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ABSTRACT 

UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES 

Optoelectronic Research Centre of the Zepler Institute 

Thesis submitted for the degree of Doctor of Philosophy 

Labelling, Modelling, and Predicting Cell Biocompatibility using Deep Neural Networks 

by 

Benita S. Mackay 

 

With an approximate annual cost of £1.7 billion for the NHS, osteoporosis and osteoarthritis 

alone represent a major socio-economic burden to the UK. While bisphonates and non-

opioids such as non-steroidal anti-inflammatory drugs are prescribed for osteoporosis, these 

types of drugs may lead to serious medical complications when high doses are taken for a 

long time or when someone is at an advanced age or in poor health, and may even accelerate 

cartilage destruction in osteoarthritis. Tissue engineering is a successful alternative or 

additional approach, but the use of grafts and implants is not without risk, specifically the risk 

of rejection and failure. Therefore, there is a growing need for innovative techniques to 

promote implant integration and reduce the failure rate of osteopathic intervention. 

Additionally, at the other end of the age scale, poor placental function can compromise fetal 

development and placental function directly determines fetal growth. Poor fetal growth is 

linked with higher chronic disease rates, so leads to an increased probability of health 

conditions in later life. 

The interaction between fibroblasts, pericytes, and endothelial cells in placenta can improve 

understanding of how cell placement and behaviour affect placental health. To model and 

analyse these complex interactions, 3D visualisation is required, and 3D-labelling is therefore 

a necessity to the medical imaging field, which can take months of researcher-time. Similarly, 

the experimentation required in tissue engineer, from in-vitro to ex-vitro, can be equally lengthy 

and complex, as cell response to biochemical and biophysical cues remains poorly understood. 
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The three areas of research in this project include labelling cells for 3D visualisation, modelling 

cell response to biophysical cues, and predicting biocompatibility of tissue engineering 

scaffolds. The data used for these approaches includes 3D nanoscale-resolution images of 

placenta for labelling and images of 3D bioengineered scaffolds for biocompatibility analysis, 

which were provided by collaborators. Data also included images of stem cells cultured on 

topographically-varied surfaces, to analyse stem cell response to biophysical cues, which was 

collected for this project. This data was used to train multiple deep neural networks, with the 

goal of applying deep learning to label cells in placenta, and both model and predict cell 

responses to biophysical and biochemical cues.  

It was found that deep neural networks can be used to replace labour-intensive manual 

labelling, with automated labels comparable, pixel-to-pixel, to manual labels by over 98% on 

average. The response of cells to physical cues can also be modelled by a deep neural network. 

With a probability of 𝑃 < 0.001, it can therefore be used as a model, with potential implications 

for tissue structure development and tissue engineering. Deep learning can also be used to 

predict biocompatibility, which may act as a future replacement for animal models in place of  

traditional computer modelling. When predictions were compared with experimental results, 

images displayed excellent agreement.  

Tissue engineering is an increasingly important area of regenerative medicine, partly due to 

aging populations around the world, combining cell biology, bioengineering and clinical 

research. However, focus on health from much earlier in life, such as through analysis on 

placental tissue, may also aid in overcoming the high chronic-disease levels in old age. 

Applying deep learning to regenerative medicine research may not only help increase 

efficiency of 3D-image processing, but also potentially help increase understanding of stem 

cell behaviour and reduce levels of necessary animal testing in research. In the future, 

application of deep learning to regenerative medicine could help increase quality of life in our 

later years. 
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ABBREVIATIONS AND ACRONYMS 

Term Definition 

2D 2-Dimensional 

3D 3-Dimensional 

AI Artificial Intelligence 

A wide-ranging branch of computer science focussed with 

building smart machines capable of performing tasks that 

typically require human-like intelligence. 

AM Acetoxymethyl 

AM groups are used as an established tool in cell biology to 

deliver and trap exogenous optical probes inside cells. 

ANN Artificial Neural Network 

A computational model that mimics the way nerve cells work in 

the human brain. 

AVC Animal Visual Cortex 

Located at the occipital pole of the brain the visual cortex 

receives, integrates and interprets the information relayed from 

the eye via subcortical nuclei. 

BNN Biological Neural Network 

A network of neurons that are connected together by axons and 

dendrites. The connections between neurons are made by 

synapses. 

CAM Chorioallantoic Membrane 

A simple, highly vascularized extraembryonic membrane. 

cGAN Conditional Generative Adversarial Network 

An ANN architecture typically utilising a U-Net and CNN in 

combination.  

CNN Convolutional Neural Network 

An ANN architecture utilising convolutional layers. Typically 

used in image-related tasks. 

CPU Central Processing Unit 

D  Discriminator 
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An independent ANN used to discriminate between output and 

target data. 

DMD Digital Micromirror Device 

A DMD chip has on its surface several hundred thousand 

microscopic mirrors arranged in a rectangular array which 

correspond to the pixels in the image to be displayed. The 

mirrors can be individually rotated to an on or off state. 

DNA Deoxyribonucleic Acid 

DNN Deep Neural Network 

An ANN comprising hidden layers, which are layers between 

the input and output layers. 

EBL Electron Beam Lithography 

A technique for creating nanostructures that are too small to 

fabricate with conventional photolithography using a focused 

beam of electrons. 

ECM Extracellular Matrix 

A three-dimensional network consisting of extracellular 

macromolecules and minerals, such as collagen, enzymes, 

glycoproteins and hydroxyapatite that provide structural and 

biochemical support to surrounding cells. 

EthD-1 Ethidium Homodimer-1 

A high-affinity nucleic acid stain that is weakly fluorescent until 

bound to DNA and emits red fluorescence. 

FA Frame Advance 

FD Frame Difference 

G Glasgow coating 

GPU Graphics Processing Unit 

hASC Human Multipotent Adipose Stem Cell 

HBMSC Human Bone Marrow Stromal Cell 

L1 Least Absolute Deviations 

L2  Least Mean-Squared  

Leaky ReLU Leaky Rectified Linear Unit 

micro-CT Micro-Computed Tomography 
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A high-resolution method of imaging in which CT is made on 

relatively small samples. 

M Mineral coating 

MSC Marrow Stromal Cell 

NC3R National Centre for the Replacement, Refinement and Reduction of  

Animals in Research 

NES NintendoTM Entertainment System (© 2018 Nintendo) 

NIBIB National Institute of Biomedical Imaging and Bioengineering 

NN Neural Network 

See ANN 

NSAID Non-Steroidal Anti-Inflammatory Drug 

NSQ Near Square 

N Nylon scaffold 

OCN Osteocalcin 

A small (49-amino-acid) noncollagenous protein hormone found 

in bone and dentin. 

OPN Osteopontin 

An extracellular structural protein and an organic component of 

bone. 

PCR Polymerase Chain Reaction 

Plain P 

P-value Probability Value 

ReLU Rectified Linear Unit 

RGB Red, Green and Blue 

RNN Recurrent Neural Network 

A type of ANN that typically is applied to sequential or time 

series data. 

SBFSEM Serial Block Face Scanning Electron Microscope/Microscopy 

A method of generating high resolution 3D images from small 

samples. 

SEM Scanning Electron Microscope/Microscopy 

A method of generating high resolution 2D images from small 

samples. 



 

18 

 

T Titanium scaffold 

αMEM Alpha Minimum Essential Medium 

Used in the in-vitro culturing of cells. 

λ Mean Lacunarity 

Lacunarity, from the Latin lacuna, meaning "gap" or "lake", is a 

specialized term in geometry referring to a measure of how 

patterns, especially fractals, fill space, where patterns having 

more or larger gaps generally have higher lacunarity. 
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MATHEMATICAL NOTATION 

The following mathematical notational conventions are used throughout this thesis: 

Scalar Italicised or regular upper or 

lower case letter 

A, a, A, a 

Vector Bold lower case letter a 

Matrix Bold italicised upper case 

letter 

𝑨 

Single matrix layer Bold italicised upper case 

letter with square bracketed 

superscript denoting the 

layer i 

𝑨[𝒊] 

Single matrix point Bold italicised upper case 

letter with square bracketed 

superscript denoting the 

layer i and row j 

𝑨[𝒊][𝒋] 

Transposed matrix Bold italicised upper case 

letter with superscript T 

𝑨𝑻 

Hadamard product operator  ∘ 

Function The function 𝑎 in terms of 𝑏 𝑎(𝑏) 

Differential of a function The differentiation of a 

function 𝑎 

𝑑𝑎 

Partial differential The partial differentiation of 

a function 𝑎 in terms of 𝑏 

𝜕𝑎

𝜕𝑏
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1 INTRODUCTION 
Osteoarthritis affects up to 1 in 5 people and causes immense long-term pain and disability, 

and the prevalence of suffering from osteoarthritis is on the rise due to obesity and older 

populations, from 12.7% to 17.4% over 2003 to 2013 in Finland and a 66% increase 

predicted in Australia over the next thirty years [18-20]. Joint replacement can provide an 

effective treatment for this multifactorial condition, yet outcomes can be poor and prosthesis 

lifespans are limited. Tissue engineering, specifically using a patient’s own cells ex vivo to 

generate and grow replacements for damaged areas within the body, could provide a way to 

replace damaged bone through the extraction, ex vivo optimisation and in vivo transplantation 

of marrow-derived skeletal stem cells [21].  

Regenerative medicine is a field with the potential to revolutionise modern healthcare, with 

particular ramifications for the treatment of increasingly aged populations, Figure 1. 

Advanced age is known to be associated with increased morbidities and, despite the face that 

over the last 50 years we have improved life expectancy considerably, quality of life in latter 

years of life has not seen matched expectations [22, 23]. Osteoarthritis now affects up to 1 in 

5 people, causing chronic pain and physical disability, with evidence showing the risk is 

rising every year in multiple countries [24, 25]. 

 

Data from the UN Pew Research Centre shows that 45% of the population were less than 20 years old in 1950s compared to 

only 33% in 2020. The height of the people represents the proportion of the population in that age group in 2020, with 5% 

shown in white on the bottom right. The proportion of people over sixty is now over 10%, which equates to up to a billion 

people at risk of age related diseases and medical conditions across the planet. Background image has no Copyright under 

CC0 1.0 Universal. 

Figure 1: The population of the world is getting older. 
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Tissue engineering is a field which is both complex and time-intensive. It can range from in-

vitro to in-situ experimentation, utilising both specially-designed bioengineering innovations 

and the body’s own healing responses to improve patient outcomes, such as application of 

stem cells. 

Stem cell control is a key multifaceted aim within tissue engineering, as successful bone 

repair based on stem cell therapies require conditions for stem cell proliferation without 

differentiation for applicable scales, and also identification and isolation of the target cells for 

in vivo bone regeneration. Adult skeletal stem cells, often called mesenchymal stem cells, are 

found in blood vessels in bone marrow, so can be isolated from human bone marrow stromal 

cells (HBMSCs), and have proven differentiation and regenerative potential and capabilities 

[26-28]. However, there is still limited understanding in how stem cells respond to 

environmental cues, and therefore stem cell control is difficult [21, 29-31]. 

A key challenge to furthering understanding into stem cell behaviour and control is the time 

and resources required to experiment the complex nature of stem cell response. Therefore, the 

objective to this thesis is to reduce the time and resources required for tissue engineering 

research through application of computational methods to the regenerative medicine field, 

with a focus on modelling stem cell response. 

1.1 PROJECT MOTIVATION 

Harnessing topographical cues offers a promising technique to control stem cell fate and 

function. This can develop into an ability to use a patient’s own stem cells for targeted 

generation of bone or tissue within the body, leading to improved joint repair. Cells respond 

to the shape of their environment due to changes in contact guidance, cell spreading and 

contact inhibition (cell overlap) [32]. Cell behaviour can therefore be influenced through the 

precise engineering of surfaces and use of surface-directed nanobiotechnologies [33, 34].  

Dalby et al. demonstrated that certain nanopatterns can significantly influence stem cell 

behaviour [35], while Heath et al. have demonstrated laser machining techniques for 

fabrication resolution below the wavelength scale and accurate machining of 3D surfaces, 

which could be applied to implants [36, 37]. For microtopographies, advances in AI have 

shown the potential for precise control of laser-based fabrication [38] and these techniques 

can potentially be combined with previous sub-wavelength machining work to create 

accurate and reproducible nanotopographies.  
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Rather than developing an model solely based on the topographical response of stem cells, 

the project branched into modelling for larger multi-cellular systems, with potential 

applications in both the modelling of placental development and the analysis of cell response 

to biochemical alongside biophysical cues, with impacts on lifelong health and regenerative 

medicine respectively. Such models could aid in targeted medicine of the future, where not 

only could conditions such as osteoarthritis be improved through patient-specific treatments  

and management, but such conditions may also be predicted (and maybe one day prevented) 

from birth.  

Additionally, projects involving cells of various types, not limited to stem cells and their 

derivatives, provide information on where limits or potential complications with computer-

aided research may arise. The use of computational assistance in research is an important 

addition to regenerative medicine because the cell response to surrounding topographies and 

materials is too complex, and not yet well enough understood, to easily understand or predict. 

Similarly, models on placental development are still in their infancy, with implications on 

life-long health still to be accurately determined [39].  

1.2 THESIS OUTLINE AND AIMS 

There are two main areas to this thesis. The first is to limit time spend on labour-intensive 

tasks within the regenerative medicine field. The second is to limit the experimentation 

requires to determine stem cell responses in tissue engineering, specifically. As the second is 

an especially complex areas, this will be split into two sections. The thesis closely follows an 

overarching outline shown in Figure 2. 

The three aims are to determine whether: 

1. Unlabelled SBFSEM sections can be automatically labelled to identify and label 

specific cell types without labelling undesired features on unseen SBFSEM sections. 

2. A model can be developed with a limited dataset of roughly 200 images to simulate 

cell behaviour for derivation of novel variables. 

3. CAM assay images for a scaffold of a specific material and coating combination can 

be generated that is indistinguishable form an experimentally obtained CAM assay 

image. 
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The first relates to automating labelling and extracting a targeted cell type from 3D images, 

which is covered in Chapter 5. Automation would allow for researchers to spend less time on 

menial tasks and lead to faster image analysis and a shorter path to scientific discovery. 

Additionally, automation of cell labelling would show that computational methods have the 

potential to distinguish between cells and acellular material, and between cell types, in 

complex images.  

Figure 2: Project outline and overarching premise of application of AI for future modelling applications. 

To achieve the overarching premise of application of AI for future modelling applications, there are multiple steps involved, 

of which three are covered in the project. Initially, AI is applied for labelling and extracting a feature cell. Next, cell behaviour 

in response to topography is predicted, ranging from a single cell to a dozen per image. Finally, a multi-cellular system 

containing stem cells is modelled when given unseen combinations of physical and chemical cues. The complexity therefore 

rises throughout this project from static tasks involving single cells to time-dependent predictions of potentially thousands of 

cells. 
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The second, covered in Chapter 6, relates to generated statistically likely cell positions in 

response to unseen topographical cues to detect new cell behaviours. The third, covered in 

Chapter 7, advances on this work and, instead of investigating predictions of a few cells, an 

entire cellular system on 3D scaffolds is modelled, with combinations of different chemical 

and physical cues to influence cell behaviour over time.  

Chapter 2 will cover the background to each of the areas covered above. Chapter 3 will 

introduce deep learning as a tool to accomplish the above aims, and Chapter 4 will detail the 

data collection and composition for training deep learning models. Chapter 8 concludes on 

the project as a whole. 

1.3 CONTRIBUTIONS AND PUBLICATIONS 

1.3.1 SUMMARY OF CONTRIBUTIONS 

1. Automated labelling of cellular structures in SBFSEM-imaged placental tissue that can 

match manually labelled images by over 95%. 

2. Determining the minimum line separation of  laser-machined lines on glass surfaces 

resulting in stem cell alignment of 11.7 ± 1.3 µm. 

3. Developing a method for potentially reducing necessary levels of animal testing in tissue 

engineering experimentation 

1.3.2 PUBLICATIONS 

All listed works are peer-reviewed book chapters, conferences, or journal articles. Listing is 

grouped into publication type and in chronological order rather than order of significance. All 

first author publications result from this work. Additional publications are either partially 

resulting from this work or have shared methodology applied to both this work and the 

relevant publication, developed by the contributing authors. Potential publications under 

review or in preparation have not been listed for brevity. For an accurate citation count, 

please follow this link to the relevant Google Scholar citation record.  

FIRST AUTHOR PUBLICATIONS RESULTING FROM THIS PROJECT : 

Book Chapter 

2021 Mackay, Benita Scout, Grant-Jacob, James, Eason, R.W., Lewis, 

Rohan and Mills, Benjamin (2021) Deep Learning for the Automated Feature 

Labelling of 3-Dimensional Imaged Placenta. In, Biomedical Engineering Systems 

and Technologies: 13th International Joint Conference, BIOSTEC 2020, Valletta, 

https://scholar.google.co.uk/citations?hl=en&user=KMFDtOwAAAAJ&view_op=list_works
https://eprints.soton.ac.uk/448184/
https://eprints.soton.ac.uk/448184/
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Malta, February 24–26, 2020, Revised Selected Papers. 1 ed. Springer, p. 93. 

(doi:10.1007/978-3-030-72379-8_6). 

 

Journal Articles 

2021 Mackay, Benita Scout, Marshall, Karen, Margaret, Grant-Jacob, 

James, Kanczler, Janos, Eason, Robert W., Oreffo, Richard and Mills, 

Benjamin (2021) The future of bone regeneration: integrating AI into tissue 

engineering. Biomedical Physics and Engineering 

Express, 7 (5), [052002]. (doi:10.1088/2057-1976/ac154f). 

 

2020 Mackay, Benita Scout, Praeger, Matthew, Grant-Jacob, James, Kanczler, 

Janos, Eason, Robert, Oreffo, Richard and Mills, Benjamin (2020) Modeling adult 

skeletal stem cell response to laser-machined topographies through deep 

learning. Tissue and Cell, 67, [101442]. (doi:10.1016/j.tice.2020.101442). 

 

Conference Articles and Presentations 

2020 Mackay, Benita, Blundell, Sophie, Etter, Olivia, Xie, Yunhui, McDonnell, 

Michael, David Tom, Praeger, Matthew, Grant-Jacob, James, Eason, R.W., Lewis, 

Rohan and Mills, Benjamin (2020) Automated 3D labelling of fibroblasts and 

endothelial cells in SEM-imaged placenta using deep learning. In Proceedings of 

the 13th International Joint Conference on Biomedical Engineering Systems and 

Technologies - Volume 2 BIOIMAGING. Science and Technology Publications, 

Lda. pp. 46-53. (doi:10.5220/0008949700460053). 

 

2019 Mackay, Benita, Scout, Blundell, Sophie, Lewis, Rohan, Etter, Olivia, Xie, 

Yunhui, McDonnell, Michael, David Tom, Praeger, Matthew, Grant-Jacob, 

James, Eason, Robert and Mills, Benjamin (2019) Automated 3D labelling of 

fibroblasts in SEM-imaged placenta using deep learning. The Southampton 

Machine Intelligence Showcase 2019, University of Southampton, United 

Kingdom. 22 Oct 2019. 1 pp. 

 

ADDITIONAL OUTPUT: 

Conference Articles and Presentations 

http://dx.doi.org/10.1007/978-3-030-72379-8_6
https://eprints.soton.ac.uk/450431/
https://eprints.soton.ac.uk/450431/
http://dx.doi.org/10.1088/2057-1976/ac154f
https://eprints.soton.ac.uk/443950/
https://eprints.soton.ac.uk/443950/
https://eprints.soton.ac.uk/443950/
http://dx.doi.org/10.1016/j.tice.2020.101442
https://eprints.soton.ac.uk/436579/
https://eprints.soton.ac.uk/436579/
http://dx.doi.org/10.5220/0008949700460053
https://eprints.soton.ac.uk/434872/
https://eprints.soton.ac.uk/434872/
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2022 (Partially resulting from this work) 

Mills, Benjamin, Grant-Jacob, James, MacKay, Benita, Scout, Lewis, 

Rohan and Sengers, Bram (2022) Modelling of 3D placental cell features 

using deep learning. In BIOIMAGING2022. 

 

2020 Mills, Benjamin, Grant-Jacob, James, Jain, Saurabh, Xie, Yunhui, Mackay, 

Benita, Scout, McDonnell, Michael, David Tom, Praeger, 

Matthew, Loxham, Matthew, Richardson, David and Eason, 

Robert (2020) Particulates sensing using optical fibres and deep 

learning. SPIE Photonics West, The Moscone Center, United States. 01 - 06 

Feb 2020. 

 

2019 Grant-Jacob, James, Xie, Yunhui, Mackay, Benita, Scout, McDonnell, 

Michael, David Tom, Praeger, Matthew, Loxham, Matthew, Eason, 

Robert and Mills, Benjamin (2019) Bioaerosol sensing using deep 

learning. IOP - Physics Meets Biology, United Kingdom. 08 - 11 Sep 2019. 

 

 Mills, Benjamin, McDonnell, Michael, David Tom, Heath, Daniel, Xie, 

Yunhui, Grant-Jacob, James, Mackay, Benita, Scout, Praeger, 

Matthew and Eason, Robert (2019) Deep learning for 3D modelling of 

multiple pulse femtosecond ablation. In 15th International Conference on 

Laser Ablation (COLA) 2019. 

 

 Grant-Jacob, James, Xie, Yunhui, McDonnell, Michael, David Tom, Eason, 

Robert, Loxham, Matthew, Mackay, Benita, Scout, Mills, 

Benjamin, Heath, Daniel and Praeger, Matthew (2019) Deep learning for 

real-time air and marine particle pollution sensing. Clean Air Futures: 

working together for cleaner air, , Southampton, United Kingdom. 22 Mar 

2019. 

 

https://eprints.soton.ac.uk/456279/
https://eprints.soton.ac.uk/456279/
https://eprints.soton.ac.uk/432992/
https://eprints.soton.ac.uk/432992/
https://eprints.soton.ac.uk/434088/
https://eprints.soton.ac.uk/434088/
https://eprints.soton.ac.uk/429560/
https://eprints.soton.ac.uk/429560/
https://eprints.soton.ac.uk/429474/
https://eprints.soton.ac.uk/429474/
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 Mills, Benjamin, Heath, Daniel, Grant-Jacob, James, Xie, 

Yunhui, Mackay, Benita, Scout and Eason, Robert (2019) Image-based 

monitoring of high-precision laser machining via a convolutional neural 

network. In Photonics West. 

 

 Xie, Yunhui, Heath, Daniel, Grant-Jacob, James, Mackay, Benita, 

Scout, McDonnell, Michael, David Tom, Praeger, Matthew, Eason, 

Robert and Mills, Benjamin (2019) Smart lasers for manufacturing of the 

future. FEPS IoT Showcase. 05 Apr 2019. 

 

 Grant-Jacob, James, Xie, Yunhui, Mackay, Benita, Scout, McDonnell, 

Michael, David Tom, Praeger, Matthew, Loxham, Matthew, Eason, 

Robert and Mills, Benjamin (2019) Super-resolution imaging using deep 

learning. IOP - Physics Meets Biology, United Kingdom. 08 - 11 Sep 2019 

 

Journal Articles 

2020 McDonnell, Michael, David Tom, Grant-Jacob, James, Xie, 

Yunhui, Praeger, Matthew, Mackay, Benita, Scout, Eason, 

R.W. and Mills, Benjamin (2020) Modelling laser machining of nickel with 

spatially shaped three pulse sequences using deep learning. Optics 

Express, 28 (10), 14627-14637. (doi:10.1364/OE.381421). 

 

2019 Grant-Jacob, James, Mackay, Benita, Scout, Xie, Yunhui, Heath, Daniel 

J, Loxham, Matthew, Eason, Robert and Mills, Benjamin (2019) A neural 

lens for super-resolution biological imaging. Journal of Physics 

Communications. (doi:10.1088/2399-6528/ab267d). 

 

 Xie, Yunhui, Heath, Daniel J, Grant-Jacob, James, Mackay, Benita, 

Scout, McDonnell, Michael, David Tom, Praeger, Matthew, Eason, 

Robert and Mills, Benjamin (2019) Deep learning for the monitoring and 

process control of femtosecond laser machining. Journal of Physics: 

Photonics, 1 (3), 1-10, [3]. (doi:10.1088/2515-7647/ab281a). 

 

https://eprints.soton.ac.uk/428810/
https://eprints.soton.ac.uk/428810/
https://eprints.soton.ac.uk/428810/
https://eprints.soton.ac.uk/430269/
https://eprints.soton.ac.uk/430269/
https://eprints.soton.ac.uk/434087/
https://eprints.soton.ac.uk/434087/
https://eprints.soton.ac.uk/440871/
https://eprints.soton.ac.uk/440871/
http://dx.doi.org/10.1364/OE.381421
https://eprints.soton.ac.uk/431978/
https://eprints.soton.ac.uk/431978/
http://dx.doi.org/10.1088/2399-6528/ab267d
https://eprints.soton.ac.uk/432292/
https://eprints.soton.ac.uk/432292/
http://dx.doi.org/10.1088/2515-7647/ab281a
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 Grant-Jacob, James, Jain, Saurabh, Xie, Yunhui, Mackay, Benita, 

Scout, McDonnell, Michael, David Tom, Praeger, Matthew, Loxham, 

Matthew, Richardson, David, Eason, Robert and Mills, 

Benjamin (2019) Fibre-optic based particle sensing via deep 

learning. Journal of Physics: Photonics. 

 

 Mills, Benjamin, Heath, Daniel, Grant-Jacob, James, Mackay, Benita, 

Scout and Eason, Robert (2019) Neural networks for predictive laser 

machining capabilities. In Emerging Digital Micromirror Device Based 

Systems and Applications XI. SPIE.. (doi:10.1117/12.2507375). 

 

 Grant-Jacob, James, Xie, Yunhui, Mackay, Benita, Scout, Praeger, 

Matthew, McDonnell, Michael, David Tom, Heath, Daniel J, Loxham, 

Matthew, Eason, Robert and Mills, Benjamin (2019) Particle and salinity 

sensing for the marine environment via deep learning using a Raspberry 

Pi. Environmental Research Communications, 1 (1). (doi:10.1088/2515-

7620/ab14c9). 

 

 Grant-Jacob, James, Mackay, Benita S., Baker, James, Xie, 

Yunhui, McDonnell, Michael D.T., Heath, Daniel, Praeger, 

Matthew, Eason, Robert W. and Mills, Ben (2019) Patterned nanofoam 

fabrication from a variety of materials via femtosecond laser 

pulses. Materials Sciences and Applications, 186-

196. (doi:10.4236/msa.2019.103015). 

 

2018 Heath, Daniel, Mackay, Benita S., Grant-Jacob, James, Xie, 

Yunhui, Oreffo, Richard, Eason, Robert and Mills, 

Benjamin (2018) Closed-loop corrective beam shaping for laser processing 

of curved surfaces. Journal of Micromechanics and 

Microengineering, 28 (12), 1-7. (doi:10.1088/1361-6439/aae1d5). 

 

https://eprints.soton.ac.uk/434151/
https://eprints.soton.ac.uk/434151/
https://eprints.soton.ac.uk/428811/
https://eprints.soton.ac.uk/428811/
http://dx.doi.org/10.1117/12.2507375
https://eprints.soton.ac.uk/430807/
https://eprints.soton.ac.uk/430807/
https://eprints.soton.ac.uk/430807/
http://dx.doi.org/10.1088/2515-7620/ab14c9
http://dx.doi.org/10.1088/2515-7620/ab14c9
https://eprints.soton.ac.uk/430009/
https://eprints.soton.ac.uk/430009/
https://eprints.soton.ac.uk/430009/
http://dx.doi.org/10.4236/msa.2019.103015
https://eprints.soton.ac.uk/425695/
https://eprints.soton.ac.uk/425695/
http://dx.doi.org/10.1088/1361-6439/aae1d5
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 Heath, Daniel, Grant-Jacob, James, Xie, Yunhui, Mackay, Benita, 
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2 BACKGROUND 
Application of AI in regenerative medicine was reviewed in Biomedical Physics and 

Engineering Express [40]. 

The scope of this thesis is broad, covering imaging placental tissue, modelling Stro-1 

enriched progenitor cells, and predicting scaffold biocompatibility.  

With an approximate annual cost of £1.7 billion for the NHS, and costing between 1.0% and 

2.5% of gross domestic burden internationally, osteoporosis and osteoarthritis represent a 

major socio-economic burden [41, 42]. Current approaches to alleviate suffering include 

medication, bone grafts and implants. The former solution is unsustainable as, while 

bisphonates and non-opioids such as non-steroidal anti-inflammatory drugs (NSAIDs) are 

prescribed for osteoporosis, NSAIDs can lead to serious medical complications when high 

doses are taken for a long time or when the patient is elderly/in poor health, and may even 

accelerate cartilage destruction in osteoarthritis [43-45]. A recent public health report showed 

5% of UK citizens are prescribed opioids [46], which have limited long-term benefit and 

severe issues, including contradictory evidence of pain reduction and the numerous 

associated risks of opioid use [47]. The use of grafts and implants are not without risk, 

specifically the risk of rejection and failure, hence there is a growing need for innovative 

techniques to promote implant integration and reduce the failure rate of osteopathic 

intervention.  

Section 2.1 will expand on the concept of tissue engineering further, 2.2 will focus on 

topographies and cell response to them, 2.3 will detail possible methods for creating these 

topographies, 2.4 will branch into scaffolds and animal testing in tissue engineering, and 2.5 

will cover an alternative side to regenerative medicine, with emphasis on analysis of placental 

health, which can affect life-long patient outcomes. 

2.1 TISSUE ENGINEERING 

Tissue engineering is defined by the National Institute of Biomedical Imaging and 

Bioengineering (NIBIB) as “an interdisciplinary and multidisciplinary field that aims at the 

development of biological substitutes that restore, maintain, or improve tissue function” [48]. 

It is a branch of regenerative medicine, with current research focussed on utilising the natural 

healing response of the body to regenerate bone, helped by bioactive materials [49]. In the 

past, bio-inert materials were frequently used in joint replacement as a treatment for 

osteoarthritis, but outcomes were inconsistent. Even implants not rejected by the body did not 
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provide an optimal treatment, as a prosthesis lifespan is typically less than 15 years. Fatigue 

and wear eventually make the implant unfit for purpose, and recipients of knee join 

replacements often have to limit their sport activity and heavy lifting to prolong the lifespan, 

impacting their quality of life [50]. One end goal is bio-fabrication of bone at a scale viable 

for clinical use, but complexities in resolving vascularisation and necrosis issues remain 

unsolved [51]. A middle ground, where biomaterials encourage the body to regenerate bone 

in-situ, faces similar challenges, but recent technological advances being introduced to tissue 

engineering research, such as AI, may result in successful patient-specific advances [52]. 

