy loan or loamy sand, or the surface soil may be of medium texture i.e. clay lom or loan and the subsoil is loamy sand or sandy loan, generally speaking, the soil is rather compacted, with granular structure, the water saturation cepacity is $25-40 \%$. It is rather perneable to water i.c. more than $1 \mathrm{Cm} /$ hour. The clay content is $15-35 \%$, silt is $2.5-11 \%$, fine sand is $15-40 \%$ and the coarse sand is $30-35 \%$.
(b) Deep calcareous coarse textured soils i.e. sandy loam or loany sand, the $\mathrm{Ca}_{\mathrm{C}} \mathrm{CO}_{3}$ is 10%, the soil is compacted with a granular structure. The water saturation capacity
Table A－1
The Chemical and Mechanical Analysis of Some Representative Profiles

	$\stackrel{\dot{0}}{\dot{\sim}}$	＊	Momp		Ni¢
	\％${ }_{\text {¢ }}^{6}$	\star	¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢		
	ن̛̣	＊		¢	
	㞻	\％		$\stackrel{8}{8}$	
	䓂	2			号安安号
	－	＊			
	$\frac{0}{6}$	$\overline{0}$		珎甬笑	유으№̛
		¢ ${ }_{\text {¢ }}$	$\stackrel{\circ}{\sim} \mathrm{O}$	\bigcirc	$\stackrel{\mathrm{O}}{\sim} \mathrm{M}$
		0°	\％	111	111
		\checkmark			\bigcirc
		${ }^{\text {m }}$	$\stackrel{\text { ¢ ¢ ¢ \％\％\％}}{\text { \％}}$	发产兄	¢
		\％			－${ }_{\text {¢0 }}^{\text {¢ }}$
		\％		으우웅	Mo．
5 28 \％ ภรัчшш					
$\begin{gathered} \% \\ \begin{array}{c} \% \\ \text { 人ppede } \\ \text { uopeumags } \end{array} \end{gathered}$			N88	ㄴ8 8 ¢	チスヘ
든 $\stackrel{\sim}{\sim}$				$\stackrel{n}{\text { NiN }}$	$\stackrel{\infty}{\infty} \stackrel{\infty}{\sim}$
$\begin{aligned} & 5 \\ & \frac{5}{8} \\ & \hline \end{aligned}$				$\begin{aligned} & 980 \\ & 19 \\ & 1088 \\ & 088 \end{aligned}$	

T．S．S．$=$ Total soluble salts as determined from（1：20）soil water extract

173．
Table A－ 2
The Chemical and Mechanical Analysis of Some Representative Profiles of the Medium Texture Soils in the Fayoum Governorate

	¢	＊		¢0\％
	\％	＊		
	囚்	＊		
	$\stackrel{4}{4}$	＊	ミーN 	$\stackrel{9}{9} \circ \stackrel{0}{0} \mathrm{o} \mathrm{F}$
	言	$\stackrel{ }{*}$	웅용ㅇㅇㅇ웅 No $\dot{\sim}$	
	\％	\times		
	$\begin{aligned} & \frac{0}{5} \\ & \frac{6}{5} \end{aligned}$	$\overline{0}$	ナ～NNM	¢0\％ 0 ¢ 88
		O		
		8	11111	1111
	$\begin{aligned} & \frac{0}{5} \\ & \frac{5}{5} \end{aligned}$	\pm	M N Nㅡㅇ응등	
		2		
		2	¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	
		8		$\stackrel{\circ}{\circ} \dot{C}$
				$\stackrel{8}{\circ}$
$\begin{gathered} \% \\ \begin{array}{c} \text { nipedey } \\ \text { uopzennus } \end{array} \end{gathered}$				\％\％\％
듬 $\stackrel{\text { i }}{\sim}$				
$\begin{aligned} & \text { 部 } \\ & \hline \end{aligned}$			$\begin{aligned} & 0.808 \\ & 0.808 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 180$	

is more than 40% and the permeability to water is less thon $1 \mathrm{Cm} /$ hour. This may be due to the high content of $\mathrm{CaCO}_{3}{ }^{\circ}$
(c) Coarse textured soil as the above mentioned type, contains gypsum veins or gypsum in alternate layers of 1-5 cm thickness. The majority of these soils are yellowish, with granular structure.

Table A-3 shows the chemical and mechanical analysis of the coarse textured soils.
A.2.4. Very Coarse Textured Soils.
(a) Deep sandy soils through the whole profile, the surface soil may be sandy loam or loamy sand or clay loam underlain by sand. Geaerally spoaking, the soil is rather friable, with granular structure yellowish in colour. The water saturation capacity is $15-20 \%$. The soil is very permeablo to water.

Thesc soils are widely spread close to the barren and the rocky area. The clay content is $4-10 \%$, silt is $0.5-15 \%$, fine sond is $12-70 \%$ and the coarse sand is $3-80 \%$ 。
(b) Deep calcareous sandy soils, $\mathrm{Ca} \mathrm{CO}_{3}$, content is more than 10%, water saturation capacity is more than 20%, soil water permeability is less than the above mentioned soils.
(c) Calcareous sandy soils, containing gypsum either in alternate layers of 1-5 Cas. In thickness or as an impervious layer.

Table $A-4$ shows the chemical and mechonical anelysis of the very coarse textured soils.
A.2.5 Shallow Soils.

