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IRREVERSIBLE COSMOLOGICAL ¥ODELS

by Keith David Piggott

In this research a mathematical model of the universe is
constructed based wupon three standard postulates; (1) The
Roberston VWalker Metric, (2) The perfect fluid energy momentum
tensor, and (3) Geperal Relativity. In addition the
thermodynamic interaction between the matter and radiation
phases is included via the Thomson interaction. Oscillations
of a closed model universe are studied and the irreversibility
generated by the inclusion of the interaction is considered.

The set of differential equations that represents the model
universe are solved numerically. Detailed study is made of the
initial conditions and constants of motion to be assigned to the
equations and their physical meaning. The effect of differing
initial conditions on the numerical classification of the
equations is touched upon.

It is found that for initial conditions based strictly on the
physical universe that the irreversibility generated is less
than the minimum error made in the solution of the equations.
This error is probably in excess of 102,

For initial conditions that are more numerically convenient to
solve, but which are strongly guided by the physical condition
of the universe the ireversibility induced by the interaction is
calculable. For such conditions pleasing results appear as the
irreversible effects build up over many cycles. These are, (1)
later and later cycles appear more and more ‘flat‘, this offers
a non-inflationary solution to the flatness problem, (2) later
and later cycles tend to be more and more dominated by radiation
at the initial point. In addition it is also predicted by the
model that as the cycles continue then these effects will also
bave two other results , (1) the universe will never enter a
‘matter domipated era', (2) the radiation temperature will
eventually forbid the evolution of life !
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CHAPTER OFE

Introduction

In the beginning God created the heavens and the
earth®

[ Genesis Chapter 1 Verse 1 R.I.V. 1

51.1 Cosmology ~ The study of what ?

The Holy Bible begins with +the above words
describing the creation of our universe. It seems
that as long as man bhas existed he has wondered about

the universe, its creation and his place in 1t.

Almost all the myths of the anclent cultures have
a creation fantasy, the Babylonians, Egyptians,
Greeks, Indians and Chinese. Even the Hitch Hikers
Guide to the Galaxy speaks of +the universe being
sneezed out of a great nostril I![1]

Cosmology proper baegins when the scientific
method of observation and measurement of phenomena is
applied to the universe. Hathematical cosmology
attempts to make predictions based on the obeerved5
physical laws of the universe. '

As a sclence, cosmology can be seen to have begun
with the classical studies of the Greeks from 580
B.C. to 140 A.D.. Pythagoras, Plato, Eudoxus,
Aristotle, Aristarchus and Ptolemy did much to
prepare the ground for their post dark ages

sUCCessOrs.
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Cosmology resurfaced after the dark ages with the
Copernican revolution, when it was at last realised
that the earth did not occupy a special place in the
cosmos. With the work of this Polish cleric we can
see the seed of the cosmological principle that was
to serve science so well in the 20th century.

Vith the work of Kepler showing that the motion
of the planets could be understood with geometry and
that simple relationships connected various
parameters of the planets' orbits the mathematical

theory of our universe was born.

Newton made a significant contribution to
cosmology by showing that the same pPhysical process
that led an apple to drop to the earth's surface

could explain the motion of the beavens. In deriving
Kepler's laws, Newton began the dynamical
investigation of our universe. In fact, the great

man was the first person to apply mechanics to the
universe, but his study was flawed by the inherent
problems associated with an infinite system . The
problem of an infinite Newtonian gravitational-
potential would not disappear until the second decade
of the twentieth century.

In 1916, the genius of Einstein left a lasting
mark on cosmology with the General Theory of
Relativity. With his interpretation of gravity as
the manifestation of non-Euclidian geometry, allowing
solutions to the field equations of the gravitional
field, representing the universe that were finite and
yet unbounded, the problems of an infinite universe
vanished. ( However, the problem of infinities was to
return to plague cosmology 1in the question of
singularities and the big bang )
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¥ith the cosmological principle embedded in the
metric of Robertson and Valker, and Einstein's
equations of general relativity, Friedman, in 1922,
and Lemaitre were able to produce evolving 'big bang’
theories of the wuniverse, which, as a basic

framework, still dominate cosmological thinking
today.

WVhen in 1929, Hubble discovered the expansion of
the universe, the cosmological models of Friedman and
Lemaitre were reinforced as being more than idle
mathematical speculation. Vith the discovery of the
cosmological microwave background by Penzias and

Wilson in 1965 the big bang theory seems triumphant.

Thus +today we bave a standard model of the
universe that seems to explain a vast number of its
large scale features —~ the expansion of the universe,

the microwave background, the element abundance etc.

One would not claim that the standard big bang
theory was without fault. It does bave problems that
are not easy to explain. Apart from the problem of
Galaxy formation, [23 that is how did the
inhomogeneity that we observe in galaxies and their
clusters originate and evolve in the homogeneous and
isotropic Robertson-Walker Space—-time. There are
three main problems with the standard model:

L The bhorizon problem [3] - the universe at
present consists of approximatly 10°° causually
disconnected regions of space-time, this very large
number i1is arrived at by calculating the size of a
causually connected region of space time just after
classical General Relativity becomes applicable to
the standard hot big bang model and comparing this
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volume to the present size of the universe . Vhy
should the microwave background be isotropic over
lepgth scales far greater than the horizon length ?

ii> The flatpess problem [4] - For our
present universe to bave evolved for us to observe
it, the original value of the density parameter must
bave been tuned to within 10-s of unity. Had the
deviation been significantly larger the Universe
would have reached the point of maximum extension
with a radiation temperature far too high for
intelligent 1life +to form, or it would bave expanded
much too fast for galaxies to form. Fo process is
known capable of producing such a fine tuning.

111> The monopale problem [5] - Quantum field
theory applied to the very early universe predicts
that enough of these exotic species should bave been
produced to dominate the present mass density of the
universe. This prediction is made by considering a
unified quantum field theory applied to the very
early universe, this predicts that at this time a
very large number of magnetic monopoles should bave
been produced. The number of these thus produced
seems to be insensitive to the particular unified
field theory that is chosen, to eventually yileld, via
symmetry breaking, the three quantum flelds that we
observe at our much lower temperature today. An
example of such a calculation in a particular unified
field theory may be found in reference [6]. To date,
no conclusive monopole has been produced. Vhere are

they or where did they go ?
The inflationary universe theory (7] explains

each of these problems by postulating a period of

exponential expansion 4in the size of the early
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universe. This is caused by a phase transition in
the field describing the matter content of the very
early universe-the exact detail of the phase
transition depends on the particular G.U.T. chosen,
however, it always seems to be assocliated with
spontaneous symmetry breaking. ¥ith this massive
expansion, any factors such as curvature or monopoles

would have been violently diluted. One single
horizon length could have been blown up to larger

than the present observable size of the universe.

It will be seen in this work, if the interaction
between the phases in the late universe are
consldered, over many cycles the universe becomes
more flat as the cycles progress. The particular
region of interest is shown as lying between the
points marked ‘a’' and ‘b’ on the standard thermal
history of the universe shown in Graph G1.1 and taken
from reference £81, i.e. when  the radiation
temperature is below 10°K but above 4,000 This
increase in flatness is due to the work done against
the gravitational field, increasing the initial rate
of expansion. Hence one of the problems of the
standard big bang theory may be overcome in a non—

inflationary way.

51.2 The question of reversibility in the standardu
model

The standard cosmological model as described
above considers the Universe on the large scale to
consist of an isotropic blackbody radiation field and
a matter field. After nucleosynthesis this matter
field is domipated by Hydrogen, this is ionized until
the recombination temperature of 4,000K is reached.
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GRAPH G1.1

A standard thermal bistory of the universe taken
from reference (8], showing the era, lying between

the points ‘a' and 'b', with which this work is
concerned. f
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It is assumed that until after the recombination
occurred, the interaction of the ilonized gas with the
photons was so strong that thermal equilibrium

occurred and the temperatures of +the +two phases

remained locked.

This assumption leads +to the slightly puzzling
state of affairs that, in a model in which the
thermal interaction between the phases 1s very
strong, the model 1is well represented by a‘ zero
interaction case. This is because an interaction is

self defeating - 1t tends to equalise temperatures
and then vanishes.

In such a strongly coupled model the generation
of entropy, which is caused by the interaction, is
zZero. The universe is totally reversible ( if it is
closed ), +totally symmetric about its point of

maximum extent and possesses no arrow of time.

This study considers the inclusion of the
interaction between the phases explicitly ip the set
of differential equations representing the model.
universe. These equations are solved numerically,
to study the validity of the reversibility statement
and to assign limits to any irreversibility in a

closed universe.

Although this irreversibility effect is expected h
to be smwall over a single cycle, im a connected
polycycled model (¢ if such can exist ) the combined
effects can build up to a sizeable amount.

It 1is possible that these irreversible effects

could build up over many cycles and solve one of the
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problems of the standard blg bang model, namaly the

flatness problem, in a non—-inflationary way.

S1.3 This study

In this study we wish to consider how well
Justified the assumption of thermal equilibrium is in
the post nucleosynthesis but pre—decoupling uniQerse.
To do this the standard cosmological model is adapted

to 1include =a thermal interaction between the matter
and radiation.

This adaption means replacing the equation of
energy conservation in the normal FriedmannRobertson—
Walker model with an equation of energy conservation
for each phase. Mathematically this is easlily

accomplished, but results in equations that are much
harder to solve.

The resulting set of equations will be solved
numerically as the universe moves through a cycle. .
The irreversibility pProduced by the interaction
acting over the cycle will be calculated. The value
of this quantity will show how Justifiable is the
approximation of reversibility and equilibrium.

Ve proceed to present and discuss the;\
'ingredients' of the model and their applicability to
the real universe. Mapy of these are parts of the
standard model. Space does not allow a full
critique of the assumptions in +the standard model,
for more information the interested reader is

directed to the references, especially [9,10,11, 121
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The standard model assumes both the large scale
homogeneity and isotropy of the wuniverse and
Einstein's theory of General Relativity, with zero

cosmological constant, as a dgscrip%ion of gravity.

In this case the future is dependent on the
spacial 3 curvature, k. If k is +1 the universe is
closed and will eventually stop expanding and enter a
recontracting phase. If bowever k is -1 ( open ) or

0 ¢ flat ) then the universe will expand for ever.’

The curvature is dependent on the average energy
density of the universe. If this exceeds a critical
value ( pe =~ 10-° J/¥® ) +then the universe is
closed, if it is less then the universe is open. if
the density should be equal to this value then the
universe is spatially flat. The ratio of the actual
denslity +to this critical density is the density
parameter, Q.

Measurement of the luminous matter in +the
universe indicates Q@ = 0.2 [131, bowever this
conflicts with the observed motion of +the galaxies
[141. Attempts to measure the actual geometry of
space, using the galaxies as test particles, lead to
values 1in the region of unity [15]. These results
have lead to much speculation concerning the question
of dark matter in the universe [16,171.

The standard model indicates that whatever the
ultimate fate of the universe, it began at a finite
time 1in the past. This occurred at a singularity
with infinite density - the big bang. As the
universe expanded from this stage it cooled. In fact
in recent years big-bang type singularities have been

reported in inhomogeneous cosmologies [181.
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The microwave background is a relic of this early
bhot stage of the universe and allows us to calculate
the thermal history of the universe to very near 1its
birth. This allows thé calculation of the
production of complex elements during the era of
nucleus;hthesis. A definite prediction is that the
abundance of Helium should be approximately 27% by

weight [19]. This may be borme out by observation
[201.

From its origin in the big bang, until the era of
recombination of +the ionized plasma, the standard
model assumes that the universe was in exact thermal
equilibrium. The matter and radiation phases had
exactly the same temperature. After recombination

each phase cooled independently.