2.1.1 STEM CELLS AND BIOMATERIALS 

Organs and tissue, including bone, can be repaired and regenerated by the body but this 

healing response is limited by a variety of factors, including infection, compromised blood 

supply, and the scale of the trauma- and disease-induced defect. Biomaterials and bone grafts 

can promote osteoinduction, osteoconduction and osteogenesis, therefore can induce bone 

healing. Bone healing is a large focus area of tissue engineering, as bone is fast becoming the 

most transplanted tissue after blood (due in part to the increasing aging populations across the 

world) [51, 53]. These biomaterials must combine bone regenerative properties with the 

strength of bone, and also be biodegradable so new bone growth can replace the biomaterial 

unimpeded. Regrown bone and temporary bone scaffolds must both perform a wide range of 

tasks, from producing red and white blood cells to storing minerals, which impacts overall 

health and mobility of the body [26, 54-60]. 

Heterogeneity exists within skeletal stem-progenitor cell fractions, leading to significant 

differences in differentiation potential along the osteo-chondro-adipogenic lineages, 

characteristic of the tri-potent primitive mesenchymal stem cell population, where there is 

variation in cell stem-progenitor capacity [27]. Lack of specific markers is hampering 

successful isolation, which is further hindered by mismatches between ex vivo/in vivo 

mismatch in multi-lineage potential [61]. The use of Stro-1 as a stem cell marker is a popular 

example as, while multiple studies use Stro-1 for the enrichment of HBMSC populations, 

only a few examined and demonstrated Stro-1 reactivity in the tissues from which the cells 

originated, such as in sub-endothelial positions near sinusoids (a type of blood vessel within 

bone marrow) [29, 40, 62]. However, the evidence demonstrating Stro-1 selected populations 

resulting in fibroblasts, adipoblasts, myoblasts and osteoblasts, shows the necessity of further 
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marker research, and the validity of using Stro-1 enriched HBMSC populations for in vivo 

biomaterial research [63].  

HBMSC populations lose proliferative and, crucially, multipotential ability the longer they 

are cultured, but the driving mechanisms for this are difficult to overcome [61], which leads 

to challenges in stem-progenitor cell expansion. However, in vivo environments face 

challenges, too. The safety and performance of in vivo biomaterials are difficult to predict and 

monitor, with issues including inflammation, rejection, and possibly cancer, with evidence 

mounting against textured silicon-based implants. Unlike with smooth implants, textured 

implants are linked to non-Hodgkins lymphoma, resulting in a mass global recall due risks of 

anaplastic large cell lymphoma, Figure 3, [64-66]. Importantly, understanding is still 

deficient, and the relationship between textures and other biophysical cues with multi-

factorial multi-cellular environment (all in vivo environments) is complex, both in the short 

term and long term relative to the life of an implant. 

 

Healing is a complex multi-cellular environment with dynamic processes of migration, 

proliferation, and differentiation. This includes coordination of multiple cell types performing 

different tasks depending on the location, variety, and duration of trauma, which is a key 

Figure 3: An illustration of the surface of a textured implant.  

Textured breast implants were found to be linked to a type of non-Hodgkins lymphoma, with those with the most textured 

surfaces more likely to result in cancerous side effects during the lifetime of the implant. Smooth implants, made with the same 

materials, were not linked to non-Hodgkins lymphoma. These textured implants have since been banned . © Searsie, iStock, 

usage under iStock Standard License (Ref 2082231647 ). 
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focus of tissue engineering [67]. Understanding of natural cues within the body during the 

immune response has resulted in Extracellular Matrix (ECM) mimicking scaffolds capable of 

manipulating the immune system for tissue regeneration stimulation but these are yet to be 

sufficiently scalable, reproducible, and inexpensive for clinical application [68, 69]. 

However, it shows how crucial understanding of the biochemical and biophysical cues within 

the body are to successful biomaterial development. 

There are a variety of cues to consider, from biophysical features such as structure and 

topography, to biochemical features, such as beneficial cytokines and ions. Surface 

topography alone has been found to alter cell behaviour through both intracellular and 

intercellular signalling, affecting cytokine secretion [70], proliferation and differentiation 

[71], density and spreading [72, 73], and cell adhesion [74, 75]. Each feature, and the 

cumulative effect, must be considered when designing a new biomaterial [76]. Especially 

when the properties of bone can vary patient-to-patient, with factors including race, sex, age, 

and position in the body [77].  

2.1.2 A PROBLEM OF SCOPE 

Originally considered little more than a passive frame for cells, the ECM is currently thought 

to be a crucial actor in the modification and maintenance of cell behaviour. Biophysical cues 

modulate the ECM-cell interaction to create new material-cytoskeleton links, where surface 

topographies instruct cells via modifications to cell adhesion and, subsequently, morphology 

[40]. Therefore, cell spreading, migration, proliferation, and differentiation can be modified. 

Biomaterial topography is an important feature, with an emerging consensus that topography 

is as effective as biochemical cues and signals in controlling cell fate and function [78-80]. 

Many reviews cover how different physical characteristics alter the behaviour of cells [60, 

76, 78], especially in the nanoscale [12, 16, 70, 81-83].  

The complexity of cell response is such that, with one single area (topography), there are 

virtually infinite unique biophysical feature combinations to investigate. Biophysical features 

such as, roughness, ordering, and shape are a non-exclusive list of examples. These can be 

further divided into, for example, average height deviation amplitude, density of summits, 

texture aspect ratio, skewness, and grating (regularly spaced collection of essentially 

identical, parallel, elongated elements) ratio. A grating can include topographical features 

such as line separation, line thickness, grating length, increased disorder, and intersecting 

angles. Taking a small fraction of the available scales, investigating a range of sizes from 100 
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µm to 100 nm with 10 nm precision, would increase the number of potential experiments by 

an order of magnitude. When two features are combined, for example line thickness and line 

separation, the number of unique combinations is increased by several orders of magnitude. If 

all the features listed are combined, just at the scales mentioned, the count of unique 

combinations becomes larger than 1×1030. The fastest part in the cell culture- imaging-

analysis chain is cell imaging with an automated fluorescent microscope. This could acquire 

both a bright field and fluorescent image on a single topography every millisecond, therefore 

taking 30 quintillion years without any repetition (substantially longer than the current 

approximation of the age of the universe of around 13.7 billion years [84]) to capture each 

topography [40]. 

However, just as a human does not need to see every feature to recognise a pattern, 

investigating every unique combination is superfluous. In another field, an AI-based model 

did not need to see every laser machined structure possible to determine the 3D depth profile 

of an unseen laser beam profile [13]. Only from the varied training set, the laser-machining 

model was also able to determine further useful laser-machining parameters (such as laser 

power and write-speed) without any underlying physical processes encoded (no physics was 

taught to the AI model before exposure to training data). Therefore, it is worth investigating 

how an AI-based model can be applied to regenerative medicine for the same purpose – 

determining useful biophysical features without needing underlying scientific understanding.  

2.2 TOPOGRAPHY AND CELLS 

Previous studies have shown topography can be used to influence cell behaviour, with 

preliminary results showing nanotopographies altering proliferation and promoting 

osteogenesis in partially disordered nanotopographies [70]. However, these studies have been 

relatively limited in both the scale and number of nanopatterns investigated, sticking with 

either uniform groove/ridge patterns or pit patterning of varied disorder. Nanogratings 

typically enhance cell adhesion and lower proliferation, while nanoposts and nanopits can 

reduce cell attachment and produce varied effects on proliferation [30]. To comprehensively 

test which nanotopographies are most effective (i.e. gratings, pits, randomised, or patterning 

not yet investigated) using traditional methods of culturing cells on virtually all patterns, with 

consequent analysis, would take an unfeasible amount of time. To elaborate, if only gratings 

and pits were used, that is two experiments.  However, the variation in grating could include 

line separation, line thickness, grating length, increased disorder, different angles, etc., and 

the pits could be circular, triangular, rectangular, square or hexagonal (or any other shape). 
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That is now 10 experiments and a non-exhaustive list. Investigating a range of sizes from 100 

µm to 100 nm with 10 nm precision would increase the experiment number to 1×103. When 

two variations are combined, for example line thickness and line separation, the experiment 

count is at least 1×106. If all the variations previously listed are combined, the experiment 

count becomes larger than 1×1030. Just considering the imaging of topographies, the fastest 

part in the cell culture- imaging-analysis chain, if an automated fluorescent microscope can 

take a brightfield-fluorescent image pair on a single topography every millisecond, imaging 

alone would take 30 quintillion years (substantially longer than the current approximation of 

the age of the universe of around 13.7 billion years [84]). 

Recent advances in machine learning give the possibility that, when given sufficiently varied 

training data, a relatively small training data-set can result in accurate predictions [13]. 

Training AI on varied, yet limited, nanopatterned surfaces and the subsequent cell response 

could result in predictions of cell response on untested nanotopographies. This approach 

could then lead to the determination of optimal topographies without the need for extremely 

lengthy experimentation and analysis. For example, while imaging all of the combined 

topographies would take longer than the age of the universe, combining only two of those 

features and imaging at one a second could be done in a period of weeks, rather than 

millennia. 

For generation of varied topographical surface patterns on substrates for subsequent cell 

growth, femtosecond laser machining offers both the speed and the precision required for 

sub-micron scale surface ablation, with the versatility of laser machining also offering the 

possibility of directly machining implants [36]. Due to the sensitivity of this non-linear 

process, small levels of experimental noise can result in inferior fabrication quality, which 

could prevent necessary scaling up of nanotopography production. However, recent 

developments in real-time laser machining monitoring through artificial intelligence provide 

a direct solution. 

2.2.1 CELL-TOPOGRAPHY INTERACTION 

Cells respond to the shape of their environment due to changes in contact guidance, cell 

spreading and contact inhibition [85] (Figure 4). Cell behaviour can therefore be influenced 

through the nanoscale engineering of surfaces and use of surface-directed 

nanobiotechnologies [86, 87]. Variations to surface nanotopography has been demonstrated 
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to affect cell adhesion [74, 75], density and spreading [72], cytokine secretion (important to 

cell signalling) [71], proliferation and differentiation [16, 70]. 

 

Observed since 1911, contact guidance is responsible for the alignment of cells with 

topographies of comparable size to the cells under observation [85]. Grooves, both of 

magnitude close to cell size (typically 5 to 10 µm) and smaller, are capable of orientating 

cells, where both the mechanical properties of the cytoskeleton and durability of cellular 

(a-c) SEM images of cells cultures with lined gratings and on a flat surface: (a) Filopodia extend along a 400 nm pitched 

nano-grating , where pitch is the sum of the groove and ridge width, with some lamellipodia at the cell edge protrude into the 

gratings while others bridge the grating (bottom left); (b) An epithelial cell aligned and elongated parallel to the 70 nm wide 

ridges, with a depth of 600 nm, on a silicon oxide substrate; and (c) There is no visible elongation when an epithelial cell is 

cultured on a smooth silicon oxide substrate. (d-f) Fluorescent images of cells stained for actin (red), vinculin (green), and 

the nucleus (blue) with a reflection image of the substrate on the top right for illustrative purposes: (d) An epithelial cell 

cultured on the same 400 nm pitch as seen above, with large expression of vinculin, a membrane cytoskeletal protein involved 

in cell adhesion; (e) An epithelial cell on a grating of 4000 nm pitch with 1900 nm ridges at a depth of 600 nm, with less 

vinculin throughout the cell; and (f) An epithelial cell on a smooth silicon oxide substrate, where vinculin is concentrated at 

the cell edge. Grating inserts in (d, e) are to scale with accompanying cells. All images modified from Teixeria et al. with 

permission from The Company of Biologists Limited [9]. 

Figure 4: Elongation and alignment of human corneal epithelial cells parallel to nano-grating topography. 
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attachment is affected by topographical variations for multiple materials, including silica and 

titanium.  

At the sub-micrometre range, surface topographies can mimic cell adhesion surfaces such as 

other cells and proteins in the ECM. Low-voltage scanning electron microscopy has shown 

the ECM has a complex topography at cellular and subcellular level, with many features of 

the order of 50 to 100 nm. At nanoscale range, it may be possible to target receptor-driven 

pathways to directly control the response of cells [16]. For example, grating surface 

topographies with an ultrafine period of 260 nm of varying depths between 100 and 400 nm 

resulted in changes in cell behaviour, as seen in Figure 4, although it is highly dependent on 

cell type and cell-cell interactions – different cells interact in different ways to  the same 

topography, with some cells being more responsive than others [88].  

While exploration into topographical effects has grown, there have been many parallel 

studies on the addition of bioactive ion chemistry to titanium implants due to the potential for 

improved osteogenic capacity [89-96]. When the surface of a titanium implant is modified 

with calcium ions, chemical and nanotopographical alterations accelerate platelet activation, 

moderating the early phase healing of bone around the implants [97]. Strontium ions have 

also been used to modify titanium, benefitting bone healing [98, 99]. However, there was 

difficulty in concluding whether the nanotopography or surface ion chemistry was dominant 

for osteogenic improvement. When nanorough titanium surfaces with and without ion 

modification were used to culture murine bone marrow stromal cells (MSCs) and human 

multipotent adipose stem cells (hASCs), strontium-modified titanium was more potent than 

other surface factors for osteogenesis of MSCs [96], yet nanorough topographies were shown 

to be not as osteoconductive as nanotopographies with more ordered patterning [35, 100-

102]. The introduction of ions into the body also risks toxic and potentially dangerous long-

term side effects, which have not yet been sufficiently studied [103]. To compare how the 

combination of nanotopography and surface chemistry effects cells, a 2016 compared the 

effects of nanotopography with a variety of surface chemistries and found nanopatterning 

resulted in changes to macrophage behaviour independent of the surface chemistry [104]. 

This result shows strong evidence of the possibility to control stem cells through the 

patterning of surfaces on which the cells are cultured, without the need for potentially 

harmful substrate doping. 
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2.2.2 TOPOGRAPHICAL EFFECTS  

Cell interactions with various surface topographies impact both the directionality and speed 

of cell spreading [105], with proteins in the ECM hypothesised to be responsible for much 

cell signalling [106]. The most common way for proteins to interact is through the precise 

matching of one rigid surface and another, and the communication between cells is mediated 

mainly through extracellular signal molecules. Extracellular signals are relayed through 

plasma membrane receptors to the interiors of the cells, allowing recognition of adjacent cells 

and extracellular structures [107].  

Organised ECM proteins modulate contact guidance, an essential component in cell 

migration regulation through the response of cells to micrometre and sub-micron scale 

surfaces [108]. As each cell is programmed to respond to specific combinations of 

extracellular signals, the key challenge is to determine the exact surface topographies that 

will induce desired cell behaviour, such as differentiation (the cell changes from one type to a 

typically more specialised type), or proliferation (the cell divides and the overall number of 

cells increases), for the target cell. This is difficult, as cell and topography interactions result 

in differing effects within a singular cell type due to the direct effect of the topography 

combined with the physiochemical properties of the surface substrate [106].  

There is a minimum scale at which cell guidance is no longer applicable [109]. When the 

morphological behaviour of fibroblasts cultured on smooth and grooved nanotopographies 

were investigated, a cut off of 100 nm width and 75 nm depth was established after 4 hours 

for visible cell response. However, after 24 hours this reduced to groove depths of 35 nm. 

These limits are similar to the smaller sized features of an ECM, giving further weight to 

proteins of the ECM being responsible for important cell signalling.1  

Studies have shown for filopodia (thin cytoplasmic projections that extend beyond the 

leading edge of lamellipodia in migrating cells), and partially for lamellipodia (a cytoskeletal 

protein actin projection on the leading edge of the cell which propels the cell), that features as 

small as 10 nm generate a response [111] (Figure 5). Filipodia are extended from the main 

body of a cell and probe the surrounding environment. Cell movement then occurs in the 

direction of the contact through retraction of attached filipodia. Below this scale, contact 

 
1 The basement membrane of the corneal epithelium of the rhesus macaque was found to be composed of a varying 

nanotopography consisting of elevations ranging from 76 to 379 nm and pores ranging from 22 to 216 nm with a 

mean interpore distance of 87 nm110. Abrams, G.A., et al., Nanoscale topography of the basement 

membrance underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res., 2000. 299: p. 39-46.. 
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guidance does not exist. Individual collagen fibrils have diameters typically 20-100 nm and 

commonly form larger aggregates [112, 113]. As cell guidance occurs below 100 nm, there is 

likely a combination of factors affecting cell behaviour: Simply mimicking cell surface 

topographies or protein sizes of the ECM may not be the most efficient nanotopography for 

cell control. 

 

Real-time polymerase chain reaction (PCR), a technique in molecular biology to evaluate the 

amplification of targeted DNA using fluorescent signalling, of human adipose tissue-derived 

mesenchymal stem cells show an interaction between nanotopographical cues and microRNA 

activity, which lead to osteogenic differentiation [114]. However, disparities between cell 

types, surface types and fabrication methods, and specific capabilities of research laboratories 

involved, lead to great differences and sometimes contradictions in topographical response 

[115]. While there is no universal hypothesis relating to the mechanism for the effect of cell 

Figure 5: Cell spreading and interaction with nanoscale topography.  
Features are small enough in the nanotopography to be similar in size to individual cell receptors, specifically integrins 

(nanoscale) responsible for adhesion (microscale). (a) A heptameric arrangement of ligand clusters showing that four 

integrins are needed to be gathered, forming an adhesion, to result in cell spreading. (b) Nanopodia (arrows), nanoscale 

filopodia (cell membrane projections containing integrins) responding to nanotopography, which can result in whole-cell 

response. Image reused from Dalby et al. with permission from Springer Nature [16]. 
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nanotopography interactions on cell behaviour [106], it is speculated that changes to 

cytoskeletal tension in response to topography could change interphase nucleus organisation, 

therefore influencing the gene expression profile of the cell, with work utilising gene array 

techniques showing that nanotopographies effect MSC genome expression [100, 116-123]. 

Further studies are needed on more complex and randomised patterns to best investigate cell 

response to topographies. 

2.1.2 INFLUENCING ONTOGENESIS  

The differentiation of MSCs into desired cell lineages can be done in a variety of ways, with 

topographical methods having the potential to influence MSC differentiation into adipogenic, 

chondrogenic and osteoblastic cells [100, 102, 124]. MSCs are thought to differentiate to 

osteoblastic cells through adhesion elongation and increased intracellular tension, which 

leads to activation of osteo-specific transcription factors, such as RUNX2, through 

phosphorylation. 

Controlling this differentiation can prevent MSCs differentiating into soft tissues, which leads 

to repeat surgical intervention for weight-bearing implants in orthopaedic procedures or low 

joint mobility in non-weight-bearing implants, currently a problem with topographically-

unaltered titanium [102]. The most common mode of implant failure is aseptic loosening, 

accounting for 24.3 and 29.8% of all failures in total hip and total knee arthroplasties 

respectively [125, 126]. A correctly topographied implant would encourage differentiation 

leading to mature osteoblasts, allowing the production of osteoid - essential for new bone 

formation [100]. 

Nanorough surfaces have been shown to produce an accelerated osteogenic differentiation-

promoting effect in hASCs [96], as the nanosurface has a larger surface area and superior 

wettability, which is beneficial to osteogenesis due to inducting earlier cellular response from 

bone-forming cells through an increased absorption of cell adhesion proteins [89, 92, 95]. 

When surfaces are adapted with disordered nanoscale patterns, human MSCs can be 

stimulated to produce bone mineral without added osteogenic supplements, where limited 

disorder to nanotopography is beneficial to osteogenesis [35, 100, 102]. Using electron beam 

lithography (EBL), increasingly disordered nanotopographies were utilised to compare the 

effect of disordered nanotopography on MSCs including a uniform square array, adapted 

square arrays (where individual nanopits were ±20 nm, near square (NSQ) 20, and ±50 nm, 

NSQ 50, from uniform central positions) and completely randomised nanopit positioning. 
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Bone-specific ECM proteins Osteopontin (OPN) and Osteocalcin (OCN) were detected in 

NSQ 20 and increasingly for NSQ 50 cultured MSCs after 21 days via immunofluorescence 

but was not visible for the control (un-adapted), wholly random or uniform nanotopographies, 

as seen in Figure 6. Bright-field images further concluded that mature bone nodules 

containing mineral were found in NSQ 50 while MSCs on the control had a fibroblastic 

morphology after 28 days [100]. 

 

Controlled nanodisorder clearly demonstrates an efficient way to control MSC 

differentiation. In highly ordered surfaces, adhesions were forced to form in the limited areas 

between pits, as they were unable to form directly over the features. In disordered patterns, 

large super-mature adhesions could form. Previous studies have described adhesion-

promoting fibronectin microscale shapes as beneficial to osteogenesis because MSCs are 

encouraged to spread, so larger adhesions are observed and consequently osteogenesis is 

promoted - MSCs differentiate towards osteoblasts [117-120]. Disordered nanotopographies 

Figure 6: Skeletal stem cell response to different nanotopographies.  
Skeletal stem cells were cultured for 28 days on (a, c) partially randomised square array nanopits (NSQ) or (b, d) planar 

controls (FLAT). Stem cells were stained with acting (red) and nuclei (blue) for cell positioning and quantity, and 

immunofluorescence stained for bone cell markers osteocalcin (a-b) and osteopontin (c-d). Images reproduced from 

McNamara et al. under Creative Commons Attribution License open access (© 2010 Laura  E. McNamara et al.) [12]. 
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result in areas where large adhesions can form through increased integrin gathering but also 

areas where it is harder for adhesions to develop. This allows for the formation of fewer but 

larger adhesions in osteoblasts than in, for example, fibroblasts [35]. Without such 

nanotopographical adaptions, the response of MSCs in bone marrow to a titanium implant 

commonly leads to production of soft tissue, resulting in possible failure of orthopaedic 

implants due to micromotion or poor joint repair. 

These results are significant as they confirm the control of stem cells can be achieved through 

nanotopographies in this specialised case of nanopits of increasing disorder. However, the 

huge number of features needed for full exploration, understanding and optimisation of 

surface topographies for stem cell control requires AI support to limit the time otherwise 

required for full manual experimentation and analysis. 

2.3 TOPOGRAPHY CREATION 

There are numerous ways to generate bioactive materials that utilise topographical 

biophysical cues, with multi-dimensional methods (such as 3D-printing and hydrogel 

networks) and surface-directed methods (including as lithography and laser-machining) 

described and compared in many reviews [49, 60, 76-78, 81, 127, 128]. To keep the time 

needed for data collection to a manageable level within the scope of this PhD, focus was 

given to surface topographies, rather than branching into more depth-dependent designs. 

While using AI negates the requirement to fully-investigate all feature combinations, a varied 

dataset is required for initial training to prevent overfitting, and to aid the network in 

interpolation of unseen variations in future testing and application. Imaging cells in 3D can 

be performed using a network, as shown by the Serial Block-Face Scanning Electron 

Microscopy (SBFSEM) imaging in chapter 5, but these methods require implementation of 

additional networks and result in a substantial increase in complexity. Additionally, the 

success of using a network to predict cell response to 2D-cues should be demonstrated before 

moving on to more complex tasks, including how 3D scaffolds can impact biocompatibility 

investigated in chapter 7, to determine whether a network is capable of predicting such a 

multifaceted environment and whether the currently available GPU and computing power are 

sufficient. 

Methods for surface topography fabrication can be largely segregated into two groups – those 

which produce highly controlled topographies, such as electron beam lithography (EBL) and 

photolithography, and those which produce unordered or difficult-to-control topographies, 
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such as polymer mixing, phase separation, colloidal lithography and chemical etching. 

Photolithography is an established method for generating microtopographies. The near-UV 

beams create highly customisable designs at relatively low cost, which are repeatable, as the 

same mask can be reused numerous times without risk of deterioration. However, while sub-

diffraction scales are possible, the techniques are not yet as cheap and versatile as required 

for the amount of unique data-inputs deep learning typically requires – the cost of creating a 

unique mask for hundreds of unique topographies, vital for a varied dataset, makes 

photolithography an inefficient method [129-132]. The cost of EBL is a similar limitation, 

with advanced scanners costing up to £35 million and a set of advanced masks costing up to 

£2 million [133]. Training a DNN requires multiple variants of topographies, therefore 

multiple masks would be required and the subsequent cost of using EBL unrealistic. While 

many topographical patterns could be created on a single mask, this would not allow for 

iterative changes to the dataset after pilot experimentation. A more flexible approach was 

required but switching to faster and more inexpensive methods such as colloidal lithography 

would not provide the control needed over resulting surface topographies to generate repeated 

detailed patterning on command. Additionally, randomised surface nanotopographies from 

polymer demixing, electrospinning, phase separation, particulate leaching, chemical etching, 

and 3D-printing create a variety of interactions which, in some instances, may lead to toxicity 

[103], and poorly designed topographies may even result in cancer [64-66]. As a highly 

versatile, cost-effective, and easily controlled method for generating surface topographies, 

laser-machining was investigated in greater detail. 

2.3.1 FEMTOSECOND LASER-MACHINING AND AVALANCHE IONISATION 

Explored over several decades, femtosecond laser sub-micron laser-machining is particularly 

suited for micron to sub-micron scales given pulsed lasers can create peak intensities much 

higher than achievable by continuous wave lasers [134]. This is partially caused from the 

interaction of femtosecond laser pulses with matter, leading to optical breakdown with an 

energy transfer potentially much faster than thermal effects [135, 136]. Additionally, 

multiphoton absorption can cause laser-machining regions smaller than the focal region, 

resulting in an ability to machine features as small as 20 nm in highly optimised experimental 

configurations (far below the diffraction limited near-UV photolithography), further aiding 

sub-micron laser-machining [137]. Furthermore, as this process is highly non-linear, the 

repeatability for micron and smaller scales is challenging. 
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Femtosecond laser pulses interact with matter differently to long pulse and continuous wave 

light, providing advantages for topography generation. One difference is the time-scale of 

energy transfer from laser pulse to electrons – most thermal effects proceed after the pulse 

has passed through the ablation area, with the heat-affected zone resulting from a 

femtosecond pulse generally less than ~1 µm [37]. The other difference is the peak of the 

pulse, as intensities achievable with femtosecond pulses are sufficient for multiphoton 

absorption, which enables machining in materials that are optically transparent at low 

intensities, such as glass. Linear ionisation typically dominates in free electron generations 

for continuous or long pulse laser-machining [138]. However, the intensities of femtosecond 

machining can lead to avalanche ionisation, multiphoton ionisation, and tunnel ionisation. As 

these ionisations are relatively independent of initial defects of the target material [139], 

femtosecond machining is both possible and reproducible at micron and sub-micron scales, if 

all laser-machining parameters are stable so as to reduce non-linear effects, with laser-

machining areas further reduced by multiphoton absorption (providing an effectively smaller 

focus) [140]. 

To fully understand why femtosecond laser-machining is advantageous, avalanche ionisation 

is broken down into more detail. For femtosecond laser pulses, photo-ionisation at the leading 

edge of the pulse can provide a “seed” electron for avalanche ionisation during the remainder 

of the pulse, resulting in at least one electron already in the conduction band of machined 

material [141]. Avalanche ionisation involves this seed electron absorbing several laser 

photons until the energy exceeds the conduction band minimum by more than the bandgap 

energy. This free electron then impact-ionises other electrons, leaving multiple electrons at 

the conduction band minima [142]. While the laser field is present, this process repeats, 

creating an exponential increase of electron density and increasing the plasma frequency of 

the electrons towards the frequency of the laser radiation. At critical plasma density, the 

plasma absorbs laser energy rapidly through free-carrier absorption (the process of an already 

excited carrier electron absorbing a photon, resulting in excitation to a higher energy state) 

[141]. In semiconductors, these excited electrons eventually become scattered by lattice 

vibration or impurities, but the duration of the laser pulse is much shorter than the electron-

lattice relaxation time. Therefore, heat conduction through lattices is negligible because 

absorption is completed before the lattice changes, resulting in a significant non-equilibrium 

state between the lattices and electrons [139]. Consequently, (Figure 7) while some remaining 

energy below the optical penetration depth diffuses into the sample and may cause emission 
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of particles and droplets due to thermal boiling, thermal damage such as micro-cracks, 

melting and heat-affected-zone are minimal [143, 144].  

High precision ablation is producible on a wide range of materials, including (but not limited 

to) metals [140], ultra-hard materials [145], polymers [146], dielectrics [147], semiconductors 

[148], two-dimensional substrates [149], transparent materials [138], and biological materials 

[150]. This is due to previously mentioned multiphoton absorption, and subsequent non-

linear dependence on intensity. Consequently, the higher peak power of femtosecond pulses 

results in a higher probability of the process occurring. Femtosecond machining therefore 

allows for precise machining of small features at high resolution on multiple materials, 

allowing the potential for micro and nanotopographies to be produced on glass, cell culture 

plastic, bone, or directly onto implants (e.g. titanium). 

2.3.2 ADVANTAGES OF LASER ABLATION 

An advantage to laser-machining over, for example, EBL for nanotopographies, is the 

possible flexibility of production. The standard approach for decreasing the topography 

fabrication time, when using laser machining, is to increase the area machined per laser pulse, 

therefore reducing the time spent moving the laser/sample. While beam shaping through a 

digital micromirror device (DMD), a type of intensity spatial light modulator, can produce a 

small laser-machined surface area in a relatively short time period [151], it would be time 

intensive to use such a method over a large surface area, such as a full implant. One way to 

achieve this is to utilise an intrinsic property of light – interference. In 2003, fabrication of 

Figure 7: A schematic difference between processing of long pulse (µs) laser machining with ultrashort (fs) laser machining.  
Based on figure from Miyachi & Jenoptik [3], this is an idealised scenario and, in non-ideal experimental set-ups of ultrafast 

pulse lasers, debris, surface damage, etc. can still occur, but are relatively negligible in comparison to long pulse machining. 
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periodic nanostructures through beam splitting with diffracted elements was manipulated 

when laser-machined on polycarbonate samples [152]. Over a decade later, this technique 

was further advanced with interference from six laser beams [153]. Six beams forming a six-

sided period have the ability to produce a large variation of interference patterns through 

alterations in phase shift and amplitude among the beams [154]. These controlled interference 

patterns could be used in an ordered lattice of multiple uniform topographical features, 

similar to those produced through standard EBL but in a shorter time period, as lengthy 

mask-creation is not required for each new design. Controlled disorder can be introduced to 

these interference structures through small “random” alterations to one or more beams as to 

alter the pattern compared to the previous ablating pulse. Although the work in this thesis 

focuses on single-beam ablation as variation was prioritised over mass-production, laser-

machining could have the potential to be as efficient at larger scale as lithography under 

optimised conditions when flexibility and introduction of disorder is necessary. The ability 

for a 1 fs pulse length laser-machining system to create a variety of 2D and 3D designs makes 

it a superior choice for neural network training data fabrication [155]. 

Another advantage to laser-machining is the ability to ablate topographies directly onto non-

flat surfaces, including surgical implants, or samples with geographical imperfections. 