Due to the presence of extended calcareous stones layer, or inpervious gypsum and $\mathrm{Ca} \mathrm{Co}_{3}$, layers. These impervious layers may be at 30 Cns. from the soil surface, the top layer may be clay, loom or generally calcareous sand.
A.2.6 Rocky Soils Which are uncultivable. Generally speaking according to the ficld study, we may say that the soil of the whole Governorate is alluvial soil, light to heavy clay through the whole profile, the top soil may be light clay and the subsoil is heavy clay, or the surface soil is clay loan, sandy loam or sand, while the subsoil is clay. The majority of the soils in the west, east and south are light or heavy clay textured and rather
Table A-3
The Chemical and Mechanical Analysis of the Coarse Textured Soils

176.
Table A－4
The Chemical and Mechanical Analysis of the Very Coarse Textured Soils

	\％	ヵ	$\stackrel{\infty}{\text { N }}$	N
	O	＊	鸷	
	ه́g	\times	¢\％	
	\％	＊	～～～N	
	$\stackrel{\square}{\bar{\circ}}$	x°	$\stackrel{\square}{\text { 号앙․ }}$	$\stackrel{\square}{\circ}$
	產	＊	＊	$\stackrel{\square}{\circ} \mathrm{O}$
	$\frac{\frac{0}{6}}{\frac{5}{4}}$	$\overline{0}$	号	$\wedge \simeq$
		\％	Nm	m
		0^{0}	11	1.1
	$\begin{aligned} & \text { 高 } \\ & \frac{5}{5} \end{aligned}$	\times	䫆罝	¢\％\％
		$\stackrel{\square}{2}$	㲋䒼	ल
		昂	$\stackrel{\sim}{\sim} \stackrel{\infty}{\sim}$	\bigcirc
		\％	¢\％${ }_{\text {¢ }}^{\text {¢ }}$	$\overline{\mathrm{N}}$
92 28 \％ ／รочшш＇0•			¢\％	$\stackrel{\infty}{\sim}$
			$\stackrel{\text { ® }}{\sim}$	$\stackrel{\sim}{\circ}$
ㄷ．$\stackrel{0}{\text { i }}$			＊	\bigcirc
長			$\begin{array}{cc} 0 \\ 1 \\ 1 & 0 \\ 0 \\ 0 \end{array}$	（1）

177.

colcorecus as the $\mathrm{Ca}_{\mathrm{a}} \mathrm{Co}_{3}$ content is 10%. The rocky soils are spread rather in the east and south of the Governorate while the sondy soils are in the south east. In the north west the soil contains clusters of bypsum as crystals or in alteracto layers of 1-5 Co in thickness. These layers are found generally of 20 Cas fron the soil surfoco. Figure A-2 (map) illustrotes the ebove soil ciessification according to texture.
4. 3 Land Classification focordine to Salinity.

Corresponding to the soil analysis, the soils of the Governorate are classified according to salinity into:A.3.1. Non Smine Soils:

In which the electricol conductivity of the soil paste extract is less than 4 moshos/Cn at $25^{\circ} \mathrm{C}$. the rajority of these soils are in the east and the middle of the Governorate, these are fortile and highly productive soils.

A.3.2 Soils with Moderate Sclt Content.

The electrical conductrity is between $4-8 \mathrm{mmhos} / \mathrm{Cn}$ at $25^{\circ} \mathrm{C}$. Salinity may be moderate at the top layer while it is lighly saline in the suisoil. The majority of these soils are aoderately productive and need heavy leaching to get rid of the excess soluble salts. A.3.3 Soils with High Salt Content.

The electricol conductivity is more than 8 manos/Cm at $25^{\circ} \mathrm{C}$. These are the soils close to Qarun lake, and to the hilly area. They are low productive soils. The soil needs the increase of irrigation water and water application should be at short intervals in order to get rial of the solublo salts.

The solinity may be due to:

1. Soil of low elevation as can be seen in soils
adjacent to the Qarun lake. These soils are nearly on the same level as the lake which is -45 m Below sea
level. This leads to the flooding of these soils by the lake water most of the year.
2. Soae soils are below the conal and drain levels which leads to the infiltration of these water systems through the soil, causing a high water table.
3. The inadequacy or lake of ficld drainage.
4. The variation of the soil elevetion which loads in

infiltration from high land to low land. Figure A-3
(map) shows the different classes of soil salinity.
A. 4 Land Classification Lecorlin. to Alkalinity.

Figure A-4 (map) shows the different classes of soil
alkalinity as follows:
A.4.1. Alkalinity Free Soils through the Whole Profile.
A.4.2. Soils with Moderate Alkalinity of High alkalinity in the Subsoil.
These soils need improvenent of the drain system as well as ploughing.
A.4.3 Soils with High Alkalinity through the Whole Profile. These soils need the application of gypsum. Alkelinity may be due to:
(a) Inefficient drain system causing a high water table.
(b) The dominance of exchangeable sodium in the soil complex leading to a decrease of calciun.
(c) Improper tillage operations.

As a matter of fact, the main important factor in the productivity of soils in Egypt is the level of water table, the salinity and the alkalinity is but a result of this, accordingly, this factor was put into consideration in our field study as follows:
(a) Soils with an efficient drainage system and consequently with a low water table about 150 Cms . From the soil surface; all these are highly productive and salt free. These soils are in the middle of the Governorate and include Sinru, ElAgamin, Tobhar, Nassaria, Der El-Ramad, El-Fayoun, Minshet Fitaeh.
(b) Soils with an inefficient drainage system in which the water table is $80-150 \mathrm{Cms}$ from soils surfece; these areas need the improvement of drainage system and ficld drainage in order to reclaim and raise the productivity of the land. (c) Soils devoid of drains, these are the soils adjacent to Qarun lake and table to be flooded by the lake or the soils close to the hilly area.
A. 5 Nitrogen, Phosphorus \& Organic Matter Status:

The soluble nitrogen was estimated by using a 1% solution of potassium sulphate in sone representative surface soils
of the Governorate. It is noticed that most of the soil of Tamia district contains from 25 to $50 \mathrm{p} \cdot \mathrm{p} . \mathrm{m}$. soluble nitrogen, soils of the other districts contain more than

$50 \mathrm{p} \cdot \mathrm{p} \cdot \mathrm{m}$ 。

The water soluble phesphate as $\mathrm{P}_{2} \mathrm{O}_{5}$ was determined in some composite surfece soils. It can be considered that the major seils of that Governorate contain less $2.0 \mathrm{P} \cdot \mathrm{Pm} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$.