The metric for the space-time of the universe is
the Robertson-Valker metric (21]. This choice is
dictated by the assumption that, on a sufficiently
large scale, the universe is, in sSOme sensea,
isotropic and homogeneous - the cosmological
principle. This metric is independent of the choice
of the +theory of gravity, provided it is of‘ a

geometrical nature. There are essentially four
separate reasons for making these symmetry
assumptions.

These are simplicity assumptions. The field

equations of any geometric theory of gravity give

rise in general to a very complicated set of non-

linear partial differential equations. The greater
the symmetry chosen for the metric, the less
complicated the set becomes. The Robertson-Walker

metric is the simplest metric which allows unlversal

expansion.
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Philosophically, cosmology and astronomy have
progressed as the Earth's position in the cosmos bas
been accepted as less and less special. The
cosmological principle of the 3 dimensional spatial
symmetry is thus attractive. Philosophy in sclence
mist always be restrained by hard facts — the perfect

cosmological principle yields apparently false
results [9].

The 1isotropic microwave background radiation
accidentally discovered in 1965 [22] seams to
indicate that, prior to the decoupling of the phases,
the dominant phase was isotropic to a factor of 10-=.

The question of the isotropy and homogeneity of
the matter in galaxies is a far more open question
[231. However, it has been shown that above a
smoothing length scale of order 200 MPc the universe

can be considered as homogeneous and isotropic. (241

Any significant deviation from bhomogeneity and
isotropy i1in +the present distribution is less
relevant to our study of the effect of the pre-
decoupling interaction among the phases, as it is
believed that galaxies formed around the time of
decoupling £103. If, however, the
inhomogeneity/anisotropy i1is indicative of serious
asymmetry in the material content of the earlier
structure of the universe it is far more serious.’
Such an occurence would invalidate the choice of the,

Robertson—Valker metric.

The epergy momentum tensor taken for the space-—
time is that of a perfect fluid. Physically this
implies that we are assuming that the universe is
filled with a 'fluid’' of galaxies. These galaxies
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are the test particles of the universe and, according
to General Relativity, they move along the geodesice
of the space-time. The assumption of this particular

energy momentum tensor ig Justified for two reasons:

i As with the choice of the metric for the
space-time 1t 1ig g simplicity assumption. The
perfect fluid is the most Physically realistic tensor

for which there ig any hope of solving the resultant
field equations.

i1 The assumptions of spatial homogeneity and
isotropy, when applied to the matter content of the
universe, as Tepresented by the energy momentum
tensor, require that this object is form invariant
under those transformations which leave the metric of
the space-time form invariant. The only tensor
which satisfies these spatial isometries is that of
the perfect fluid [25].

The field equations for the gravitational field
are Einstein's. General Relativity seems to be the
best geometrical theory of gravity at present. The
classical tests of General Relativity, although often
not involving the actual field equations, appear to
bhold true [261, Other theories have been tried but
none seems as natural or explains physical facts with
s0 few extra assunmptions. The cosmological constanﬁ
is set identically equal to zero. There seem‘to'bé
many good reasons for supposing this to be true in
the late universe, both from astrophysical
observations and Quantum field theory [27].

The interaction chosen to couple the phases is

the Thomson interaction of radiation with charged
particles. How good is this approximation is tied
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to the question of the accuracy of the rest of the
model . Suffice it to say thaf if the universe is
well modelled by a charged plasma and a blackbody
radiation field, then +this interaction is a good

approximation in the post nucleosynthesis universe
(281.

The Thomson interaction is chosen in particular
because with the temperature range of our model, from
nucleosynthesis ( 102K > +to decoupling ¢ 4,000% >,
1t represents best the thermal interaction of an
ionized plasma with a blackbody radiation field. Up
to a temperature of 107} studies show +that the
Thomson interaction is an excellent approximation to
the more general Klein WFishima interaction [29].
Above 107 to 10®K it has been shown to be about 85%
accurate. This interaction is adopted as it 1s the
most accurate process which can  be incorporated

simply into the standard cosmological model.

It must also be noted in passing that the Thomson
interaction is derived from the scattering of quapntum
particles on a flat static space-time background.
The model, however, also assumes General Relativify,
which describes gravity as beilng due to a non-static
curved space—time. Ve can only assume that +the
interaction carries over into a more general space—
time. There are problems with such hybrid theories
which have been discussed elsewhere [30]. Further
Justification of such hybrid models has appeafedjin
recent years as 1t has been proved that the Plank
radiation law carries over exactly +to an open
universe, and that although a modification does
indeed occur for a closed universe that this is small

and within the current bounds of experimental error
[311.

PAGE - 13



It has been shown that the overall effects of the
interaction in easily calculable models is not

strongly dependent upon the interaction chosen [ 321.

As the universe is chosen to be closed, it will
eventually encounter an era of nucleobreak-up
followed by a space-time singularity. As the model
is built upon both classical General Relativity and
thermodynamics, with a constant number of particles,
the model is not valid in this region. )

In order to study further cycles, a method of
cycle truncation is employed such that a ‘bounce’
occurs and the universe emerges after a period of
nucleosynthesis, in exactly the same state as it was
prior to nucleobreak-up, but with the opposite sense
of motion. This bounce, although crude, is the only
method available for the study of a poly-cycled
universe. It bas been used by several notable
authors to date (33].

This metbhod of truncation is not as arbitrary as
it might first appear. It 1s necessary to stop the
model once the era of nucleobreak-up is encountered,
as the model is based upon classical thermodynamics,
with a constant number of particles. However,
classical General Relativity remains valid very near
to the Plank region [34]1. Once +the radiation
temperature is above that required for element break;
up, the appropriate interaction with which to ccuple
the phases is the Klein Nishima interaction [35]1. At
these temperatures this is strong enough to maintain

thermal equilibrium wuntil +the Plank region is
reached.
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In effect the ‘bounce' employed in this work omnly
assumes that the as yet unknown Quantum Gravitational
forces, acting 4in the Plank domain, cause +the
universe to reappear afterwards with a new expansion,

but exactly the same phaée energies as before.

It bas been argued [36] that consideration of the
principles of equivalence and Birk.w.f, applied to a
reasonable theory of gravity would indicate that a
contracting universe would always be governed by a
Friedmann equation of the form of of equations 2.6 or
2.42, and hence may not bounce. If this is the case,
which 1is still subject to conflicting publications
{371, then, although the study of the entropy etc.
generated in a single closed cycle by the
irreversible interaction 1s still applicable, the
polycycled predictions become a mere computational
exercise. However, +the following points are worthy

of mention in defence of a bouncing model.

The limit of the Friedmannequation of motion, as
the scale factor tends to zero, does not indicate a
polnt of classical stability and, as the scale factor
by definition canonot ©become negative +then ‘the
question of what does the scale factor do begs to be
asked, one may thus suggest that a re—-expansion may
occur,

It has been shown that in several models of super
gravity the big bang and big crunch singularities do
not occur and that the latter camn even be converted
into a bounce [(38,39]. In addition, consideration of
the growth of quantum uncertainty near to the initial
singularity seems to indicate that there will be a
finite probability of non-classical, non-singular

states near to the classical singularity as the scale
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factor goes to =zero [401, In addition, it is

possible that any universal rotation may avold the
singularity [41]..

It seems to the au&hor inadvisable to make any
definite predictions as to the behaviour of any true
quantum theory of the gravitational field until such
a time as such a theory is available, espaecially when
predictions are belng made so close to a space—time
singularity where even the topology of space-time
itself may be subject to quantum fluctuations. Indeed
such an authority as Penrose has commented that, in
his opinion, a quantum theory of gravity will in some
respects be significantly different from classical
General Relativity [42]. It is with a mind to these
considerations that it is sugested tentativly that a
future quantum theory of the universe may lead to a

re—expansion of the universe,

As the model 1s taken to be closed, it will have
a life of less than 10'’ years, this means that the
effects of proton decay may be safely ignored as the

bhalf life of this decay is known to be in excess of
109° years [43].

Since the first appearance of the inflationary
universe theory, research into that topic has
appeared to dominate cosmological research to a large
degree. However, 1in the past few years, three
strands of cosmological research have appeared that
consider the interaction of matter and radiation in a

cosmological model.

The first of these (441, by consldering +the
interaction of two ideal fluids around the +time of
nucleosynthesis, has shown that although the
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interaction does not affect the element abundancies,
and 1is thus consistent with observed data, the

interaction does allow for the universe to be closed
by baryonic matter alone. ’

The second of these [45]1 the extra *Thermal mass®
that a particle acquires due to 1ts interactions at a
non~-zero temperature is considered. By using first
order perturbation theory it is found that for all
species  except the electron the effects are
negligible. However, consideration of the electron's
extra thermal mass  prior to the period of
nucleosynthesis indicates that a correction to the

equation giving the temperature dependence of the
scale factor should occur.

In the third of these [46]1 it has been shown
that an interacting inbomogeneous cosmological model,
consisting of an l1deal fluid and dust, can in a sub-
class of exact solutions evolve 1into a standard

Robertson—-VWalker type cosmological model.

In view of the relative dearth of studies of the
effects of +thermal 1interaction on the structure of
the universe, the present interest in the flatness
problem, and the interesting conclusions of the
papers cilted above, the structure of the universe
caused by thermal interaction during the later
universe cried out for careful study. The néed'for
Just such a study was amplified by the arbitrary way
that initial conditions and constants of motion were
assigned to the earlier works on the effects of the
thermal interaction 1in +the post nucleosynthesis
universe [29,30,32,33]1.

PAGE ~ 17



CHAPTER TVO

An Irreversible Cosmological HModel

52.1 The General Relativity of the model

We pnow proceed to use the pPhysical assumptions
stated and discussed in S1.3 to develop a three phase

irreversible cosmological model.

These assumptions which are discussed 1in the

previous chapter are,
i The Robertson-Valker metric

11> The perfect fluid energy momentum tensor
i1ii) General Relativity

iv) The Thomson Interaction

The assumptions of the large scale bhomogeneity and

isotropy of the universe, ' The Cosmological
Principle * lead, on purely geometrical grounds, to a
unique metric for the space-time - +the Robertson—
Valker metric [211]. The associated line element
is,

As®=c?dT#*-R2(T) [ dr2+1r2 (d02+5in20dgf =) 1 /A= () 2.1

where,
A(r) = 1 + WEr=
RTD) = Cosmological Scale Factor
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k = Curvature Constant ( Scaled to 0, *1 >

i

Cosmological time

H

Radial Coordinate
&g

i

Forsal Polar Anglés
As discussed in S1.3 the assumptions of spatial

symmetry force upon us the perfect fluid energy
momentum tepsor. This is [25]

Tar = pgmaes + ( p + p/c® IUale 2.2>

where,

p = co~moving mass density

it

cCO-mOVing pressure

Umw = Fluid 4 velocity vector ( in a co-moving
frame Un = [c,01 >

== = The metric of the space-time.

Binstein's field equations of General Relativity,

without the cosmological constant, will be used as a

description of gravity. Thus the fleld equations
are, [47]1,
Gat = BrG/Cc®)Tan 2.3
Calculation of +the Einstelin Tensor from 2.1

using an algebraic computing package and substitution
of the results and (2.2) into <(2.3) give two

independent equations. Letting i dencte

differentiation w.r.t. cosmological time T, these are
[11]

2R'*/R + R'2/R® + kc®/R? = ~-8nuGp/c= (2.4>
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R'2/RZ + kcZ/RZ = BnGp/3

2.5

(2.5) immediately yilelds an equation of motion,

R'Z = BuGpR=/3 — kc=

multiplying (2.4) by R= gives,

1 d [RR*=] ~8npR* - kc=

———— L]

R*d4dT o=

80 uslng (2.5 1n (2.7) gives the

equation,

d(8nGpR*/3) ~8%XGpR2R"

an—— =

aT c=

defining the co-moving element V by,

V = 4xR=/3

(2.6)

2.7

consarvation

2.8

(2.9

and the epergy U in a co-moving volume element V to

be,

U = pVe=

(2.8) & (2.10) give.