However, laser-machined topographical features ablated over curved surfaces, such as a 

typical titanium hip replacement implant, could result in skewed and non-uniform 

topographies that produce undesired cell behaviour. While a 3D sample may be rotated and 

spatially adjusted to provide an orthogonal surface to the laser beam, complex curved 

surfaces will ultimately skew or stretch the projected beam profile and complete 

orthogonality across the whole beam shape it not possible. Recent laser-machining techniques 

provide a way to counter these potential aberrations via closed-loop adaptive beam shaping 

(Figure 8) [36], where mask transformations applied to a DMD provide distortion-free laser 

beam shaping [156]. By introducing a closed-loop feedback mechanism, variation to the 

surface at different positions can be quickly detected and the spatial intensity and shape of the 

laser-beam modified [36]. When used alongside iterative corrective steps, DMD alterations 

can also adjust for spatial inaccuracies introduced by i.e. movement of positioning stages. 

Additionally, closed-loop correction with the utilisation of a CNN aids development of real-

time correction to laser-machining [38], which has the potential for the laser-machining of 

design-perfect topographies, irrespective of material quality and uniformity.  
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However, there are several challenges involved in laser-machining of this nature. As a result 

of the highly non-linear processes involved in laser ablation, where small fluctuations in laser 

output power can result in large effects at a topographical level, some areas may end up laser-

machined and others not, possibly producing a patchy and non-uniform topography. This can 

be overcome, such as through CNN-monitoring of laser-machining [38], yet this reduces the 

overall speed and productivity of laser-machining, especially over multiple topographies. 

Consequently, laser-machining often takes time and monitoring of the resultant topographies 

can be labour intensive. Another challenge is in obtaining the optimal parameters for laser-

machining – such as the correct combination of laser write-speed (how quickly the beam 

moves across the substrate or vice versa), DMD mask shape/equivalent focussed spot size 

(affecting the shape, size and resultant power of the laser-beam at the substrate) and laser 

power. These challenges combine when acquiring the threshold power (the minimum laser 

power required to ablate a specific substrate for a set write-speed and DMD shape) required 

for precision laser-machining due to differences in material properties. 

Figure 8: Scanning Electron Microscope (SEM) images of micromachining over a sphere through use of a Digital Micromirror 

Device (DMD) and computational correction.  
The uniformity of the circles across the sphere was the result of computationally-calculated corrections to the beam spatial 

intensity profile, achieved through alterations to the pattern on a DMD, depending on the location of the beam-surface 

interface. Images reproduced from Heath et al. under Creative Commons Attribution License open access [13] (© 2018 Optics 

Express, published by The Optical Society.) 
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2.4 BIOMATERIALS AND ANIMAL TESTING 

In situ testing involves a highly complex and dynamic environment, with many intertwined 

features in the bioengineered composite, alone. There are currently no traditional 

computational methods capable of accurately simulating in situ testing, partly due to the 

relationship between features (or even what all of the features are) not being fully understood. 

Therefore, highly-likely statistical predictions via universal approximators (neural networks), 

are a potential alternative. 

2.4.1 BIOCHEMICAL CHARACTERISTICS 

A combination of biophysical and biochemical features results in a wide range of biomaterial 

properties, many of which have been detailed by Li et al [1], including improved proliferation 

and targeted differentiation (Figure 9), and Gaharwar et al [60]. Using a wide range of 

manufacturing techniques, from additive manufacturing processes such as 3D printing to 

ablation processes such as 2D laser femtosecond laser machining, biomaterials can be 

tailored for targeted cell behaviour [11, 128].  

Biochemical characteristics can include the chemical structure of the material, the 

introduction of inflammatory-suppressing agents, reprogramming factors, cytokines, growth 

factors, and various minerals and ions. Different biochemical cues, combined with different 

biophysical cues, can result in a varied cell responses [15] (Figure 10). Changes in 

biochemical cues, such as increased release of signalling ions (altering the local 

microenvironment), can be achieved as the biomaterial breaks down [60]. 
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Figure 9: A table of different biophysical and biochemical cues, and the associated effects on cell behaviour.  
A collection of biophysical and biochemical cues result in a range of effects on MSCs including proliferation, differentiation 

and adhesion. Combining both types of cues, such as 3D microenvironments and with biochemical extract factors, can result 

in beneficial differentiation. Reprinted from [1] under Open Access Creative Commons Attribution License (CC BY) © 2021 

Li, Liu, Zhang, Yao, Enhejirigala, Li, Song, Wang, Duan, Yuan, Fu and Huang. 

http://creativecommons.org/licenses/by/4.0/
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Figure 10: SEM images of scaffold structures and  associated stereo micrographs of calcium staining (Alizarin red) for MSC 

osteogenesis. 
(a) SEM images at 100x magnification and (b) 500x magnification of scaffold structures, with the scalebar on TCPS valid for 

all images in that section. (c) Stereo micrographs at 18x magnification, except PCL_FFF at 32 x magnification, of calcium 

staining (Alizarin red), which indicates via red staining the scaffolds where there is MSC osteogenesis due to the presence of 

calcium. Reprinted with permission from [15]  © 2021 Elsevier. 
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2.4.2 CAM ASSAYS 

Transitioning from cell culture-based testing to clinical application, it can be necessary to 

first utilise animal experimentation. Animal experimentation, such as CAM assays (Figure 

11), is an essential component in the progression advancing promising biomaterials, because 

it is difficult to predict the outcome of in vivo experiments based on in vitro data. AI is a 

potential tool for predicting the outcome without the need for extensive animal 

experimentation [157].  

 

Once optimal compositions have been identified, perhaps through AI using methodology 

introduced in chapter 6, they must be tested thoroughly before application in clinical settings. 

The CAM assay, an ex vivo preliminary model, is frequently used to determine 

biocompatibility and angiogenic/anti-angiogenic effects of biomaterials. These are applied to 

the vascular CAM, which has also been used to grow tissues and tumours for applications 

such as oncology research. Reviewed over the years, including recently by Marshall et al 

Figure 11: Two different methods of performing CAM assays resulting in skeletonised image for vessel analysis.  

(a-d) the process of ex ovo (shell-less) CAM assay preparation. (a) an illustration of an egg, (b) cracking the egg shell, (c) 

starting the ex ovo culture, and (d) implantation of different scaffolds, shows as green and blue circles. (g-i) the process of in 

ovo CAM assay preparation with (g, h) a window made in the egg for scaffold implantation and (i) a collagen sponge (black 

arrow) with an angiogenic response. (e) the blood vessels are imaged (clearly visible after a white contrast is injected). (f) 

the blood vessels are isolated and skeletonised computationally for analysis. (a-f) adapted with permission from [14]. © 2019 

American Chemical Society. (g-i) adapted from [17] under Open Access Creative Commons Attribution License (CC BY) © 

Marshall KM, Kanczler JM, Oreffo RO. 

http://creativecommons.org/licenses/by/4.0/
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[17], there is increasing interest in the application for bone tissue engineering to screen 

materials prior to in vivo studies. The angiogenic response of the CAM can be quantified 

using the Chalkley Scoring method, with dots on a microscope eyepiece being positioned 

over an observed sample and the dots counted when they overlie a blood vessel. Due to the 

variability and subjectivity of this method, calculations using computer modelling, which 

removes the need for a Chalkley graticule eyepiece for the microscope, have been 

investigated to allow calculation of a microvessel area estimate for solid tumour samples 

[158]. A photograph of CAM blood vessels can be taken and manipulated using computer 

software programs to delineate the blood vessels, allowing for easier automated counting, as 

shown in a recent publication by Manger et al [159].  

2.5 IMAGING A PLACENTA IN 3D 

This project contains multiple areas of regenerative medicine and, in addition to tissue 

engineering, includes 3D structures in placental tissue. Manually labelling images of placenta 

in 3D is a time-intensive task. However, labelling is required to develop 3D models of 

structures within placenta. As previously mentioned, automation of cell labelling would not 

only decrease the time spent labelling 3D images, but also show that computational methods 

have the potential to distinguish between cells and acellular material, and between cell types, 

in complex images.  

2.5.1 PLACENTA 

Forming the interface with the mother, the placenta is a fetal organ which feeds the fetus, 

cleans its blood and, to support the pregnancy, secretes hormones which adapt the mother’s 

physiology (Figure 12) [39]. Therefore, poor placental function can compromise fetal 

development and placental function directly determines fetal growth. As fetal development is 

the foundation for future growth, poor fetal growth is a predisposition to perinatal and 

postnatal diseases, and is important for health in later life – poor fetal growth is linked with 

higher chronic disease rates irrespective of age [160, 161]. 
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There are many areas involved in investigating placental function, including understanding of 

its structure, physiology and biochemistry. Growth restricted fetuses have comparatively 

abnormal placentas, with alterations to structure observed, and reduced transport capacity 

(impacting availability of oxygen etc.). The relationship between the changes in structure and 

reduction of transport capacity is still undefined, and yet advances in 3D imaging provide 

insight into how structure determined function. To date, this work has been limited by 

scarcity of good tools for 3D study and, although overall structure of the placenta is relatively 

well understood, cellular anatomy is less so, especially at the ultrastructural level. For 

comprehensive understanding of placental function, spatial relationships of all placental cell 

types must be investigated, such as fibroblasts, pericytes and endothelial cells [162, 163]. 

Figure 12: An illustration of the placenta connected to a fetus and a photograph of a placenta postnatal outside of the womb. 

The internal placenta illustration shows how the placenta connects the fetus to the mother, through an intricate network of 

blood vessels. The external placenta shows the size of the placenta and the scale of the vascular network connecting the 

umbilical cord to the placenta. A white arrow connects the illustrated placenta to the photograph of a real placenta. Both 

images are reused under Creative Commons licenses. © Scientific Animations Inc. CC BY-SA 4.0.© Greger Ravik “Tree of 

Life” CC BY 2.0. 

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by/2.0/
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2.5.2 FIBROBLASTS, PERICYTES AND ENDOTHELIAL CELLS 

All cells chosen for labelling in this chapter are significant for understanding development of 

the fetus and the impact of the placenta on lifelong health. Typically, alongside mesenchymal 

and mesenchymal-derived cells within the placenta villous core stroma, fibroblasts are found 

in the ECM between trophoblasts and fetal vessels. They maintain the ECM, on which the 

trophoblast layer resides and provides the scaffold for blood vessel growth. The number and 

function of trophoblasts affects placental function and development throughout pregnancy, 

which directly impacts risk of chronic disease and general health throughout life [39, 164]. 

Another important cell type in placental function are pericytes, which are found wrapped 

around the endothelial cells. Endothelial cells are of critical importance, as they form the 

walls of blood vessels, regulating the exchanges between the bloodstream and surrounding 

tissue, and endothelial signalling organises both growth and development of connective tissue 

cells (the surrounding layers of the blood-vessel wall) [165]. Pericytes communicate with 

endothelial cells via physical and paracrine signalling (cell-to-neighbouring-cell 

communication), and are thought to control vasculature stability and permeability, alongside 

providing physical or endocrine support for endothelium and, in some tissues, mediate 

vasoconstriction (slowing or even blocking blood flow through constriction of blood vessels) 

[2, 166, 167]. Together, the quantity, density, positioning, and structure of these cells give 

valuable insight into multiple features, such as nutrient transfer or toxicity within the 

placenta. Once understanding of these cells and their interactions is more advanced, models 

of the placenta could be developed, allowing for increased medical advancement. 3D 

structure is vital and therefore 3D imaging needs to be used, rather than conventional 2D 

approaches to cell study through visual analysis. 

2.5.3 3D IMAGING 

3D imaging has the potential to obtain complex spatial information about the placental 

structures, including villous and vascular branching. Additionally, associations between 

structures can be expressed and analysed, with possibilities of determining structures that are 

not readily visualised from 2D imaging techniques, such as thin stellate processes of stromal 

fibroblasts embedded within sur-rounding features [168]. Studying the anatomy of the 

placenta has previously relied on such 2D images, which were supported by SEM and 

vascular casting data for limited 3D interpretation [161, 163], and underlying structures 

within the placenta were developed from 2D images using stereology [162]. However, these 

approaches provide limited information about placental structure, such as the intricate spatial 



Background 

55 

 

relationship between cells, or whether there is regional heterogeneity in structure or even 

protein localisation [160]. 

Both micro-computed tomography (micro-CT), where X-rays at multiple angles are used to 

construct a microscale resolution, and SBFSEM, which is capable of producing nanoscale 

resolution, have been used successfully as 3D imaging techniques for biological tissue [169]. 

SBFSEM imaging starts by embedding a contrast-enhanced tissue in plastic or resin and 

taking a standard (2D) SEM image, then a thin slice of tissue is removed from the top of the 

block using an ultramicrotome slicing, which creates a new surface (typically 50 nm below 

the previous surface, although slices can be as thin as 10 nm). This process is repeated, with 

another 2D image taken of the new surface before it is cute away to reveal another surface 

(Figure 13).  

The final step computationally joins the multiple SEM images into a full SBFSEM stack, for 

full 3D visualisation and manipulation, where x-y resolution is limited by the SEM imaging 

set-up (such as scanning speed), and the z resolution is limited by the depth of the ultrathin 

slices removed at each step [170].  

Through displaying the 3D structures of different cells, and the interaction between cell 

structures and their surrounding environment (including the positional interplay between 

cells), SBFSEM imaging has been used to identify novel structures and develop deeper 

understanding of cellular function within the human placenta [168, 171, 172]. While 

application of conventional image segmentation for 3D medical image data can be combined 

to more quickly extract important feature information, these approaches require intensive data 

processing or a distinctive contrast in features within the tissue sample, which can be difficult 

and sometimes impossible to obtain in SBFSEM images of tissue [173, 174].  

Unlike with some cell types and structures, which can be computationally rendered into 3D 

relatively easily through optimised heavy metal staining, rendering most tissue samples into 

3D from a SBFSEM stack is time-consuming, and therefore an expensive task [175]. For a 

desired structure, for example a single fibroblast cell, to be extracted from an SBFSEM stack 

without any loss of data and resolution, each SEM section needs to be manually labelled. 

With each 2D image, of which there can be thousands in a single SBFSEM stack, taking 

several minutes to an hour (depending on factors including the size and resolution of the 

image, computational set-up, and manual skill) to manually label, a SBFSEM stack can take a 

month, if not longer, of dedicated labelling to complete. Furthermore, the complexity of 
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SBFSEM images means existing defined image processing algorithms are incapable of 

achieving accurate computer automation. However, deep learning is a rapidly advancing field 

and, consequently, may provide a way for more time-efficient labelling without the time 

requisites of manual extraction of a 3D feature from a SBFSEM stack.  

 

2.6 SUMMARY 

Regenerative medicine is a broad and important area of modern healthcare, and is becoming 

more important every year as more people live for longer across the world. Tissue 

A block of processed placenta is exposed to a SEM. This is then scanned in 2D as a standard SEM image. A diamond knife, or 

other blade capable of nanometre precision cutting, slices a thin layer of the block away, leaving a newly exposed image for 

SEM imaging. Through repeated scanning and cutting, the 3D block can be imaged in entirety. Images extracted from a GIF 

accessed from C-Cina.org, who retain full copyright [6]. © Benjamin Bircher, C-Cina &. © DCI – Dubochet Center for 

Imaging. 

Figure 13: Process of Serial Block Face Scanning Electron Microscopy (SBFSEM) imaging.  

https://www.c-cina.org/stahlberg/research/neuro/
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engineering, a subsection of regenerative medicine, focusses on using biomaterials and 

related bioengineering for tissue growth. This ranges from stem cells cultured to grow organs 

in vitro to cell-instructive biomaterial implants for regrowth of bone in situ. 

Tissue engineering, while providing many pioneering treatments in multiple clinical settings, 

faces challenges such as the highly complex nature of cell response, and the dynamic multi-

cellular environment of a healing body. More broadly, advances in regenerative medicine 

may be held back by the amount of time spent collecting or processing images for subsequent 

analysis.
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3 DEEP LEARNING 

AI-based computation methods have the potential to help researchers overcome some of the 

previously mentioned challenges within tissue engineering. AI models can provide 

statistically likely approximations without requiring complete datasets nor full scientific 

understanding. 

The computational power necessary for deep learning, a concept within the field of AI where 

models have multiple layers, can be found on a standard home computer for the simplest 

models. However, the multidimensional matrix multiplications rapidly increase in complexity 

as the size of the network increases. For fully-sized network models, such as U-Nets and W-

Nets, the processes become difficult to reverse engineer. However, this “black box” method 

of data transformation can provide, in theory, images that are both statistically likely and 

realistic-appearing, such that scientific understanding can still be gained from the resulting 

data. 

Applying deep learning to medical imaging could be used to make time-intensive tasks more 

efficient. Examples on where AI is being applied to tissue engineering, and where it may 

advance the field in the future, can be found in the review “The future of bone regeneration: 

integrating AI into tissue engineering” Mackay et al [40]. 

The basics of deep learning are mathematical, as the transformation of data via a non-linear 

mathematical process within a deep learning model can result in the model acting as an 

approximator. A simplified mathematical introduction to deep feedforward networks is 

covered in section 3.1, while a more conceptual approach to deep learning is explored in 

section 3.2 for readers less comfortable with the standard mathematical processes covered in 

the former section. The architecture used throughout this thesis is briefly explained in section 

3.3, and a training example is provided in section 3.4. 

3.1 INTRODUCTORY MATHEMATICS OF DEEP NEURAL NETWORKS 

Taking a more standard mathematical approach, the net input to any node not in the input 

layer, 𝑧, can be calculated as: 

 𝑧 =∑ 𝑤𝑖 ∗ 𝑥𝑖 + 𝑏
𝑖

 (3.1) 

Where 𝑤𝑖 is the weight given to the input 𝑥𝑖. There is a total of 𝑖 inputs. 
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The activation function 𝜑 is applied to compute 𝑎, which is the output of the same node. 

 𝑎 =  𝜑(𝑧) (3.2) 

Activation functions allow a neuron in the network to propagate learning data only when 

sufficiently excited. If the activation functions are all linear, the neural network is equivalent 

to a simple linear regression model. Therefore, non-linear activation functions are typical, 

such as a leaky ReLU 𝜑(𝑥) = 𝑥1𝑥≥0 + 𝛼𝑥1𝑥≥0. Other common functions include ReLU, 

sigmoid, and tanh. 

Learning for a deep neural network (DNN) is the step of calculating the weights to produce 

the best approximation 𝑦�̂� of the real value 𝑦𝑖 starting from the input 𝑥𝑖. For this calculation, a 

loss function 𝐽 is defined that quantifies the difference between the real and predicted values 

through the neural network 𝑦�̂�
𝜃

 for model parameters 𝜃 on the overall training set with size 

𝑚.  

 
𝐽(𝜃) =  

1

𝑚
∑ ℒ(𝑦�̂�

𝜃 , 𝑦𝑖)
𝑚

𝑖=1
 (3.3) 

Minimising 𝐽 requires two steps. First, forward propagation is used to propagate the training 

data through the network, and the loss function is the sum of errors in the approximations. 

Second, backpropagation results in calculation of the gradients of the cost function ℒ with 

respect to the different network parameters, to which a gradient descent algorithm can be 

applied for updated weight values:  

 𝜃 = 𝐺(𝜃) (3.4) 

This process is repeated for a defined number of epochs, where a single epoch has been 

completed when all of the training data has been propagated through the network. 

A typical DNN consists of multiple neurons with multiple layers, 𝑙. Visualising that nodes 

form rows in each layer, the 𝑗𝑡ℎ node of the 𝑖𝑡ℎ layer would give the following equations: 

 
𝑧𝑗
[𝑖] =∑ 𝑤𝑗,𝑙

[𝑖]
𝑛𝑖−1

𝑙=1
𝑎𝑙
[𝑖−1]

+ 𝑏𝑗
[𝑖]
→ 𝑎𝑗

[𝑖]
= 𝜑𝑖(𝑧𝑗

[𝑖]
) (3.5) 

With 𝑛𝑖−1 being the number of neurons in the layer (𝑖 − 1). 

Across the entire network where 𝑾[𝒊] is all the weights 𝑤 in the layer 𝑖, 𝒁[𝒊] is all the node 

inputs 𝑧 in the layer 𝑖 transposed (𝒁[𝑖] = [𝑧1
[𝑖], 𝑧2

[𝑖], … , 𝑧𝑛𝑖
[𝑖]]

𝑇

), 𝑨[𝒊] is all the outputs 𝑎 in the 
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layer 𝑖 transposed, 𝝍[𝒊] is all the activation functions 𝜑 in the layer 𝑖, and 𝒃[𝒊] is all the bias 

weights 𝑏 in the layer 𝑖 transposed: 

 𝑨[𝒊] = 𝝍[𝑖](𝒁[𝑖]) = 𝝍[𝑖](𝑾[𝑖]𝑇𝑨[𝑖−1] + 𝒃[𝑖]) (3.6) 

The optimisation of 𝐽 is typically through a descent method, and many rely on gradient 

descent, which requires calculating the gradient ∇𝜃𝐽(𝜃). This can be carried out using a 

computation graph which decomposes the function 𝐽 into several intermediate variables. 

Mathematically, the gradients of 𝐽 with respect to the architecture’s parameters 𝑾[𝒊] and 𝒃[𝒊] 

are calculated using the following:  

 
𝑑𝛼 =

𝜕𝐽

𝜕𝛼𝑖
 (3.7) 

Where 𝛼 is any given parameter. At the 𝑖𝑡ℎ layer: 

 𝑑𝒁[𝑖] = 𝑑𝑨[𝒊] ∘ 𝝍[𝑖](𝒁[𝑖]) (3.8) 

 𝑑𝑨[𝒊−𝟏] =  𝑾[𝒊] 𝑻𝑑𝒁[𝑖] (3.9) 

 𝑑𝑾[𝑖] = 𝑑𝒁[𝑖]𝑨[𝒊−𝟏] (3.10) 

 𝑑𝒃[𝑖] = 𝑑𝒁[𝑖] (3.11) 

Where ∘ is the Hadamard product operator. These equations are then recursively applied for 

𝑖 = 𝐿, 𝐿 − 1, 𝐿 − 2,… , 1. 

Before optimising the loss function, the inputs are typically normalised, the inputs can be 

normalised to speed up learning. 𝐽 becomes more symmetric and smaller in scope, helping 

gradient descent to find the minimum faster and therefore requiring fewer iterations. For a 

convex and differentiable 𝐽, the global minimum is equivalent to solving ∇𝜃𝐽(𝜃) = 0, with 

the solution of 𝜃∗. A standard method is to start with an initial guess 𝜃0 and form an iterative 

approach: 

 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝑑𝑘 (3.12) 

 → 𝐽(𝜃𝑘+1) = 𝐽(𝜃𝑘) + 𝛼𝑘∇𝐽(𝜃𝑘)𝑑𝑘 + 𝑜(𝜃𝑘) (3.13) 

Where 𝛼𝑘 is the step size and 𝑑𝑘 is the descent direction. Since the aim is to minimise 𝐽, 

∇𝐽(𝜃𝑘)𝑑𝑘 needs to be negative and therefore 𝑑𝑘 = ∇𝐽(𝜃𝑘). 𝛼𝑘 can be fixed or variable 

following a specified decay law. Learning rate decay results in a reduced learning rate over 

time/iteration, so that bigger steps can be taken at the beginning but smaller steps are taken as 

the global minimum is approached [176-178].  
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Hypothetically, the neural network could be trained until  ∇𝜃𝐽(𝜃) = 0 and 𝐽 = 0. However, 

in practice, neither of these stopping criteria are likely to be met or desirable. When 𝐽𝑡𝑟𝑎𝑖𝑛, 

the training loss, and 𝐽𝑡𝑒𝑠𝑡, the testing loss, are both high, this can be a sign of underfitting, 

where the network has failed to find the path in the data and ∇𝜃𝐽(𝜃) ≠ 0. When 𝐽𝑡𝑟𝑎𝑖𝑛 → 0 

but 𝐽𝑡𝑒𝑠𝑡 is relatively high, this can be a sign of overfitting, where the model fits the training 

data perfectly (∇𝜃𝐽(𝜃) = 0) but fails to generalise on unseen data. 

3.2 CONCEPT OF DEEP LEARNING 

This section covers a generalised overview of deep learning with minimal mathematical 

concepts. As data progresses through multiple layers of a deep learning model, the non-linear 

transformations can result in statistically likely approximations [179, 180]. With an infinite 

number of transformations, such a model would hypothetically become a universal 

approximator [181]. When limited to several dozen transformations, it can still be highly 

versatile. The architecture capable of predicting laser-machined surface profiles in 3D [13] 

was also used to predict the skeletal stem cell response to topography in 2D [11], with both 

utilising a subsection of artificial neural networks called deep learning. While deep learning 

was used throughout the projects covered in this thesis, architectures were adapted for novel 

implications and not designed from scratch for each specific task. Therefore, the mathematics 

involved is not covered in the greater detail required for the comparison and design of 

multiple neural network architectures. 

The multiple transformations of data as it progresses through a deep learning model are not 

easily tracked or reverse engineered, which is partially responsible for deep learning methods, 

and sometimes AI in general, being referred to as a “black box”. However, it is the inclusion 

of multiple transformations that is behind the frequent success of deep learning in modern 

applications, specifically artificial neural networks (ANNs) for complex tasks. ANNs, 

computing algorithms for transformation of data that mimic the way nerve cells work in the 

human brain, require no pre-programmed information, such as scientific concepts, for 

successful application. Without any understanding of the underlying properties behind a 

transformation, ANNs produce statistically likely solutions by forming an approximation 

[181, 182]. For comparison, a young child is able to correctly identify a cat from a different 

(previously unencountered) animal, through exposure to several cats beforehand, without 

requiring the detailed knowledge behind scientific classification of mammals. The child has 

successfully approximated the transformation of data, such as the shape of the ears and the 

size of the animal into the species of animal. 
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Conceptually, ANNs contain multiple similarities to biological neural networks (BNNs), 

including the human brain, as they are directly analogous to an animal visual cortex (AVCs) 

(Figure 14). ANNs and AVCs both comprise of an assembly of nodes (neurons) with 

interconnecting synapses. For a simple biological neuron in an AVC, dendrites propagate 

electrochemical stimulation received from other neurons, and these impulses are carried 

towards the cell body and the nucleus, which then leads to a new impulse travelling from the 

nucleus to the axon terminals, where an electrochemical signal is released. This signal can 

then be detected by a different biological neuron, along with the signals of other surrounding 

neurons. For a simple node in an ANN, data is input from one or more sources, given an 

individual weighting, and then the collective weighted data is summed and passed through an 

activation function. This transformed data is then output from the node, possibly to be input 

to another node in the system. 

  

Figure 14: BNN (biological neural network) cells and ANN (artificial neural network) nodes have many similarities. 

A BNN cell comprises of dendrites, which transfer impulses to the nucleus. The nucleus processes impulses from multiple 

sources, resulting in further impulses being transferred from the nucleus along the axon to the axon terminals. Here, the 

impulse signals are released to be detected by other cells. An ANN node comprises of a node, which sums inputs and outputs 

this sum after processing form an activation function. 
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The weights of the synapses can change as both a BNN and ANN “learns”,  similar to how 

pathways between neurons strengthen or weaken as we learn. A successful method of altering 

the weights within an ANN trained via supervised learning is through the process of 

backpropagation, so that the transformed data output by the system becomes closer to the 

target data each time (and therefore error is minimised) [183]. As with animals, connections 

are facilitated through larger weightings if they produce the correct outputs, simultaneously 

weakening those that do not, analogous to brain plasticity [40]. The mathematics behind the 

data transformation can be varied, from choice of summation operator and activation function 

in a node impacting forward propagation of the data; choice of cost function for determining 

error; and choice of formulas for backpropagation and learning (gradient calculation and 

weight update formula). Some of the mathematical processes behind these choices, and 

examples of the impact they can have on training an ANN, are covered in the following 

section 3.2.1. 

When data passes through multiple nodes, data transformation can happen at each stage 

within the ANN. Each stage of one or more stacked nodes, a layer, can result in a different 

levels of data transformation. DNNs are ANNs comprising of an input layer, output layer, 

and “hidden” layers in-between (Figure 15). The first hidden layer processes data directly 

from the input layer, but the second may only process data which has been transformed by 

the first. These types of feedforward DNNs, such as convolutional neural network (CNNs), 

are commonly used for image recognition and modification and will be the focus of this 

section. However, feedback networks (recurrent neural networks, RNNs), where signals 

move forward and backward through the network, and DNNs with more complex structures, 

such as where all inputs are not restricted to a single layer, can be more successful in areas 

such clinical outcome predictions with multiple input data sources [184]. For all of these 

DNNs, an increase in the number of hidden layers can result in a comparatively more abstract 

operation at each layer. Therefore, provided there are enough layers (and enough computing 

power to run those layers), DNNs require no input from human computer engineers or 

representation design to extract relevant features. Using backpropagation, the DNN learns 

what features are, and which of those features are relevant, with no prior knowledge. 
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The DNN in Figure 15 has only a few hidden layers, but a larger number is required for 

estimating the correct identification of historical individuals from varied input sources 

(application in a range of settings) in practice. Increasing the number by a magnitude, so that 

there are approximately 20 hidden layers, produces a DNN that can correctly extract key 

features in image identification, such as the ear shape and positioning, even with changes to 

background, lighting and magnification between images, and irrelevant features, such as 

furniture [179]. CNN are particularly successful DNNs for imaging tasks such as these, and 

have dominated the field of feature extraction from images for several decades [176, 185-

193], including in medical imaging tasks [194-200]. At a conceptual level, a ConvNet 

contains similarities to how mammalian BNNs perceive visual information [201, 202], as key 

aspects of the architecture (the convolutional and pooling layers) are equivalent to the visual 

neuroscience concepts of simple and complex cells [179, 203-205]. 

Feature extraction within images can differ from other forms of feature detection, and can be 

more complex, due to the importance of spatial features, which are formed through the 

arrangement of pixels in multiple positions. In cell morphology identification from 

fluorescent images, the colour of each cell could be identical depending on the cell dyes used. 

Zoomed in so that only a single pixel of each cell type is compared, there would be no way to 

Figure 15: Comparison of a simple neural network and a deep neural network. 

A DNN consists of an input layer, at least one hidden layer, and an output layer [7]. Here, the hidden layers consist of 

convolutional layers for spatial feature detection (identify edges). Different layers identify different features or feature 

combinations. Data is input as an image and transformed into a word output in this example, but any data transformation is 

theoretically possible with a large enough DNN. The right architecture is a fully conntected network, depicting all the possible  

connections between nodes, but shares the concept of multiple hidden layers with a ConvNet. 
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distinguish between them. However, the shape of cells would vary, and therefore pixel values 

relevant to other surrounding pixel values must be detectable for successful identification. 