Organic matter was also determined in composite surface seils to a depth of about 30 Cm . It can be concluded that the mount \mathcal{L} organic matter in the soils of this Governorate differs widely as shown in Table A-5:

Table A-5
The Amount of Organic Matter in the Soil of the Fayoum Governorate

ASGMLX (B)

HATER BALANCE OE TAE BAYOU GOVERHORLTE

B. 1 Studying the Outflow

B. 1. 1 Water Consuption of the Iain Products

A crop's consumption of wotor is knom to be the total mount of water used in the process of respirction in wadition to the adount of water used up in evaporation fron the soil where the plant grows.
B.1.1. The Process of Respiration:

This process is the transer of irrigetion water absorbed by the plant from the soil through its various tissues and its return back to the otwosphere in the form of water vopour.

For ay plont, the rate of respiration veries from one hour of tho doy to the other due to termerature, sunshine, available hunidity for absorbtion and other atmospheric factors.

The rate of respiration varies during the different phases of growth of the plant.

As the rate of respiration vories with the terperature, it olso vuries according to relstive humidity med the velocity of the wind.

Retos of respixation also difeer ereatly fron aight to day as it is in parallel relation with the grouth of the plant which basically depends on the sunshine, thus the process of respiration essentially depends on the number of light hours.

B.1.1.2 Evoporation from the fgricultural Soil:

This is the process by which the soil loses its huridity through the direct evaporation from the surface of the soil or layers close to the surface.

The rate of evaporation depends on the same otmospheric foctors and conditions afecting the rate of respiration and on other factors such as air pressure.

As this proves that the rate of water consumption of the various crops depends on atmospheric factors, many researchers hove tried to link these atmospheric factors with the consumption of irrigation waters and hove deduced the factors affecting the water consumption of each plant.

The most fanous of these researchers are Charles Hycecin, $31 a m b y$ and Criddle and Fierrgrevas.

The equation of Blaney and Cridde which is the nost popular has groved successful in Egypt.

Researchers in this tield in Egypt were able to obtain the fictor of the different plonts which differ with the prevelant atrospheric differences in Egypt.

This nethod has been pursued in our research in estimeting the consumption of irrigation weters of the difperent plants.

B.1.1.3 Blaney-Cridcle's Method

Blaney and Criddle Lave proved that there is a relation between the rate of water consumption and atmospheric factors prevelant in the area where a plent is cultivated.

A spocial coofficient for each plant has beon found out and appears on Table B-l. This relation is:

$$
M=1.82 M P(t+17.8)
$$

Where:
$\mathrm{B}=$ Anount of water consuned by a plant per month.
$P=$ The percentage of the total number of daily hours
per month in relation to its total amount per yecr.
$K=$ Blaney and Criddle's coetricient for the consumption of irrigation vater.
$T=A v e r a g e$ monthly temperature in Fohrenhiet.
It is noticed that the average water consumption of the different plarts does not depend on the type of soil but only on atriospheric factors and the kind of plant.

The application of this relation in Egypt has proved successful and the average rate of water consuaption of the differeat plants was deternined by this equation according to Table B-1.

Table B-2 shows the percentege of daylight hours on latitude 30.

Table B-3 shows the average ronthly temperatures for yeers 1964, 1968 a 1972 in the Fayoun Governorate. Through the application of Blaney-Crichlie's equation on the different atmospheric ractors for the years 1964, 1968 and 1972, the avarage monthly and armuel rates of water consupption of the difeerent crops was obtained as showa in Tables B-4, B-5 and B-6.

In Blaney-Cridale's equation, the monthly and annual wotor consumption of the different products mentioned in Tables $4-11,4-12 \& 4-13$ have been substituted on the besis of the cultivation and harvest seasons of each crop in the Fayoun Governorate as shown in Table B-7.

The actual cultivated crecs of basic crops have been aneaded to ensure accuracy in calculatiag the total monthly and anual water consumption of the different crops in years 1964, 1968, 1972 as shown in Tables B-8, B-9 \& B-10 and Tables B-11, B-12 \& B-13.

3.1.2 Evaporation Water Losses Fron garun Loke

Evaporation from the surface of lake Carun is
afected just as other water surfaces - by the following fectors:
-an-hir terperature.
-b- Water temperature.
-c- Pressure of water vapour on the surrounding air.
-c- Pressure of water vapuur on air.

- e- Wind velocity.
-f- Baronetric pressure.
-g- Kind of water, (sweet or salty).
The losses of water fron evaporation from lake Qarun is estimated through measuring water vapour fron a measurable square shaped basin on the shores of the laie in 'Shakshouk' region.