U' = 4xpR=R’

This 1is the most useful form of +the
equation.
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52.2 The thermodynamices of the model

Decompose the pressure and energy of the model
into that from a sum of three phéses,

1) Radiation - subscript .

11> Protons ~ subscript o
iii) Electrons - subscript .
S0,
U=1U,. + Uu + U, .12
P = Pr + De + pe .13

FNow introduce 3 dissipative interactions E., E. & Eo
where Ei is the rate at whilch the i*th phase loses
energy by interaction .

with (2.12) & ¢2.13>, (2.11) can be replaced by three
equations,

Ur® + 4xp-R'R® = RH. 2.14
Un® + 4%paR'R® = Ea .15
Uo® + 4xpuoR'R®= = Eo 2.16>

provided that the conservation requirment,

Ev + BEa + B = 0 (2.16a>

is obeyed.

With (2.12) the equation of motion (2.6) becomes.

R'Z = 2G¢ Ur + Ua + Up I/Rc= = ket 2.17>
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Choosing the electron - radiation interaction to be
the Thomson scattering gives [281,

Ba = ACTA)*( T - Ta ) ' 2.18)
where,
T~ = Radiation Temperature
Te = Electron Temperature
A = doakN/ (Momc) 2.1
with
o = Thomson cross section of the electron
a = Blackbody radiation constant
k = Boltzman constant
N = Number of electrons

Boe = Blectron rest macs

o i

Choosing the Protom - %&&mﬁﬁéﬁ interaction to be the

Thomson scattering gives,

Hi

Ee BT T = Tp ) .20

where,

Te = Proton Temperature

B = 4o'akW'/ (moec) (2.21>
with,

Mo =  Proton rest mass

' = Thomson cross section of the Proton

PAGE - 22~



H° = THumber of protons

Jaa

For a chdwge neutral universe we require,

H = §
Thus from (2.18) & (2.21) we find, using the fact
that cross sections are inversly proportional to the

square of a particle‘'s mass.

A/B =( Dop/Mow)™

i

(L/7c0™ 2.22)

Before we can use the above interactions to study

the irreversibility, we need equations of state for

the three phases. For the radiation we choose the
blackbody formulae. These give [48]
pr = U-/3V (2.23)
Tr = (Un/aVvirrs= .24

For the electrops we use the ideal massive quantum

gas and an interpolation formulae due to Honl [493.
This gives, )

Pe = Vay (Va/Uce)/3V = UVa¥ae 3V 2.25)
where,
Px)=1-3/ 2x2)+1/x=-1/ (2x2> =~ 2(x—1)/x% (2.26)

The approximation being true for x-1, small and
representing the ideal massive classical gas. The

electron temperature is given by,
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Te = p=V/Ek (2.26a)

For the protons, we take an ideal massive quantum

gas. Thus similarly to the electron case,

Pe = Upy (Up/Uor)/3V = Uoy/3V 2.27>
Tﬂe proton temperature is given by,

Te = pPeV/Hk | 2.28

Using the equations of state ,the equation of
epergy transfer for each pbase, together with the

equation of motion and the copservation requirement,

we can form the four fundamental equations of the
model.

Using (2.9 (2.14)° & (2.23) gives for the
radiation.

Ur. = Er - R.U"‘/R (2.29)
Using (2.9 (2.15) & (2.25) gives for electrons,

Using (2.9) (2.16> & (2.27> gives for the
Protons

Up' = Ep -R'Us¥e/R (2.31

S0 equations (2.29) - (2.31) together with the
equatlion of motion,

PAGE - 24~



R*'=2 = 2G( Up + Um + Ur I/ (RCc®) — kc= 2.32>

make up the fundamental differential equations of the
model im S.I. units. )

52.3 The reduction of the equations defining the
model

Prior +to considering the question of initial
conditions and constants of motion for this system it
is most useful to introduce changes of variable to

remove many of the constants.

Let us make the changes of variable,

R(T) = Ror (2.33)
T = Tot (2.34)
Ur = Uocwy (2.35)
U = Ucwx (2.36)
Upo = Usaez 2.37)

where Ro & To are arbitrary positive constants to be
chosen later for convenlence. Ve will refer to the
variable r , the scaled scale factor as the radius of'
the model universe.

The total electron rest epergy is,

Uoe = HBoaC® 2.38>
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These changes of wvariable introduce two arbitrary
constants so that there are two degrees of freedom.

We use these to eliminate as many constants as
possible.

We now proceed to perform the above changes of
variable on the fundamental equations of tbhe model
(2.29) - (2.32). We define short hand ‘'dot’' ° to

denote differentiation w.r.t. scaled cosmological
time . '

i.e.,
. dp
P = —
dat
With (2.23> - (2.37) the equation of motion (2.32)
becomes,

I? + KCZ(To/Ra)2 2GUom (x+y+2) TaZ

P = 2.39)
2 c= rRo=

Usling one of our degrees of freedom by choosing,

GlowTa® = 1
(2.40)
Ro®c®
and defining the constant C by,
C = —ToZkc2/2R.= (2.41

Is important to note that in the above the capital C,
is the constant as defined by equation (2.41), and
lower case ¢, is the speed of light. ¥ith the above
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definition of C, (2.39) then becomes the reduced
equation of motion,

r2/2 - C = Cx+y + 2z >/r 2.42)

With (2.23) - (2.27), (2.29) becomes

¥ = (To/Usw)Bw. - yr/r (2.43)
Defining,
I- = (To/Uow)Er (2.44)

gives the reduced radiation equation,

y = I. - yo/r (2.45)

With (2.23) - (2.27), (2.30) becomes

X = (To/UowdBe —Xyar/r (2.46)
Defining,
Ie = (To/Uce)Ea 2.47)>

gives the reduced electron equation,

X = e — Xyar/r .48

With (2.23) - (2.27), (2.30) becomes
Z = (To/Uow)Bp —zypl/r (2.49)

Defining,
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Ie = (To/Uow)Be 2.50
gives the reduced proton equation,

z = Ip - zyer/r 2.51)>

In order to give the differential equations in a
computable form we must find expressions for the I's

as explicit functions of r,x,y,z. As a necessary

prerequsite the phase temperatures must be found in
reduced units.

Using (2.33) - (2.37) & (2.9) in (2.24) gives,

Tr* = (@QUew/4naRo™) (/1) 2.852)
Using (2.33) - (2.37) & (2.9) in (2.25) & (2.26a)
gives

Te = UceXye/38k 2.53>
Defining,

H{p> = py(m
gives
Te = UoaHb{(x)/3Fk (2.54)»
Using (2.33) -(2.37) & (2.9) in 2.27) & (2.28) gives
Te =  Ucwzy(oz) /30k (2.55)

= VUoel(oz) /38koa (2.56)
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Having, in equations (2.52) (2.54) & (2.56)
explicit expressions for the phase temperatures we

move on to calculating axpressions for the
interactions. ’

From (2.18) & (2.47) we obtailn,

using (2.52) & (2.53) in (2.57) gives

Ja =ToA(3Ucw/4RaR®)E/ 4 (y/r2)5s4

Uow
Blow/4raRa) AToH (x) (y/12)
(2.58>
3k
Defining,
P = (QUcw/4x8Ro®)®7*ATo/Uom 2.59
Q = ATo3VUcw/ (3Fk4inxaRa™) 2.60
glves in (2.58)
Je = y/r'®/4(Py'> ~ Qras/+H(x)) (2.61>

Using our final degree of freedom given by the
changes of variable and setting ,

P =1 2.62>

gives in (2.61)

le = y/r¥®74(y"™ - QUr=/4H(x))> 2.61>

Using (2.20) & (2.50) gives
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Using (2.52) & (2.56) in (2.62) glives

Uow
(3Vow/AxaRo™) AToH (az) (y/r™)

3Fka

Defining,

v

i

(BVoa/4naRa®) 5" BT/ Vow

glves in (2.63)

Ie = y/r1874(Vy'> - Sr=/4H az) /o)

Comparing (2.64) & (2.59) gives,

P/V = A/B = 1/c®

s0 by (2.62)

V =0 = 1/1836=

comparing (2.65) & (2.60) gives,

Q/5S = A/B = 1/a®

S0
5 = o2Q

(2.69) & (2.2.67) give in (2.66)
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Ip = «Fy/r?®/4(y' — Qr@/4H (az) /o) 2.70

From (2.16a) (2.44) & (2.47) we get

Ir = ~To( Ba + Ep Y/ Vom = ~Ja — I 2.7
so (2.71) (2.70) & (2.61) give

Ir==y/r'&/4 (y'+(1+0@) ~Qro7 4l H(x) +o2H(az) 1) (2.72)

Thus we arrive at +the set of differential
equations to be computed to give a three phase
interacting cosmological model. They are:

The equation of motion of the model, (2.42)

r2/2 - C =(x+y+z)d/r (2.73)

The three thermodynamic equations (2.45) <2.48) &
.51

y = 1. - yi/r 2.74)
X = la - Xyer/T (2.75)>
Z = Is - zyer/r (2.76>

Together with the 1internal relations <(2.61) &
2.70

H(P) = py(p) = p-3p/2+1/p2-1/(2p™) 2.77>
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Ie = y/r'®/a(y> — Qro +H(x))

Ie = a®y/ris s(y> - Qra/+Hlaz) /o)

i

Ir "(In”g*Ip-)

The above system of differential

together with three constants of motion .
Q Interaction constant
C Curvatura constant

o HMass ratio

and a set of 1nitial conditions,

at t = tas
r = r{t=ts? = ro
x = x{t=ts) = xo
y = yt=te) E yo
z = z{t=ta) = Za

determine the time evolution aof the model.
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CHAPTER THREE
Initial Conditions and Constants

Before proceeding to solve numerically the set of
initial value differential equations developed in
chapter 2 +to describe a ihree phase interacting
cosmological model, it is necessary to assign initial
conditions and constants of motion to the
differential equations .

In this chapter +this will be done in three
different ways:

D Assigning numbers in such a way that
the differential equations are convenient for
numerical solution.

i Assigning numbers based on sensible
astrophysical data and information about the universe
at present. R

111) A method intermediate to 1) & 11) so
that numbers are chosen to be hunerically convenient
but in a way guided by the real universe.

53.1 Assigning initial conditions and constants to be .
numerically convenient: )

In this section we follow closely the method and

numerical values used 1in +the ©previous work on

interacting cosmological models [50].
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Ve choose an initial point ( suffix o ) at which
the electrons are neither totally classical ( x. =
1.0 ) nor totally relativistic ( xo >> 1.0 ) but at
an intermediate stage. Ve chbose,

e = 2 G0

In an attempt to maximize the effect of the
interaction we choose the initial radiation energy to

be equal to that of the electrons, so thus—, .
Vo = 2 . 3.2

As +the interaction of +the protons with the
radiation will be much 1less than that of the
electrons ( seen by the factor o® 1in equation
2.79)), and for the sake of simplicity, the protomns

are +totally ignored in this treatment, we thus
choose ,

Zo = 2z t) = Zz(L) = O 3.3

In terms of the thermodynamics of the model this
is well justified, because the protons, which are-far
more massive than the electrons, are more weakly
coupled to the radiation. This can be seen from the
factor of o® in equation <(2.70). In terms of the
equation of motlon this approximation 1is not well
Justified as the protons would add a minimim .
contribution of o' to the emergy sum. This term is
clearly not negligble. Henceforth when using tﬁis
set of 1initial conditions we will refer to the

electrons as the matter.