This is not be limited to fluorescent images, where pixel values are limited by the number of 

fluorescent dyes used. Returning to identification of historical figures, the name of a person 

cannot be accurately determined by the colour paint (singular pixel values) of the portrait face 

alone – the facial structure (spatial arrangement of pixel values) must also be analysed. A 

convolutional layer extracts features without spatial information being lost, due the 

mathematics behind the data transformation, which is covered in section 3.2.1. A pooling 

layer reduces the amount of data, discarding surplus information and non-features, by 

merging similar features, and therefore creating invariance to irrelevant shifts and distortions 

in the data. In other words, the network could interpret that if a cell is imaged in multiple 

different positions, at multiple different angles, it is still the same cell type. 

The DNNs used throughout this thesis, U-Nets and W-Nets (explained more in section 3.3), 

transform image data into a new form of image data. Half of this transformation involves the 

convolutional process previously explained to extract important features from the input. The 

other half involves generating new features that are important for the output, which can be a 

more complex process [40]. During the feature extraction section, small shifts in data, such as 

(for the previous example of a cell morphology identifier) the position of a cell or the 

brightness/contrast of the image, are insignificant, as this cell retains the same morphology no 

matter the position and set-up of the camera. However, the feature generation section 

involves an element of choice, such as where to position the cell and, more importantly, 

where to position important identifying features on the cell. If a mononuclear cell had an 

equal probability of containing a nucleus towards the left of the cell body or towards the 

right, the DNN could learn over time, in order to match the target data where it could be left 

or right, to generate an image of a cell with two nucleuses or none at all. This would be a 

failure by the DNN to generate an image of a mononuclear cell, and increased time training 

and increased training data (common fixes to improve DNN performance) would not 

necessarily lead to better results. 

A conditional generative adversarial network (cGAN), a specialist type of image-to-image 

DNN, utilises a U-Net or W-Net feature-generating DNN (a generator) alongside an 

additional ConvNet (a discriminator). The discriminator only has the task of feature 

extraction, and can be input either a target image (i.e. an image of a cell taken from a camera 

in a laboratory), or the output image from the generator (i.e. a “mononuclear” cell with an 
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additional nucleus). The better the discriminator is at identifying whether an input is either a 

target or output image, the worse the generator is performing, and vice versa. By including 

both discriminator error and generator error into the overall loss function, the cGAN is 

trained to produce images that not only contain relevant features, such as a cell with a 

nucleus, but are also realistic (there is only one nucleus instead of two). This two-network 

approach overcomes potential probability-based issues in using a single DNN for data 

generation (Figure 16). 

 

Choice of loss function can have major impact on training an ANN. In the previous scenario, 

the error was potentially greater for a cGAN output compared to a generator alone if the error 

is defined as the difference between output and target images, as the nucleus and cell position 

could be different from the target image in the cGAN (and not in multiple positions). L1 error 

(least absolute deviations) is typically used to quantify error by using the sum of the all the 

absolute differences between the outputs and target images. However, it was more important 

to have a clear, realistic-appearing, image than a minimised L1 error, so the total error also 

included the discriminator error (D error). A new loss function using both L1 and D may lead 

to successful training where either error independently would not. A badly chosen loss 

function can lead to unexpected consequences, such as when AI (not a DNN specifically) was 

tasked with winning multiple Nintendo TM Entertainment System (NES) games © 2018 

Nintendo [206]. There are several ways “winning” can be interpreted, such as whether the AI 

Figure 16: A U-Net is able to produce more realistic-appearing outputs than a CNN alone. 

Two different images are input into a cGAN utilising a U-Net architecture and a CNN network without a discriminator [5]. 

The target image is on the right and, while different from both cGAN and CNN outputs, the CNN produces images that are 

not as sharp/more blurred than both. 
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should be coded to achieve a high score, reach a high level, stay in play for as long as 

possible, or to simply avoid game-over. While being tasked to win resulted in successful, and 

bug exploiting, play for NES games such as Super Mario Bros., the same algorithm was 

unable to play Tetris. While both tasks involve winning at NES games using the same 

algorithm, the weighting to different elements of the loss function have to be finely tuned for 

each game. Similarly, the weighting between L1 and D loss in a cGAN loss function must be 

altered for each image-to-image task, even while the overall function remains the same. 

Backpropagation does not result in changes to these weightings, and they are instead included 

among the hyperparameters that stay constant while a DNN is training. Other 

hyperparameters include the number of epochs (how many times the network is input the 

complete training dataset), the number of hidden layers and how big those layers are, and the 

learning rate (how much the network updates as it learns). Too few epochs and a network 

may over-generalise but too many epochs can lead to overfitting, where the network learns 

the training dataset and cannot interpret additional input. Too few layers and the network may 

not be able to successfully approximate the data transformation, but too many layers that are 

too large may require excessive computational power and time to train. A learning rate that is 

too small will also lead to excessive time spent training, but a larger learning rate could never 

converge, where the network would never learn the correct approximation for data 

transformation. In practice, a decaying learning rate can help overcome the trade-offs in 

choosing learning rate, but fine-tuning is still necessary for successful training, as with other 

hyperparameters. 

3.2.1 SIMPLIFIED CONCEPTUAL MATHEMATICS OF DEEP LEARNING 

Each of the concepts covered so far, from activation functions to loss functions to 

hyperparameters, have a mathematical basis, which can include a range of higher level 

mathematics such as linear algebra and probability theory [180]. This section will cover only 

the basic mathematics behind the cGANs used for cell labelling and prediction without 

covering the mathematical proofs, reasonings and comparisons necessary for novel network 

architecture design, which is beyond the scope of this thesis. This section will use a 

hypothetical feedforward network comprising of one hidden layer and only five nodes and 

two bias nodes (Figure 17). A bias node is added to each layer besides the input layer, and 

connects to every node within that layer and no other layer. With a value of ± 1 for most 

networks, it impacts the activation function of the connecting node, with weights altered 

throughout training (the same as weights between nodes). Bias values are another 
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hyperparameter and do not change throughout training. All multidimensional variables in this 

section are converted to scalars for ease of conceptual understanding.  

 

Data “moves” from the input to the output through the process of forward propagation. As 

covered previously, every hidden and output node (Figure 17 B1, B2, and C1) contains a 

summation operator and an activation function. The summation operator sums all of the 

inputs for that node, forming a net input. The generalised net input would be calculated as 

follows: 

 
𝑛𝑒𝑡 𝑖𝑛𝑝𝑢𝑡 =  b + ∑ 𝑥𝑖

𝑛

𝑖 = 1

𝑤𝑖 (3.14) 

Where b represents the bias node input, n is the number of input nodes, xi and wi are the value 

and weighting from an individual node. For the node C1, the net input would therefore be: 

 netC1 = b3 + (outB1 ∙ 𝑤5 + outB2 ∙ 𝑤6) (3.15) 

With values taken from Figure 17, where outB1 is the output of B1. 

The activation function transforms the output value from the summation operator into a value 

representing how much the node should contribute (how much a node should fire). A 

Figure 17: Simple NN architecture with a single hidden layer. 

A simple NN can have a single input, hidden and output node. Here, there are two input, two hidden and one output nodes, 

with two bias nodes. The hidden later is a fully connected layer. 
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commonly used activation function is the sigmoid function, which would generate a value 

between 0 and 1. 

 
𝑆(𝑥) =  

1

1 + 𝑒−𝑥
 (3.16) 

The sigmoid function, 𝑆(𝑥), also known as the logistic function, is a popular choice as the 

output between 0 and 1 can be beneficial to probabilistic applications (probability is always 

between 0 and 1). However, use of a sigmoid function does not always produce the best 

results, as different activation functions have their own strengths and weaknesses [207, 208]. 

A particularly successful activation function for improved accuracy over the sigmoid is the 

leaky ReLU. A ReLU is a linear function from 0 to infinity but has an output of zero for all 

negative input. The leaky ReLU has the following conditions: 

 
𝑓(𝑥) =  {

𝑥
0.01𝑥

if 𝑥 > 0

otherwise
 (3.17) 

A leaky ReLU has been used for complex medical tasks [209], but the reasons for the 

advantage of a leaky ReLU over similar activation functions is still not fully understood 

[210]. Some networks use one type of activation function between hidden layers and another 

for the output layer, combining the high accuracy of i.e. a leaky ReLU, with a final output 

between 0 and 1 from, for example, a sigmoid function. Vector computation is also an 

important consideration, as is the differential of the function for backpropagation, which will 

be covered in more detail in the coming paragraphs. Although there are many available 

activation functions to choose from, they all introduce key characteristics to a network, 

including non-linearity (important for approximating complex data transformations) and 

limited output (large adjustments to weights can result in small adjustment to outputs, or vice 

versa, improving fine-tuning of the network during training). 

Once data has travelled through the network, this transformed data is output from the 

network. For the network to train, the difference between the network output and the target 

data must be calculated, so that this difference, the total error, can be minimised, and the 

network can improve. The choice of loss function, or cost function/error function, will 

depend on the network architecture and the output data type, but also the task the network is 

undertaking. An example of a loss function mismatch would be if the training loss function is 

squared error in predicting total cell numbers, but the bioengineer only needs the colony to be 

above a specific density [40]. Squared error functions, and variations such as mean squared 

error, root mean square, and the sum of square errors (least square errors), are a common 
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choice for DNNs, and the least square errors, L2, is frequently applied to image processing in 

CNN [5, 191, 211, 212], but L2, along with L1 (the sum of the all the absolute differences 

between the true value and the predicted value) may lose their positions as de facto standard 

error metrics as newer functions reliably improve performance [213]. These loss functions 

can be written as: 

 
L2 =  ∑(𝑡𝑖 − 𝑧𝑖)

2

𝑚

𝑖=1

 (3.18) 

 
L1 =  ∑|𝑡𝑖 − 𝑧𝑖|

𝑚

𝑖 = 1

 (3.19) 

Where ti and zi are the target and network output respectively, and m is the total number of 

output nodes. The loss function for the whole network may utilise multiple error functions, 

with different modifiers attached to each depending on which should provide the largest 

impact. 

Once the error has been calculated, the weights must be adjusted to minimise this error, 

which requires calculating the error of every weight in the network, and is the first stage of 

backpropagation. Through use of partial derivatives, changes in weights and changes in the 

network error can be analysed in relation to each other. This partial derivative is a gradient of 

the local error for a specific weight, and the minimum total error for the network, the global 

minimum, can be found through gradient descent, an optimisation method. The partial 

derivative of the total error, E, with respect to a specific weight, 𝑤5 (Figure 17), can be 

calculated through the chain rule, resulting in:   

 𝜕𝐸

𝜕𝑤5
=
𝜕𝐸

𝜕𝑍

𝜕𝑍

𝜕netC1

𝜕netC1
𝜕𝑤5

 (3.20) 

Where the total error changes as network output, Z, changes, which changes depending on the 

net input to the node C1, netC1, which changes when 𝑤5 changes. This long chain can be 

visualised from Figure 17. 

The first derivative is easily calculated, as the relationship between the total error and 

network output has already been established depending on the choice of loss function. The 

second derivative is the relationship between the output and the net input to the node C1, 

which were connected through the chosen through the activation function. Similarly, the 

relationship between netC1 and 𝑤5 has already been shown in eqn. 3.15. Assuming that the 
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network in Figure 17 had utilised a sigmoid activation function and a mean squared error loss 

function, the partial derivative would become: 

 𝜕𝐸

𝜕𝑤5
= (𝑧 − 𝑡) ∗ 𝑧(1 − 𝑧) ∗ outB1 = 𝛿𝑧 outB1 (3.21) 

Eqn. 3.21 can be used to find the partial derivative of any output layer weight, with the 

variables 𝑤5 and outB1 easily swapped with w6 and outB2. δz is the node delta, which is the 

derivative of C1’s activation function multiplied by the difference between the network 

output and target output. Conveniently, the partial derivative of the total error with respect to 

a hidden node bias weight, b3, is simply δz, as bias nodes are not connected to any previous 

layer (so there is no outnode variable). The partial derivatives for hidden layer node weights 

are slightly more complex, as the chain rule once again works back from the network output. 

 𝜕𝐸

𝜕𝑤1
=

𝜕𝐸

𝜕netC1

𝜕netC1
𝜕outB1

𝜕outB1
𝜕netB1

𝜕netB1
𝜕𝑤1

 (3.22) 

Eqn. 3.20 is similar to eqn. 3.22, where the relationship between the total error and the weight 

into a node is linked to the input for that node, which in turn is linked to the resulting output 

for the node, which is then linked to the input to the following node (all easily traced through 

Figure 17). For a single output node, this becomes: 

 𝜕𝐸

𝜕𝑤1
= 𝛿𝑧 ∗  𝑤5 ∗  outB1(1 −  outB1) ∗   outA1 = 𝛿B1 outA1 (3.23) 

With the above, the gradients of w1-6 can be calculated, and the next step is to alter them to 

reduce error. The equation for updating weights alters slightly depending on the gradient 

decent optimisation method used, so a generalised form will be used, here. new updated 

weight for 𝑤5, 𝑤5new, is calculated. 

 
𝑤5new = 𝑤5 − η ∗

𝜕𝐸

𝜕𝑤5
 (3.24) 

The learning rate, η, impacts how much the weights change with each update. This equation 

shows how the contribution to error by an individual weight is subtracted form that weight, 

therefore reducing the total error in the system. If too much is subtracted, the global 

minimum (the point of lowest total error for the whole system) will be continually missed. If 

too little is subtracted, the network may become stuck at a local minimum, or take too long 

reaching the global minimum (Figure 18). Any of the weights in the system can be calculated 

in the same manner as 𝑤5.  
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Once the gradients are updated, the process begins again, with the total error reduced with 

each update. This was a very simple network, with a single hidden layer, no batch sizes 

(where multiple iterations happen together and weights are changed after a set number), no 

complex function choices, and no convolutional layers. 

Convolutional layers reduce the image size without losing features that might otherwise be 

lost through simple averaging. The 2D convolution layer, conv2D, the commonly used within 

CNN, and is used for the U-Nets and W-Nets explained in section 3.3. A filter, also known as 

a kernel, in a conv2D layer acts on a small section of the 2D data (such as an image), 

stepping from left to right and top to bottom across the image, performing matrix 

multiplication. This results in a single output pixel for each step, due to the dot product. The 

step size, how many pixels the kernel moves across the image, is determined by the stride 

length, which is measured in pixels/data points. The kernel will perform the same operation 

for every location it steps through, transforming a 2D array of features into a smaller 2D 

matrix of features (Figure 19). 

Figure 18: Gradient descent visualised with a 3D error landscape illustration. 

Gradient descent can be visualised as a function for travelling down a  multidimensional slope [4]. Here, the areas of large 

error gradient are in blue and low are in pale yellow. The local minima is the flattest part of the illustrated slope, but a true 

minima may be somewhere else (potentially not accessible).  
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While a kernel can be any size, it is typically a 3x3 matrix. This would in effect reduce a 6x6 

matric into a 4x4 matrix. The first step, for the output location [0][0] (the notation for the top 

left corner), would involve the calculation seen in the equation below. The next step is shown 

in Figure 19, where the dot product is expanded. 

 
(
9 4 1
1 1 1
1 2 1

) ∙  (
0 2 1
4 2 0
1 0 1

) = 17 

 

(3.25) 

An example of an image going through a convolution layer, a ReLU later and a maximum 

pooling, MaxPool, layer is shown in Figure 20 [10]. MaxPool is a pooling operation that 

selects the maximum element from the specified region of the feature matrix, so the output 

results in a feature map of the most prominent features. Average pooling generates a mean 

average of the pixels within the specified area, and is also widely used. A MaxPool operation 

with a 2x2 filter and a stride of 2x2 is applied to a 2D matrix. 

 

(

14 5
9 23

2 7
5 0

12 13
14 14

0 1
0 0

) 
MaxPool
→      (

23 7
14 1

) 

 

(3.26) 

Figure 19: Visualisation of a matrix multiplication where a larger 2D array is transformed into a smaller 2D array via a 

filter. 
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Within a DNN, tensors are used instead of matrices, as the data can contain many 

dimensions, but these same operators can be applied. 

 

3.3 U-NETS AND W-NETS 

U-Net architecture was originally an advancement of simpler CNN, first used for Biomedical 

Image Segmentation [214-217], and improved on the Fully Convolutional Networks of the 

time [218]. The name stems from a visual interpretation of the architecture, and they are 

capable of producing accurate predictions with relatively few training images (a few hundred 

as opposed to tens of thousands). The large number of feature channels make it ideal for 

complex and high resolution situations, avoiding many data- and calculation-heavy fully 

connected layers. The U-Net consists of two paths, a contracting path of convolutions and 

max pooling (where the spatial information is reduced as feature information is increased) 

and an expanding path of deconvolutions (also known as up-convolutions) and 

concatenations, joining sections together, combining spatial information with high-resolution 

features from the contracting path. A W-Net doubles up this architecture to allow for further 

potential feature extraction without increasing filter size beyond the capabilities of available 

computer hardware (Figure 21). The inclusion of a secondary U-Net is based on deep cascade 

learning theory [219], and can improve network performance without necessarily resulting in 

overfitting [220]. 

Figure 20: ConvNets utilise both a convolution and pooling layer combination, with image data transformed at each layer. 

An input image is transofmed by a convolution layer, which visually alters the data during the feature extraction process. 

The “unneccesary” data is then discarded during the pooling layer. Here, the man is still visibly walking on a path, but the 

position and colouring has changed. Choubisa et al. [10] © 2017 IEEE 
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The U-Net and W-Net architecture makes them highly suitable for image-to-image data 

transformation, and are the generator in many cGANs, including the original [5]. The inlusion 

of an additional CNN as a discriminator is therefore included often enough in the 

architecture, alongside U-Nets, that the overall cGAN is frequently referred to as a U-Net. To 

avoid confusion, all references to U-Net and W-Nets in this thesis should be considered part 

of a larger cGAN architecture unless stated otherwise. (This is because the term cGAN alone 

could refer to either architecture.) The U-Net architecture has been used for a range of tasks, 

including laser machining and biomedical imaging, which makes it an ideal candidate for 

tissue engineering applications, which can combine both medical image data and engineering 

processes in cutting-edge research. 

3.4 TRAINING A NEURAL NETWORK: EXAMPLE 

To determine how accurately a cGAN can predict cell behaviour over time, a simpler 

temporal predictor is designed to operate without the introduction of topography. It is 

designed to eliminate cell density as a variable by inputting the exact cell number and 

positions in an image format – brightfield transmitted light microscope images. This can now 

be used to demonstrate how a neural network is trained. 

Predicting how cells will behave and interact even within a short time period of a couple of 

hours is challenging and therefore, as with any complex problem with a high level of 

perceived randomisation, a large dataset is required. A standard time-lapse can only run 

continuously for two or three days before the time outside of ideal atmospheric and 

temperature conditions is overly detrimental to the cells, even without the additional risk of 

infection over time. However, many hundred repeated time-lapse experiments would be a 

wasteful use of donated human bone marrow. To circumvent this issue, raw 512×624 images 

are converted into multiple smaller images. This can be done through randomised cropping to 

ensure a varied dataset and try to minimise overfitting (memorising the correct output for 

seen data rather than forming a broader and more accurate prediction) – a risk when 

augmenting data in this fashion. 

The movement of cells over a 24 hour period provides too many possible future scenarios for 

the network to accurately predict correct cell behaviour. This is circumvented by making 

composite input images. Each image is translated into a single channel greyscale image, then 

combined with an image taken, i.e. half an hour before and half an hour after, creating a three 

channel image that includes both spatial and temporal data, as seen in A and D of Figure 22. 
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Composite images drastically reduce the probable cell behaviour, and, with just half an hour 

separation, an ANN can then predict MSC behaviour 24 hours after the future-most channel.  

 

Image A shows a composite input image of roughly 60 stem cells imaged using a brightfield 

microscope and cultured in standard cell conditions, consisting of three colour channels. The 

red channel is 25 hours, the green channel is 24.5 hours and the blue channel is 24 hours from 

the predicted output, which is image B. This predicted output is then compared with the 

expected output, image C. The AI has never seen either image A or C before, as this data is 

extracted from a random central point in the training data. Comparing these images by eye 

demonstrates that movement and proliferation (increased density of cells and their subsequent 

position) are robustly predicted. In addition, the AI disregards/learns to ignore air bubbles 

and scratches/imperfections in the images unrelated to cells (correctly unchanged across both 

images). Thus, the AI produces a prediction where only 9% of pixels at each position are 

different when directly compared with the expected output for 256×256 images.  

A limitation to this model is that the input images have to be scaled to 256×256 and the 

output is limited to the same resolution. Therefore, work has been done on scaling this model 

to utilise 512×512 images and the additional data they contain. This higher resolution will be 

A B C 

D E F 

Figure 22: A combination of testing images for the 24 hour cell prediction AI. Images A-C are 256×256 images of 

Stro1+ isolated SSCs and D-F are 512×512 images of the same cells.  

A and D are the input images, with the three channels giving additional temporal data. B and E are the predicted 

output of the model and C and F are the expected output. 
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needed for accurate prediction on varied topographies. Seen on D-F, initial results are 

promising, the cell density and positions appear correct at a glance, but further work is 

needed on perfecting the network parameters, so results are comparable in error to the 

256×256 model.  

Optimising a network for a specific problem involves numerous iterations: changing 

hyperparameters such as batch size and learning rate or the architecture - layers and filter 

numbers. The cell predictor went through shorter training runs of only a few days before a 

reasonable configuration was acquired by the sixth version (V6), at which point the training 

runs were lengthened to a week for full analysis. V6 had a L1 to G error weight of 100. This 

meant that the pixel-to-pixel comparison of predicted output and expected output was 

multiplied by 100 in respect to the generator error in the overall error function of the AI, 

which the network works to minimise as it trains. There was a minimum of 128 filters per 

layer and the input images were 512×512. Unlike previous versions, which were not 

successful for testing images, dropout was added to all deconvolution layers to help prevent 

overfitting of the model. These initial versions had a relatively large frame difference (FD) 

between the RGB channels of 50 minutes and small frame advance (FA), the time between 

the input blue channel and output image, of roughly two hours.  

V7 was altered to have an L1 error weight of 200 – a great improvement on the previous 

version, as seen by the drop in L1 error in Figure 23. The next improvement was the most 

dramatic, v8, doubling the number of filters at each layer. Unfortunately, this meant reducing 

the image resolution to 128×128 on the memory-heavy parameters of previous models. V10 

is the result of balancing filter numbers in different concentrations throughout the network, 

allowing for 256×256 images to run without issue. The FA was additionally altered to 8 

hours. While the error is still substantially higher than for v8, part of this is due to the 

increase in pixel number, and subsequent increase in L1 error. V11 and v12 built on these 

adaptions and the FA could be increased to 24 hours with very little increase in error.  
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Further investigation is needed as to whether there is a limit in difficulty for long term 

prediction, which would require training data taken over a longer period. V13 illustrates an 

improvement to the training data. Rare composite RGB images were a merge of different 

positions, harming the training process of the AI. V15 is a reduction in FD of the composite 

images to a much smaller 30 minutes. The L1 error remained stable considering the reduction 

in temporal data available, showing there is a likely optimum FD, which would balance 

availability of temporal data with the amount of time cells need to be imaged before accurate 

prediction can commence. The final version here, v16, illustrates the difficulty in scaling 

images to 512×512. The necessary decrease in filter numbers combined with increase in 

pixels resulted in a model unable to accurately predict cell behaviour as well as previous 

models.  

It is important to note, that a particular limitation with this result is that the AI was trained on 

a previous section of the time lapse images and had therefore learnt the style and behaviour of 

these cells. There is limited variation in that the training and testing data is from the same 

patient, roughly the same cell density and, as it is from the same experiment, the same 

temperature, humidity, lighting, and oxygen levels, which all could impact how the cells 

behave. Future work should explore the application of AI to a variety of patients and 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 50000 100000 150000 200000 250000 300000

L1
 e

rr
o

r 
(0

-1
)

Step Count

L1

v6

v7

v8

v10 (8 hr)

v11 (12 hr)

v12 (24 hr)

v13 (24 hr)

v15 (24hr)

v16 (24 hr)
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experimental datasets, which may be harder to predict. Importantly, the success of this 

provisional AI in temporal prediction shows promise for AI prediction of cell behaviour. 
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4 DATA: COLLECTION AND COMPOSITION 

The raw data for chapters 5 and 7 was provided for by collaborators. The data for chapter 6 

was independently collected for this project. All data processing, augmentation, and 

subsequent usage and analysis detailed in the relevant chapters, was performed by the author 

unless specified otherwise. 

4.1 PLACENTAL SBFSEM IMAGES – DATA FOR CHAPTER 5 

The SBFSEM stacks used in this project were provided by Professor Rohan Lewis at the 

University of Southampton (Rohan.Lewis@soton.ac.uk). Three stacks were used in total, as 

shown in the table below,  

Stack Used number 

of Z-positions 

Structures Labelled Training Testing 

1 943 Fibroblast, pericyte Yes Yes 

2 370 Endothelial  Yes Yes 

3 140 None No Yes 

Table 1: The SBFSEM stacks provided by Professor Rohan Lewis. 

Stack 3 contained no manual labelling and was therefore used for testing only. The training 

and testing split, which varies for different experiments, is detailed in chapter 5. 

4.2 STEM CELL RESPONSE TO SURFACE TOPOGRAPHIES – DATA FOR CHAPTER 6 

The data for cell response to laser-machined topographies was created specifically for this 

project and was not provided by collaborators. The steps involved in generating this data, 

including optimising the approaches disclosed herein, took approximately a year. The steps 

involved in generating data for training a DNN is shown in Figure 24. The application of this 

data will be explained further in chapter 6. 
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The first stage was to design a pattern to laser-machine into the substrate sample. This 

pattern, (Figure 24 (1)), was shown as an array where black was areas not laser-machined and 

white was laser-machined areas. The next two stages involved the processes in collecting 

training data, including (2) femtosecond laser-machining of the desired pattern, a topography 

of controlled microscale features, and (3) the culture of Stro-1 positive isolated HBMSCs on 

the topography, which were then imaged using fluorescence microscopy. The final stage, (4), 

was to process the fluorescent images and then use them to train a DNN. Once the network 

was trained, deep learning bypassed the need for lengthy steps (2) and (3), shown by the blue 

arrow linking (1) to (4). 

4.2.1 SURFACE TOPOGRAPHIES ON GLASS 

As covered in section 2.3, laser-machining was achieved using an ultrafast pulse laser on 

glass coverslips, with the addition of a DMD to allow for a wider range of laser ablation 

patterning and future advancement of topography design (Figure 25). Overall, optimisation of 

laser-parameters can be time intensive as it requires extensive experimentation. However, 

once these parameters are obtained, laser-machining was an efficient and adaptable method 

Figure 24: The path from a designed topography to associated cell response through experimental and deep learning methods. 
1) A non-uniform topography is designed using a 2D computational binary array where white is areas of laser-machined 

grooves, and black is an area which is not machined. 2) The substrate is machined using a femtosecond pulse laser, using a 

beam shaper, DMD, and a 50 x objective. 3) Once cells have been cultured on the machined substrate, fluorescence 

microscopy is used to image the cells. 4) Fluorescent cell-tracker dye shows the cell positioning in response to the designed 

topography. Step 1 to 4 can be linked through deep learning. 
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for topography generation. Therefore, to limit time spent on set-up, a single sample material 

was used for all topographies, which therefore only required a single set of parameters for all 

laser-machining within the project. As a known biocompatible substance, which is also 

transparent, aiding in necessary cell imaging, glass was a good option for a sample material. 

Specifically, glass coverslips (borosilicate glass) are designed for optimal imaging via both 

brightfield and fluorescence. Additionally, coverslips have very low coefficients of thermal 

expansion (increasing resistance to thermal shock, and use of femtosecond laser-machining 

further reduced likelihood of cracking due to limited thermal effects in ultrafast pulse laser 

ablation), so sterilisation of topographies from pressurised steam did not lead to fracturing, 

even after surface alteration. Importantly, cells were known to adhere to glass and 

femtosecond machining of glass, taking advantage of non-linear absorption, allows 

fabrication of features with high fidelity. Specifically, soda-lime glass coverslips were used 

throughout this chapter as these coverslips were less susceptible to fracture than pure silica 

glass post-machining. 

The ultrafast pulse laser system was a 1 W Ti:sapphire, with a laser wavelength centred at 

800 nm, pulse duration of 150 fs and operating at a 1 kHz repetition rate. To ensure 

homogenous illumination of all mirrors on the DMD, the spatial intensity profile was 

modified by a top hat beam shaper. Use of a DMD to control the spatial intensity of the laser 

pulses on the sample further controlled the topography of the ablated structures [221]. 

Figure 25: The laser-machining process for creating microtopographical glass substrates.  
A laser pulse from a femtosecond 1 W Ti:sapphire ultrafast pulse laser is shaped using a top-hat beam shaper, spatial intensity 

is then manipulated using a DMD, before a 50 x objective focusses the pulse onto a glass sample. This sample is moved using 

a motorized  x-y-z stage, allowing for detailed microscale patterning to be machined.  
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Although any 2D shape could have been used, a circle was chosen to produce circularly 

shaped laser pulses on the surface of the substrate, so ablated areas had a uniform depth. 

When combined with substrate movement (via a 3-axis translation stage), the result was a 

continuous ablated line, with line thickness corresponding to the diameter of the projected 

circle shape and depth depending on the speed of the stages, and therefore the number of 

pulses per area. 

The size of the circle pattern was optimised throughout machining to balance the creation of 

thin line widths (less than 10 µm) with necessary fluence for ablation, and line widths could 

be rapidly changed for topographical variation via the DMD. Made up of a 604×684 array of 

square ~7.6µm mirrors (DMD pixels), the spatial control over the beam shape would also 

allow for consistent machining over curved samples, such as bone samples and titanium 

implants, for future expansion and increased versatility of the network model and easy 

transference from in vitro topographical response to topographical biocompatibility and in 

vivo response [222]. With a circle pattern set on the DMD of radius between 75 and 100 

pixels, and a reduced laser power of 400 mW via a variable density filter, resultant laser-

machined lines had a maximum thickness range between 7.5 and 12 µm on the glass sample. 

The use of a variable density filter was to enable uniform machining, without gaps in lines 

caused by fluctuations in laser power resulting in an incidence fluence below the ablation 

threshold of the sample, without creating cracks and other sample deformations from high 

power machining. The purple arrow in Figure 25 shows an area fluctuating below the 

ablation threshold and the orange arrow shows a thin crack on a single sample with 

unchanged laser parameters. However, these discrepancies in laser-machining introduce a 

wider range of features in the training data, including the range of line-widths (7.5-12 µm), 

which can be beneficial for training neural networks. Therefore, these fluctuations were not 

adjusted for via, for example, CNN-monitoring or repeated machining. The laser, 3-axis 

translation stage, the DMD, and the variable density filter were all automated and run via an 

experiment-specific automation code.  