A Curve was ciramn to show the relation between the area of the lake cud its levels on a contourian map of a scale of 1 : 100,000 as shown in Figure B-1 from which we may

Table B - 1
Blaney-Criddle's Coefficients for Irrigation Water
Consumption for the Different Crops

Yield	Coefficient	
1	Wheat	0.50
2	Beans	0.70
3	Clover	0.65
4	Barley	0.50
5	Winter Vegetables	0.60
6	Fenugreek	0.65
7	Cotton	0.70
8	Rice	1.25
9	Indian Millet	0.80
10	Syrian Maize	0.85
11	Summer Vegetables	0.60
12	Fruits	0.65
13	Peanuts	0.60
14	Nilotic Vegetables	0.50

Table B - 2
The Percentage of Daylight Hours on Latitude 30 (5)

Month	Jan.	Feb.	Mar.	Apr.	Mav	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Percentage	7.30	7.03	8.38	8.72	9.53	9.49	9.67	9.22	8.34	7.99	7.19	7.14	100

Table B-3
Average Monthly Temperatures for years 1964, 1968 \& 1972 in the Fayoum Governorate (5)

Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1964	11.70	13.90	18.40	20.30	24.20	27.80	27.80	28.40	25.10	24.20	18.50	14.00
1968	10.30	12.02	15.00	20.75	25.82	28.57	28.65	27.72	25.65	21.72	17.20	10.52
1972	12.40	13.60	16.80	21.30	24.60	27.50	28.20	29.20	27.00	23.80	18.00	13.40

Table B - 4
Rate of Monthly and Annual Water Consumption for Main Crops Cultivated in

YIELD		Rate of Monthly Water Consumption $\mathrm{m}^{3} / \mathrm{ha}$												Rate of Annual Water consumption $\mathrm{m}^{3} / \mathrm{ha}$
		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	
1	Wheat	467	483	657	719	-	-	-	-	-	-	566	493	3,385
2	Beans	650	674	916	-	-	-	-	-	-	-	788	685	3,713
3	Instigation Clover	605	-	-	-	-	-	-	-	-	943	733	638	2,919
4	Continual Clover	605	626	852	935	1,125	-	-	-	-	943	733	638	6,457
5	Barley	467	483	657	-	-	-	-	-	-	-	566	493	2,666
6	Fenugreek	605	626	852	-	-	-	-	-	-	943	733	638	4,397
7	Winter Vegetables	564	583	-	-	-	-	-	-	-	878	683	595	3,303
8	Cotton	-	671	914	1,004	1,209	1,307	1,335	1,288	-	-	-	-	7,728
9	Summer Rice	-	-	-	-	2,168	2,344	2,392	2,311	1,942	-	-	-	11,157
10	Peanuts	-	-	-	-	1,050	1,128	1,150	1,111	935	-	-	-	5,374
11	Summer Indian Millet	-	-	-	1,152	1,390	1,504	1,533	1,480	-	-	-	-	7,059
12	Summer Syrian Maize	-	-	-	-	1,476	1,597	1,628	1,571	-	-	-	-	6,272
13	Summer Vegetables	-	-	995	869	1,050	1,128	1,150	-	-	-	-	-	4,992
14	Fruits	-	626	852	935	1,126	1,216	1,238	1,200	1,000	943	-	-	9,136
15	Nilotic Rice	--	-	-	-	-	2,344	2,392	2,311	1,942	-	-	-	8,989
16	Nilotic Indian Millet	-	-	-	-		-	1,533	1,480	1,245	-	-	-	4,258
17	Nilotic Syrian Maize	-	-	-	-	\cdots	\cdots	1,628	1,571	1,319	1,238	-	-	5,756
18	Nilotic Vegetables	-	-	-	-		\cdots	954	923	776	726	-	-	3,379

Table B - 5
Rate of Monthly and Annual Water Consumption for Main Crops Cultivated

YIELD		Rate of Monthly Water Consumption $\mathrm{m}^{3} / \mathrm{ha}$												Rate of Anmual water consumption $\mathrm{m}^{3} / \mathrm{ha}$
		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	
1	Wheat	445	455	595	728	-	-	-	-	-	-	545	438	3,206
2	Beans	595	633	828	-	-	-	-	-	-	-	762	612	3,430
3	Instigation Clover	576	-	-	-	-	-	-	-	-	888	707	569	2,740
4	Continual Clover	576	590	771	995	1,169	-	-	-	-	888	707	569	6,215
5	Barley	445	455	595	-	-	-	-	-	-	-	545	438	2,478
6	Fenugreek	576	590	771	-	-	-	-	-	-	888	707	569	4,101
7	Winter Vegetables	538	550	-	-	-	-	-	-	-	826	659	528	3,101
8	Cotton	-	631	828	1,016	1,257	1,330	1,359	1,269	-	-	-	-	7,690
9	Summer Rice	-	-	-	-	2,254	2,385	2,437	2,278	1,966	-	-	-	1,130
10	Peanuts	-	-	-	-	1,090	1,147	1,171	1,095	947	-	-	-	5,450
11	Summer Indian Millet	-	-	-	1,166	1,442	1.528	1.561	1,459	-	-	-	-	7.156
12	Summer Syrian Maize	-	-	-	-	1,533	1,623	1,657	1,547	-	-	-	-	6,360
13	Summer Vegetables	-	-	719	881	1,090	1.147	1,171	-	-	-	-	-	5,008
14	Fruits	-	590	771	945	1,160	1,235	1,281	1,181	1,014	888	-	-	9,054
15	Nilotic Rice	-	-	-	-	-	2,385	2,437	2,278	1,966	-	-	-	9,065
16	Nilotic Indian Millet	-	-	-	-	-	-	1,561	1,459	1.259	-	-	-	4,279
17	Nilotic Syrian Maize	-	-	-	-	-	-	1,657	1,547	1,335	1,164	-	-	5,703
18	Nilotic Vegetables	-	-	-	-	-	-	973	909	785	683	-	-	3,350