As inverse factors of r® and simllar powers occur

in the model ro. must be chosen of order 1 to give
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computationally convenient numbers so that any
effects are neither washed out nor too violent. Ve

thus choose, following earlier work [50]
re = 0.27 ' 3.4

Ve impose the physical condition that initially
the phases were in thermodynamic equilibrium i.e. the
interaction vanished due to the equality of the phase
temperatures, thus from (2.78) requiring

I = O
glives,
VYa/Te® = [QH(x214 3.9

So 3.1 (3.2) (3.4 2.77) & (3.5) give,

Q = 2.208 3.6)

It is necessary to choose the curvature constant
so that the model will not expand for too long and
take up an excess of computer time, but will expand
long enough for the irreversibility in the
interaction to bave a noticeable effect. In common

with earlier work we choose,

C = —0.445 3.7
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At variance with earlier works; and fof the sake

of simplicity we choose the initial conditions to
occur at £t = 0.

We thus have one set of initial conditions and
constants for computation for the set of differential
equations at the end of Chapter two. This set of

data corresponding to computationally convenient
numbers is

X = 2

Vo = 2

ro = 0‘27
at to = 0

with

Q= 2.208

C = -0.454

The results from these ipitial conditions may be
found in Chapter four

53.2 Assigning initial conditions and constants  via:
astrophysical data ’

Before values for +the constants and initial
conditions can be calculated from astrophysical data,
it is necessary to find expressions for the constants

induced by our choice of relationships among the
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scaling constants To & Ra. The equations
need from Chapter two are, ¢(2.40)

GloaTo®

Ro®c=

2.59) & 2.62)

ToA(3Uoae/4AnaR.®) =74

Vow

2.60

Q = ATo3Ucw/ (3Rk4naR.=)

2.41)

~C = To®kcZ®/ (2Ro®)

Dividing (3.10) by (3.9) gives

o

Ro® = 3Uce/4Ana (3EkQ/Uow)

Putting (3.13) into (3.8) gives

Te® = (3FEkQ/Uce)*3cZ/ (4waG)

Using (3.13> & (3.14) into (3.12) gives

Q®/A = Uoa?(3c®/4naG) 72/ (3FKk)V /=
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Using <(2.19) for A gives in (3.15)
QF = (¢/3)2(12ac®/nG) " 720 Bow/ k= 3.16>

Bubstitution of numerical constants of nature [51]
into (3.16) gives

Q = 8.558 x 10% . €3.17

Using (3.13> & (3.14) in (3.11) together with
k=+1 for a closed universe, gives '

-2C = c*/G(3/4Ana) 72 (B *?/ Vo (3.18)>

Using ¢2.38) in (3.18) gives

C = —(@BEQ)4"2(3/4xad’ = 1

: (3.19)
26 e

Substitution of numerical values of constants of
nature and (3.17) into (3.19) gilves,

C = -7.164 x 105=/F=-= (3.20> .

Using an estimate of N consistent with a closed

universe [47] glves,
FE =~ 4 x 109

And hence
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C = -0.132 ‘ 3.2

Using the above, we are now able to proceed to
assign 1initial conditions €o our model using
astrophysical data. Ve choose to assign our initial
conditions at the end of the period of
nucleosynthesls. This is chosen as the point for two
reasons:

1) It 1s the earliest point 1in the
universe's history when the number of particles N was

constant. This 1s an implicit assumption 1in our
madel's development [52].

11> The very elements which we view today
were created at nucleosynthesls. It is the

earliest event which is directly observable [53].

At the end of the period of nucleosynthesis it is
believed that the following conditions applied :

a) Thermal Equilibrium held, T,.=Ta=Te [52]

B T = 10 K [121
c) pr/pPm = 105/2.35 [8]

from a) b) & (2.54) we get
H(xs) = 0.505

.

Using a package for numerical solution of polynomials

the real root of the above was found to be,

¥ = 1.3 3.22)

from a> b) and (2.56) we get.
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H(ozo) = 2.771 x 10—+

Using the same package the real root of the above was
found to be, ‘

Zo = 1836.25 or oz = 1.00014 (3.23>
from )
Vol { Xo + Zo ) = 108/2.35

3.23) & (3.24) give

Yo = 7.77 x 107 3.24)

c) together with equation (3.5) give

re = 1.306 x 10—% (3.25)

We thus have a second set of initial conditions

and constants of wotion corresponding to our
universe. '

As the universe was = 180 seconds old at the end
of nucleosynthesis [54], we still regard these
initial conditions to apply at t=0 as this timescale
is dwarfed by the 10'° years for which the model will’
expand until it reaches ‘*now'. [55]

The set of initial conditions and constants of

motion corresponding to our present universe is:

¥ = 1.3
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Yo = 7.77 x 107
Zo = 1.8625 x 10=
at t =0
and
Q = 8.558 x 10°®
C=- 0.132
o = 171836

The results from this set of initial conditions
may be found in in Chapter five

£3.3 Assigning initial conditions and constants
guided by the real universe

As we will see 1in Chapter five there are some
intrinsic computational problems associated with the
initial conditions and constants as developed in )
53. 2. For this reason, we devélop a third set
which, although not as accufately physically based as
those in 83.2, will be devoid of the associated

problems, without being as arbitrary as those
developed in S3.1

The initial values of x used in S3.1 & S3.2 are
simlilar so there is no problem with this parameter.
To comsider a model in which the matter is fairly

relativistic, the value 2 is retained
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As was seen in S3.2 the real universe originally
had the radiation dominant over all the matter . Ve
cannot have a radiation energy dominant over the
proton rest energy ( the Pproton rest energy is
1836 =~ this value beiné the proton to electron rest
mass ratio ) without recovering +the problems
associated with the conditions of S3.2 ( see Chapter
five). we can, however, have a radiation energy
which 1s originally dominant over the electron
energy. Ve choose,

Yo = 30

As in S3.1 we ignore the interaction of the radiation
with the protons, as much weaker than that of the
electrons. WVe do, however, include a static cold
contribution of +the protons to the equation of
motion. This means that the only contribution made by
the protons to the equation of motion is via their
constant rest mass energy . From (3.23) it can be

seen that this is a good approximation. Ve thus set

Zo = 1/ = 1836

As in 83.1 we wish to keep r. of order omne but for
the sake of variety and to show that results are not
finely dependent on initial conditions, as was found
to be the case for a distribution of '1niti&1

conditions based around this value, we choose,
I'e = 0.25

Similarly we alter the curvature constant,

although not drastically. We set,
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C = -0.20

Imposing the requirement of initial
equilibrium again via (3.5) gives,

thermal

Q= 4.605

We thus have a third set of initial conditions and
constants based upon physical facts, but which still

give computationally convenient numbers. The' set is
Xo = 2
Yo = 30
Zo = 1/a
at t = 0
and
Q = 4.605
C= =-0.20

« = 1/1836

The results of this set of initial conditions are
in Chapter six.
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CHAPTER FQOUR

Results from Bumerically Convenient Initial
Conditions

S4.1 Results

The initial value differential equations given at
the end of Chapter two were integrated using the set
of initial conditions presented in S3.1. ¥ith these
parameters this wag poseible using simple numerical
routines [56]1. In +this Chapter, some of the results
are presented, i1llustrated and discussed.

As so many physically meaningful functions can be
calculated from the basic solution set [t; r<ty,

x(t), y<t>] the results we present must be seen as a
subset of all possible results.

The first problem was to confirm numerically the
results of previous studies of irreversibility in the
universe using +the Thomson interaction [29] and
others [301. This was done in two independent ways
using both a program constructed from first

principles and the numerical library routines cited

above [56]. The previous results were found to be
accurate by both methods which were themselves“
consistent. In view of the far greater computer

efficiency of +the routines these were used, in

various forms, for all following calculations.

Earlier works bad concentrated bheavily on the

question of entropy and the arrow of time in a closed
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universe. These studies have shown humarically that
entropy was non~decreasing in both the expanding and
contracting phases of the motion. However, the
internal consistency of the entropy calculations was

not clear, and worried at least one of the authors
[57]1.

To attempt to settle thig question of the entropy

generation, the entropy was calculated in two
different ways,

1> Via adding the individual Phase entropies
at each point

11> Via numerically integrating the rate of
entropy generation, treating the entropy as a fourth

dependent variable in the system of differential
equations.

The results were found to be the same, up to the
arbitrary additive constant representing the initial
entropy. This result was pleasing to one of the
earlier authors as it allayed his fears concerning
the internal wasistancy of the entropy calculations
[571. In essence, these calculations confirmed that
the sum of the phase entropies gave the same total
entropy as did integrating +the rate of entropy
production given by the interaction, once a similar

‘zero' of entropy was chosen.

Next, the question of studying more cycles thaﬁ
the three originally conesidered was addressed;
Using the cycle +truncation method (stopping the
contracting phase and starting the expanding phase of
the next cycle when the radius reaches its original
value), as described in 51.3, indicates that a cycle
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1s determined by the initial phase .energies. The
initial energlies of matter and radiation Xo, Yo will

be considered as functions of +the cycle number n,
thus,

X = Xofln)d

and,
Yo & Vol

Ten cycles of the model were calculated and the
results tabulated in Table T4.1. These are
illustrated in graphs G4.1 and G4.2. The two
initial energies show a slow, approximately linear
increase with cycle number.

It is important when studying all of the graphical
results in this Chapter to note that none of the
scaling factors between the scaled variables given,
and actual astrophysical observables is given. The
reason for this is as the current set of initial
conditions is not derived from astrophysically based
data the results are for a universe with different
physical constants, and number of particles than our
own, so that presentation of these scaling factors

would be at best unhelpful and at worst misleading.

In order to see whether any limiting behaviour

exists in these +trends, a much larger number of -
cycles was studied using more computer time. © The

results of this study of 1600 cycles are presented 1ni

Table T4.2 and illustrated in the Graphs G4.3-G4.6.

The results from these studies of convenient

initial conditions for an irreversible, oscillating
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Table T4.1

The variation of +the initial scaled matter and
radiation energy of an interacting, oscillating
cosmological model, subject to numerically convenient
initial conditions, with cycle number, ¥, for the
first ten cycles.

Cycle HNumber Initial Hatter Initial Radiation
Energy Energy
R Xo Jo
1 2.0000 2.0000
2 2.0475 2.1862
3 2.0747 2.3997
4 2.1012 - 2.6207
5 2.1272 2.8489
6 2.1525 3.0841
7 2.1773 3.3259
8 2.2015 3.5739 -
S 2.2252 3.8285
10 2.2483 4.0888
Table T4.1
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INITIAL MATTER EHERGY -~ o

GRAPH G4.1

The variation of +the initial scaled matter energy

X0, of ,an interacting, oscillating cosmological

model, subject to numerically convenient initial

conditions, with cycle number, N, for the first ten
cycles. '

Data : Table T4.1 Results columm 1
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GRAFPH G4.2

The variation of the initial scaled radiation
ehergy y&, of an interacting, oscillating
cosmological model, subject to numerically convenient
initial conditions, with cycle number, N, for the

first tem cycles.

Data : Table T4.1 .Results column 2
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universe, taken over many cycles, show certain
interesting trends. If we can expect these trends,
if not the actual numerical results themselves, to be
reproduced in the real universe, then we may make a

comparison with the astrophysics and cosmography that
is observed in the cosmos:

Comparing Graphs G4.3 and G4.4 shows conclusively
that the 1nitial energies of the matter and
radiation, although both 1increasing with cycle
number, 1increase at different rates. G4.3 shows that
although x. Increases monotonically with n 1t is
concave downwards. Graph G4.4 shows that y. increases
monotonically with n but that it is convex upwards.
Ve may thus conclude from a study of G4.3 and G4.4
that in such model universes, the initial radiation

energy grows much faster with cycle number than does
the matter energy.