When laser-machined glass was imaged using a scanning electron microscope (SEM), there 

was substantial variation between resultant nanotopographies, depending on the separation 

between laser-machined lines (Figure 26). When lines separated by less than a line-width are 

laser-machined, the surface became rough and nanotopographically non-uniform (nanorough) 

and contained no deeply ablated areas. After separation was increased to a level with no 

overlapping of laser-machining, deeper ablated lines became visible – the darker areas 
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correspond to relatively greater depth. At a separation large enough that there was no 

disturbance from other laser-machined areas, the lines were ablated with a rough edge, with 

no deformities to the otherwise smooth surface topography, and very limited build-up of 

debris and material between ablated depths. This was very promising, as laser-machining 

provided a way to precisely control microtopography for optimised design, while also 

producing varied nanotopographical features beneficial for cell adhesion due to differences in 

surrounding debris and material build-up, depending on proximity to other laser-machined 

areas [223]. 

As both nanoscale and micron-scale topographies alter cell behaviour, it was important to 

laser-machine a dataset that included 5-50 µm line separation for accurate modelling. Due to 

the versatility of femtosecond laser-machining (Figure 8 and Figure 26 generated using the 

same laser system), this method of generating topographies could be adapted to the nanoscale 

for future experimentation if required. However, micron-scale laser-machining was focussed 

on, as nanoscale was more time-intensive than the micron-scale, and variation to 

nanotopography was still introduced through varied line separation. Through control over 

microtopography, there was an ability to adjust the nanotopography of the glass, from an 

entirely nanorough surface with shallow grooves (Figure 26 1c), to a mixture of smooth 

Figure 26: SEM images of laser-machined parallel lines in glass with varying line separation.  
(1a-c) lines machined with a separation of 5 μm. Lines are laser-machined close enough together that the deeper ablated lines, 

seen as darker grey and black in (2a-c) and (3a-c), are not produced. Instead, disordered nanoscale features are present in 

uniform microscale lines. A larger separation of 10 μm (2a-c) or 50 μm (3a-c) creates larger variation in depth, with clear 

ablated lines surrounded by disordered nanoscale variation. Areas not laser machined are smooth, with virtually no microscale 

features. Images reproduced from Mackay et al. under Creative Commons Attribution License open access [11] (© 2020 

Mackay et al., published by Elsevier Ltd.). SEM images taken by Dr Matthew Praeger. 
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substrate with deeply grooved areas surrounded by less than 5 µm of nanorough walls (Figure 

26 3c).  

Squares in the plane of the sample were machined with 500 µm length and width to create a 

boundary between individual topographical patterns so that, during imaging, there was one 

square per image at 10x magnification. This ensured cellular responses could not be 

attributed to neighbouring topographies and simplified the image capture and alignment 

processes. Additionally, 500 µm squares were large enough to be seen by the human eye at a 

meter without the need for microscopy2, which aided accurate cell seeding upon topographies 

and microscope alignment.  

Training data consisted of straight lines ranging from 10 µm to 25 µm in width, due to areas 

of overlapping laser-machined areas to create thicker lines, in both uniform parallel 

arrangements and in varied configurations where the angle, length, and number of lines was 

randomised using a the Mersenne Twister pseudorandom number generator (PRNG) via 

NumPy programming. This randomisation increased the information available to the network 

and ensured unique topographical configurations for testing data extraction. 

4.2.2 CELL CULTURE AND IMAGING 

The next step after generating topographies was to wash the laser-machined coverslips in 

70% ethanol and then place the substrates in an autoclave (a system which subjected the 

substrate to pressurised saturated steam at 126 °C for 20 minutes), in order to sterilize the 

coverslips. Cells were then cultured on the substrates and the response collected using 

fluorescence imaging (Figure 27).  

Multipotent skeletal progenitors enriched populations from human bone marrow stromal 

cells, isolated using a Stro-1 positive antibody, were cultured at 37 °C and 5% CO2 

atmosphere in Alpha minimum essential medium (αMEM) supplemented with 10% fetal calf 

serum and 1% penicillin/streptomycin, which was changed every three days. Human bone 

marrow aspirates were collected from haematologically normal patients undergoing routine 

elective hip replacement surgery, which would have been discarded if not collected, 

following informed consent from the patients in accordance with approval from North West - 

Greater Manchester East Research Ethics Committee (Ref-18/NW/0231). The Stro-1 positive 

 
2 A 500 µm square is roughly half the size of a poppy seed. A small seed held on the tip of a finger at arm’s length 

away can still be seen, but the texture cannot. Similarly, the topographies were difficult to spot by eye, but the 

surrounding squares made easy visual location possible. 
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isolated cell population enrichment was completed using standard protocols within the Bone 

and Joint Research Group [224, 225]. An example Stro-1 isolation protocol can be viewed in 

Stro-1 isolation method and protocol. 

 

Fluorescence images were collected using Vybrant cell tracker dye via a Nikon Eclipse 

microscope at various time points from day 0 until cells were fully confluent (covered the 

coverslips completely). Full confluency occurred at different time points due to deliberately 

altered seeding densities to allow for greater variety of training data, with the longest time 

point set at day 30. This randomisation was to minimise possible network constriction to a 

limited specific cell density, and cell response could then be determined for a range of 

densities. Post-imaging editing to images was kept to a minimum, with alterations in 

brightness and contrast performed through normalisation manipulation to compensate for any 

alterations in brightness: While all images were taken with an equal exposure time, some 

fluctuation in fluorescence was unavoidable. These alterations ensured that values for cell 

density and cell positions, which were derived using image recognition techniques, were 

consistent between measurements and cell samples. In total, 203 unique combinations of 

topography and time-point (from day 0 to day 28) were used to train the network.  

Figure 27: The fluorescent image capture of cells cultured on a laser-machined glass sample.  
Cells are cultured in standard conditions before being labelled with fluorescent cell-tracker dye, allowing for repeated 

imaging as cell fixation is not required. Cell positioning and alignment is collected using 10 x magnification, which balances 

resolution with capturing the whole topography in a simple image. 
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After laser-machining topographies, culturing cells on the topographies and then imaging the 

cells, three images were formed for each of the 203 combinations. This dataset included:  

i. The design of the topography, such as examples Figure 28 a and d, was stored as a 

binary array of laser-machined lines, white, on a smooth unaltered sufrace, black. This 

was the input, alongside the time-point and cell density, to the network. 

ii. A brightfield image of the cells after a recorded number of days on the surface 

topography, such as examples Figure 28 b and e, was used to check the cell positioning 

relative to the clearly visible laser-machined lines, and to check for fluorescent debris 

(organic waste from dead or damaged cells). 

iii. The fluorescent image of cells, with the same magnification and positioning as the 

brightfield image, such as examples Figure 28 c and f, showed live cells and their 

positioning. This was the output of the network. 

Figure 28 a-c shows one dataset corresponding to a topography with parallel laser-machined 

lines and Figure 28 d-f shows a dataset for an unmachined topography.  

While the brightfield image was not used by the network, and instead was used to check the 

quality of both the laser-machined topography and cell culture, the topography array and 

(a, d) The surface topography, illustrated by a binary array where white is laser-machined and black is unmachined areas. 

(b, e) Brightfield microscopy shows both the laser-machined lines and the cell positioning. (c, f) Fluorescent microscopy 

provides a clearer visual of cell position, with cells aligning parallel to and adhering to laser-machined areas. In contrast, 

cell positioning is more randomised in unmachined areas of (a-c) and in all areas of (d-f), where there are no laser-machined 

areas. All images are at the same magnification. Image modified from Mackay et al. under Open Access Creative Commons 

license [11] (© 2020 Mackay et al. Published by Elsevier Ltd.). 

Figure 28: Skeletal Stem cell enriched population response to laser-machined topographies, with adhesion and alignment 

along the parallel lines. 
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fluorescent image were used as input and target output data for the network. The brightfield 

image was also useful for alignment guidance, as it contained partially visible cell and 

topgoraphy data. Additionally, autofocus software was more effective with brightfield than 

fluorescent microscopy during the imaging process, thus collection of brightfield images at 

identical positions to fluorescent images added less than a second per position to the process 

time. Once a binary array was aligned to the corresponding brightfield image, the array was 

resized so that both images had the same resolution, while keeping the microscope data 

unchanged. 

4.2.3 COLLECTED DATA COMPOSITION 

The following table, Table 2, shows the number of raw image sets collected via the above 

process. Each image set consists of a binary image for topography, a brightfield image for 

cell positioning relative to topography, and a fluorescent image of cell positioning and 

response. 

Tag Gender Age 

(Years) 

Days 

Imaged  

Number (raw) Training 

F63 Female 63 0, 1, 8 21 No 

F77 Female 77 0, 1, 8, 15 149 No 

F83 Female 83 0, 1, 8, 15 28 No 

F62 Female 62 30 22 Yes 

F84 Female 84 1, 8 61 Yes 

M55 Male 55 0, 1 27 Yes 

M59 Male 59 1, 8, 30 78 Yes 

B0 - - 0, 1, 8 15 Yes 

Table 2: A complete list of the collected stem cell images used in training and testing. Combinations in bold (“No” in the 

testing column) were extracted for testing. 

In total, before augmentation, 203 images were collected for training and 198 were collected 

for testing. The comparative increase in the number of images within the F77 set was due to 

the timing of data collection. Lockdown measures had legally come into force in the UK and 

therefore an increase in the number of images was taken to guard against the event that more 

data would not be collected at a later date. The B0 set included topographies without stem 

cells present. 

A limited cross-validation was performed on the dataset to determine whether extracting 

different patient image sets for testing resulted in a change in the relative success of the 
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network output. The images corresponding to stem cells extracted from an individual patient 

were extracted from the overall dataset for testing, while the remaining images were used to 

train a U-Net for 24 hours. B0 was not included in this comparison. This is not sufficient for 

providing accurate outputs, the error was above 50% for all network outputs, but a 

comparison is provided in Figure 29. As this is not a true cross-validation, the results were 

not used to quantify uncertainty. 

 

When the exclusion of F62 images is not considered, extracting any specific patient images 

does not affect the output of the neural network by more than 10%. However, excluding F62 

images provided an error roughly 20% lower. This is because the number of cells in the F62 

were higher than for the other patient image sets, so the fluorescent images were brighter 

(more cells result in more areas of fluorescence). As the outputs from the neural network after 

24 hours were relatively binary, with block areas of black and white, the high levels of white 

in the outputs images were closer in pixel value to the F62 test images.  

While this limited cross-validation cannot be used to provide a quantitative uncertainty for 

the outputs in Chapter 6, it showed that F62 should be included into the training data as any 

The neural network was trained for 24 hours on seven different training datasets. The datasets contained images from each  

patient set except a single extracted patient image set that was used for testing. Error bars show the maximum and minim L1 

error for each testing set. 

Figure 29: A graph for comparing the mean L1 error of network output when the images of stem cells from a single patient 

are extracted from the training dataset and are instead used for testing. 
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calculated error based on F62 test images may be lower than for testing based on other patient 

image sets. 

4.3 STEM CELL RESPONSE TO SCAFFOLDS – DATA FOR CHAPTER 7 

The following table, Table 3, is a list of the materials and coating combinations provided by 

Dr Karen Marshall of the University of Southampton (K.M.Marshall@soton.ac.uk). 

All egg CAM procedures were carried out in accordance with the guidelines and regulations 

stipulated in the Animals (Scientific Procedures) Act, UK 1986. The chick embryo CAM 

model was under Home Office Project license P3E01C456. 

4.3.1 DATA FOR IN VITRO BIOCOMPATIBILITY 

This dataset consisted of fluorescent images of seeded cells after 1 and 14 days of culture on 

corresponding scaffolds, which could then be analysed or used by a neural network (Figure 

30). The collection of experimental data was performed by collaborators, principally Karen 

Marshall at the University of Southampton, which involved creating, coating and seeding 

cells on the scaffolds, and then imaging using fluorescent dyes. Processing, application and 

analysis of this data was then undertaken by the author for network training and testing. 

 

Figure 30: Material biocompatibility prediction method for the in vitro data transformation.  
Once a scaffold has been designed (a), the two different material scaffolds chosen (b) must be coated with a range of coatings 

(c) designed to promote angiogenesis (formation of new blood vessels) or biocompatibility. Cells are then seeded and cultured 

on the scaffolds (d) and imaged used fluorescent cell staining (e) for future analysis (f). 
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HBMSCs were grown on either nylon or titanium scaffolds (Figure 30 b), with a variety of 

coatings (Figure 30 c), generating varying cell responses, including a mineral coating, a 

coating generated by Glasgow University for osteogenesis promotion (referred to as 

‘Glasgow’ coating), and scaffolds left uncoated (plain) [226, 227]3. Cultured for 14 days 

using conditions used in previous work (chapter 6) (Figure 30 d), these coated and non-

coated scaffolds were imaged at day 1 and day 14 using calcein acetoxymethyl (AM) dye and 

a Zeiss stereomicroscope and digital camera (Figure 30 e) [17]. Enzymatic conversion of 

virtually non-fluorescent calcein AM resulted in fluorescent calcein, producing green 

wavelengths in live cells. Additionally, ethidium homodimer-1 (EthD-1) was used to 

determine cell health, as it is a nucleic acid stain that enters cells with damaged membranes, 

therefore staining dead and dying cells red (EthD-1 is excluded by the intact plasma 

membrane of viable live cells).  

The microscope images were subsequently analysed computationally to compare the number 

and health of cell culture for each scaffold-coating combination, which were approximated 

through the amounts of calcein AM (green pixels) and EthD-1 (red pixels) fluorescence 

(Figure 30 f). Collecting training data of scaffold material-coating combinations (Figure 30 a) 

and fluorescent imaging of cell-seeded scaffolds after 14 days of culture (Figure 30 e) takes 

several weeks, due to cell culture and processing times. As in previous work (chapter 6), a 

neural network was used to speed up the process of testing cell response to environmental 

cues by transforming information on cues, which contained the choice of scaffold material 

and coating, to the resulting cell response via the fluorescent image. As 3D scaffolds were 

imaged through 2D microscopy, only portions of the fluorescent images were in focus, and 

this was included in the input data. The full list of scaffold material-coating combinations is 

seen in Table 3. 

Tag Material Coating Day 

Imaged 

Training 

NB01 Nylon BMP 2 peptide 1 Yes 

ND01 Nylon CD3 peptide 1 Yes 

NE01 Nylon CE3 peptide 1 Yes 

NG01 Nylon Glasgow 1 No 

 
3 Further details on these scaffolds and coatings are awaiting publication and outside the scope of this project. 

Research funded by the UK Regenerative Medicine Platform (MR/R01565/1) and is a collaboration between the 

University of Southampton, the University of Glasgow, and Imperial College London. 
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NM01 Nylon Mineral 1 Yes 

NP01 Nylon Plain 1 Yes 

TB01 Titanium BMP 2 peptide 1 Yes 

TD01 Titanium CD3 peptide 1 Yes 

TE01 Titanium CE3 peptide 1 Yes 

TG01 Titanium Glasgow 1 Yes 

TM01 Titanium Mineral 1 Yes 

TP01 Titanium Plain 1 Yes 

NB14 Nylon BMP 2 peptide 14 Yes 

ND14 Nylon CD3 peptide 14 Yes 

NE14 Nylon CE3 peptide 14 Yes 

NG14 Nylon Glasgow 14 No 

NM14 Nylon Mineral 14 Yes 

NP14 Nylon Plain 14 Yes 

TB14 Titanium BMP 2 peptide 14 Yes 

TD14 Titanium CD3 peptide 14 Yes 

TE14 Titanium CE3 peptide 14 Yes 

TG14 Titanium Glasgow 14 Yes 

TM14 Titanium Mineral 14 Yes 

TP14 Titanium Plain 14 No 

Table 3: A complete list of the material-coating combinations used in training. Combinations in bold (“No” in the testing 

column) were extracted for testing. 

Out of the 24 scaffold-coating combinations used for the first data transformation, two were 

extracted for testing. One, NG01 and NG14, was a nylon scaffold with the ‘Glasgow’ mineral 

coating after 1 and 14 days of cell culture, and the other combination, TP14, was a titanium 

scaffold without a coating (left plain) after 14 days of cell culture. The inclusion of both 

nylon and titanium scaffolds gave possibility for comparison between materials, and the 

inclusion of a coating and a scaffold without a coating provided further potential 

comparisons. Additionally, the error in predictions when the network had training data at day 

1, but not day 14, and with no training data at either day 1 or 14 could be investigated.  

4.3.2 PREDICTING IN VIVO BIOCOMPATIBILITY 

Collecting data for in vivo biocompatibility was collected by a collaborator for separate 

biocompatibility experiments [17], and complied with NC3Rs guidelines. The CAM assay 
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images were then repurposed for use in this study through cropping and pairing with 

corresponding fluorescence imaged scaffolds. 

 

The scaffolds were seeded in parallel experiments, where each scaffold material and coating 

combination was used for in vitro biocompatibility testing (Figure 31 a-b) and also used for 

in vivo testing (Figure 31 c-d). For in vitro testing, this involved seeding cells on a scaffold 

that was then cultured in a petri dish for 14 days, and then fluorescent imaging of the cells. 

For in vivo, a different scaffold with the same material and coating combination was placed 

on a CAM and then imaged after 8 days. While the same material and coating combination 

was used for both scaffolds, the experiments were independent. 

There were a greater number of augmented fluorescent images to CAM assay image, so the 

fluorescent images were randomly paired with corresponding CAM assay images with the 

same material and coating. This was possible due to the independence of in vitro and in vivo 

experiments and datasets, but an individual augmented fluorescent image was used no more 

than once per dataset to try and limit overfitting. While this could result in limited outputs 

from the network, this increased the size of the training dataset with limited in vivo data. The 

Figure 31: Generating data input-output pairs for training a DNN to transform fluorescent images to CAM assay images. 
(a) A scaffold is seeded with HBMSCs cells and cultured for 14 days. (b) Fluorescent images are taken to determine cell health 

on the scaffold. (c) A scaffold of the same material and coating is implanted into a chick egg and left for 14 days. (d) CAM 

assay images are taken of the scaffold to determine health and integration. Fluorescent images are used as the input to the 

DNN, which transforms the data into CAM assay images. These network generated images can be compared to laboratory 

obtained images for network training and testing. 
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scaffolds were once again either nylon (N) or titanium (T), with coatings such as mineral 

(M), the coating developed by the University of Glasgow, ‘Glasgow’ (G), and left plain (P) 

(uncoated). These tags were combined to indicate the material-coating combination of each 

scaffold, such as NG for ‘Glasgow’ coated nylon. Uncoated titanium (TP) and uncoated 

nylon (NP) scaffolds were included in both the training and testing data, yet the images in the 

testing data were from a different experiment performed on a different day under the same 

conditions. The mineral coated titanium (TM) and nylon (NM) scaffolds were not included in 

the training data, and instead were extracted for testing. Additionally, two NG and two TP 

scaffolds were removed from both training and testing data for a network-series test, where 

the two networks were tested together. The material/coating information (NG and TP) was 

input into the first network, and the output fluorescent image was then used as the input to the 

second network. 
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5 LABELLING 3-DIMENSIONAL PLACENTAL TISSUE 

The research covered in this chapter was published and short-listed for best 

presentation at BIOSTEC2020 in Valetta, Malta [220]. A book chapter published by 

Springer was also based on this research [228]. 

5.1 INTRODUCTION 

While there has been a lot of work over the last decade in non-invasive labelling of cells via 

machine learning, most of this work has involved simple 2D cultures, where cells are cultured 

on cell-culture plastic and are not confluent at the time of imaging [196, 229]. There are 

significant benefits to such imaging, such as real-time monitoring of cell density and 

morphology, but similar labelling for 3D structures have not progressed as quickly, even 

though it is crucial for understanding cellular behaviour, the biology of the tissue, and how 

cells work together. For example, the interaction between fibroblasts, pericytes, and 

endothelial cells in placenta can improve understanding of how these features affect placental 

nutrient and waste transfer [2]. To model and analyse these complex interactions, 3D 

visualisation is required, and 3D-labelling is therefore a necessity to the medical imaging 

field (Figure 32).  
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3D visualisation requires multiple steps in order to form high-quality models for cell 

behaviour analysis. The first step is imaging the cell using methods where the 3D structure 

can be obtained, such as with the 3D technique for scanning electron microscopy (SEM) 

image, serial block face scanning electron microscopy (SBFSEM), which shows the internal 

cellular structures as well as surfaces. SBFSEM and other imaging methods face a lengthy 

process of labelling the target cell, or in some way extracting it from the surrounding cellular 

and acellular material [160]. While methods such as confocal microscopy could in theory 

bypass this stage, it would not allow for the nanoscale precision required for high-quality 

individual cell analysis. This step can severely limit the use of 3D-imaging methods, as 

labelling a single call from a standard SBFSEM stack (a collection of SEM images collected 

via the serial block face technique) can take an expert as long as a month, or longer for larger 

and more detailed stacks. Only after a stack has been completely labelled can the extracted 

labels be projected into a single 3D visual, which is easily done through open-source software 

such as ImageJ [230]. 

To obtain an understanding of how pericytes (blue) interact with placental capillaries (pink), 3D projections are required (A). 

SBFSEM images are taken and labelled (B), which consist of thousands of SEM images in a stack. By combining the labels 

throughout the stack, large 3D models can be created using readily available software (C-E), which allows for rotation and 

visualisation not possible in 2D. Figure (A) modified from Harris et al. under Creative Commons Attribution license open 

access (© 2020 Harris et al. Published by Elsevier) [2]. 

Figure 32: Labelling SBFSEM-imaged placenta to gain 3D projections of pericytes.  
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With the use of faster AI-based approaches, 3D imaging could be more widely adopted and 

new understanding of cell behaviour accelerated, which is briefly explained in section 2.5. A 

U-Net, a form of DNN typically used for image-to-image data transformation, was trained on 

SBFSEM stacks labelled manually, and corresponding unlabelled stacks, which is covered in 

section 5.3. The features labelled included fibroblasts (5.4.1), pericytes (5.4.2) and 

endothelial cells (5.4.3) within placental tissue. The results are then summarised in section 

5.5.  

5.2 HYPOTHESIS, AIMS AND OBJECTIVES 

While analysis of 3D cellular structures within placenta is necessary for advancing research 

into placental growth-factors, 3D image processing can be labour intensive due to the length 

of time spent manually labelling each section (of which there can be thousands per image). 

Using a network to extract and label desired features can potentially overcome time and 

labour constraints in research reliant on 3D imaging. 

5.2.1 HYPOTHESIS 

Unlabelled SBFSEM sections can be automatically labelled to identify and label specific cell 

types without labelling undesired features on unseen SBFSEM sections. 

5.2.2 AIMS AND OBJECTIVES 

The project is split into several sections, with the tasks rising in complexity with each 

additional experimental aim. 

1) Automatically label a single cell within a SBFSEM stack, with an average error of less 

than 5%. 

a) Use manually labelled SBFSEM sections to train a network architecture developed for 

image-to-image data transformation. 

b) Compare network labelled and manually labelled SEM images and quantify the 

differences to form an appropriate error. 

2) Determine whether any single cell within a SBFSEM stack can be automatically labelled 

when manually labelled features are limited to less than 20% of the stack. 

a) Train a U-Net based network architecture on multiple different structures to evaluate 

versatility of the network. 

b) Limit the training data to less than 1 in 5 of the SBFSEM stack and compare the error 

to network output when more and less training data was used. 
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3) Automatically label multicellular structures and maintain an average error of less than 

5%. 

a) Compare network labelled and manually labelled SEM images for a multicellular 

structure. 

b) Evaluate the network labelling of a SBFSEM stack that has not been used in training. 

5.3 METHOD 

This study used term human placental tissue, collected after delivery from uncomplicated 

pregnancies with written informed consent and ethical approval from the Southampton and 

Southwest Hampshire Local Ethics Committee (11/SC/0529). All methods and experiments 

were approved and performed in accordance with the relevant guidelines from the 

Southampton and Southwest Hampshire Local Ethics Committee and the University of 

Southampton. Full methodology of imaging processes of placental tissue can be found in 

Lewis et al. and Harris et al. [2, 160]. 

5.3.1 SINGLE CELL LABELLING 

Automated labelling of a 3D single cell from SBFSEM data requires multiple steps (Figure 

33), so that a single SBFSEM z-stack can be used for both training and testing. The first step 

required inputting a 2D section, a z-stack image, of the SBFSEM data to a trained neural 

network, capable of identifying and labelling the desired cell. The second step was collection 

of the output from the neural network, followed by (the third step) isolation of the label. The 

final step was collecting all isolated labels and using readily-available open-source software, 

such as ImageJ, for creation of a 3D projection. While an entire SBFSEM z-stack could be 

input into a (much larger) neural network and trained to output a 3D projection, therefore 

skipping the second and third steps, this would increase several requirements: 

i. Up to several thousand labelled SBFSEM z-stacks, which would take a dedicated team 

several years to produce, instead of the three used for this chapter. 

ii. A GPU larger, and therefore more expensive, than can be used in a standard high-

quality PC set-up (such as those used for gaming or image editing). 

iii. Additional time spent training the network, as there would be more data  parameters. 

By keeping the input and output to the network limited to 2D, less training data was required, 

less time training the network was required, and relatively cheaper computer set-ups could be 

used. 
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Both the network architecture and the data used provide large variations to the success of 

training, as badly designed or poorly chosen architectures will either fail to train or will take 

too long to produce a desired output, and a lack of adequate data can lead to a range of 

problems, from overfitting (looked at in more detail in section 5.4.2) to failed optimisation of 

minimising the loss function (no solution for transforming input data to output data is 

formed). For the task of transforming one image (the input z-position) to another image (the 

output labelled z-position), a U-net architecture was chosen, which was trained on sections of 

a labelled SBFSEM z-stack (Figure 34).  

The U-Net consisted of 17 layers, each containing a convolution or deconvolution/up-

convolution with a stride of 2, a 4 by 4 kernel size, and an accompanying rectified linear unit 

activation function. The dimensions of the input data therefore altered from 256 by 256 pixels 

over three channels to 1 by 1 across 1024, before being resized back up into a 256 by 256 

three channel image. Skip connections between the encoder, the convolution side, and the 

decoder, the deconvolution side, resulted in spatially relevant information passing across the 

architecture, therefore resulting in more realistic output images. To further improve the 

realism of output images, the architecture also included a discriminator, which had a random 

input of either an automated or manually labelled image. The discriminator was tasked with 

determining whether the input image was real or network generated, and was a simple 4 layer 

ConvNet, utilising a sigmoid activation function to produce a real vs fake prediction. 

Compared to the prediction of the discriminator, pixel-to-pixel comparison error (L1 loss) 

The first step (1) is to input a 2D segments, a z-stack image, from the 3D SBFSEM block into a trained neural network. The 

second step (2) is the output of this trained neural network, which produces a SEM image which the feature cell labelled. The 

third step (3) is extraction of the label from the surrounding SEM image. The final step (4) is 3D-projection of all extracted 

labels into one 3D cellular structure. 

Figure 33: The method of single cell automated labelling, which contains several steps. 
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between the U-Net generated image and the manual image was given a weighting 100 times 

larger within the loss-function. This combined discriminator-L1 error function was then used 

via standard back-propagation, which results in the network altering weights to produce 

different data transformations. Through optimising the transfer of data propagating through 

the network, and minimising the loss-function, the network is trained. 

 

Although three z-stacks were used in this chapter, only the first used for labelling fibroblasts 

and pericytes, which consisted of over 1000 z-positions, of which 943 were used. The second 

and third were used for the labelling of endothelial cells and consisted of 370 and 140 z-

positions respectively. For labelling fibroblasts, the network was trained on 50% of the stack 

and then tested on the remaining 50%. The 50% used for training, 471 z-positions, were 

expanded through use of standard data augmentation techniques, including resizing the 

images from 4096 by 4096 pixels into 2000 by 2000, cropping the resized images into a 

minimum of eight 512 by 512 images, and then resizing again into 256 by 256. The reduction 

Figure 34: The training of a neural network for the automated labelling of feature structures.  
An unlabelled image is input into a neural network consisting of many convolutional layers, deconvolution or up-convolution 

layers and skip-layers between the encoder-decoder layers. Output images are compared to manually labelled images, and 

differences lead to changes and optimisation of the network layers through backpropagation. (Additional error correction is 

performed from a separate convolutional neural network to determine how realistic the output images are in comparison to 

manually labelled target images.) 
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in resolution resulted in the network taking only six hours on an NVIDIA TITAN Xp GPU to 

perform 100 epochs (the network had every training image input 100 times). 

The only data input to the network was the unlabelled-labelled pairs, as is standard for 

training deep learning models without any pre-training. Therefore, this technique is not 

limited to SBFSEM images and can be applied to other 3D imaging techniques. 

5.3.2 MULTI-CELLULAR STRUCTURES 

For larger cellular structures, such as a multi-cellular ring of endothelial cells, a W-Net is 

required to allow for the increase in complexity [11, 220, 228]. A series of U-Nets, the W-Net 

consists of two encoder-decoder pairs, with 33 layers in total, but only a single discriminator. 

Increasing the number of layers increased the complexity of the network, so training took 

approximately 24 hours for 50 epochs, compared to only ~ 6 hours for the U-Net, even while 

all other hyperparameters and parameters remained unchanged. Unlike increases in filter 

number, increasing the number of layers did not require an increase in the necessary GPU 

size requirements for the network to train and run, as the dimensions of the data throughout 

the network are no bigger. The effective image size was reduced from 256 by 256 to 1 by 1 

and increased back up to 256 by 256, as for the U-Net, before being repeated. 

Labelling of endothelial cells focussed on the adaptability of the network, and therefore 

general usability, instead of on the overall accuracy and performance. As well as extracting 

50% of the images for testing, a further 10% section was extracted from the centre of the 

stack to produce a “blind spot” for the network. An additional section at end of the stack was 

deliberately left unlabelled to determine the extent of network adaptability while avoiding 

overfitting. 

5.3.3 TESTING THE NETWORK 

When using the network for testing, there is no use of backpropagation or changes to the 

network, as there are no comparisons made by the network to manually labelled images. All 

analysis is conducted separate from the network, using a range of statistical markers rather 

than a loss-function, of every output. Once analysis of each individual output is complete, all 

output labels generated from the network (from both the unseen testing data and seen training 

data inputs) are extracted and 3D projected for a final 3D visual analysis to determine the 

success of the network.  



Labelling 3-Dimensional Placental Tissue 

104 

 

5.4 RESULTS AND DISCUSSION 

Error analysis was completed on every unseen z-position using pixel-to-pixel comparisons 

between automated and manually labelled images. A labelled pixel had the red, green, and 

blue (RGB) value [0,0,255], visualised as blue on a standard three channel image, and any 

deviation from this value was classified as an unlabelled pixel. To elaborate, even a single 

value difference from the label values, a pixel difference of ± 1 or greater in any of the three 

colour channels, such as [0,1,255] or [0,0,254], would not be identified as a labelled pixel, 

even though it is virtually indistinguishable to the human eye. The aim of the network was to 

obtain 100% total matching pixels, where all labelled and unlabelled areas on the network 

output matched the manually labelled image identically.  