Table B-6
Rate of Monthly and Annual Water Consumption for Main Crops Cultivated

yield		Rate of Monthly Water Consumption $\mathrm{m}^{3} / \mathrm{ha}$												Rate of Annual werter consumption $\mathrm{m}^{3} / \mathrm{ha}$
		Jan	Feb	Mar	Apr	May	June	suly	Aug	Sept	Oct	Nov	Dec	
1	Wheat	478	478	628	738	-	-	-	-	-	-	557	483	3,362
2	Beans	666	666	876	-	-	-	-	-	-	-	778	671	3,657
3	Instigation Clover	619	-	-	-	-	-	-	-	-	933	724	626	2,902
4	Continual Clover	619	621	814	957	1,135	-	-	-	-	933	724	626	6,429
5	Barley	478	478	628	-	-	-	-	-	-	-	557	483	2,624
6	Fenugreek	619	621	814	-	-	-	-	-	-	933	724	626	4,337
7	Winter Vegetables	578	578	-	-	-	-	-	--	-	871	674	583	3,284
8	Cotton	-	664	874	1,031	1,221	1,300	1,347	1,309	-	-	-	-	7,746
9	Summer Rice	-	-	-	-	2,190	2,328	2,413	2,351	2,028	-	-	-	1,130
10	Peanuts	-	-	-	-	1,059	1.121	1,161	1,131	978	-	-	-	5,450
11	Summer Indian Millet	-	-	-	1,183	1,402	1,492	1.547	1,507	-	-	-	-	7,131
12	Summer Syrian Maize	-	-	-	-	1,402	1,585	1,642	1,599	-	-	-	-	6,318
13	Summer Vegetables	-	-	759	893	1,059	1,121	1,161	-	-	-	-	-	4,993
14	Fruits	-	621	814	957	1,135	1,207	1,247	1,219	1,045	933	-	-	9,178
15	Nilotic Rice	-	-	-	-	-	2,328	2,413	2,351	2,028	-	-	-	9,120
16	Nilotic Indian Millet	-	-	-	-	-	-	1,547	1,507	1,300	-	-	-	4,354
17	Nilotic Syrian Maize	-	-	-	-	-	-	1.642	1,599	1,378	1,226	-	-	5,845
18	Nilotic Vegetables	-	-	-	-	-	-	964	940	809	719	-	-	3,432

Table B-7
Period of Staying the Different Crop in the Ground in the Fayoum Governorate

	Product	Appointment of Plantation	Appointment of Reaping	Period of Staying in the Ground (Months)
1	Wheat	November	May	6
2	Barley	Novermber	April	5
3	Beans	October	April	5
4	Instigation Clover	October	January	4
5	Continual Clover	October	May	8
6	Fenugreek	October	April	6
7	Winter Vegetables	October	February	5
8	Cotton	February	September	7
9	Summer Rice	May	October	5
10	Peanuts	May	October	5
11	Summer Indian Millet	April	August	5
12	Summer Syrian Maize	May	September	4
13	Summer Vegetables	March	July	5
14	Fruits	February	October	9
15	Nilotic Rice	June	September	4
16	Nilotic Indian Millet	May	September	3
17	Nilotic Syrian Maize	July	November	4
18	Nilotic Vegetables	July	October	4

Table B-8
Modification of Agricultural Areas to Areas of Main Products Cultivated in the Fayoum Governorate Year 1964

Table B - 9
Modification of agricultural areas to areas of Main Products Cultivated in the Fayoum Governorate Year 1968

Table B - 10
Modification of agricultural areas in areas of Main Products Cultivated in the Fayoum Governorate Year 1972

Table B - 11
Total of Monthly and Annual Water Consumption for Main Crops cultivated in the Fayoum Governorate Year 1964

Yield		$\begin{gathered} \text { Modified Area } \\ \text { (ha) } \\ \hline \end{gathered}$	Total of Monthly Water Consumption (million $\mathrm{m}^{\mathbf{3}}$)												Total of Annual water consump tion (million m^{3})	
		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec			
1	Wheat		40,106	18.73019 .371		26.350	28.836	-	-	-	-	-	-	22.700	19.772	135.759
2	Beans	11,867	7.714	7.998	10.870	-	-	-	-	-	-	-	9.351	8.129	44.062	
3	Instigation Clover	34,185	20.682	-	-	-	-	-	-	-	-	32.237	25.058	21.810	99.787	
4	Continual Clover	23,137	13.998	14.484	19.713	21.633	26.029	-	-	-	-	21.818		$\begin{array}{\|c\|} 14.761 \\ 1.085 \end{array}$		
5	Barley	2,200	1.027	1.063	1.445	-	-	-	-	-	-		$\begin{array}{\|c\|} \hline 16.959 \\ \hline 1.245 \\ \hline \end{array}$		5.865	
6	Fenugreek	3,125	1.891	1.956	2.663	-	-	-	-	-	-	2.947	2.291	1.994	13.742	
7	Winter Vegetables	2,411	1.369	1.406	-	-	-	-	-	-	-	2.117	1.647	1.435	7.965	
8	Cotton	36,865	-	24.736	33.695	37.013	44.570	48.183	49.215	47.482	-	-	-	-	284.894	
9	Summer Rice	5,243	-	-	-	-	11.36712 .290		12.541	12.117	10.182	-	-	-	58.497	
10	Peanuts	955	-	---	-	-	1.003	1.077	1.098	1.061	0.893	-	-	-	5.132	
11	Summer Indian Millet	8,327	-	-	-	9.593	11.575	12.524	12.765	12.324	-	-	-	-	58.781	
12	Summer Syrian Maize	639	-	-	-	-	0.943	1.021	1.040	1.004	-	-	-	-	4.008	
13	Summer Vegetables	3,783	-	-	3.764	3.287	3.972	4.267	4.351	-	-	-	-	-	19.641	
14	Fruits	5,012	-	3.138	4.270	4.686	5.644	6.095	6.205	6.014	5.012	4.726	-	-	45.790	
15	Nilotic Rice	2,850	-	-	-	-	-	6.680	6.817	6.586	5.535	-	-	-	25.618	
16	Nilotic Indian Millet	16,495	-	-	-	-	-	-	25.287	24.413	20.538	-	-	-	70.236	
17	Nilotic Syrian Maize	50,585	-	-	-	-	-	-	82.352	79.469	66.722	62.624	-	-	291.167	
18	Nilotic Vegetables	3,841	-	-	-	-	-	-	3.664	3.545	2.981	2.789	-	-	12.979	
		251,626													1,333.318	