IJf, in our identification of the model universe
with the real one, we may tie the initial point to
the end of the era of nucleosynthesis ( or to any
point 1in the radiation-dominated phase of +the
universe ), then we may explain the fact that at the
end of this period the ratio of +the radiation to
matter energy was high £81. Our. study predicts that
jJust such an initial state could bhave evolved, via a
closed irreversible, oscillating universe from a

state many cycles before which bad a phase energy
ratio much closer to unity.

>

Consideration of Graph G4.5 shows that the initial
value of the dimensionless density parameter Qo<nf,

goes to unity from above with increasing cycle number
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Table T4.2

The variation of cosmological parameters

in an interacting, oscillating cosmological model,

subject to numerically convenient initial conditions,

with cycle number, N, for the first 1500 cycles.

Cycle Initial Imnitial (Initial Minimum
Rumber Eatter Radlation Density Value of
Energy Energy Parameter [y/(x+y)]
-1)x10—=
1 2.0000 2.0000 30.7000 . 1306
50 2.9379 18.6904 5.5358 . 4930
100 3.5181 47.3786 2.5454 . 6409
150 3.9766 83.1327 1.3687 .7188
200 4.3627 127.9753 . 9005 . 7674
250 4,7148 180.4211 . 6436 . 8007
300 5.0245 239.4500 . 4728 . 8261
350 5.3013 304.3393 . 3847 . 8400
400 5.5656 375.5964 .3125 . 8583
450 5.8046 451.7177 . 2603 . 8702
500 6.0340 533.3758 . 2208 . 8800
550 6.2514 620. 0273 . 1902 . 8883
600 6.4550 711.0517 . 1660 . 8654
650 6.6542 807.1486 . 1463 .9015
700 6.8386  906,4832 . 1304 .9069
750 7.0128 1009.9630 1171 .9117
800 7.1815 1117.2258 . 1059 . 9159
850 7.3537 1229.9285 . 0962 . 9197
900 7.5058 1343.7373 . 0881 . 9231
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950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500

Table T4.2

7.6606
7.7537
7.8060
8.0912
8.2305
8.3593
8.4895
8.6083
8.7283
8.8497
8.9723
9.0740

1462. 4870
1583. 6789
1709.6040
1837.3794
1969.6422
2103.1144
2240. 7969
2379. 0045
2521.1127
2667. 1578
2817.1806
2963. 3705
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. 0748
. 0693
. 0645
. 0602
. 0564
. 0520
. 0499
. 0471
. 0445
. 0421
. 0401

. 9262
. 8290
. 9315
. 9339
. 9361
.9381
. 8400
.9418
. 9434
. 9449
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GRAPH G4.3

The variation of the initial scaled matter energy
Xo, of an interacting, . oscillating cosmological
model, subject to numerically convenient initial

conditions, with cycle number, N, for the firest 1500
cycles.

Data : Table T4.2 Results columm 1
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GRAPH G4.4

‘The variation of the initial scaled radiation
energy Yo of an interacting, oscillating

cosmological model, subjéct to numerically convenient

initial conditions, with cycle number, N, for the
first 1500 cycles.

Data : Table T4.2 Results columm 2
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GRAPH G4.5

The variation of the difference between the
dimensionleés density parameter' and unity, defined as
DELTA, of an interacting, oscillating cosmological
model, subject to numerically convenient initial

conditions, with cycle number, ¥, for the first 1500
cycles;

Data : Table T4.2 Results columm 3
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This observation can 1lead 1into a natural non-
inflationary solution of the flatness problem (see
81.2 & (41>, Summarized, the problem to copsider is,
why the initial value of Q was so very close to unity
if 1t was not equal to it

This work indicates that a possible answer to this

question 1is that, in an irreversible , closed
oscillating universe, the density parameter goes to
unity with increasing cycle number. Q was close to

unity at the start of our present cycle because the

universe had previously been through many cycles.

Having shown +that +the many cycled, closed,
irreversible, cosmological model with numerically
convenient initial conditions can provide two
desirable results, i1f our universe is preceded by
many previous cycles, it is necessary to consider omne

unfortunate prediction of the model.

Study of graph G4.6 shows that, at the point of
maximum extension ( r = 0O ), in the first cycle, the
energy content of the model, although not tending to
be dominated by radiation, is by no means as strongly
dominated by matter as 1is the universe now [52].
This 1s an unfortunate prediction in view of two

facts,

: 1] At the point of maximum extension in a
closed universe, the value of the radiation energy.

has reached its lowest value.

10 At our present epoch of the universe
(about 2/3 of +the way to the point of maximum
extension, 1f it is closed ), the matter energy is
believed to dominate the radiation [52,4].
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total energy, of an

GRAPH G4.6

The variation of +the minimum value of the energy

function, defined as the ratio of radiation energy to

" interacting, oscillating
cosmological mndel, subject to numerically convenient

initial conditions, with cycle number, N,

for the
first 1500 cycles.
Data : Table T4.2 Results columm 4
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Thus our many cycled model indicates the non-
physical fact that, throughout the cycles, a strongly
matter—-dominated stage never occurs. As we wish our
present cycle to be a ‘'later' one to explain the
flatness of the universe in the- present cycle, we see
that the model predicts a wuniverse that 1is
eventually radiation dominated.

It is believed that this non-physical prediction
i1s due to the total neglect of the protons in the
model. The inclusion of even a cold, static. proton
contribution would have the following advantages.

] The model would expand much further due
to the addition of a term = 1/a = 1836 in the energy
part of the equation of motion. This modification
would allow the radiation to cool much more,

ii) The matter energy, when considered in
the energy ratio, would have a term =~ 1836 added to
it.

The results of improving the model by the
inclusion of a protonic contribution may be found in
full in Chapter six

84.2 Accuracy and stability of results

In the preceding section much use bas been made of
the results of the numerical solution of a set of
differential equations. It has been possible to draw
some  interesting conclusions from the results{
However, before the results are accepted we must
satisfy ourselves that +they are stable and of

sufficient accuracy.
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When we speak of stability in this context, we
wish to know if a small alteration in the ipput data
to the numerical solution routine L initial
conditions and constants of motion ) glves only a
small change 1n the results of the computation. If
the results do not show this behaviour, 1.e. we see a
decrease in a phase's energy over a cycle 1f ro =.25,
then 1t may be suspected that the results are
unstable. This 1s often indicative of a significant

inaccuracy in the results.

In order to investigate this question the program
used to calculate the results presented in this
Chapter was run with a distribution of initial
conditions and constants centred on the values used
for S4.1. In all cases only a small change in
results appeared. The salient features, trends and
results of the model were maintained. It may thus be
concluded that the results of the calculations are
numerically stable.

Ve npext address the important question of +the

accuracy of the numerical results presented above.

In the routines used for the solution of these
equations the input error parameter is called the
tolerance. This is the maximum error allowed in the
numerical solution at any one time step. However,

as our results are based on calculations over a whole

cycle ( and many cycles ) we need to know the total -

error over the whole calculation. This quantity is
known as the Global error of the calculation. It
represents the overall result of the tolerance errors
at each time step and is, of course, dependent on the

tolerance chosen as input data.
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For the simple routines used to calculate the
results quoted in this Chapter a special sub-routine

exists that will compute an upper bound on the global
error over a whole calculation.

A program incorporating this subroutine was run,
using different tolerances and the initial conditions
and constants of motion in S3.1. The results are
presented in Table T4.3. It may be seen that as a
tolerance of 10-'° was used for the calculation of -
the above results, we are justified in quoping our
results to four decimal places. The typical error
in a result of S4.1 was ¢ 10-7,

Thus we conclude that the results presented in
54.1 are both numerically stable and of a consistent
accuracy. Ve therefore bhave strong faith in these
results being a good approximation to the solution of
the set of differential equations developed in

Chapter two, when subject to the initial conditions
and constants of motion of S3.1
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Table T4.3

The variation of the maximum global error
in the solution of an interacting, oscillating
cosmological model, subjedt to numerically convenient

initial conditions, with +the maximum Jlocal error
(tolerance).

Tolerance Component Max. Max. error
with Max. error
error Tolerance

"1 Expanding Phase

10—-= r 1.6x10—= .16
10—= r 4.4x10~s % .44
10—= r 8.4x10~7 . .84
10—~ r 1.1x10~7 i.10
10—= r 1.6x10—= 1.60
10—= r 1.7x10—= 1.70
10—e° r 1.8x10-7° 1.80

2 Contracting Phase

10—+ 5y 1.7x10-2 170.0
10-s y 3.6x10~> 360.0
10—-s y 5.4x10—~ 540.0
10-7 y 6.5x10~% 650. 0
10-= y 5.8x10~< 580. 0
10—-= y 4.5x10~7 450.0
10—1e y 3.5x10-= 350.0
Table T4.3
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CHAPTER FIVE

Results From Initial Conditions Based On
Astrophysical Data

55.1 Problems assoclated with these initial
conditions

Here we present the rather disappointing results
which may be gleaned from the set of differential
equations developed in Chapter ‘two, when they are
subjected to the initial conditions and constants of
motion as assigned in S3.2.

The resulting system is totally ipappropriate for
solution via the simple numerical 1library routines
used in Chapters four and six.

The imposition of these i1initial conditions and

constants results in the system becoming *'stiff°. A
system which 1s stiff contains rapidly decaying,
transient terms. The Jacoblan of such a system has

some eigen values which are large and negatiye

compared to others [58].

In our case the term causing the problem is the

factor in the interaction,

y/r1 574
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With the various sets of initial conditions this term
has a value:

Initial conditions of 83.1 271.2788
Initial conditions of S3.2 1.6102 x 10=s
Initial conditions of S3.3 5430.5801

The large numerical differences between the value of
this term in the different sets of initial conditions
is obvious. Physically we may understand <this
problem in the following manner. Although the
interaction has only a small effect because of the
near equality of the pbase temperatures, 1t does
represent a very large flow of energy between each

phase. However this flow is very well balanced.

Vhen numerical solution is atteﬁpted, a small time
step size is chosen, over which the equations are
assumed to be linear to a good approximation. Unless
this step size is impractically small the energy flow
from the botter +to the cooler phase 1is massive,
resulting in a large rise in the second phase's
temperature. In the npext time step a large
temperature difference is thus in existence, so the
interaction is much larger. This process continues

and instability in the numerical solution sets 1in.

The system, although pPhysically well behaved, 1is
numerically unstable 1f simple routines as usedxforx‘
the convenient initial conditions are used in tﬁé'
solution. In order to solve such a system a special -
routine, suited to the problem, 1is needed. This
type of routine was discovered by Gears [5G6].
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55.2 Essential transformation of the basic equations

The equations given at the ‘end of Chapter two,

r2/2 - C = (x+y+2z)/r 5.0)
y = I. - yr/r .1
X = Ia — HGOMT 5.2)
z = Ip — aH(z)T/T 5.3
H(P) = py(p) = p-1.5/p+1/p=—.5/p> 5.4)
Iw = | g/prscacye - QraceE(x)) 5.5)
I. = o®y/r'5/4(y — Qra/+H(az) /) (5.6
Ir = = € Im + Ip ) 5.7>

together with the initial conditions and constants of
motion developed in S3.2,

o = 1.3
Yo = 7.77 x 107

Zo = 1.83625 x 10
Q= 8.662 x 10"
C =- .132

a = 1/1836
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are in their present form too stiff to be computed by

even the most sophisticated Gear's routine available
(59]1.