5.4.1 ANALYSIS OF FIBROBLAST LABELLING 

An area where both an automated and a manually labelled z-position image had a labelled 

pixel was considered a true positive (blue in Figure 35). Areas where the same area in both 

were unlabelled was considered a true negative (black in Figure 35). If the area in the 

network output did not match the same area in the manual image, this was considered a false 

positive (green in Figure 35) or false negative (red in Figure 35), depending on whether the 

network had labelled or not labelled respectively. It would be imprecise to categorise areas of 

true positives and negatives as correct, and areas of false positives and negatives as incorrect, 

as there is the possibility of human error, especially in areas of highly detailed, thin, 

structures.  

Three positions in the central region of the z-stack were chosen for further visual analysis 

(Figure 35), at the z-position 300, 400 and 500 (out of roughly 1000 positions), as the central 

region had some of the lowest total matching pixels. This was not surprising, as this was the 

area where the cellular structure has the largest amount of surface area (the location where 

imperfect labelling was most likely). For each position, the input z-position image, automated 

labelled image, manually labelled image and a comparison image was inspected. The input 

image provided a comparison for both the labelled images, to ascertain which areas should 

have been labelled or left unlabelled. As the automated and manually labelled images were 

very similar, the comparison image provided a clearer visual for areas of differences between 

the two. The vast majority of pixels in the comparison images were blue and black, with over 

99.5% true positives or true negatives, shown when the positions are analysed numerically 

(Figure 36).  



Labelling 3-Dimensional Placental Tissue 

105 

 

 

 

There were some areas of discrepancy in position 300, with areas around the labelled sections 

speckled in both red and green. This mixture of both false negatives and false positives in 

close proximity was a sign of minute differences between manual and automated labelling of 

boundary regions, which were inherently subjective due to both computational and human 

limitations. Computers are limited by data resolution, while humans can also be limited by 

screen resolution, hand-eye coordination and curser control, etc. The differences in areas on 

the left were therefore not concerning. However, the small green circle on the bottom right 

was not correct, as it was labelling a position within a blood vessel (not a fibroblast section). 

This speckling of green, small areas of less than 0.5% of the image in total, was also seen in 

position 400 and 500, which could be a network bias towards labelling small areas of 

uncertainty. As there was only one manually labelled fibroblast, but more than one fibroblast 

in the z-stack, this bias was a promising sign that the network could identify more than one 

fibroblast if not trained on a limited dataset. This inherent uncertainty likely lowered the 

Figure 35: Comparison of automated and manually labelled SEM imaged placenta for three different z-stack positions.  
Each position, 300, 400 and 500, shows the input to the network (an unlabelled SEM image), automatic network labelled 

output and manual labelled image, and the comparison image. The comparison images contain four different colours. Black 

pixels are a position of a true negative, where the automated and manual images show no labelling. Blue pixels are positions 

of true positive, where both show labelling. Red pixels are positions of false negatives, where there is manual labelling but no 

automated labelling. Green pixels are positions of false positives, where there is automated labelling but no manual labelling.  
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overall ability of the network, and future work should focus on a more optimal training 

dataset, where all desired features are labelled. 

 

Even with a suboptimal dataset, where there were potentially multiple fibroblasts but only 

one was labelled, the network was very successful in labelling the fibroblast from unseen z-

positions. When the entire stack was numerically analysed, the total matching pixels for each 

position never dropped below 99.5% (Figure 36), shown as light blue circle markers. The 

orange line that intersected the light blue markers was the mean average pixel match over ten 

images, and the larger orange region showed the standard deviation, also across ten images, 

throughout the stack. The grey markers showed the precision of each z-stack position (the 

ratio of correctly automated labelled pixels to the total labelled pixels); the yellow markers 

showed the recall, also known as sensitivity, for each position (the ratio of correctly 

automated labelled pixels to the manually labelled pixels); the blue markers showed the 

specificity (correct automated unlabelled pixels as a ratio to manually unlabelled pixels), 

which were mostly hidden by the green markers, the accuracy (the ratio of correctly 

Figure 36: Graph of multiple statistical analysis factors for comparing automated to manually labelled SBFSEM placenta. 
Left axis of 0.5-1.0 is for precision (grey circles), accuracy (green circles), recall (yelolow circles), F1 (navy circles), and 

specificity (blue circles, almost hidden behind accuracy). Right axis of 99.5-100.0% is for Correct Total % (light blue circles) 

and the accompanying rolling mean and standard deviation of these points (orange). A pixel is considered correct, a true 

positive or true negative, when automated labelling matches manual labelling. 
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automated labelled and unlabelled pixels to every pixel within the image). The F1 value, the 

harmonic mean average of precision and recall, was shown in navy. 

Regions where the total matching pixels were highest, the first 100 z-positions and last 200 in 

the z-stack, averaged over 99.95%. However, the F1 value was lower than 0.5 for this region, 

and was therefore not visible on the graph. Due to the green speckling effect, the automated 

labelling of small areas which may or may not be unlabelled fibroblasts in the stack, these 

regions had proportionally high false positives, as there was little or no manually labelled 

fibroblast areas in these regions. The accuracy and specificity were close to 1 (perfect value) 

across the entire dataset and false positives occurred in less than 0.2% of all unlabelled 

pixels. Specificity and recall were closer in value towards the centre of the z-stack because 

the singularly labelled fibroblast dominated the SBFSEM stack and the likelihood of other 

unlabelled fibroblasts being present was reduced.  

The recall (the measure of how well the network has automatically labelled the pixels that 

were labelled manually) had two regions of large variation. The first region was where the 

fibroblast started to appear within the stack and there were very few pixels to label, and the 

second was where the fibroblast stopped appearing and, once again, the labelled pixel regions 

were a lot smaller. The precision also deviated around these areas for the same reason. Some 

variation in automated and manually labelled regions was due to subjective boundaries in 

which areas of the z-position images can be defined as fibroblast or not. These boundary 

regions were up to roughly ten pixels in width around labelled areas and consequently, in 

areas of low quantity of labelled pixel, the percentage of corresponding pixels fluctuates and 

precision lowers. The smaller areas of variation, such as the dip between positions 300 and 

400, were areas where the fibroblast labelling took up the highest proportion of image space 

compared to other regions in the z-stack. Therefore, there was a higher number of boundary 

regions and greater variability in the results. The standard deviation was noticeably greater in 

the region around position 600. A few z-positions contained fewer total matching pixels than 

average, including 590, which was subsequently analysed in more detail (Figure 37).  

With one of the lowest amount of matching pixels between automated and manually labelled 

images, 99.5378%, position 590 had visibly different automated and manually labelled 

images, which was especially evident in the comparison image. While there were small flecks 

of green, as seen in the previous comparison images, the main discrepancy was a large green 

arc in the top right of the image. This represented an area where the network labelled an area 
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of tissue which was not manually labelled in the testing data. Further inspection on both the 

input (non-labelled) and manually labelled images showed that this was an area of fibroblast, 

and instead of being fully labelled was instead simply marked with a thin line. This was 

likely a marker for the labeller to label that section, which was then forgotten or otherwise 

left incomplete. 

 

Not only can the network be used for automated labelling of features, such as a fibroblast, 

within a SBFSEM z-stack, it could also be used for quality control purposes. Areas with the 

lowest correlation, or lower than a specified threshold in precision and F1 statistical markers 

(relevant to “false positives”), would be flagged for further visual inspection. This quality 

control could be used for time-efficient checking of either automated or manually labelled 

datasets, with multiple networks working in tandem but trained on varied SBFSEM data. 

Combining manual labelling with network quality control could also be applied in reverse, 

with manual quality control of network-labelled data. For example, when the automated 

labels of the previous z-stack were projected, the overall structure of the fibroblast was clear, 

yet there were small areas of labelling around the fibroblast that were not needed (likely due 

to the presence of unlabelled fibroblasts in the training data, as previously discussed). With 

some simple editing techniques on readily available software, such as outlier removal on 

ImageJ, the structures can be more clearly seen. However, detail can be lost during this 

Figure 37: The extracted data from Z-position 590, with a visual comparison.  
The unlabelled input SBFSEM image produces a network output of an auto-labelled SBFSEM, image for the corresponding 

z-position. This is then compared to the manually labelled position to create a visual comparison image, where there is a large 

section of green. This green is an area of “false positive” where the network labelled a region not labelled manually. Upon 

close inspection, this is a region which should have been labelled, and instead only a quick line was drawn (human 

error).However, smaller patches of green were areas of incorrecet labelling at regions which contrasted with surrounding 

tissue. 
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process, so a training dataset should be fully labelled to prevent the over-labelling seen in 

Figure 38. 

 

Figure 38: Comparison of a projected 3D structure of a fibroblast in SBFSEM imaged-placenta from both automated and 

manual labelling.  
The automated structure, without any computerised data-cleaning, contains areas of poor detail and areas of over-labelling, 

giving a “messy” appearance. However, the overall structure is clearly visible and maintains a similar shape as the manually-

produced 3D projection, as shown when outliers are removed using ImageJ. 
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5.4.2 REDUCING THE NETWORK REQUIREMENTS FOR PERICYTE LABELLING 

As the same SBFSEM z-stack was used to train the network on pericytes as for fibroblasts, 

the label colour was altered to red, [255,0,0], to avoid any possible cross-contamination of the 

data. Rather than repeating the previous work with a fibroblast substituted for a pericyte, the 

capability of the network was tested, with respect to the amount of training data required for 

automated labelling to match manual labelling. Comparing the automated labelling output for 

each network (Figure 39), an optimal training amount for a single stack may be determined, 

balancing time needed for manual labelling (generating training data) with reliable network 

output.  

 

Each position, 302, 402 and 502, shows the input to the network (an unlabelled SEM image), a manually labelled image, and 

the automated labelling comparison of 1 in 2 images used for training data (the remaining used for testing), 1 in 5 used for 

training and 1 in 10 used for training. The position 402 is enlarged for closer comparison between the automated output for 

decreases in available training data. When 1 in 5 is used for training, there is more false-labelling and less detail, showing a 

lower confidence in the network output compared to 1 in 2. When 1 in 10 is used for training, there is less detail again, with 

added pixilation issues in the reproduction of the SEM image, seen in the top right of the image and repeated for multiple 

outputs (302 and 502 in different areas of the image), showing a breakdown in network performance. 

Figure 39: Comparison of automated and manually labelled SEM imaged placenta for three different z-stack positions 
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As before, 1 in 2 images (50%) of the z-stack were used for training and the remaining data 

used for testing. Additionally, a separate network was trained on only 1 in 5 images and a 

final network was trained on 1 in 10 image, with remaining images used for testing.  

 

The 1 in 2 network produced an output 99.96% identical to the manually labelled image 

(Figure 40). As there are relatively small differences between adjacent slices in the stack, the 

network was trained on data very similar to the testing data and anything above 99% identical 

was expected. However, the 1 in 5 network produced small black regions on the image which 

were not present on the input image. As these were not [255, 0, 0], the impact on labelling 

was negligible, although some loss of detail was evident. Overall, the output was still 99.95% 

identical. Differences between training data and testing data were more pronounced, here, so 

this was a very promising result. The 1 in 10 network has a greater drop in matching pixels, at 

99.90%, which was due to both a small loss of detail and also the presence of small blocks of 

apparently randomised cyan, red and grey pixels, typically ranging in 10 to 20 pixels across. 

Figure 40: A graph comparing the total corresponding pixels for network output when 1 in 2, 1 in 5 and 1 in 10 images are 

used for training.  
A corresponding pixel refers to a pixel with the same RGB values in both manual and network output images. Network output 

for 1 in 2 used for training is shown with grey square markers, 1 in 5 is shown with light blue diamond markers, very similar 

in value to 1 in 2, and 1 in 10 is shown with navy diamon markers, which are visibly lower  in value. 
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Like the black regions in the 1 in 5 outputs, these were a likely sign of overfitting, where the 

networks were less confident producing outputs in testing data that had greater variation from 

training data (a consequence of less training data being used). By adding multiple stacks into 

the training data, overfitting in the 1 in 5 and 1 in 10 networks could be reduced. 

Labelled output from the 1 in 5 network, shown as light blue diamonds, was almost 

indistinguishable from the 1 in 2 network, grey square markers, throughout the whole z-stack, 

averaging only 0.01% difference. As there was only one dominant pericyte, the uncertainty 

present in the fibroblast labelling network was not present, and there were areas in both the 1 

in 2 and 1 in 5 network of 100% identical output. The 1 in 10 network output, navy triangle 

markers, was different for each position and drops below 99.5% at an area of greatest 

labelling surface area. It was also unable to manage 100% in areas with little labelling, due to 

the previously mentioned areas of random pixel generation, which included label-red [255, 0, 

0]. 

 

Figure 41: A graph comparing the matching pixels from network output when 1 in 2, 1 in 5 and 1 in 10 images are used for 

training with a traditional computational method when an image 1 position awy, 5 positions away, and 10 positions away is 

used. 
A matching pixel refers to a pixel with the same RGB values in both manual and network output images. Network output for 1 

in 2 used for training is shown with red diamond markers, 1 in 5 is shown with light grey square marker and 1 in 10 is shown 

with blue trainagle marker. The traditional computational output for 1 image away is shown with a dark red x-cross, 5 images 

away is shown with a dark grey star-cross, and 10 images away shown with a dark blue blue cross. 
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These results were then compared to a traditional computational method of labelling that did 

not utilise a neural network (Figure 41). This method relied on image slices varying little 

from adjacent image slices to form a naïve baseline. When the matching pixels for each 

image was averaged over the entire stack, as stated previously, the 1 in 2 network produced 

99.96% matching pixels, 1 in 5 network produced 99.95% matching pixels and 1 in 10 

produced 99.90% matching pixels. The traditional method 1 image away produced 99.95% 

matching pixels, 5 images away produced 99.92% matching pixels, and 10 images away 

produced 99.87% matching pixels.  

When the general positioning of the traditional computational approach (the crosses) is 

graphically compared to the neural network approach to labelling (the markers), the crosses 

are visually lower than their respective marker counterparts. The only area where this is not 

the case is for areas with no pericyte to label, at both the beginning and the end of the stack. 

For areas where a pericyte is present, the neural network provided more pixels that matched 

manual labelling than the traditional computational  approach. 

Looking at individual z-positions, the lowest 1 in 10 network labelled position was z-position 

282, with 99.58% matching pixels. The traditional computational method only produced 

99.50% matching pixels for this  z-position. The lowest traditional computational method 

produced 99.36% matching pixels while the network output was at least 99.89%. 

Across the entire stack, but especially for areas with pericytes, and for individual z-positions 

that resulted in less matching pixels across both approaches, the neural network approach 

provided a higher percentage of matching pixels. This improvement became more evident 

when less manually labelled images were provided for either training or referencing. 

5.4.3 MULTI-CELLULAR LABELLING WITH ENDOTHELIAL CELLS 

The next step after labelling a single cell was to label multi-cellular structures, to determine 

whether a network was capable of recognising more complicated cellular systems. The 

method of training a network for labelling multiple cells, such as endothelial cells, was 

similar to the method for labelling single cells. However, labelling larger structures required 

the use of a W-Net, a series of U-Nets, with 33 layers rather than 17 (Figure 42). Unlike 

increases to filter number or other data-dimension changing parameter modifications, 

increases to the number of layers did not require an increase in GPU size requirements. The 

increase in complexity did increase the time needed for training, with 50 epochs taking 

approximately 24 hours, compared to roughly 6 hours for the previous U-Nets.  
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A different SBFSEM stack was used for endothelial cells than for previous work to confirm 

the adaptability of the network labelling method, and therefore the usability and applicability. 

Even though as little as 10% of the stack produced network output above 99% pixel match, 

50% was used for training for continuity between each labelled feature. However, to further 

test the network, an addition 10% block of data was extracted from the centre of the stack, 

along with a block at the end of the stack, which was left unlabelled. These deliberate “blind-

spots” were used to determine how well the network could adapt to higher variety inputs 

without causing the overfitting seen in previous work, as the amount of training data 

remained adequate for training. 

Visual analysis was conducted at z-positions 10, 110 and 210, and showed similar 

performance to previous network models (Figure 43). Comparison images showed the 

network was capable of matching the vast majority of pixels to manually labelled images, 

shown by the blue and black pixels. Compared to the single cell structures, less detail in the 

 An unlabelled image is input into a neural network consisting of many convolutional layers (pink), deconvolution or up-

convolution layers (orange) and skip-layers between the encoder-decoder layers (grey). Output images are compared to 

manually labelled images, and differences lead to changes and optimisation of the network layers through backpropagation. 

(Additional error correction is performed from a separate convolutional neural network to determine how realistic the output 

images are in comparison to manually labelled target images.)  

Figure 42: Illustration of the W-Net architecture.  
An unlabelled image is input into a neural network consisting of many convolutional layers (pink), deconvolution or up-

convolution layers (orange) and skip-layers between the encoder-decoder layers (grey). Output images are compared to 

manually labelled images, and differences lead to changes and optimisation of the network layers through backpropagation. 

(Additional error correction is performed from a separate convolutional neural network to determine how realistic the output 

images are in comparison to manually labelled target images.)  
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boundary region appeared lost in the automation process, likely due to both the increase in 

layers (allowing for greater complexity in network-generated output) and the clear boundary 

of a blood vessel compared to the more complex regions of placental tissue. However, the 

boundary regions were still subjective up to 10 pixels in width, and close examination of the 

comparison images showed the location of the red and green pixels, where the network and 

manual labelling diverge, were virtually all around endothelial sections. While there were 

frames with the green speckling seen in fibroblast labelling, these were the minority, and only 

in areas close to training data blind-spots.  

 

When each z-position output throughout the SBFSEM stack was analysed, statistical values 

were plotted using the left axis and total corresponding pixels (percentage of pixels which 

were identical in automated and manual labelling) using the right vertical axis (Figure 44). 

Precision (light blue markers), a fraction of how much of the automated labelling was 

relevant, whether the automated labelling was also manually labelled, was greater than 0.9 on 

average throughout the whole stack. Recall (orange markers), a fraction of relevant labelling 

Each position, 010, 110 and 210, shows the input to the network (an unlabelled SEM image), automatic network labelled 

output and manual labelled image, and the comparison image. The comparison images contain four different colours. Black 

pixels are a position of a true negative, where the automated and manual images show no labelling. Blue pixels are positions 

of true positive, where both show labelling. Red pixels are positions of false negatives, where there is manual labelling but no 

automated labelling. Green pixels are positions of false positives, where there is automated labelling but no manual labelling. 

Figure 43: Comparison of automated and manually labelled SEM imaged placenta for three different z-stack positions. 
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to all automated labelling, was also greater than 0.9 on average. F1, the mean average of 

precision and recall, showed that the vast majority of areas labelled by the network were 

areas that had been labelled manually. In other words, endothelial cells were labelled by the 

network without also labelling undesired features. Specificity (grey marker), a fraction of 

areas not labelled manually nor by the network over areas that were only labelled by the 

network, was above 0.95 across the entire stack. This indicated that there were very little 

areas lacking automated labelling that were not also left unlabelled manually, and therefore 

the network did not miss areas of endothelial cells. Accuracy (yellow marker), the fraction of 

matching labelled and unlabelled areas over the entire output, was similar to specificity, as 

the area of endothelial cells was relatively small in comparison to the size of the entire image. 

Consequently, the network ability to correctly identify areas which did not require labelling 

held greater weight. 

 

Left axis of 0.75-1.0 is for precision (light blue circles), accuracy (yellow circles), recall (orange circles), F1 (blue circles), 

and specificity (grey circles, almost hidden behind accuracy). Right axis of 95.5-100.0% is for Correct Total % (green circles) 

and the accompanying rolling mean and standard deviation of these points (navy). A pixel is considered correct, a true positive 

or true negative, when automated labelling matches manual labelling. 

Figure 44: Graph of multiple statistical analysis factors for comparing automated to manually labelled SBFSEM placenta. 
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The “Correct Total %” (green marker) was the percentage of pixels that were identical in 

both automated and manual images, here assumed to be correct, with a rolling mean and 

standard deviation in navy. This followed the same trend as seen with previous statistical 

values, with a dip below average (98.7%) between positions 150 and 200. This corresponded 

to the network blind-spot where no training data was provided in this region. These values 

were examined in more detail on a separate graph, to more easily differentiate between 

percentage and statistical values (Figure 45). 

 

The percentage of pixels considered correct (blue diamond marker), where the network and 

manual images matched, and the rolling mean and standard deviation (yellow), fluctuated in 

several positions along the z-stack. While the average of 98.7% was lower than for single cell 

labelling, the fraction of labelled structures was higher, and endothelial cells were present 

throughout the whole stack. The standard deviation was only 0.4, which showed very low 

variation of corresponding pixels across the z-stack, but there were two areas of high standard 

deviation. In both cases, one at the start of the stack and one at the end, the increase in 

A corresponding pixel refers to a pixel with the same RGB values in both manual and network output images, and is marked 

with blue diamonds. The rolling mean and standard deviation of corresponding pixels are marked in yellow. If a network-

generated label and manual label produce the same corresponding pixel value, the pixel is considered correct. 

Figure 45: In-depth graph of coresponding pixels across the z-stack of SBFSEM imaged placenta.  
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standard deviation was due to a single z-position, 40 and 298 respectively, which were 

analysed in more detail (Figure 46). However, the central blind-spot did not have a significant 

increase in standard deviation, which showed the stability of network performance over the 

region. Even though the centre of the region could have been the worst performing space, as 

it was furthest from training data, performance did not continue to drop, and some of the 

central positions were the best performing in that region. This was a very promising result, it 

shows that larger blind spots could be created as long as there is enough variability in the 

training data to not adversely impact performance. Images over 15 positions away from the 

last seen image were labelled as well as images 5 positions away, therefore the network could 

be capable of successfully labelling stacks with fewer than 1 in 15 images manually labelled, 

provided overfitting could be avoided. 

 

The unlabelled input SBFSEM image produces a network output of an auto-labelled SBFSEM, image for the corresponding 

z-position. This is then compared to the manually labelled position to create a visual comparison image, where there is a 

large section of green for position 40 and red for position 298. These areas of difference are shown on the auto and manual 

images with green and red arrows. The green is an area of “false positive” where the network labelled a region not labelled 

manually. Upon close inspection, this is a region which should have been labelled, and was incorrectly left unfinished. 

Similarly, the area of red on position 298 also shows human error. While red shows a “false negative” where the network 

failed to label a region labelled manually, the manual labelling was an inaccutate over-labelled region. For both positions, 

the network was superior to manual labelling. 

Figure 46: The extracted data from Z-positions 40 and 298.  
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The two positions of below 97% matching pixels, 40 and 298, were examined in more detail, 

and each position contained a different abnormality. Position 298 contained less labelling in 

the network output than was used in the manual labelling, shown by large red arrows. This 

was not a mistake by the network, as the difference was due to poor labelling by the manual 

specialist. For this z-position, the detail was lost and the manual label was an 

oversimplification, which contained a large surface area where no endothelial cells were 

present. In contrast, position 40 had a section of apparent over-labelling in the top right 

corner, shown by green arrows. However, once again difference between network and 

manual labelling was due to mistakes in the manual labelling process, where an endothelial 

cell was incorrectly left unlabelled. The network did not miss this endothelial cell, which 

resulted in a more correct output but a large drop in total matching pixels. While both 

outputs, positions 40 and 298, had small areas of other labelling differences, the vast majority 

of differences were due to incorrect manual labelling, which showed once again the potential 

for networks to be used both for automated labelling and for quality control purposes. 

5.4.4 LABELLING THE UNKNOWN 

For widespread application and real-world usage, a network should be able to label unseen 

SBFSEM stacks (stacks were no z-positions have been manually labelled for training 

purposes). Additional augmentation of training data with random changes to contrast and 

brightness were used to increase variation in the training data and limit overfitting. The 

testing of this ability was split into two sections, with one input part of the same placenta as 

used in training, using the same imaging conditions, 40 z-positions away from the previous 

SBFSEM stack. The other input was from a different SBFSEM stack, with possible 

differences in imaging conditions, such as magnification and contrast. Output from both 

testing sections was then visually analysed (Figure 47).  

The first tested image had an input from an unseen area of the same imaged placenta used in 

training, 40 images away from the last image used in training the network. A realistic 

appearing output image was produced, and an overlay of translucent labelling showed the 

endothelial cells were labelled with very little labelling of undesired features. The second 

tested image produced a similarly well labelled image, with the endothelial cells labelled and 

even less additional speckling/over-labelling than for the first tested image. This was a very 

successful result, as this stack was different from the training data, and yet the network did 

produce abnormalities shown from overfitting in previous experimentation with varied 

training and testing data (Figure 39).  
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Automated labelling of both an unseen region and unseen stack without any manual labelling 

showed that the network method is capable of labelling new and unseen 3D image data while 

being trained on a separate manually labelled sample, promising for real-world usage. Future 

inclusions of additional image enhancement, such as super-resolution techniques, could be 

combined with this neural network labelling approach to both improve similarity of 

automated and manual labelling, and also to increase the range of detected features [231].  

It is worth noting that the traditional computational method applied to pericyte labelling can 

not be reliably applied to an unseen stack with different imaging conditions.  

5.5 SUMMARY 

SBFSEM imaging can be an important tool in analysing nanostructures of cells within 

placenta in 3D, and visualising how 3D features interact, which is important for 

The sunseen section is over 40 positions away  from the last section used for training. The unseen stack is part of a SBFSEM 

stack completely “unseen” by the network, with different magnification and imaging parameters. The input image is the 

unlabelled SBFSEM image, and the auto-labelled image is shown with the endothelial cell labelled blue. The overlay images 

show the labelling as a transparent cyan, so the detail of the labelling can be evalutated. 

Figure 47: Visual evaluation of unlabelled regions and unlabelled stacks not used in training the network. 
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understanding and modelling placentae. However, although novel structures and 

understanding has been revealed through this technique, SBFSEM imaging is slow, as 

determining i.e. the spatial relationship between two cells can take months of dedicated 

manual labelling of several thousand 2D SEM images. Development of a DNN approach to 

automated labelling removes this restriction to future computational modelling of the 

placenta, as network labelling significantly speeds up the labelling process (from 

weeks/months to seconds/minutes for a full SBFSEM stack). This in turn enables more 

quantitative analytical approaches as subjective labelling at boundary regions is limited. 

The first two aims for this project were all achieved successfully, as the average percentage 

of matching pixels between manually labelled and DNN-labelled images was above 99% (see 

Figure 36 and Figure 40). The most time-intensive part of using a network for automated 

labelling is the time spent training, which took between 6 and 24 hours, yet testing an image 

took less than a second. Even when training time is included, the process is substantially 

faster than a month of dedicated time manually labelling individual stacks. Image resolution 

is only limited by the size of available GPU, and cropping images can overcome such 

restrictions, so there is potentially no data loss using networks for labelling. These networks 

not only identified singular cells, but also distinguished specific cell types and labelled large 

cellular structures with an average error less than 2%. The third aim also included evaluating 

labelling of a completely unseen stack, which was successfully achieved. As all aims were 

successfully completed, the hypothesis was found true and networks trained on manually 

labelled SBFSEM sections were able to identify and label specific cell types.  

However, this approach is not limited to specific cells, as other cell and tissue types aside 

from placenta could be labelled using the same techniques applied here (such as osteoblasts 

within bone), where a network is trained on stacks of unlabelled and their associated labelled 

images with a desired feature extracted. Similarly, as the networks were given no additional 

information beyond the image data on SBFSEM imaging, other 2D and 3D imaging 

techniques could have processing and feature extracted automated using DNNs. This ability 

to identify and label a range of featured cells, such as fibroblasts, pericytes and endothelial 

cells, shows that a network is capable of extracting cellular (and therefore acellular) data 

from an image input, which will be necessary to determine cell response to biophysical and 

biochemical stimuli in further work.
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6 MODELLING THE CELL RESPONSE TO SURFACE TOPOGRAPHIES 
The research covered in this chapter was published in Tissue and Cell [11]. Application 

of AI in regenerative medicine was reviewed in Biomedical Physics and Engineering 

Express [40]. 

After networks have been shown capable of identifying single and multiple cells in a single 

image, as shown in 5 Labelling 3-Dimensional Placental Tissue, the challenge advances into 

whether a network is capable of predicting cell behaviour. While this is a substantially more 

complex task than the identification task, by modelling stem cells computationally, the 

previously mentioned problem of scope (section 2.1.2) can be overcome, and those without 

access to the currently necessary biomedical research facilities can perform simulations 

similar to experimentation, which was previously not possible outside specialist laboratories, 

once networks are suitably trained. 

6.1 INTRODUCTION 

There is no substitution for laboratory-based experimentation. However, computer-based 

experimentation and statistical models have been used for decades alongside real-world data 

successfully. For example, scientists who advise leaders in UK government were able to 

create multiple case-count predictions during the COVID-19 pandemic by combining data 

from different past outbreaks and modern experimental data to predict what would happen in 

the future, with updated, real-time, data used to refine the model further [232]. Another 

example is the compulsory use of flight-simulations for the continual training and 

development of commercial pilots, who spend a collective 4.6 million hours in Full Flight 

Simulators every year [233]. Pilots can test responses to statistically unlikely phenomena, and 

try new or untested manoeuvres without risking lives or billions of pounds of equipment. Just 

as with flight simulations, a model for stem cell behaviour would allow for repeat 

experimentation without the required expenditure of traditional experimentation, which 

would allow for a more detailed range of features, including those initially viewed as less 

promising, to be examined. 

Through harnessing savings in money and time, a network model has the potential to increase 

the quantity of research being produced by the biomedical field. This is due to both increases 

in efficiency for academics and clinicians already carrying out experimentation, and also 

from the ease of access for potential researchers who are currently unable to carry out 

laboratory-based stem cell investigation, either as a consequence of lack of tissue samples, 
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equipment, funding, or geographical/physical limitations. Increasing research in the field will 

lead to improved scientific understanding, an improved collection of more relevant data, and 

therefore an improved network model. This cycle, seen in Figure 48, leads to continual 

improvement, even without accounting for the predicted increases in network capabilities in 

the upcoming decades. However, network models should not replace traditional 

experimentation entirely, as novel models require experimentally-obtained data for 

verification, training, and predicted outputs from each model need vigorous testing against 

real-world data to determine applicability, scope, and validity. Additionally, new training 

data should be added to the network frequently, so models can be continually updated, 

refined, and the model does not become limited in scope or become obsolete. 