Table B-12
Total of Monthly and Annual Water Consumption for Main Crops cultivated in the Fayoum Governorate Year 1968

Yield		Modified Area (ha)	Total of Monthly water consumption (million m^{3})												Total of Annual water consumption (million m^{3})	
		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec			
1	Wheat		40,165	17,873	18,275	23.898	29.240	-	-	--	-	-	- 2	21.890	17.592	128.768
2	Beans	7,849	4.670	4.968	6.499	-	-	-	-	-	-	-	5.981	4.804	26.922	
3	Instigation Clover	27,330	15.744	-	-	-	-	-	-	-	-	24.269	19.322	15.551	74.884	
4	Continual Clover	21,304	12.271	12.569	16.425	21.198	24.904	-	-	-	-	18.918	15.062	12.122	133.469	
5	Barley	1,960	0.872	0.892	1.160	-	-	-	-	-	-	-	1.068	0.859	4.857	
6	Fenugreek	2,777	1.600	1.638	2.141	-	-	-	-	-	-	2.466	1.963	1.580	11.388	
7	Winter Vegetables	3,406	1.832	1.873	-	-	-	-	-	-	-	2.813	2.245	1.798	10.561	
8	Cotton	39,400	-	24.861	32.623	40.039	49.526	52.402	53.545	49.999	-	-	-	-	302.986	
9	Summer Rice	8,584	-	-	-	-	19.348	20.473	20.919	19.554	16.876	-	-	-	97.170	
10	Peanuts	799	-	-	-	-	0.871	0.917	0.936	0.875	0.757	-	-	-	4.356	
11	Summer Indian Millet	13,221	-	-	-	15.416	19.065	20.202	20.638	19.288	-	-	-	-	94.610	
12	Summer Syrian Maize	1,070	-	-	-	-	1.640	1.737	1.773	1.655	-	-	-	-	6.805	
13	Summer Vegetables	2,419	-	-	1.739	2.131	2.637	2.775	2.833	-	-	-	-	-	12.115	
14	Fruits	5,858	-	3.456	4.517	5.536	6.848	7.235	7.387	6.918	5.940	5.202	-	-	53.039	
15	Nilotic Rice	2,470	-	-	-	-	-	5.891	6.019	5.627	4.856	-	-	-	22.393	
16	Nilotic Indian Millet	12,400	-	-	-	-	-	-	19.356	18.092	15.612	2	-	-	53.060	
17	Nilotic Syrian Maize	39,810	-	-	-	-	-	-	65.965	61.586	53.146	46.339		-	227.036	
18	Nilotic Vegetables	2,710	-	-	-	-	-	-	2.637	2.463	2.123	11.851	1	-	9.078	
		233,532													1,273.497	

Table B-13
Total of Monthly and Annual Water consumption for Main Crops cultivated in the Fayoum Governorate Year 1972

Yield		$\begin{gathered} \text { Modified Area } \\ \text { (ha) } \\ \hline \end{gathered}$	Total of Monthly water consumption (million m^{3})												Total of Annual water consumption (million m^{3})	
		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec			
1	Wheat		33,023	15.785	15.785	20.738	24.371	-	-	-	-	-	-	18.394	15.950	111.023
2	Beans	10,708	7.132	7.132	9.380	-	-	-	-	-	-	-	8.331	7.185	39.160	
3	Instigation Clover	30,150	$18.66{ }^{3}$	-	-	--	-	-	-	-	-	28.130	21.829	18.874	87.496	
4	Continual Clover	32,716	20.25	20.317	26.631	31.309	37.133	-	-	-	-	30.524	23.686	20.480	210.331	
5	Barley	1,768	0.845	0.845	1.110	-	-	-	-	-	-	-	0.985	0.854	4.639	
6	Fenugreek	2,703	1.673	1.679	2.200	-	-	-	-	-	-	2.522	1.957	1.692	11.723	
7	Winter Vegetables	2,965	1.714	1.714	-	-	-	-	-	-	-	2.583	1.998	1.729	9.738	
8	Cotton	33,908	-	22.515	29.636	34.959	41.402	44.080	45.674	44.386	--	-	-	-	262.652	
9	Summer Rice	8,093	-	-	-	-	17.724	18.841	19.528	19.027	16.413	-	-	-	91.533	
10	Peanuts	410	-	-	-	-	0.434	0.460	0.476	0.464	0.401	-	-	-	2.235	
11	Summer Indian Millet	18,593	-	-	-	21.996	26.067	27.741	28.763	28.020	-	-	-	-	132.587	
12	Summer Syrian Maize	3,154	-	-	-	-	4.706	4.999	5.179	5.043	-	-	-	-	19.927	
13	Summer Vegetables	3,205	-	-	2.433	2.862	3.294	3.593	3.721	-	-	-	-	-	15.903	
14	Fruits	5,810	-	3.608	4.729	5.560	6.594	7.001	7.245	7.082	6.072	5.421	-	-	53.312	
15	Nilotic Rice	792	-	-	-	-	-	1.884	1.911	1.862	1.606	-	-	-	7;223	
16	Nilotic Indian Millet	5,568	-	-	-	-	-	-	8.614	8.391	7.238	-	-	-	24.243	
17	Nilotic Syrian Maize	37,710	-	-	-	-	-	-	61.920	60.298	51.964	46.233	-	-	220.415	
18.	Nilotic Vegetables	3,274	-	-	-	-	-	-	3.156	3.078	2.649	2.354	-	-	11.237	
		234,550													1,315.377	

Figure B_1
Relation between Levels of Qarun Lake and its Surface Areas
determine the sctual area of the lake to ach level when We estimate the anount of whter losses from eveporation.