In order to tackle this problem changes of
variable are made . These will be guided by the
known solutions of +the above set of differential
equations when the interaction is neglected. Ve now
proceed to develop these zero interaction solutions.
For simplicity‘'s sake the protons are considered to
be cold and static ¢ z = 1/a, z = 0.0). With the
interaction set equal to zero the two important

equations are,

dy - yr
— = e— 5.8)
dr r
dx ~HGOT
— = 5.9
dr r
(5.8) immediately integrates to,
y(r) = b/r ) B.10

where b is a constant

however it is not possible to perform the integral
required to solve (5.9) exactly. Guided by numerical
solution of the integral [60] and the classical limit

we use the approximation to H(x).
Hx) = 2&-1D G110
We are thus restricting the matter to be represented

as an ideal classical gas rather than a quantum one.
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With this approximation to H (5.9) can be

easlily to,

x{r) = 1 + a/r=

a, another constant.

Ve will now include the

integrated

5G.12>

interaction in +the

equations and consider the constants a & b to be

arbitrary functions of r which we expect to be slowly

varying 1if the zero interaction solutions are a good

approximation to the real case.

i.e.

a becomes a(r)

b becomes bd(r)

then from (5.11) & (5.12) ,

alr) (x—-1)r=

b(r)

yr

(5.13)

G.14)

differentiating (5.13) & (5.14) w.r.t. time gives,

® .
Xr2 4+ 2(x-1rr

+ ry

5.15)

(5.16)

using (5.1) & (5.2) for x & y in (5.15) & (5.16) and

defining,
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I= Ia “ 5.17)
gives,

a =0 1-2&D1r/r Ir= + 2¢x-Drp = Ir= (5. 18)

b= [-I~yi/r Ir + y& = -Ir~$5.19>

thus to solve this set we need an expression for I as

a function of a,b,r.

Using (5.17) & (5.5) gives,

I = (y/r=)ssa QyH(x) /r= &G.20

Using (5.12) ~ (5.14) in (5.20) gives,

I = (b/ra)yssa _ 2Qba/rs .20
then,
I = bSra/ps 2Qba/re .22

This expression involving the difference betweén'
two very large, but nearly equal quantities, is very
hard to evaluate humerically, the variables are
therefore changed again:

b=boC 1+ p) (5.23)
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)
]

8aC 1 + q > (5.24)

' Ere(l1 + g 5.25)

then automatically,

thus (5.23) - (5.25) (5.18) 5.19) & (5.0) yields,

[

= b/be = -Ira( 1 + s )/bs (5. 26>

’ui

It

q=48/8c = Ire®( 1+ s )Z/a. (5.27)

&§2=(T/Ta)Z[C+ zotl + 8o(1+qQ) + bu(l+q) Jro—2= (5.28)

Foll+s) ro®(1+s8)® ro2(1+g)=

.

Thus we need an expression for I in terms of
P:g,s. This will now be calculated.

5.23) - (5.25) into (5.22) gives,

I = boS/4(l+p)sra 2Qboa. (14+p) (1+q)

reS(l+4g)s ro®(l+s)s

S0 rearranging ,

I = bo(1+p)[(1+p)"4b°"4—2Qa°(1+q)/{ro(1+s)}]

5.29)
e {(l+g)s

.

the initial requirment of thermal equilibrium 1mposed
(56) ’

Fo/re®)'74 = QH(xo) (6.30

gives, using (5.23) - 5.25),
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bo'74 = 2Qao/ro ‘ B.30

with (5.31) (5.29) reads,

I = boS74(14p) L (1+p) 7174 —~(14+q)/ (1+q) 1
' .32
re®(14+s)s
defining the function § by,
F(P,g,8) = (1+p)'74 — (1+q)/(1+s) ~ (5.33)

gives a set of differential equations transformed so

that they are in the form best suited to numerical
solution,

-

P

—o' (14+pl §/ (l4sd)- 5.34)

q BC14p) §/ C1+s)™ (5.35)

S2=ro=2{ CHY/(1+8)+(1+p)6/ (148)= +
(1+qle/ (1+s)= ) ' (5.36)

where the new constants are given by,

o = byl M/ re* 5.37
B = Dbe® 4 ro™ §5.3§?
¥ = (Zo + 1)/ro (5;59)
& = bo/ro® 5.40)
€ = Bo/To® 5.41)
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If s, rather than t is made the independent
variable, the system is soluble via a Gear's method
designed for stiff systems of equations.

The results of pumerical solution of the above
equations represent an interacting cosmological model
as developed in Chapter five. The only
simplifications are that:

i) The protons are taken as static and cold

11> The electrons are represented by an ideal

massive classical gas rather than a quantum one.
The results are presented in the following section.

55.3 The results, their stability and accuracy

In this section we will present the results
available from numerical solution of the simplified,
rescaled and transformed set of differential

equations developed in the preceding section.

When considering the irreveréibility produced by
the interaction in the real universe, we do best to
consider the fractional change, over a cycle or
cycles, in the initial energies of each phase.

i.e. the critical results to consider are,':
AXo/Xe  and AYe/Veo
Unfortunatly it is not possible to give actual

numerical values to these quantities and upper limits
can only be assigned tentatively to +them. The
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explanation for this is contained in the accuracy and
stabllity of the results that have been obtained.

These questions will now be considered.

Before the result of’the numerical solution of a
differential equation is accepted 1t must be shown
that 1t is stable and of sufficient accuracy. [ These

words are discussed and their meanings referenced in
54.3 1.

Vhen the numerical stabllity of the results is
considered via perturbations in the initial
conditions, it is found that, for a sensible physical
spread of initial conditions and constants, both
matter and radiation irreversibilities stay small.
However both their sign and magnitude vary
considerably for small changes in‘the input data.

This sort of bebaviour is "highly indicative of
numerical instability in the results. Ve are thus
led to suspect that the results may well be simply
the manifestation of +the global error of the
calculation. [ Global error is also discussed and
referenced in $4.3 1. It is very unfortunate that no
routine exists in the library to calculate the global
error for a Gear's routipe. Thus it is necessary to
use less direct and less satisfactory methods to

compare the results with some measure of the global
error. 7 -

In order to ascertain whether our results are
merely systemisation of the total error in ~ the
calculation, we consider how the results change for a
range of tolerances. [ This represents the maximum

local error, again see $54.3].
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Table T5.1

Matter and radiation irreversibilities for wvarious
maximum local error (tolerance) values in the

solution of an 1nteractfng, oscillating cosmological
mndel subject to physical initial conditions

Tolerance (AXe/X%o) /TOL. AYyo/Yo)/TOL. -
1.0x10—® 875.3 1789.0
5.0x10—® 162.8 320.4
1.0x10—7 94.2 189.5
5.0x10—~ 558.4 2174.0
1.0x10—s 7.6 15.3
5.0x10-s 2.2 4.3
1.0x10-5 .8 " 1.3
5. 0x10—"= .1 -.1
1.0x10—4 2.4 13.4
5.0x10—= .2 .5
1.0x10—= -.1 -. 4
Table T5.1
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The results for a range of possible tolerances

using the physical 1initial conditions are in Table
Tsh 1. :

Consideration of this data leads us to conclude
that,

i3 The result is quite strongly tolerance-
dependent, even for the smaller, more accurate
values, Bven the sign of the result is dependent on

the tolerance.

ii> The result is never more than 2,000
times the tolerance chosen.

The first observation is a st}ung indication that
the results we are seeing are simply the global error
of the solution routine. This we would expect to be
tolerance (¢ local error ) dependent.

The second observation confirme our conclusion
drawn from the first. We have seen in 84.3 and will
see in S56.2 that, for much more numerically
convenient numbers, which can be solved using far
simpler routines, the global error can be 600 to
130,000 times the the smallest tolerance that can be
used with the stiff routipes ¢ 10-=), The physical
initial conditions seem  more similar to . the
intermediate set than to the numerically convenient
set. Ve would expect the higher figure to be nearest
to the mark for these initial conditions. However
Table TS5.1 shows that the phase irreversibilities'are
never more than 2200 times the tolerance (local
error). Ve would thus assert strongly that the

results are the global error of the routine.
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From the preceding we can only conclude that,

D The 1rreversib111ty in a model universe
when subject +to physically based initial conditions,
is very probably less than the global error

associated with a Gear's routine with the smallest
local error ( 10-e ).

ii> This global error is most likely to be
in excess of 1.0 x 10-=. '
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CHAPTER SIX
Results from Intermediaté Initial Conditions

In this Chapter we present the results of numerical
solution of the set of differential equations
developed in Chapter two when subject to the initial‘
conditions and constants assi gned in S3.3. - These
results, 1in general, will be seen to contain +the
Pleasing features of the results in Chapter four

without the non-physical problems encountered in
Chapter 5.

S6.1 Results

The differential equations, when subjected to the
initial conditions and constants of 853.3, are still
soluble by +the simple numerical routines used in
Chapter four, rather +than by the more complicated,

stiff, routines hecessary for the conditions assigned
in S3.2.

These routines were used on a powerful main-frame
computer to calculate 1,500 cycles of an oscillating
universe,. The values of important cosmological
results were calculated at two important and well
defined points in the model's history. -

i The initial point, from where the model is
started for the first cycle, and after the cycle

truncation bhas occurred for subsequent cycles.

i1 The point of maximum extension, when the rate

of expansion is zero
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14

¢ r = 0.0 ), Here the model bhas just finished
expanding and is about to start contracting.

At the initial point the enérgy of each phase, and
the density parameter were studied as functions of the
cycle number, BH. The results of this are in table

T6.1 and are illustrated in graphs G6.1, G6.2, and
G6. 3.

It is important when studying all of the graphical
results 1in this chapter to note that none of the
scaling factors between the scaled variables used
here, and actual astrophysical observables is given.
The reason for this is, as the current set of initial
conditions is not derived from astrophysically based
data the results are for a universe with different
pPhysical constants, and number éf particles than our
own, so that presentation of these scaling factors
would be at best unhelpful and at worst misleading

Graphs G6.1, of the initial electron energy, and
G6.2, of the initial radiation energy, are both
monotonically increasing functions of ¥, but are of
different concavity. G6.1 1s concave downwards
whereas G6.2 1is convex upwards. This shows that
although both the initial electron and radiation
energies increase with cycle number, the radiation
energy increases faster Eventually +the radiation

energy will totally dominate the electron energyvat
the initial point. ' e

Thus, 1f we may identify our initial point with
some early point in the real universe we may explain
why the early universe was radiation dominated. Our
model predicts that +this was the case because

irreversible effects in an oscillating universe .
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Table T6.1

The variation of cosmological parameters
in an ipteracting, oscillating cosmological model,
subject to intermediate initial conditions, with cycle
number, N, for the first 1500 cycles.

Cycle Initial Initial Initial
Humber Matter Radiation Density
Energy Energy Parameter
. § Xo Vo " (Qa~1)/10-4
1 2.000 30. 000 5.352
50 2.132 45. 066 5.300
100 2.252 62.663 5.259
150 2.350 81.947 5.206
200 2.445 103.251 5.148
250 2.530 126. 058 5.089
300 2.611 150.471 - 5.0262
350 2.688 176.329 4.965
400 2.763 203.990 4.894
450 2.829 232.318 4.827
500 2.896 262.237 4,758
550 - 2.9573 293. 074 4.688
600 3.019 325.394 4.619
650 3.075 358.423 4.550
700 3.132 392. 829 4.479
750 3.183 427.737 4.4103
800 3.235 463.916 4.341
850 3.287 501.370 4,271

PAGE - 77~



900

950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500

Table T6.1

3.338
3.385
3.432
3.479
3.521
3.563
3.605
3.647
3.689
3.727
3.764
3.807
3.840

540. 008
579.014
619. 101
660.363
701.549
743.805
787.132
831.534
877. 015
922. 045
068. 044

1016. 663

"+ 1063. 216
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4.200
4.132
4. 065
3.908
3.933
3.860
3.805
3.742
3.680
3.619
3.560
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GRAPH G6.1

The variation of +the initial scaled matter energy

Xo, of an interacting, oscillating cosmological model,
subject to intermediate initial conditions, with cycle
. number, H, for the‘first 1500 cycles.