The network model created in this chapter was designed to save both time and money 

through the prediction of stem cell behaviour, specifically, skeletal stem cell behaviour, as a 

result of microtopographical cues, with the aim of accurately predicting stem cell position, 

Science improves data acquisition through targeted areas of interest and variables based on scientific principles and 

understanding. Data improves AI models, such as deep neural networks (DNNs), because network design can be optimised to 

the data, and the outputs of the model depend on data quality during training. Models can be used to improve scientific 

understanding, as they are capable of generating statistically probabilistic results to scenarios much faster than is possible 

in traditional experimentation, including for variables which could not be investigated ethically and/or physically in real 

world experimentation. As one section improves, the whole system improves: Improved scientific understanding leads to 

improved data acquisition leads to improved AI models and, ultimately, to improved scientific understanding. 

Figure 48: Circular nature of improvement in science, data, and AI models. 
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alignment, and visual morphology for unseen topographies. Topography is of growing 

importance to biomaterial design, as cell behaviour is influenced through the topographical 

engineering of surfaces and the use of surface-directed biotechnologies, allowing for 

improved osseointegration and tissue regeneration [9, 12, 16, 30, 49, 71, 72, 74, 75, 78, 80-

82, 86, 87, 234]. Time saving is vital, as fully-investigating four topographies with on four 

materials (leading to 108 unique combinations) would take longer than two working weeks. 

An increase to ten topographies with a hundred variations on ten materials and subsequent 

investigation of each unique combination would take 400 days. Combining these two 

examples into even more unique combinations could take over 10,000 years to investigate. 

Instead of exploring each unique combination of features experimentally, which would not be 

practical, a network model can create a predicted response in a fraction of a second, without 

the necessity of topography creation, cell extraction, cell culture, and cell imaging. Through 

determining optimal topographies computationally, biomaterial design can advance at a faster 

pace and the current cost of associated research will reduce, due to less time and fewer 

material requirements. 

The cell response to topographies is complex, with different cells displaying a myriad of 

different responses to the multiple topographical cues [30]. While research into cell-

topography research can be traced back over many decades, there remains a lack of predictive 

capability as to how a specific cell will respond to a specific topographical environment, 

although some trends have been discovered in recent years [60, 85]. Some of this work will 

be summarised in section 2.2, and the challenges behind generation of cell-instructive 

topographies briefly explored in section 2.3. Through generation of laser-machined 

microtopographies (structures ~10 µm in scale), the response of skeletal stem cells to various 

microtopographical patterning can be used to train a network model, which then requires a 

series of tests to prove such a model is reliable and capable of real-world application. This 

naturally divides the project into two sections, one (section 6.3) focussing on collecting data 

sufficient for training a model, and training a network with a suitable architecture to utilise 

this data, and the other section (section 6.4) focussing on evaluating and testing the trained 

model. The summary (section 6.5) will focus on both the success of the network model, and 

how this technology can be advanced in future work. 
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6.2 HYPOTHESIS, AIMS AND OBJECTIVES 

Through use of laser-machining, varied topographies can be created, which can result in a 

range of skeletal stem cell behaviour. These behaviours are difficult to predict, as there are 

many combined biophysical cues, and biochemical cues, available to the cells, and each 

individual and combined cue can lead to different cell responses. A neural network may have 

the ability to model cell response when input topographical data because DNNs are 

successful approximators, and therefore would not require detailed theories behind all cue-

response relationships. Instead, a DNN could predict a statistically likely cell response, if 

provided with a suitable training dataset. 

6.2.1 HYPOTHESIS 

A model can be developed with a dataset of binary and fluorescent cell images to simulate 

cell behaviour. 

6.2.2 AIMS AND OBJECTIVES 

There are three aims in this chapter and each aim consists of multiple objectives: 

1) Develop a model capable of producing realistic-appearing fluorescent images of cells. 

a) Create a small but diverse dataset from experimental images. This will consist of 

multiple different topographies and cell densities after multiple days of cell culture. 

i) Laser-machine topographies onto a substrate suitable for cell culture and imaging. 

ii) Seed cells onto the laser-machined substrates and culture for up to 30 days. 

iii) Image the cells using brightfield and fluorescent microscopy at a combination of 

day 0, 1, 8 and 30. 

b) Augment the images to maximise the variability of the dataset, through use of standard 

augmentation practices, such as rotation of the images. 

c) Optimise a DNN for image-to-image transformation, so output images are believable 

without resulting in overfitting of the network. 

d) Determine whether the images are realistic-appearing for multiple different inputs via 

visual comparison to experimental images. 

2) Generate a model capable of producing likely cell responses, based on comparing cell 

positioning in model-generated and target images. 

a) Use testing data that contains experimentally-obtained outputs, allowing for 

mathematical comparison between generated and target images. 
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b) Calculate the probability of the simulated cell positions matching experimental cell 

positions. 

3) Validate the model through determining a minimum line separation for stem cell alignment 

using model-generated data and comparing to experimentally-obtained data. 

a) Determine a minimum line separation for stem cell alignment to link cell behaviour and 

topography. 

b) Verify through comparison to experimental data. This data will be collected before the 

variable is derived to protect against bias. 

6.3 METHOD 

The collection of data is explained in section 4.2. This method section will explain how the 

data is applied. 

6.3.1 TRAINING THE NEURAL NETWORK 

In Figure 24, deep learning (the blue arrow) bypasses the lengthier experimentation involved 

in laser-machining samples and cell culture and imaging. This is a simplified illustration to 

depict how a DNN can be used as a model to investigate cell response to microscopic 

topographies. It was previously stated that 203 images were used to train the network. 

However, deep learning requires a large quantity of data, in the magnitude of 10,000 images 

or greater, to deliver accurate results [235-240]. Therefore, the 203 images were multiplied 

into 36,540 unique training images through standard data augmentation techniques of 

randomised cropping, followed by rotation, an approach been used successfully in machine 

learning for many years [241]. Augmentation of a dataset creates a more comprehensive set 

of possible data points due to the increase in variability of the data, without having to collect 

additional experimental data, which minimises the differences between the training and 

testing datasets (as well as further unseen data input during future application). This not only 

helps prevent overfitting, a problem encountered and overcome in chapter 5, but also 

maximises the amount of information extracted from the dataset by the network. 

The input to the network consisted of three data channels: (a) a topography channel 

corresponding to the corresponding laser-machined pattern; (b) a time channel corresponding 

to the time point at which the output image was taken (i.e. day 0, 1, 8 or 30); and (c) a cell 

density channel, which was a randomised array corresponding to the brightness of the 

original, unprocessed fluorescent image and therefore an approximation of the cell density 

(Figure 49). Creating the topography channel was explained in section 4.2.1, and both the 
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time channel and cell density channel also resulted from automated code. The maximum 

length of cell culture achieved before full confluence was 30 days in both training and testing 

datasets, which could then corresponded to the maximum pixel value of 255. As dividing 255 

by 30 days would result in a value of 8.5 per day, the ration was altered to 8 per day so that 

whole-integer pixel values were preserved. Therefore day 0, 1, 8 and 30 would become pixel 

values of 0, 8, 64 and 240, over a uniform 2D array (the whole channel contained the same 

value).  

 

The cell density channel did not contain a uniform array, as each pixel was generated 

randomly using a Mersenne Twister PRNG via NumPy, which has a statistically uniform 

distribution. The maximum value for the PRNG was set by the mean fluorescence of an 

image, where the maximum pixel value 255 corresponded to the image with the highest mean 

fluorescence value in the dataset. As the minimum value for the PRNG was not altered, only 

Figure 49: The deep neural network W-Net architecture consists of multiple convolutional layers and skip connections 

between encoder and decoder sections.  
The input contains three data channels: topography (a), time (b) and density (c). The output (d) shows the neural network 

prediction of cell growth (as it would appear under a fluorescence microscope) for the topography, time-point and randomized 

cell density seed shown in (a), (b) and (c) respectively. The non-uniform input topography (a) is a result of randomisation 

introduced into the laser-machining process to increase parameters in the training dataset. Image modified from Mackay et 

al. under Open Access Creative Commons license [11] (© 2020 Mackay et al. Published by Elsevier Ltd.). 
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the maximum value for each dataset, the statistical distribution remained a Gaussian for all 

images, and the mean value of generated pixels increased for higher density images. 

The network architecture is comparable to that used in previous chapters. Images were 

reduced in size from a maximum 1280 x 1024 to 512 x 512 through previously mentioned 

data augmentation methods of randomised cropping and rotation, before being resized using 

bilinear interpolation to 256 x 256, which balanced minimal data loss with time required to 

train the network. Training, consisting of 25 epochs (where one epoch is defined as every 

augmented image in the training dataset having been input to the network once) with a 

learning rate of 0.0005 and a batch size of 1, took two weeks on a NVIDIA Quadro P6000 

GPU. The generator network, a W-Net, was an encoder-decoder-encoder-decoder 

architecture, with 34 layers, illustrated by the blue squares in Figure 49, a stride of 2, a 4 x 4 

kernel size and used rectified linear activation functions. This can be visualised as an image 

decreasing in size from 256 x 256 down to 1 x 1, then increasing back up to 256 x 256, then 

repeatedly decreased and increased. The generator also contained skip connections between 

the mirrored layers, illustrated by the grey arrows in Figure 49. An additional network not 

included in the figure, a discriminator, was formed of 4 convolution layers with a stride of 2, 

resizing the image from 256 x 256 down to 32 x 32. This was then converted to a single 

output via a sigmoid activation function, which labelled images as realistic or unrealistic.  

After each iteration (a single image is input through the network once), the output from the 

network was compared, pixel to pixel, to the corresponding experimental image (L1 error), 

leading to network improvements achieved via backpropagation. Simultaneously, the 

discriminator network was inputted either the generated output image or the experimental 

image, which the discriminator would correctly or incorrectly identify. The higher the 

discriminator error (D error) in identifying the authenticity of the image, the better the 

generated image. D error was therefore not only used to further improve the discriminator 

network, but also used to help train the generator by appropriately weighting and combining 

both the L1 and D error for backpropagation, which lead to alterations in the network 

throughout training to encourage realistic images and to statistically correct images at 

different stages. The use of a discriminator helps train the generator to produce realistic 

fluorescent images of cells in the most statistically likely position, rather than a blurred image 

that combined all likely cell positions.  

  



Modelling The Cell Response to Surface Topographies 

130 

 

6.4 NETWORK OUTPUTS AND ANALYSIS 

6.4.1 INTRODUCTION TO MODEL TESTING 

After the network had been trained, testing was performed using datasets consisting of 

experimentally obtained target images and the corresponding input images. To analyse the 

scope and limitations of using a DNN as a network model, only new feature combinations 

were used for testing, collected from entirely separate experiments than the experiments used 

for training data creation. While this potentially limited the variability of training data, as 

these experiments could have added additional variety to the training dataset, this ensured the 

network was tested in a scenario necessary for future application (where new and different 

topographies are being input to the network), preventing the network from providing 

apparently successful outputs that are copies of similar input-output images used in training. 

Unlike during training, when weights are altered within the network via backpropagation, the 

network parameters remain unchanged during testing. Experimentally obtained target images 

were individually compared to the network generated output images, rather than relying on 

L1 and D error.  

Additional testing from artificially generated input features (with no experimentally obtained 

target images) investigated the ability of the network to cope with a wider range of input data 

to determine applicability as a model, where not all topographies consist of laser-machined 

squares. Testing therefore contained several different steps:  

- The versatility of the network was analysed through independent and multiple 

alterations to input channels of topography, cell density (relative to confluence at the 

time of imaging, not the seeding density), and time-point (the day in which the 

fluorescent image is taken after cell seeding) in sections 6.4.2-6.4.4.  

- The limits to network ability were found through introduction of curved, circular, and 

intricate line arrangements, when training data only consisted of straight laser-

machined lines in section 6.4.5. 

- Statistical significance of the network predictions in comparison to experimental data 

was obtained for input combinations unseen by the network during training (new 

topographies, new time-points, and cells isolated from different samples), and 

excluding overfitting, in section 6.4.6. 



Modelling The Cell Response to Surface Topographies 

131 

 

Once these steps were performed, the network was validated through discovery of a 

previously unknown variable, the minimum line separation required for cell alignment, which 

was then confirmed via comparison with experimental data in section 6.4.7.   

6.4.2 TIME AND DENSITY INDEPENDENCE 

During collection of experimental data, cell response to topographies changed over time, 

even when cell density remained relatively unchanged (Figure 50). For the low cell density, 

in this case a single cell, day 1 and day 8 showed highly varied responses.  

 

At day 1, one day after cell seeding, there was no noticeable response from the cell to the 

surrounding topography. However, at day 8, it had adhered to the square laser-machined into 

 

Low D1 shows a low cell density, in this case a single cell, at day 1 in a laser-machined square containing two parallel line 

pairs at random angles after one day of cell culture. Low D8 shows the same laser-machined box after eight days of cell 

culture at low density. High D1 shows a high density, multiple cells close to confluency, aligning to a set of laser-machined 

parallel lines within a laser-machined square and not aligning at other areas on the substrate around the square. High D8 

shows the same cells on the same substrate after an additional week of culture, with no clear alignment/non-alignment of 

cells respective to the parallel lines and clear substrate areas. 

Figure 50: Changes to cell behaviour over time for different densities and surface patterning in experimental images. 
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the topography. For a high cell density, where the cells were close to confluency, there was 

less visible change to cell response to topography. While there was clear alignment to the 

laser-machined parallel lines at day 1, the alignment was not clear at day 8 as coincidental 

alignment from the collective cell positioning could not be ruled out. Therefore, alignment 

and density were both independent of time. 

The first test to the network was performed by independently altering density, relative to 

confluency, then independently altering the time-point. Experimental data showed visual 

differences between different time-points when density remained unchanged in (Figure 50). 

Network generated outputs were visually evaluated for whether high cell density, close to 

confluency, at a lower time-point, such as day 0, was different to a high cell density at a 

longer time-point, such as day 30 (Figure 51), which would then match experimental 

findings. As both a higher density and longer time-point can result in a large number of cells, 

these were input configurations that needed special attention. The input topography was 

blank and unchanged throughout this test (Figure 51: Maintaining a blank topography, time-

points and density were varied to evaluate time-density independence.  a), as alterations to the 

input topography would have altered the output of the network and the differences between 

high density and high time-point would have been difficult to evaluate.  

As the time point was kept stable at day 0, the density input was varied from a lower to 

Figure 51: Maintaining a blank topography, time-points and density were varied to evaluate time-density independence.  
A blank topographical input with no laser machining (a) was constant while density variations (b-d and g-h) and time 

variations (c, e-g) were input into the network to produce predicted fluorescent image of stem cell response to the blank 

topography for the specified time and density input (b-h). Images (b-h) are network generated. Low, Medium and High refer 

to the cell density relative to confluency, where Low contains only a few cells whereas Medium and High is close to confluent. 

Image reproduced from Mackay et al. under Open Access Creative Commons license [11] (© 2020 Mackay et al. Published 

by Elsevier Ltd.). 
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higher cell density relative to confluency (Figure 51 b-d), which showed that variations did 

affect the network generated outputs. Generated images were realistic, with varied cell 

positioning across each image (differing amounts of space around individual cells), which 

likely resulted from the fluctuations in pixel value associated with the partially randomised 

input of the density channel. When the time-point was altered from day 0 and density was 

kept stable at a medium cell density, where there were several cells but they were not 

confluent, (Figure 51 e-g), cell positioning continued to change for every output, and the 

number of cells across most time-points (Figure 51 c, f and g) remained stable. Promisingly, 

there were morphological changes to the cells across these time-points, with more bright and 

spherical cells observed on day 0 (Figure 51 c) than after a month of adherence and spreading 

(Figure 51 g). The differences between a high density at a low time-point (Figure 51 d) and at 

a high time-point (Figure 51 h) confirm that the network had not incorrectly oversimplified 

increases in both density and time-point to only lead to an increase in cell number – changes 

to independent input channels resulted in unique network outputs. 

6.4.3 TOPOGRAPHY AND DENSITY DEPENDENCE 

Assuming there was no overfitting (investigated in section 6.4.6), a blank input topography 

would result in many available cell positions. However, a patterned input topography would 

result in a limited number of highly-likely cell positions, therefore impacting the positioning 

of cells for low, medium and high densities. Density was low if there were very few (0-5) 

cells, with a maximum pixel value of 50 in the density input channel. High cell density was 

close to confluent, and a maximum input pixel value of 255. Medium cell density contained 

more than 5 cells, but was not close to confluency, and had a typical maximum input pixel 

value of 150. The second test involved topographies with crossed-parallel and parallel lines, 

combined with a range of density inputs and a constant time-point of day 0 (Figure 52).  
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For each increase in input density, there was a visible change in network output but, unlike 

for the first test of a blank input, the cell positioning retains similarities across all densities, 

even while the cell number increases (Figure 52 b-d, f-h). For parallel lines (Figure 52 b-d), 

the single cell at low density (Figure 52 b) is visible in the network output at medium and 

high density (Figure 52 c and d). For cross-parallel lines (Figure 52 f-h), the network did not 

produce the clear cellular structures seen in previous tests, probably due to the inherent 

statistical variability in which direction cells align with.  

When experimental data of crossed parallel lines was inspected (Figure 53), it was difficult to 

determine a relationship between cell alignment and the primary laser-machining direction. 

As the binary array also convey the directionality of the cross-parallel lines, the generated 

outputs were unclear. No statistical significance with the limited experimental data available 

on cross-parallel lines was discovered – there was no rule regarding cell alignment 

directionality. A higher density, with more cells to position, resulted in a large unstructured 

cellular mass (Figure 52Figure 52: Two topographical inputs were used to test the network 

output for varying densities.  h), which was different from experimental results (Figure 53). 

More training data on crossed lines may provide the necessary information to prevent low-

quality output, alongside depth characteristics added to the topography input channel, instead 

of a simple binary array. However, while the network did not successfully predict cell 

response to complex input topographies, it generated visible laser-machined lines that were 

Figure 52: Two topographical inputs were used to test the network output for varying densities.  
One input was parallel lines (a-d), while the other was a grid of parallel lines crossing perpendicularly (e-h). Low (b, f), 

medium (c, g), and high densities (d, h) relative to confluency were input along with the topography of parallel lines for a 

constant time-point of day 0. Images (b-d, f-h) are network generated.  Image reproduced from Mackay et al. under Open 

Access Creative Commons license [11] (© 2020 Mackay et al. Published by Elsevier Ltd.). 
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comparable to experimental images, seen in Figure 50 and Figure 53, from only binary input 

data. Modelling of laser-machining had previously been accomplished using DNNs and 

dedicated datasets [13, 182], but had been achieved by this network as a necessary step in 

generating fluorescent images of cell positioning on laser-machined topographies. 

 

Even while details of the cellular structure proved too variable for the network to produce a 

single clear output, areas of likely cellular activity were still produced, which showed a 

similar scenario as for parallel lines. An area of skeletal cell activity in low density (Figure 52 

f) was carried through in higher densities (Figure 52: Two topographical inputs were used to 

test the network output for varying densities.  g and h) as the most probable cell position for 

that input topography. A lower density input provided the most statistically likely cell 

position without additional less-likely cell positions that were generated at higher densities. 

As a higher number of cells in network output images would result in a higher likelihood of 

matching cell position in experimental images, lower density inputs were used for statistical 

testing in later section 6.4.6, in which the network was statistically validated, so as not to 

artificially inflate the possible success of the network. However, medium density inputs 

provided a clear cell structure for relatively difficult topographies, while still providing a 

good number of cells to inspect, and therefore was used for further visual inspection. 

The alignment of skeletal cells in (a) is opposite to the alignment of cells in (b) even though the topographies are both cross-

parallel laser-machined lines, and no relationship was discovered for consistent directionality. From the binary topography 

arrays, surrounded in red, there is no way to determine whether northwest to southeast was laser-machined first or last, and 

therefore no way for a network to determine which way the cells will align, either. 

Figure 53: Experimental images of skeletal cells grown on two cross-parallel topographies.  
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6.4.4 TOPOGRAPHIES FOR ALIGNMENT 

The last input to be tested independently was topography, with density and time-point 

remaining constant (Figure 54). Alignment behaviour is important in development of 

angiogenesis, biological neural networks, and the growth plate (chondrocyte columns) in the 

growth of long bones, so was an important focus for testing. Parallel lines of increasing 

separation, 20 µm, 90 µm, 120 µm and 290 µm, were chosen for the input topographies, 

which were not included in the training data. The exact mechanisms underlying cell 

alignment, such as cytoskeletal organization and interaction with other cells, has been 

observed as a response to various topographical cues [9, 16, 30, 72, 75, 79-81, 86, 88, 242-

248]. At a wound interface, cells have a migratory phenotype switched on rather than a 

proliferative (division) phenotype and these cells influence the adjacent cells, sending signals 

to migrate to the wound space. It is therefore crucial to determine which topographies result 

in cell alignment and which do not. 

Separation between parallel lines was measured from midpoint of one line to midpoint of the 

neighbouring line, and increased from 20 µm (Figure 54 a) to 290 µm (Figure 54 g). Line 

separations were chosen using a Mersenne Twister PRNG with a maximum value of 350 µm 

in intervals of 10 µm. Network output changed with each increase in line separation. At 20 

µm (Figure 54 b), the cells both aligned and stretched across the lines, depending on which 

area of the image is analysed. For 90 µm separation (Figure 54 d), the cells were mostly 

Figure 54: The generated output (b, d, f, h) for each line separation varies depending on the input topography (a, c, e, g). 
Time and density input remained unvaried at day 0 and medium density with respect to confluency. Input lines (a, c, e, g) were 

parallel and maintained a constant width of 25 µm, with separation (the spacing from mid-point of the line width to 

neighbouring line min-point) varied from 20 µm (a) to 290 µm (g). Images (b, d, f, h) are network generated. Image reproduced 

from Mackay et al. under Open Access Creative Commons license [11] (© 2020 Mackay et al. Published by Elsevier Ltd.). 
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adhered to the lines, with only a couple of cells aligned alongside the lines in parallel. In 

experimental results, cells adhered to the machined lines can release signals to the 

unconditioned cells to align parallel [11], and the network has simulated these effects. The 

network predicted preference for machined areas, supported by experimental data (Figure 

28), which implied that the microscale texturing of the laser-machined glass promoted 

adhesion and/or reduced cell mobility. Cell response was relatively unchanged when 

separation was increased to 120 µm (Figure 54 f), yet significantly altered at 290 µm (Figure 

54 h), where there was no observed alignment.  

6.4.5 EVALUATING VERSATILITY AND LIMITATIONS 

Changes to input topography in all previous tests resulted in a change in predicted cell 

positioning and cell behaviour modelling (adherence, alignment, and visual structure). 

However, topographies consisting of a wider scope of features, instead of restricted to 

straight lines ranging from 10 µm to 25 µm in width, needed to be tested to visually assess 

whether the network was capable of extrapolating cell response. This is necessary for 

application as a model for skeletal stem cell behaviour, as one of the purposes of a network 

model is experimentation on topographies that have not been physically created. 

Consequently, the input topographies were varied to include concentric circles, parallel 

curves, small filled and unfilled circles, and intricate lines of changing widths (Figure 55). 

Such topographies were expected to show limitations of the network versatility, as only 

straight lines of 7.5 µm to 25 µm thickness were used in training.  

The first topography, concentric circles, consisted of a line width similar to that which the 

network had used for training, and involved curves, which were not used during training 

(Figure 55 1a). The resulting network output (v 1b) contained both well-defined (cell shape 

visible and whole) and poorly-defined (unclear cellular mass or split unrealistically) cells, 

shown by the green and red circles respectively. There was some predicted cellular alignment 

and some areas of cellular activity crossing multiple lines, and more cells on or within 

proximity to laser-machined areas than blank areas. This was consistent with straight parallel 

lines at similar line separation (Figure 54 b) and previously predicted cell position preference 

for laser-machined areas (Figure 54 f). 
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The second topography of curved parallel lines (Figure 55 2a) produced a similar output 

(Figure 55 2b). The third topography varied the most from the training data, consisting of 

multiple small circles (Figure 55 3a), which were either small continuously machined areas or 

thin lines. Neither design was included in training data, testing the network interpolation and 

generation. The network output (Figure 55 3b) was surprising as, while there were areas of 

unclear cell structure, there were also areas of clearly predicted cell response to the complex 

topography. Another promising feature was the asymmetry of the output. When a 

symmetrical topography was input to the network, the distribution and positioning of cells 

was not symmetrical, which would have been unrealistic as cells did not behave 

symmetrically in experimental data (Figure 50 and Figure 53). This could be due to the non-

uniformity of the cell density input channel, or information gained from the asymmetry in 

training data. 

The fourth topography consisted of alphanumeric characters of thin, varying line width, 

relative to lines used in training data (Figure 55 4a). Cell structure around the characters was 

not clear (Figure 55 4b), showing the network could not accurately predict cell behaviour 

around simulated laser-machined areas. However, the bright fluorescence of the larger 

characters correctly predicts cell preference for laser-machined areas and, interestingly, the 

finer characters were predicted to possess no adhesive qualities, as they are not visible. This 

implies the existence of a minimum linewidth for adhesion, in sub-micron range, where there 

Figure 55: The limits to successfully generated output for extreme topographical input.  
Concentric circles (1), parallel curved lines (2), filled and unfilled circles of cellular size (3), and alphanumeric characters 

for line variety (4) were input into the network. Each (a, b) pair consists of a topographical input and corresponding network 

generated output. Well-defined cells are circled in green while badly-defined cellular mass is circled in red. Image modified 

from Mackay et al. under Open Access Creative Commons license [11] (© 2020 Mackay et al. Published by Elsevier Ltd.). 
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is no cellular response for a non-uniform lined topography. While the network had not been 

trained on sub-micron topographies, this prediction could be correct, as skeletal stem cells 

have been shown to have greater response to regulated and partially-regulated sub-micron 

topographies than to random topographies [9, 70]. Another reason for an absence of adhesion 

could be a lack of laser-machining in these regions. The finer lines (the word “university”) 

were not visibly machined, which could be evidence that the network had learned some 

properties of diffraction, which has been achieved by a similar network architecture in recent 

years [182]. This law of physics limits potential line-width unless specific adjustments are 

made to the experimental set-up – adjustments that were not in use during creation of the 

training data. The visible lack of “university” would be consistent with the laws of 

diffraction, and may be further proof that the network had been trained to generate 

predictions for both cell behaviour and laser-machining simultaneously. 

6.4.6 STATISTICAL VALIDATION 

Predicting realistic-appearing output images was a success for the network, but statistically 

evaluating the accuracy of these output images was vital. It was important that data used to 

test the network was completely independent from the training data, or the validity of the 

network could not be assessed. Training accuracy may only show how well the network had 

“memorised” the data, optimising weights to best fit particular inputs and reach the specific 

target output image, whereas testing accuracy should determine how accurate the network is 

in real-world application. Testing data was created using the same style datasets as for 

training data, but from a (new) unseen patient, on unseen topographies, imaged at an unseen 

cell density, including at unseen time-points. 

Each of these testing inputs resulted in a network output that could be directly compared to 

experimentally obtained target outputs. A low density input was used to gain the most 

statistically likely cell positioning, as discussed in section 6.4.3. Four topographies were used 

for statistical validation, consisting of straight lines to minimise unclear cell structure, and 

differing patient and time-point combinations for larger scope (Figure 56). Breaking down 

the steps to create a visual indication of testing success, one topography (Figure 56 a) and 

accompanying time and density data was input into the network, resulting in a network 

generated output image predicting cell response to these features (Figure 56 b), which could 

be compared to the experimentally obtained fluorescent image for the same features, the 

target image (Figure 56 c), to create a comparison image (Figure 56 d). The network output 

was in blue, the positions of target cell positions were in red and the overlapping cell 
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positions were in green. Comparison images for all four topographies were created with the 

input topography overlaid in grey to show cell positioning relative to laser-machined areas 

(Figure 56 e-h). By looking at the areas of green pixels, there were cells correctly predicted at 

the end of laser-machined lines (Figure 56 e) at day 0, adhered to and elongated along 

boundary lines at day 8 and day 15 (Figure 56 f and g), and positioned off-centre of a singular 

line (Figure 56 h).  

The abundance of blue showed that the network generated cell density prediction was larger 

than for the target images, which was due to the relatively low cell density within the testing 

images compared with the training images, and possible fluorescence variation between 

training data and testing data collection, which were generated from different experiments. A 

hypergeometric distribution probability mass function was therefore used to determine 

statistical significance of the correct network predictions, as the higher number of predicted 

cell positions compared to correct target cell positions could be accounted for [249].  The 

probability 𝑃 can be calculated using: 

 
𝑃 = 

(𝐾
𝑘
)(𝑁−𝐾
𝑛−𝑘
)

(𝑁
𝑛
)

 (6.1) 

Figure 56: Statistical testing required analytical differences between target outputs and network generated outputs.  
A topography consisting of laser-machined lines (a) resulted in a network generated output (b) and target created from 

experimental cell culture (c). The difference between the two (d) was shown through three colours: the blue channel showed 

the network output, the red channel showed the positioning of cells in the target output, and the green channel showed where 

there were both predicted and experimentally imaged cells. The topography was overlaid in transparent white lines (e-h) for 

showing cell positioning in relation to laser-machined areas. Four different input topographies were analysed (e-h) with 

varying statistical significance, including P > 0.05 (no stars), P < 0.01 (**), and P < 0.001 (***). Scale bar in (a) applies to 

(a-h). Image reproduced from Mackay et al. under Open Access Creative Commons license [11] (© 2020 Mackay et al. 

Published by Elsevier Ltd.). 
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Where 𝑁 is the total number of cell-sized sections in the image, 𝐾 is the number of target 

cells, 𝑛 is the number of predicted cells, and 𝑘 is the number of successfully predicted cells. 

Approximate cell-sized sections were used rather than pixel-to-pixel comparison because 

previous tests showed the network could generate realistic-appearing cells. The probability 

calculated from this method would therefore be the likelihood of correctly positioning those 

cells in comparison to corresponding areas on the target image. For the four topographies, the 

values of 𝐾, 𝑛, and 𝑘 were calculated computationally, to avoid any human bias. 

Three of the topographies were found to be statistically significant (Figure 56 e-g), with two 

topographies (Figure 56 e-f) achieving 𝑃 < 0.01 and one (Figure 56 g) achieving 𝑃 <

0.001. Interestingly, while visual inspection would suggest predicting the correct position of 

a single cell on a straight line would be statistically unlikely, the final topography (Figure 56 

h) achieved only 𝑃 = 0.055. This was due to the higher number of cells produced by the 

network output in comparison to the single experimental cell, resulting in increased 

probability from binomial adjustments. However, this higher number of cells did not prevent 

accurate placement of the sole target cell, showing that perhaps cell positioning is not 

inherently random (even when adhering to a single straight line) and, when other 

topographies are taken into consideration, can be accurately predicted. 

With such promising statistical analysis, it was important to test negative controls such as 

inputs that contain no cells or no topographies, to confirm the absence of overfitting. In 

contrast to statistical analysis tests, where the network output and target output similarities 

were a success, similarities between network output and target output for negative control 

testing was considered a failure of the network. This is because, for example, the network 

output should be random without topographical guidance, and therefore different from the 

target output.  