We may also accurately estimate the fluctuations of the levels of the lake as shown in Table B-14.
B.1. 3 Evaporation Water losses fron Canals and Drains We estimate water losses from canals and drains in the Fayoun Governorate ench year as follows:

$$
\text { Water Losses }=C \times B \times L \times E
$$

Where:
$C=$ Coerfecient of the standerd basin in Shakshouk region in the Fayoun Governorate $=0.5$
$B=$ Average width of canals and drains $=10$ neters
$L=$ Length of general canals and drains in the Fayourn Governorate (shown in Table B-15)
$E=$ Total annal evaporation fron the Fayoun
Governorate (shown in Table B-16)
*. Water losses by evaporation year $1964=35.55$ Million m3

B.1.4 Gain or loss of Jater Stored in zarun lake:

For completion of the calculation of water balance, one nust calculate the gain or loss in water stores in yarun lake; this mount of water has been calculated by Knowing as the water level of the lake at the beginning of the yoar and the water level at the end of the same year, after finding out the surface area of the lake fron Figure B-1 . We recogriwe fron Table B-17 thet there is an cmount of water gained and not lost in years 1964, $1968 \& 1972$.

B.1.5 People's Drinking Water Consuaption:

So as to have accurate calculation of the water balance, we will calculate the anount of water consuned by the inhabitants of the Fayoun Governorate in the years 1964, 1968 8 1972. This could be calculated by fiading the
Table B - 14
The Evaporation Water losses from Oarun Lake

Evaporation Value $=$ Meeting Area $\times \quad$ Total of Vessel Evaporation Readings

Table B-15
Total Lengths of General Canals and Drains in the Fayoum Governorate (16) (Kilometers)

Year	General Canals	General Drains	Total Length
1964	1250.500	912.000	2162.500
1968	1258.300	920.362	2178.662
1972	1263.355		

Table B - 16
Total Annual Evaporation from the Fayoum Governorate (16)

Year	Total Monthly Evaporation (millemeters)												Total Annual
	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	
1964	104	142	220	266	350	428	444	396	346	274	158	100	3,228
1968	134	138	190	286	382	436	464	454	400	280	176	108	3,448
1972	98	86	160	182	250	364	428	412	372	316	164	148	2,980

Table B-17
Gain or loss of Water Stored in Oarun Lake (16)

	1964	- 1968	1972
Level at the beginning of the year	-44.075	-43.875	-43.710
Level at the end of the year	-43.955	-43.825	-43.485
Difference between the two levels (meters)	$+0.120$	$+0.050$	$+0.225$
Area of the lake $\left(\mathrm{m}^{2}\right)$ million m^{3})	239.20	242.50	250
Gain or loss in water (million m^{3})	+28.704	$+12.125$	+56.250

number of inhebitants surviving in the three mentioned years, and assuning that each person uses 10 litres of water per day as shown in Table B-18.

From what was previously said, we could ether up the outflow of water from the Fayoum Governorate in the years 1964, 1960 \& 1972 as shown in Table B-19. We recognize from that table that the amount of water outflow from the governorate in each of the three years is approximately 1.76 million m^{3}.

B. 2 Studyiug the Inflow:

APter calculating previously the anount of water outflow fron the Fyoun Governorate in the three years, we have to compare it with the arount of wheter inflow to the governorate. Table B-20 siows the monthly anount of water iuflow to the Fayoun Governorate in those three years upstreat Lahouno Barrage. 3.3 Comprison between the Iuflow and the Outflow: Frow what has been previously saia we would conpare the inflow and outflow of water of the Payoun Governorate in the years 1964, 1968 \& 1972 as shown in Table B-21. We could easily recognize from that table that there is actually a differemce between the outflow mad inflow in the water in the three years mentioned which approxinates to $249,275 \& 209$ Hillion cubic meters in years 1964, 1968 \& 1972 successively. The reason for this is that this amount of water is swallowed underground.

Table B - 18
People's Drinking Water Consumption in the Fayoum Governorate in the years 1964, 1968 \& 1972

Item	1964	1968	1972
Average Drinking water consump- tion/person/day (litre) (assumed)	10	10	10
Number of days	365	365	365
Number of inhabitants (person)	902,000	972,000	$1,024,000$
Total Drinking water consump- tion (million m^{3})	3.292	3.548	3.738

Table B - 19
Total Outflow of Water in the Fayoum Governorate in the years 1964,1968 \& 1972 (16)

Item		1964	1968	1972
1	Products water consumption	1,333.318	1,273.497	1,315.377
2	Evaporation losses from Qarun lake	378.731	425.154	364.209
3	Evaporation losses from Canals \& Drains	35.550	37.560	22.950
4	Gain or loss of water stored in Qarun lake	28.704	12.125	56.250
5	People's drinking water consumption	3.292	3.548	3.738
	Total	1,779.595	1,751.884	1,762.524