Data : Table T6.1 Results column 1

3.84

INITIAL MATTER ENERGY -~ Xo
l!llllll]]]l!l!llll’ll!l

[{H]

.aa

.CYCLE NUMBER M

GRAPH G6. 1
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GRAPH G6.2

The wvariation of the 1initial scaled radiation

energy yo, of an interacting, oscillating cosmological
model, subject to intermediate initial conditions,
with cycle number, N, for the first 1500 cycles,

Data : Table T6.1 Results columm 2

1863.8

IHITIAL RADIATIGH ENERGY - Yo

l!ll]l!illl]!!lllllll!!l

32.8

1560
GRAPH G6.2 " CYCLE NUMBER N
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GRAPH G6.3

The variation of £hé difference = between the
dimensionless density parameter and unity, defined as
DELTA, of an interacting, oscillating cosmological
model, subject to intermediate initial conditions,
with cycle number, W, for the first 1500 cycles.

Data : Table T6.1 Results column 3

.8BBc4 N

INITIAL VALUE OF “DELTA’
lll!‘!ll[ll!ll'lLll’lll!

.BpR34

‘ 1664
GRAPH G6.3 CYCLE NUMBER N
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increase the radiation energy faster than they do the
matter energy. We would then claim that our present
universe, with its initially high phase energy ratio,
may well have developed from a previouex state with a
mich more equal phase energy ratio.

Graph G6.3 of the initial density perameter shows
that Q. decreases with the circle number ¥ in an
approximately linear fashion. Ve thus arrive at a
non—-inflationary solution to the flatness problem (4]
The universe 1s so npearly flat, our model indicates,
because 1t has been through many irreversible cycles,
and non-equilibrium effects during these cycles bring

the initial value of the density parameter +towards
unity from above.

Thus, the model predicts that our present cycle has

been preceded by many earlier ones that were less

flat. In addition, they contained 1less energy at
their start. Their initial phase energy ratio was
much pearer to unity than was our cycle's. Our model

is thus able to explain two observed facts of the
early universe 1in our present cycle; +the initial
flatness, and the initial radiation domi nance, ‘by

postulating many previous, irreversible cycles,

At the point of maximum extension we consider the
energy fraction - that fraction of the total energy
that is contained in the radiation phase. Ve also
consider the radiation temperature. These results,’ as
functions of cycle number, ¥ are in Table T6.2 and
are illustrated in Graphs G6.4 & G6.5.

Graph G6.4 shows that, although the energy fraction

increases with cycle number, it is small compared with
one for all the cycles studied. This is a significant
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The variation of critical

Table T6.2

cosmological

parameters at the point of maximum extension, 1in an

interacting,

oscillating cosmological model, subject

to intermediate 1pitial conditions, with cycle number,

¥, for yhe first

Cycle
Number

50
100
150
200
250
300
350
400
4150
500
550
600
650
700
750
800

Radiation
Energy
Ratio

¥/ {xty+z>/10-7

4.380
6.584
9.157
12.024
15.154
18,530
22.134
25.953
29.974
34.189
38.587
43.162
47.905
52.813
57.876
63. 093
68. 456

1500 cycles.

Radiation

temperture
Model Unibs
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1.795
1.988

2.159

2.311
2.448
2.575
2.692
2.801
2.904
3.000
3.093
3.183
3.265
3.345
3.423
3.497
3.570



850

8900

950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500

Table T6.2

73.960
76.610
85.392
91.310
97.349
103.519
109.812
116.223
122.752
129.403
137.509
143. 036
150. 002
156.678
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3.772

"3.836

3.8068
. 958
. 017
. 075
. 131
. 186
4.239
4.202
4.331
4.390

O O N



GRAPH G6.'4 -
The variation of +the minimum value of the energy
function, defined as the ratio of radiation energy -to

total energy, of an interacting, oscillating

cosmological model, subject to intermediate initial

conditions, with cycle number, N, for the first 1500
cycles,

Data : Table T6.2 Results column 1

. 2008157,

MINIUM VALUE OF ENERGY FUNCTION

I T I P14 ll PEoE ot l[ I l P 111

W alalnalyls

1

, CYCLE NUMBER N
GRAPH G6.4
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GRAPH G6.5

The wvariation of the minimum value of the scaled
radiation temperature of an interacting, oscillating
cosmological model, subject to intermediate initial

conditions, with cycle number, ¥, for the first 1500
cycles.

Data : Table T6.2 Results column 2

.0BR44 )

ll[!lllllllllllllllll!

MINIMUM UALUE OF RADIATIOH TEMPERATURE

.gem1g

1580
GRAPH G6.5. CYCLE NUMBER N
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improvement when compared with +the same variable
considered in Chapter four. This is caused by the

inclusion of the protons, in two distinct ways,

L A proton contribution increases the +total
energy without increasing the radiation energy. This

automatically increases the denominator of the energy
fraction.

11 A proton contribution to the equation of
motion causes the model +to expand much further. As
the radiation energy is approximatly inversely
proportional to the radius of the model, this causes a

decrease in the numerator of the energy fraction.

Ve thus recover an observed fact of the universe -
that at present the energy content is dominated by the
matter phase. This indicates that this will continue
to be true until the point of maximum extension. Our
model shows this feature too, and indicates that thie
will be the case for many cycles, but not for ever.
This dominance will become weaker and weaker and
eventually be overturned. Eventually the universe

will become radiation dominated throughout the whole
cycle.

Graph G6.5 shows that the radiation temperature at
the point of maximum extension is monotonically
increasing and is concave downwards. The model. thué
predicts that as the cycles progress the minimum
radiation temperature achieved in each cycle will grow

larger and larger. Thus, eventually, life as we know
it will become impossible, even when the universe ig
at its coolest. Galaxies will be unable to form.

This prediction is at odds with the final anthropic
principle [61].
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The model under consideration thus shows one fact
of the observed universe, a matter dominated phase.
In addition it Predicts that in cycles to come, thisg
Phase will eventually cease to eiist and that galaxies
and life as we know it will no longer be possible.

56.2 Accuracy and stability of the results

The results presented above were found +to be
numerically stable to perturbations in the 1initial
conditions in exactly the same way as was described in
some detail in S4.2. This indicates strongly that we
may believe these to be actual results rather than a

manifestation of the accumulation of numerical errors.

As the 1initial conditions used allowed the use of
simple non-stiff numerical routines, a global error
calculation was possible. This was performed for the
set of initial conditions and constants under
consideration. The results of +the global error
calcualtion for a range of tolerances are 1in Tabl
T6.3. This table shows that the global error was a
muich larger multiple of the tolerahce ( local error )
than was the case in S4.2. Even s0 with the tolerance
used for the calculation ¢ 10-'© ) the maximum global
error was = 10-85, Ve are thus justified in quoting

our results to four places of decimals,.

Ve thus conclude that the results presented in this’
Chapter are numerically stable, and of sufficent
accuracy for us to draw our conclusions safely. Thus
we assert strongly that they represent accurately the
solution of the set of differential equations .
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Table T6.3

The variation of the maximum global error
in the solution of an interacting, oscillating
cosmological model, subject to intermediate initial
conditions, with the maximum local error (tolerance).

Tolerance Component Max. Max. error
with Max. error —————
error Tolerance

1 Expanding Phase

10— r -.04 -9400.0

10—= r ~-2.8x10~-= -2800.0

10— r -3.1x10~= ~3100.0

10-7 r ~-1.8x10~4 -1800.0

10-e r 1.5x10-s 1500. 0

10-= r 2.1x10-6 2100.0

10-1e r 2.0x10~7 2000.0

2 Contracting phase

10-= r 23.5 235000

10-5 r 4.4 440000

10~ r .3 300000 )
10—~ r 2.0x10-=2 200000 _ o
10-o r 1.3x10-2 130000 )
10—= r -8.8x10-5 98000

10—10 r ~7.6x10- 76000

Table T6.3
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developed in Chapter two, when subject to the initial
conditions and constants developed in S3.3

56.3 Summary, conclusions and discussion of results

A cosmological model has been developed, based
generally on +the hot big bang theory, but which
includes +the dissipative interaction between the
matter and radiation pbases in the post
nucleosynthesis and pre—decoupling era. This model,
although simple, is less limited , and a more accurate
description of the real universe than the standard big
bang theory, in that it contains all of the attractive
features of that model, and the thermal interaction.
This model is represented by a set of initial value
differential equations, which define the time
development of +the model from a set of initial
conditions and subject to a set of constants of

motion.

Unlike earlier works in a similar vein
[29,30,32,331, detailed discussion has been given
regarding the assignment of numerical values to the
initial conditions and constants of motion. It has
been found that when subject to initial conditions and
constants of motion derived from physically observed
astrophysical data the set of differential equations
becomes exceptionally difficult to solve numerically.
Solution shows that any irreversibility produced .by
the interaction in a closed cycle of the universe'and.
hence, any cumulative effects caused by the
irreversibility in a polycycled model, is almost
certainly less than the global error associated with
the numerical solution of the set of equations. Put
simply , +the irreversible effects induced by +the
interaction are lost in the ‘'noise’' of the solution
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routine. However the solution of the system of
differential equations under less severe initial
conditions shows trends that one would strongly expect
to see reproduced 1in a mo&el subject +to such
Physically based initial conditions. If a significant
improvement 1in the techniques for +the numerical
solution of such stiff equations should occur the re-
apaylsis of a closed pPolycycled universe containing an
interaction between the matter and radiation should be

one of the first priorities.

However v the system of equations is solvable when
subjJect to a set on initial conditions, which are
assigned in a way guided by astrophysical trends.
Under such conditions, 1in a polycycled, ' bouncing*
universe, 1f the irreversible ef;ects introduced by
the interaction are allowed to build up over many
cycles interesting trends appear in the various

cosmological parameters. The main points of interest
are;

1 The energy of both matter and radiation at
the initial point increase with cycle number.

2 The radiation energy increases at a much

greater rate, and with a different concavity, +than
does the matter.

3 The initial value of the dimensionless
density parameter is seen to decrease to unity ffom

above as the cycles pProceed.

4 The minimum values of the radiation energy
and temperature, which occur at the point of maximum
extension, are seen to increase with the cycle
number-.
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If +the above trends may be expected +to be
reproduced in the real universe, then by postulating
that our present universe 1is one of a series of
closed, oscillating universeg in which a thermal
interaction between the Phases produces irreversible
effects, then two observed features of our present
universe may be explained, and one prediction may be
made for further cycles.

Point 2) may explain why our universe had such a
high ratio of radiation to matter energy early on, by
postulating that in earlier cycles the phase energy
ratio was much closer to unity but has been increased
to 1its high value in the present cycle by the
interaction acting over many cycles.

Point 3) provides a non-—inflz‘ationary solution to
the flatness problem by suggesting that our present
universe has a density parameter so close to unity
because the effect of the interaction is to lower this
parameter to unity as the cycles progress.

Point 4) predicts that in future cycles the minimum
radiation temperature will eventually become so high
that the formation of galaxies and the existence of
any life as we know it will become impossible.