Table B - 20
Discharges coming to the Fayoum Governorate
Upstream Lahoune Barrage
in Years 1964, 1968 \& 1972 (16)

Month	Year		
	1964	1968	1972
January	28.201	55.200	30.750
February	110.907	115.400	133.431
March	184.017	177.000	169.952
April	161.817	158.186	154.724
May	163.852	167.344	166.868
June	218.738	214.231	193.678
July	236.235	248.000	233.383
August	228.221	237.500	229.480
September	190.229	193.650	193.892
October	187.595	171.381	177.042
November	167.823	157.112	163.620
December	150.558	132.112	124.296
Total	2,028.203	2,027.116	1,971.116

Table B - 21
Comparison between Inflow and Outflow of water in the Fayoum Governorate years 1964, 1968 \& 1972 (million m ${ }^{3}$)

Year	Inflow	Outflow	Difference
1964	2028.203	1779.595	248.608
1968	2027.116	1751.884	275.232
1972	1971.116	1762.524	208.592

REFERENCES

(1) The Central Authority for Statistics, the Annual Reports, Cairo, Egypt, 1960-1972.
(2) The Ministry of Land Keclamation, The General Authority for Land Development (GALD), the Annual Report, Giza, Egypt, 1972.
(3) The Ministry of Land Keclamation, The Feneral Egyptian Organization for Cultivation and Development (GEOCD), the Annual Report, Giza, Egypt, 1972.
(4) The Ministry of Land Reclamation, The General Egyptian Organization for Cultivation and Development (GEOCD), Departnent of the Employees Affairs, the Special Documents, Giza, Egypt, 1972.
(5) The General Authority for Meteorology, the Annual Report, Cairo, 1972.
(6) The Ministry of Irrigation, The General Administration of Irrigation in the Fayoum Governorate, Department of the Mechanical Affairs, the Special Docunents, Fayoum, Egypt, 1972.
(7) The Ministry of Irxigation, The General Adninistration of Irrigation in the Fayoum Governorate, Department of Financial Affairs, the Special Documents, Fayoum, Egypt, 1972.
(8) The Ministry of Agriculture, The General Administration of Agriculture in the Fayoum Governorate, Department of Mechanical Affairs, the Special Documents, Fayoum, Egypt, 1972.
(9) The Ministry of Agriculture, The General Administration of Agriculture in the Fayoum Governorate, Department of Financial Affairs, Fayoum, Egypt, 1972.
(10) The Ministry of Agriculture, The General Administration for Agricultural Economy and Statistics, the Annual Reports, Giza, Egypt, 1960-1972.
(11) Gittinger, J. Price. Economic Analysis of Agxicultural Projects. The Economic Development Institute, International Bank of Feconstruction and Development. Baltimore and London, 1972.
(12) Rydzewski, J.ll., The Significance of Operation and Maintenance Costs in Irrigation Development Planning.
(13) Delaney, E.P. Evaluation Techniques and their Role in Water Resource Developnent Planning.
(14) Marei, S.A., Future of the New Agricultural Lands, in Egypt, Al-Ahram newspapers, Cairo, 1966.
(15) The Ministry of Agriculture, Soil Department, Soil Survey Division, Report of 'Soil Survey and Land Classification of the Fayoum Governorate', Cairo, Egypt, 1965.
(16) The Ministry of Irrigation, The General Adrainistration of Irrigation in the Fayoun Governorate, Technical Office, the Special Documents, Fayoum, Sgypt, 1972.

gheral rieferences

Dasgupta, Ajit K. \& Paarce, D. W. Costmenefit Anolysis, Theory and Prectice, Macmillan, London, 1972.
Herpnell, R. Economic Apuraisal of the Lihongala Irrigation schene (Provisional Sumary). P.G.T.C. Berlin, Germazy, 1970.

Henderson, P.D. Sone Unsettled Issues in Cost-Benefit Analysis. In Unfashionable Dcononics, Essays in Konour of Lord Balogh, edited by Poul Streeten, pp.275-301. Losdon. Tiedenfeld and Nicolson, 1970.
F.A.O. Indicative World Plan for Agricultural Development to 1975 and 1935. Provisional Regional Study No.3. Africa, South of the Shara. Rome, 1968.
F.A.O. Selected Bibiolography on Project Analysis. Rome, 1969.
F.A.O. General Guidelines to the Analysis of Agricultural Production Projects. Agricultural Plaming Studies Ho. 14. Rone, 1971.
Little, Ian M.D., Ead Mirrlees, Janes A. Social Cost Benefit Analysis. Vol. II of Henual of Inaustm xiol Project Anolysis in Developing Countrios. Development Centro Studies. Development Centre of the Organisation for Economic Co-Operation and Develoment, Paris, 1969.
Peters, G.H., Cost-Benefit Aalysis and Public Expenditure. The Institute of Rcononic Affeirs, London, 1973.
Reutlinger, Shlono, Techriques for Project Appraisal under Uncertainty. 符rld Benk Staff Occasional Papers Mo.10., The Johws roplins Press for the International Bank for keconstruction and Development, Baltinore, 1970 .

Hydzewski, J.R., Townas Increased Efficiency of Irrigation Projects - The Ergizeers Viewpoint. Wallace, W.F., Irrigetion Operation and Laintenance Costs, A study of the Recurrent Expenses observed in Irrisation Schenes, 1971.

[^0]: Fron this analysis, it could be concluded that the best method of econoric utilization of the new cultivated lands in Egypt is to put them into the faruers possession, on conpletion of the projects. It could also be deduced, from this analysis, that State faris yield a rather saall revenue and they may be unprofitable from the economic point of view.