Several authors (621, bhave studied entropy in a
series of closed universes from the point of view -of
the entropy generated by stella and galactic sources
in each cycle. By assuming that this wés
approximately the same in each cycle they show that a
maximim of about 100 previous cycles is possiblef As
a useful solution of the interacting cosmological
model subject to physical initial conditions was not

possible it is impossible to say whether the entropy
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introduced by +the interaction would have been
dominant, insignificant, or comparable to the entropy
generated by star light. For exactly the same reason
it is impossible for this work to add any refinement
to that figure. 1In any cz,ase the two entropies mst be
added, and if one assumes that the entropy produced by
star light was constant per cycle one would set the
upper limit at less than 100 cycles,

However the present work gives strong indication
that tbe entropy due to starlight produced was less in
previous cycles, this work indicates that previous
cycles had shorter 1lives +than subsequent cycles,
hence the time for starlight to produce entropy was
less. In even earlier cycles, of short enough
duration, it was not possible for galaxies or stars to
form, hence entropy production ' due to the phase
interaction was the dominant factor. An accurate
estimate of the number of previous cycles could only
be made if solution of the differential equations when

subject to physical initial conditions and constants
of motion were possible.

Otbher authors [631, by considering the effects of
hydrogen burning on the entropy of the universe,
predict that the next cycle of the present universe
would have a maximum extent twice that of the present
cycle. If this prediction should be correct and
applicable to several cycles before the present on_é
then 1t would almost certainly dominate “any
irreversible effects introduced in those cycles by the
phase interaction. However‘, | in a universe that lgsts
too short a time for star birth to occur, the phase
interaction would again become the dominant entropy
producer. A reduction in size as large as halving

each cycle, caused by stellar sources, would rapidly
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lead to a universe in which no star formation could
occur,

In view of the above consiherations, it appears
likely that the 1rreversib1e effects produced by the
‘Phase interaction studied in this work may well have
been responsible for the thermal and geometric
structure of our present universe. It 1is also

possible that they may spell the end of life in some
future cycle.
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APPERDIX A

LIST OF SYMBOLS AND MEANINGS OF SUBSCRIPTS

LIST OF SYMBOLS

Symbol

k
Pe
Q
ds

c
RATH

r,e,¢
A(xr)
Tab

8nb

U
Gats

«

Us

Ty
P

Meaning

Curvature constant

Critical density for closure
Dimensionless density parameter
Increment of Space-Time

Velocity of light

Scale factor

Cosmological time

Cosmological co-ordinates

Curvature factor

Epergy-Momentum tensor

Pressure

Metric tensor

Energy density

Fluid 4 velocity

Einstein Tensor

Newtonian Gravitational Constant
Co-moving volume element

Energy in a co-moving volume element
Dissipative interaction for the 1'th phase
Energy of the 1i'th phase in a co-moving
volume element

Temperature of the 1'th phase

Energy density of the i'+th phase in a co-

moving volume element
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A Interaction constant

o Thomson cross section for fhe electron
k Boltzman constant

¥ Number of electrons

Moo Rest mass of eleétron

B Interaction constant

o’ Thomson cross section of proton

e Rumber of protons

Mg Rest mass of proton

o Ratio of electron to proton rest mass
a Blackbody constant

¥ (x Honl function of x

H(x) Honl function of x times x = oc Wix)
Ro Change of variable for scale factor
Te Change of variable for time

Uom Change of variable for energy

r Scaled scale factor ('radlus‘ of universe)
b Scaled radiation energy

X Scaled electron energy

z Scaled proton energy

t Scaled time

C Scaled curvature constant

I

1 Scaled interaction for the 1'th phase
P,Q,V,S8 Scaled interaction constants
DELTA  Anomalous part of density parameter
E fun That fraction of the total energy that is
contained in the radiation
a,b Constants of integration

Pyg.s Changes of variable for a, b, r . w;

f Function.representing interaction in térms“of
P:q,s

o', B’ Collections of constants

¥,6,€ Collections of constants

DX Change in initial matter energy

Ayo Change in initial radiation energy
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MEANINGS OF SUBSCRIPTS

Subscript Heaning

r Radiation

e Electron

P Proton

m Matter = electrons + protons
o Initial
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APPENDIX B

SUMMARY OF CRITICAL EQUATIONS AND INITIAL CORDITIORS

SUMMARY OF CRITICAL EQUATIOENS

The model universe developed is defined by the set
of initial value first order differential equations

r2/2 - C =(&x+y+z)/r
& = Iy - y{"/r
x = Ja — Xyal/Tr

Ne
It

I - Zyul/r

where,

HP) = Py =P - 3P/2 + 1/P2 - 1/(2Pa)

I = y/r1Ssa(yr sA_QresaH(x))

Ie = a®Py/riS/a(yt /4 Qr3/aHaz) o) )
I~ = — ( Ja + In >
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SUMMARY OF INITIAL COFRDITIONS AND CONSTARTS

The state of the model universe at any time t ig
specified by +the solution to tbhe above set of
equations subject to a set of initial conditions,
at t = to, r = Toy X = KXoy ¥ = Yo, Z = z

given the values of 3 constants of motion QC, o

In this work 3 sets of initial conditions and
constants of motion are used, these are given below
again as a reference.

INITIAL CONDITIONS I

Fumerically convenient Initial conditions

te =0
o = 2
YO = 2
Zo =0 (= z) )
e = ,27
and
Q = 2.208 : s
C = ~,445
o = 171836
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IRITIAL CONDITIORS II

Physical Initial conditions

te =0

X = 1.3

Vo = T7.77 x 107

Ze = 1836.25

re = 1.305 x 10—®
and

Q = 8.558 x10=

C = ~,132

o = 1/1836

INITIAL COBDITIONS III

Intermediate Initial conditions

te = 0
o = 2
Yo = 30
Zo = 1836 ( = z(t) )
re = .25
and
Q = 4,605
C = -, 2
='1/71836
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APPERDIX C

NUMERICAL SOLUTION OF INITIAL VALUE DIFFERENTIAL
EQUATIONS

In this work much.use bhas been made of the results
of the solution of a set of initial value differential

equations. In this Appendix we present a summary of
the ideas and methods relevant to this branch of
numerical anaylsis. Although this can by no means

be a full treatise on this wide subject, 1t is hoped
that it will provide more insight into the techniques
than it was possible to include in the pecessarily
terse summaries in Chapters 4,5 and 6.

Consider the solution of the system of equations,

x()' = g(t,x)
where,
x' = dx , and at t=to, x=xo
dt

this system can also be extended to a system with more
than one dependent variable, however, for the present
discussion, it will prove sufficient to consider a
system with only ome dependent variable.

The problem is to solve for x(t), for times later
than to. The first method used would be a simple
difference method, where one would use a short time
dt, over which the time variation of x would be linear
to a good approximation, one could then write,
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X{totdt) = xo + dtg(to, xo)

By using the x values thus generated as new Initial
conditions and repeatedly applying the above equation
" the solution x(t) can be built up at times t=to+ndt,
. ﬁheré n is an integer. If desired dt can be changed
as the solution proceeds if the time derivative g(t,x)
becomes more or less severe, It was using just such
methods as above that the results stated in Chapter 4
were calculated from first principles.

The above method can be made more accurate if the
basic approximation equation is refined to [64],

Ky = Xy 3 + h(x:'-.-'-'l."'xlw')/z

where from now on‘we use the short bhand

h = dt
Xn= X{(to+nh)
x'= g(t, x)

The above formulation, although sufficient for
simple problems, is only accurate to first order in b.
- To enable certain types of equations to be solved,
without prohibitively small h values being required,
other methods bhave been derived. The most obvious
method 1s to notice that the above equations are in
essence, Taylor exp;nsions to first order in h. To
obtain approximations accurate to a greater order in

h, say to order h", one eimply expands the Taylor
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series to this desired order. However this method
has the disadvantage that more input information is
needed than just the initial point (to, xo)

In view of these problems with directly expanding

the Taylor series to greater order in h, other

' methods, namely Runge-Kutta techniques have been
\.developed [65]1. The idea of such routines was to
" produce a series expansion for xa accurate to a
desired order in h, without 1t being mnecessary to
calculate derivatives of higher than first order. A

typical equation that does this to fourth order in h
is [66]1,

whére,
ki = hg{tn, xn)
kz = hg(tnth/2, x.+ki/2)
ks = hg(tn+h/2, xntkz/2)
ka = hg(tnth, Xntka)

It was just such a method as this that was used
for the step by step solution of the set of equations
representing the cosmological model +to produce the

majority of results as presented in Chapters 4 and 6.

In the numerical solution of any system of

- equations the degree of accuracy achieved is of wvital
importance. The error introduced by the numerical
solution of a system of equations is two fold. At
each step in the solution an error of order hm+' is
introduced 1if the sélution is made to order n. This
error causes the input data to the next step of the
solution 1tself to be inaccurate by this much before
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any effect of the truncation of the series in h occurs
at this step. The error at any step is termed local
error in the solution. Because the local error at
each step bas a ‘'knock on' effect to the next step,
the error in the final solution, termed global error
may be very much more than the sum of the local errors
" at each solution step.

One of the great advantages of the R-K method is
that it is posible to arrive at an upper bound on the
global error introduced in the final solution due to
the effects of cumulative local errors. It bhas been
\shown that (671,

I Xr~Xal < 6MEIx-x015|F5-1]|

I N-11
where,
Xr = The finaml solution from the R-K method
¥~ = The accurate true solution to the equation
and,
M <igdt, !

N < 1/1x—xo0l

in addition various other formulae are avallable to
give, M,N in terms of various partial derivatives of
g. It was such techniques for giving global error
bounds that were used to calculate global errors in
Chapters 4 and 6. )

The numerical methods presented above only work

well for certain systems of equations, however, when
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a system of equations becomes mathematically stiff,
then the above methods will need a very small value of

h to obtain sufficient accuracy.

There are several definitions for determining
whether a system is stiff [68],

i) A system of equations is sald to be stiff if
it contains a rapidly decaylng exponential term.

i1> A system of equations is stiff over a region
{a,bl, 1f there 1s a component of the solution which
.in that region varles largely compared to 1/<(b-a).

ii1> A system of equations which may be written
as a matrix equation,

where, X' and X are column vectors and A is a martrix
of coefficients, is stiff if the eilgen values of A are

large compared to each other.

By considering infinitesimal perturbations away
from the initial point ( I=0 ) of the cosmological
model, subject to physical 1initial conditions, and
identifying X as a column vector of r,x,y we find that
the eigen values are indeed large compared to each
other; the ratio of the largest to the smallest finite
eligen value 1s approximatley 1.4x104, Thus the
system of equations répresenting the model when
subject to physical initial conditions is
mathematically stiff.
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The method of Gears [60] to solve such stiff
equations 1s a more complicated and involved method
than the R-K methods discussed abave, as such 1t is
beyond the scope of the present work, hdwever a brief
summary will be given to illustrate the main points of
_that method applicable to this study.

The essence of the solution of stiff differential
equations by the Gears method L7061 is that a
predictor—-corrector equation for the value of the
dependent variable, x at the n'th time step is used.
The predictor equation gives the dependent variable as
a linear combination of itself and its derivatives at

k earlier time steps. The coefficlents in the
expansion are determined in a similiar way to those
involved in the R-K method. The corrector equation,

which 1s also a linear combination of the same terms
as the predictor equation, Plus a term 1in the
derivative at the current time step, allows iterative
improvements to be, made to the value of the dependent
variable at the current time step. The algorithm for
anaylsis 1s +thus asg follows; use the predictor
equation to generate a first approximation to the
value of +the dependent variable, then wuse the
corrector equation as a form of regression formula to

obtain sucessively more accurate approximations to
this value.

The Gears method thus provides a method of finding
‘the solution of stiff - systems of differential
equations. However because of the greater complexities
involved compared to the more simple R-K methods no
expression has yet been found for the overall global
error assoclated with the solution of a system aof
differential equations in this way. It is +this

unfortunate gap in the arsenal of numerical anaylsis

PAGE -106-



techniques that resulted in many of the problems
discussed 1in chapter 5, and lead ultimately to 41t
being only possible to place tentative limits on the

irreversibility generated during a cycle of a closed
universe.
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