Two inputs of topographies with negligible/extremely low cell density input produced two 

low density outputs (Figure 57 1a and 2a), which were compared to target images (Figure 57 

1b and 2b). Even with a cell density of virtually null, there were variations in the level of 

fluorescent particles that built up on the laser-machined lines over time during cell culture, 

which the network was given no way to account for – the network could not differentiate 

between an input of low fluorescence due to an extremely spare density and a high build-up 

of fluorescence. This resulted in (successful) differences between the network and 

experimentally obtained images, with one network output incorrectly assigning a single cell 
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as the cause of fluorescence (Figure 57 1a and 1b), and another network output incorrectly 

assuming lower background fluorescence and greater particle build-up (Figure 57 2a and 2b). 

Differences between network and target output when there was no topography guiding cells 

were even greater, for both medium density (Figure 57 3a and 3b) and high density (Figure 

57 4a and 4b). Cell shape and number were realistically created for medium density, but the 

positioning for each were (successfully) different. For high density, the limitations of the 

network regarding using fluorescence as an approximate density was evident, due to highly 

varied number of visible cells. The network predicted a high number of closely-packed cells 

(Figure 57 4a), whereas the try source of the high fluorescence was caused from a higher than 

expected fluorescence from relatively few cells (Figure 57 4b), leading to overexposure and a 

high average level of fluorescence. Yet this difference was also clear evidence of a lack of 

overfitting to training data given the inability of the network to predict the target image, the 

network did not produce “memorised” data. Instead, a (possibly random) likely outcome was 

Figure 57: The network was tested for overfitting from a range of inputs that would produce a random, unpredictable, output. 
Network outputs (a) were compared to target outputs (b) of imaged experimental cell culture. A cell density close to zero was 

tested (pair 1 and 2), enhanced with altered brightness and contrast for easier visual analysis. A blank topography was also 

tested (pair 3 and 4) to confirm differing, random, output. Scale bar in (1a) applies to (1a-4b). Image reproduced from Mackay 

et al. under Open Access Creative Commons license [11] (© 2020 Mackay et al. Published by Elsevier Ltd.). 
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produced, which did not match the target image. Due to the lack of overfitting, which would 

have altered the true probability of a successful prediction, the network was confirmed as 

producing statistically significant results, and therefore validated as a potential model of cell 

response to topography.  

6.4.7 NETWORK-MODEL PREDICTION 

The purpose of the network model is to perform experimentation from a standard computer 

that would otherwise require a laboratory-based environment. While the network had been 

tested for accuracy when predicting cell response to topography, the network also required 

testing when used specifically as a model. This required obtaining the variable for minimum 

separation of laser-machined lines for cell alignment, using data from the network model, 

which was then verified using experimental data (Figure 58). 

The variable under investigation was the minimum line separation for cell alignment, as 

previous testing showed the possibility for such a value (Figure 54 on page 136) and also due 

the importance of cell alignment for healing. The relationship between minimum line 

separation and line width was also investigated (Figure 58) to determine whether it was only 

the distance between the lines which caused cell alignment, or the distance from one line to 

another including laser-machined areas. Investigation involved producing repeated 

topographical input arrays, not laser-machined or existing in reality, of varying line 

separation and thickness, and combining each with a random distribution of density and time-

point. For each line width, the range of line separations was analysed to determine majority 

Figure 58: Four images of cell response to laser-machined parallel lines at increasing line separation, from 1 µm to 14 µm, 

and a graph of minimum separation required for cell alignment with data points (blue) taken from network output. 

No relationship was found between the line width and separation between the lines for minimum separation required for cell 

alignment (red linear trend line with error as grey cone). Some of the experimentally obtained fluorescent images show cell 

alignment (within green dashed circle) and some fluorescent images do not (within red dashed circle). 
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cell alignment (over half the cells aligned ± 10° to the topographical lines), with repeat 

readings due to variations in density and time-point for each topography. 

The average minimum separation for cell alignment was plotted as blue circular markers 

(Figure 58), with error bars covering the range of possible minimum separations at a specific 

line width. With only network output used, no relationship was found between line separation 

and line width, as shown by a red linear trend line (error as a grey cone) with a gradient of 0.0 

± 0.1 [µm/µm] (Figure 58). The extracted minimum separation was 11.7 ± 1.3 µm, which 

was then compared to four experimentally obtained images of cell response to laser-machined 

lines: 

i. One topography (Figure 58 a) contained line separation of 1 µm, small enough that 

there is limited real separation between laser-machined areas when observed under 

SEM microscopy (Figure 26). 

ii. The second topography (Figure 58 b) contained line separation below the minimum 

value at 3 µm, far below the majority of minimum line separation lower bounds for 

individual points, which typically averaged above at 5 µm.  

iii. The third topography (Figure 58 c) contained line separation similar to the minimum 

value at 11 µm separation.  

iv. The fourth topography (Figure 58 d) contained line separation of 14 µm, which was 

above the 11.7 ± 1.3 µm value, while still low enough that maximum line separation 

for cell alignment need not be considered. 

Visual analysis showed no alignment in the first two topographies (separation below 11.7 ± 

1.3 µm), while the third topography showed areas of alignment and areas of no alignment, 

which is unsurprising due to the complex variables involved in cell response, and 11 µm is 

within the error of 11.7 ± 1.3 µm. However, the fourth topography (separation above 11.7 ± 

1.3 µm) had clear cell alignment in all areas of parallel laser-machined lines, including an 

area which did not produce alignment in the third topography, which was distinct and almost 

perpendicular to positioning of cells outside of this area. Observational analysis verified that 

the network can perform successfully as a model for cell response to topographies. 

The 11.7 ± 1.3 µm minimum separation was likely specific to both cell-type and laser-

machined topographies on a glass sample, as different cells respond to different topographical 

cues [30]. This leads to potential use as a morphological identifier in cell colonies cultured on 

surfaces with laser-machined parallel lines, without the use of invasive dyes and staining. 
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However, care should be taken that nanotopographical cues are not activated, as these surface 

cues interact with different cell signalling mechanisms and would interfere with the 

microscale cues [250]. 

6.5 SUMMARY 

Exploiting biophysical cues such as microtopographies allowed for influencing cell response, 

such as positioning and elongation, as the controlled environment interacts with multiple 

signalling pathways of the cell. Investigation of every topography is inefficient and 

improbable due in part to the complexity and intricacy of these signalling pathways and the 

time it would take in experimentation alone. Application of a DNN as a network model, via 

training on 203 image-pairs, generated a model capable of producing statistically significant 

cell responses without the need for additional stem cell culture and imaging. 

The first aim was to train a DNN capable of producing realistic-appearing fluorescent images 

of cell, which was successful. Initial testing of network model focused on the independence 

of the input channels and a lack of (inaccurate) generalisation between density and time-

point. High density and high time-point were successfully independent and produced visibly 

different output images, where cell number was similar, but cell behaviour was not. Testing 

then moved onto topographies, where realistic alignment potential was visually evaluated. 

Compared to experimentally-obtained data, the network-generated images shared many 

realistic qualities, including the size, shape, and behaviour of the cells. When the versatility 

of the network was tested, limitations and success were visible for each topography (Figure 

55), which showed that the network displayed versatility beyond the scope of the training 

data, but also that further training would be necessary to apply the network to all conceivable 

microscale topographies.  

The second and third aims were focussed on whether the model could be used to simulated 

cell behaviour correctly. The second aim was to determine the statistical significance of 

generated images compared to experimentally created images. This was achieved using a 

hypergeometric distribution probability mass function, with one test image managed a 

statistical significance 𝑃 < 0.001. The third aim was to derive a variable solely from 

network-generated images. The model had the potential to derive the minimum line 

separation required for stem cell alignment, 11.7 ± 1.3 μm, which was verified by 

experimental data, successfully completing the final aim. The network output for sub-micron 

input also showed a possibility to expand this method into nanoscale topographical response 
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successfully. Through combinations of nanoscale and microscale alignment cues, interaction 

of different signalling mechanisms from a range of topographical cues could be investigated, 

possibly leading to a universal stem cell network model.  

Through successful completion of all aims, the hypothesis has been proved correct. 

This model could be linked to other networks as part of a larger system, which promotes 

clinician/researcher-AI integration and provides greater opportunity for testing and 

validation, and generating greater scientific understanding, than large “black box” AI systems 

[40]. For example, the previous network on identification and labelling target cells (chapter 

5) would allow a combination of network models to focus on how specific cell types respond 

to environmental cues, reducing complexity and therefore necessary computational power, 

time spent training the network, and greater identification of problem areas, when the 

network model is applied to more complex colonies. A separate network that predicts cell 

response from biochemical cues, which will be investigated in the following chapter, could 

increase the ability of the system to predict cell response to any novel biomaterial. Therefore, 

the success of this network model may not only be viewed as the success of a single neural 

network for a specific set of inputs, but also as a successful potential first-step towards a 

larger AI-based system for enhanced biomaterial experimentation. 

Linked to a larger system or as a separate network, creating an accurate model from limited 

training data provides a way for equal-access science, where economic or physical limitation 

and geographical location do not prevent biomedical experimentation. Such approaches offer 

new methodologies against, for example, pandemic lockdowns of the future given 

experiment-based laboratory work could continue using a network model, with promising 

results followed-up experimentally as appropriate. 
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7 PREDICTING BIOCOMPATIBILITY OF 3-DIMENSIONAL SCAFFOLDS  

A background on AI application to reduce animal testing was covered in a literature 

review published in Biomedical Physics and Engineering Express [40]. Research based 

on this chapter will be submitted for peer reviewed publication. 

After networks have been shown capable of identifying single and multiple cells in a single 

image (chapter 5), and capable of predicting cell behaviour to diverse and unseen biophysical 

cues (chapter 6), the project advanced to whether a network can predict collective cell 

behaviour in response to biophysical and biochemical cues. From identification of singular 

cells in 3D, to predictions of multiple cells in 2D, this chapter focusses on the behaviour of 

cell systems on 3D structures using 2D imaging.  

7.1 INTRODUCTION 

In previous chapters, the benefits of using a DNN for a model were explained, and the 

circular nature of improvement in science, data, and DNN models was introduced. This cycle 

is not limited to stem cells on laser-machined topographies, and can be applied to virtually 

any area of science, including other areas of tissue engineering and biomaterial development 

[220, 228] (Figure 59). While the DNN and areas of science is constant, the data involved in 

this chapter involves in vitro pictures of cells on 3D scaffolds, instead of laser-machined 

surfaces, and in vivo images of scaffolds on chicks. Instead of Stro-1 positive isolated 

HBMSCs, HBMSCs are used without isolation and, instead of laser-machined topographies, 

multiple varied 3D scaffolds are investigated.  

Biomaterials are an important area of medical research, as the reparative response of the body 

and self-healing are limited. Use of biomaterials, alongside other regenerative medicine 

methods, can enhance healing by overcoming or mitigating restrictions, and harnesses 

various properties across a combined field of material science, chemical engineering, and 

cellular biology, among other disciplines [251]. An important difference between materials 

and biomaterials is biocompatibility, which is related to the behaviour of materials in various 

contexts and defined as “the capability of coexistence with living tissues or organisms 

without causing harm” in the Collins English Dictionary, determined from both in vitro and 

in vivo testing. Cell culture, in vitro, tests alone cannot determine biocompatibility of a 

material for in situ application due to poor correlation, especially for bone regeneration [157]. 
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Therefore, in vivo tests are typically used to determine the biocompatibility of biomaterials 

designed for in vivo use. 

 

 

Animals have been used as a necessary (and strictly regulated) testing platform in medical 

research to evaluate biocompatibility of a materials, specifically in environments with strong 

correlation to the desired in situ location, without being unethical [252]. In a post Covid-19 

pandemic environment, health science is increasingly on the public agenda, and possible 

discrepancies in ethical expectations of the public and the scientific community should be 

mitigated, as there have been studies with promising medical advances halted due to public 

concerns [253]. Guidance from the UK National Centre for the Replacement, Refinement and 

Reduction of Animals in Research (NC3Rs) aims to prevent important medical advances 

being lost, while keeping animal suffering to a minimum, and therefore staying ahead of 

shifting, and improving, ethical expectations of the public and scientific communities alike. 

In chapter 6, the use of a DNN, a NN with multiple layers, could be used to reduce the 

Figure 59: The cycle of improvement to science, data, and neural networks (NNs) can include many types of data. 
Data improves NNs, because network design can be optimised to the data, and the outputs of the model depend on data 

quality during training. Models can be used to improve scientific understanding, as they are capable of generating 

statistically probabilistic results to scenarios much faster than is possible in traditional experimentation, including for 

variables which could not be investigated ethically and/or physically in real world experimentation. This improved scientific 

understanding then improves data acquisition, and the whole system is improved further. The data in this system has few 

limitations, and can include data ranging from cell images (seen in chapter 4) to animal testing, including CAM assay images. 
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amount of in vitro laboratory experimentation required for stem cell research. This work 

could be advanced to not only reduce the amount of in vitro laboratory experimentation 

required for biocompatibility research, but also reduce the number of in vivo experiments 

[40]. If successful, a DNN could help to reduce, and possibly replace after enough training 

data is acquired for accurate generalisation, animal testing (2 of the 3 NC3R aims) by 

producing statistically likely biocompatibility predictions of untested biomaterials. 

The training and subsequent evaluation of a DNN for biocompatibility prediction is complex, 

and encompasses multiple different sections, including the DNN itself. One DNN will be 

focussed on in vivo and the other in vitro, and then both used in a series to evaluate whether 

poor correlation can be overcome [157]. Section 2.4 covers the broad features of biomaterials 

not covered in chapter 6, biochemical characteristics and 3D scaffold characteristics, and a 

brief explanation of chick chorioallantoic membrane (CAM) assays. The hypothesis and aims 

are outlined in section 7.2 before the method is explained section 7.3; the results are analysed 

and discussed in section 7.4 and summarised in section 7.5.   

7.2 HYPOTHESIS, AIMS AND OBJECTIVES 

Deep learning could streamline screening of various biocharacteristic combinations without 

the use of further CAM assays.  Mathematical modelling of a scaffold with different cell 

types interacting enables extension of results for a longer experimental period than is 

practical, due to chicken eggs hatching at day 21 of gestation, which allows further prediction 

of progression in a simulated environment [254]. DNNs could perform these predictions with 

data collected from necessary previous and current animal studies to predict outcomes of in 

vivo usage of various materials, and perhaps aid the design of new materials.  The materials 

found to be biocompatible could then be taken forward to rodent studies and the unsuccessful 

candidates discounted at an earlier stage of the research pathway, leading to reduction in the 

number of animals used, refinement of materials being investigated to be more 

biocompatible, and simultaneously allowing modifications to enhance angiogenesis and 

osteogenesis results. This would effectively replace rodents with the CAM assay and 

computer simulations [40].  

This chapter advances previous work in chapter 5 and chapter 6, using multiple DNNs for 

predicting cell response to both biochemical and 3D biophysical cues through generation of 

biocompatibility images (Figure 60). Potential success would provide significant savings to 
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both costs and time spent conducting laboratory-based experimentation. Additionally, the 

methodology of this chapter could potentially result in reduced levels of animal testing. 

 

7.2.1 HYPOTHESIS 

CAM assay images for a scaffold of a specific material and coating combination can be 

generated that is indistinguishable form an experimentally obtained CAM assay image. 

7.2.2 AIMS AND OBJECTIVES 

There are three aims, which can be divided further into accompanying objectives. 

1) Generate simulated fluorescent images of cells seeded on scaffolds. 

a) Process and augment fluorescent images created by a collaborator for training of a 

DNN. 

b) Test the trained DNN using scaffold material and coating combinations that were not 

included in the training dataset. 

c) Determine the differences between network generated output images and laboratory 

obtained target images. 

2) Generate a simulated CAM assay image of a scaffold on a chick membrane that has no 

statistically significant differences from laboratory obtained images. 

a) Augment CAM assay images created by a collaborator for training a DNN. 

b) Process the outputs from the trained network, which will be tested using scaffolds that 

were not included in the training dataset, for comparisons in key areas for CAM assay 

image analysis. 

c) Calculate whether the differences in key areas for output and target images are 

statistically significant. 

Figure 60: Chapter 5 advances upon work accomplished in chapters 3 and 4, with more DNNs likely required. 
Work in chapter 3 was focussed on identification of single cells and endothelial cell structures in 3D. Chapter 4 predicted cell 

behaviour for cell numbers a magnitude higher and was mostly 2D, with limited depth variations in topographies. Chapter 5 

will involve prediction of biocompatibility for cell numbers multiple magnitudes higher than in previous chapters on 3D 

structures. As chapter 3 and chapter 4 both used DNNs as large as computational power could sustain, the increased 

complexity of chapter 5 could require multiple DNNs.  
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3) Use two trained networks in a series to form a network-chain for biocompatibility 

prediction. 

a) The output from the first network will be input into the second network without any 

modification or processing. The subsequent output from the second network will then 

be visually compared to target images to evaluate the success of biocompatibility 

prediction. 

7.3 METHOD 

As detailed in previous chapters, a recurring criticism for using NNs are the hidden layers, 

which gives NNs the “black box” moniker. Data is converted from inputs to outputs through 

computational transformations at each layer – transformations that are not easily visualised, 

even mathematically, after the initial layers [255, 256]. For the networks used throughout this 

thesis, networks contained up 17 layers in the U-Net and 34 layers in the W-Net, making 

visualisation virtually meaningless [255, 256]. Therefore, two networks were used instead of 

one to convert information on cell scaffolds (only the material and coating) into predictions 

of biocompatibility, via images of CAM assays (Figure 61), allowing for a check-point in the 

form of fluorescent images of cell cultures on the scaffolds.  

 

Figure 61: Illustration of two networks used in a series for biocompatibility prediction.  
The first DNN (blue) transforms information on the scaffold biochemistry to fluorescent images of HBMSCs after 14 days of 

culture/. The second DNN (purple) transforms fluorescent images into images of a CAM assay after 14 days of growth. (a) 

provides both biochemical and biophysical cues to HBMSCs; (b) provides information on the biocompatibility of the material 

in vitro via the approximate quantity and health of the cells; and (c) provides information on the biocompatibility in vivo via 

analysis of the number and branching of blood vessels, among other metrics. 
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The two networks needed to be trained individually, and tested individually, before they 

could be used in a series for transforming scaffold information (the material and coating 

combination) into in vitro biocompatibility data (fluorescent images) and, more importantly, 

in vivo biocompatibility data (CAM assay images).  

Work in chapter 6 illustrated the potential for a network to produce predictions on cell 

behaviour, through predicting fluorescent images, when input information of environmental 

cues. However, the network was as large as could be trained on the computational equipment 

available, and the output had limitations, where large alterations to topographies used in 

training resulted in poor quality images. By using two networks in a series, there are 

effectively two W-Net generators and two discriminators, with hyperparameters optimised 

for both halves of the data transformation, creating a larger network than could be trained 

otherwise. The method for the first half of the data transformation, from scaffold material and 

coating to fluorescent images (Figure 61 a-b), is covered in 4.3.1 and 7.3.1. The method for 

the second half, from fluorescent images of cell culture to CAM assay images (Figure 61 b-

c), is covered in 4.3.2 and 7.3.2. 

7.3.1 FLUORESCENT IMAGE ANALYSIS 

Analysis of the network output predictions was performed together with analysis of target 

image (the images collected experimentally) for comparison of variables important in 

fluorescent microscopy. Additionally, a pixel comparison was performed between the output 

and target images to determine the visual difference between network prediction and 

experimental images (Figure 62).  

The comparison was completed for every green and red pixel in shared positions so, for 

example, a pixel in the top left of an output image would be compared to the pixel in the top 

left of a target image. The difference in value for each position in the 256 x 256 image 

(65,536 pixel positions) were averaged to create a mean difference for each output-target 

image pair. As the difference alone does not account for the variability in the dataset, or 

provide useful information on biocompatibility, analysis on output images were analysed in 

the same way experimental images would be analysed to determine biocompatibility, with 

target images analysed the same way to provide comparisons for further network evaluation. 

This included calculation of the mean green pixel value (proportional to the number of live 

cells) per image and the mean red pixel value per image (proportional to the number of cells 

with damaged/porous membranes, which are considered dead or dying), alongside the 
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standard deviation for each. Mean pixel value was used rather than the mean number of 

pixels above a determined value as this required no thresholding, which could bias 

comparisons. Furthermore, the size of a cell relative to a pixel was not constant, due to the 3D 

shape of scaffold design, so the mean number of pixels would not be directly proportional to 

the number of cells. 

 

 

7.3.2 BLOOD VESSEL ISOLATION AND ANALYSIS 

To compare the biocompatibility of different scaffolds, three different metrics were analysed, 

including the quantity of vessels, the numbers of junctions (also known as branch points), and 

mean lacunarity (the average lacunarity across each image). Lacunarity is a geometric term 

used to measure the size and quantity of gaps between vessels, along with the heterogeneity 

of the image, where a low value (0.3 or lower) would be an organised, repetitive pattern, and 

a high value (1.0 or above) is heterogeneous, lacks symmetry, and has multiple (varied) gaps 

[257]. These metrics have been used throughout the medical field, and can be used as a 

quantitative value for comparing the pattern/distribution of blood vessels [257-273]. These 

metric values from network generated and laboratory obtained images were compared to 

Figure 62: Analysis of material biocompatibility prediction using pixel comparisons. 
The difference in each pixel position for the network output and experimental target image is averaged across each image. 

This difference in pixel values is then converted to a percentage of maximum difference (maximum pixel value is 255) to derive 

a percentage difference for each output image. This was completed for green and red pixels individually, as both represent 

different fluorescent wavelengths/information on cell culture health. 
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determine whether the network could generate values that, for each scaffold type, were 

statistically insignificant from experimental values. If there were no statistically significant 

differences between the two samples, network output and laboratory target, the network has 

succeeded.  

Statistical significance between the network generated and laboratory obtained values was 

calculated from a t-test, a type of inferential statistic used to determine if there is a significant 

difference between the means of two groups, which could then be converted into a 𝑃-value, a 

measure of the probability that an observed difference could have occurred just by random 

chance. It was also important to determine whether there were statistically significant 

differences between different scaffold types and randomly generated images. This would 

determine whether the network was generating outputs that were dependent on the inputs or 

provided metrics uncorrelated to the inputs, even if the images appeared realistic visually. All 

values were calculated computationally and then checked using a respected online calculator 

at Social Science Statistics [274]. 

Before the quantity of vessels, the number of junctions, and the lacunarity could be 

calculated, the images needed processing for vessel extraction (Figure 63). Processing was 

automated to prevent any bias and decrease the time required to manually label every blood 

vessel. However, while vessel extraction can be tuned, through alteration to, for example, 

filter size, thresholding, and contrast, to accurately extract every blood vessel (Figure 11), 

this was difficult to perform across a whole dataset of experimental and network generated 

images. Therefore, the automated processing was focussed onto the larger (more than three 

pixels in diameter) blood vessels on the surface of the CAM assay images. As the same 

process was used for both network output and experimental target images, any systematic 

error would impact results equally and, as values were compared, be unproblematic for future 

analysis. This novel processing algorithm was based on vessel extraction by Mangir et al 

[14], combined with AngioTool from Zudaire et al [275]. 
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After vessel extraction and skeletonisation, the junctions were counted, the quantity of 

vessels as a percentage of total image area was computed, and the mean lacunarity was 

calculated. The values for each scaffold type were averaged, plotted and compared to 

randomly generated images. Networks were shown to produce realistic-appearing images in 

previous work, where images are considered realistic-appearing if neither a discriminator 

network nor a person can distinguish them from an image not generated by a network without 

context. Therefore, images were created with randomised vessel quantity, mean lacunarity, 

and number of junctions to determine whether the network was also creating randomised 

values, even though the appearance of the images could be realistic. To create these images 

for network comparison, the range for the number of junctions and width of vessels were 

taken from experimental target images, with a distribution centred in the central 100 pixels of 

the image.  

Figure 63: Processing of CAM assay images for comparitive analysis of network output and target images. 
To obtain the quantity of vessels, number of junctions, and mean lacunarity for each image, vessel need to be extracted and 

skeletonised. Performed computationally, processing included Gaussian filters, local thresholding and colour extraction 

(Vessel Extraction). The resulting vessels were skeletonised so that metrics such as junctions (within the green circles), shown 

as blue dots, could be easily counted (Output Vessel Analysis). Small vessels, with a diameter less than three pixels, and vessels 

not close to the surface were not extracted. The metrics for both network output (Output Vessel Analysis) and experimental 

target images (Target Vessel Analysis) were compared via plots (Junction Comparison). 
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7.4 RESULTS AND DISCUSSION 

The two networks were tested using input data that had not been used during training, and 

then network generated output images were compared to laboratory obtained target images. 

Before processing and subsequent analysis, the images were visually evaluated to determine 

whether the networks were capable of generating images similar in appearance to the target 

images (Figure 64). 

 

Figure 64: Randomly selected network generated output and experimental target images for multiple scaffold types. 
Three scaffolds were used in testing fluorescence image generation: Nylon scaffold with ‘Glasgow’ coating imaged one day 

after cell seeding (NG01); Nylon scaffold with ‘Glasgow’ coating imaged fourteen days after cell seeding (NG14); Titanium 

scaffold with no coating, left plain, imaged fourteen days after cell seeding (TP14). Four scaffolds were used in testing CAM 

assay image generation: Nylon scaffold with a mineral coating (NM); Nylon scaffold with a plain coating (NP); Titanium 

scaffold with a mineral coating (NM); Titanium scaffold with a plain coating (NP).  
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Images for visual evaluation were randomly selected from the multiple output/target image 

pairs that were generated/created for each scaffold type. The generated fluorescent image 

outputs were visibly less bright than the target images for each scaffold type. However, the 

3D scaffold structure, shape and size of the cells, and the approximate health of the cells (the 

balance of green and red) was more successfully approximated. Both NG01 target images 

contained different levels of green and red pixels (there were variations in biocompatibility 

but also in imaging conditions between samples), which showed why averaging multiple 

outputs was necessary for network analysis. Analysis of a single output for each scaffold 

combination would not encompass the variations in laboratory images, and possible 

variations in network generated outputs. The randomly selected CAM assay output images 

showed mixed results. The outputs contained promising characteristics, such as the generated 

blood vessels and the scaffold designs in NM, TM, and TP outputs. Less promisingly, the 

output for TM and TP was the same, showing that the network was not always able to 

distinguish differences in coated and uncoated titanium. Further analysis would be necessary 

to determine if TM and TP outputs contained statistically significant differences over a larger 

sample. 

Fluorescence imaging generation was analysed in section 7.4.1, where red and green pixels 

were separated to determine network success for both types of biocompatibility information 

(the amount of live cells and the amount of dead/dying cells independently). CAM assay 

image generation was analysed in section 7.4.2, with the quantity of vessels, number of 

junctions and mean lacunarity compared for output and target images, as well as statistically 

significant differences between the scaffold outputs. Finally, the networks were used in series 

in section 7.4.3, where the output from the fluorescent image network was used as an input to 

the CAM assay network.  

Statistical significance was determined using the t-test, also known as Student’s t-test [276]. 

This provides whether the difference between two samples could have happened by chance. 

For the t-test to be considered valid, the test statistic must follow a normal distribution. 

Therefore, the D’Agostino-Pearson Test for Normality [277] was applied to both the neural 

network output and the data generated for a comparison baseline, which will be detailed in 

the relevant sections below. 
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7.4.1 FLUORESCENCE IMAGING GENERATION ANALYSIS 

As detailed in section 7.3.1, the network generated output and laboratory obtained target 

fluorescence images were compared for all corresponding pixel positions, with green and red 

pixel values analysed independently. The difference in value between output and target 

images were averaged over the whole image, and the process was repeated for every 

output/target image pair. These differences were then averaged over each scaffold type to 

gain insight into which scaffolds were easier to predict (lower difference) and which were 

harder for the network to predict (higher difference). Rather than keep the difference values 

in pixels, the difference was plotted as a percentage difference, where the maximum 

difference possible, 255, equated to 100% and the minimum difference, 0, equated to 0%.  

To form a baseline for analytical comparison, the scaffolds were plotted alongside randomly 

generated images of red and green pixels (Figure 65).  

 

This showed that, for all scaffolds, the network generated outputs were more similar to target 

images than if it were randomly generating images. Consequently, it showed that the network 

had used the input information of scaffold material and coating to create more accurate 

Figure 65: Plot of average percentage difference in green and red pixel values for testing scaffolds and randomly generated 

images. 
NG01, NG14 and T14 were the three testing scaffolds. Additionally, randomly generated red and green images (Rand) were 

used for an analysis baseline. Green bars show the mean average of green pixel difference for all images of that scaffold type, 

and red bars show red pixel difference. Standard error is shown as vertical grey error bars. *** shows statistically significant 

differences between datasets of P < 0.01. Not all statistically significant differences are displayed. 
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fluorescent images than would be possible without this information. It follows that the 

network could be capable of determining the biocompatibility of different scaffold material-

coating combinations that had not been included in the training data.  

Each of the scaffold types contained statistically significant differences from another scaffold 

type, so the source of errors is unlikely to be only systematic, with a t-test providing 𝑃 < 0.01 

across both tested scaffold types, and the differences in each scaffold type could be analysed 

independently. The network generated images for scaffold NG01 showed less than 10% 

green pixel difference to laboratory obtained images, which was impressive as the network 

had not seen the combination of a nylon scaffold with the Glasgow coating. The cell response 

would likely be relatively consistent across multiple scaffold-coating combinations after only 

one day of culture, providing fewer likely biocompatibility scenarios for the network to 

predict. The higher percentage difference average for NG14, 27% green pixel difference, 

supports this theory, as the biocompatibility of a scaffold after fourteen days of culture could 

be harder to predict, and a large standard deviation in both green and red differences 

indicated a large range in the accuracy of the network. However, the percentage difference 

for TP14 was 12% green pixel difference and only 5% red pixel difference. Unlike for NG01 

and NG14, this scaffold-coating pairing had been used in training data after one day of cell 

culture (TP01). The network was therefore not limited to only predicting in vitro 

biocompatibility of unseen scaffold-coating combinations, but could also be used as a time-

predictor for two weeks of cell culture. Both uses would dramatically reduce the time taken to 

determine in vitro biocompatibility and optimise the design of novel biomaterials. 

One of the visual comparisons between network generated output images and the 

corresponding target images was that the output images were not as bright as the target 

images (Figure 64), so lower pixel values would be expected. To determine whether this was 

true across the whole dataset, the green and red pixel values for each image were averaged 

over the whole image for each output and target image. Additionally, in analysis of 

fluorescent images created through laboratory experiments, the mean green pixel value would 

correlate to the size and health of the cells, and the mean red pixel value would correlate to 

the proportion of dead or dying cells. These are therefore important markers for the success 

of network generation, and output values were plotted beside target values for comparative 

analysis (Figure 66).  
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All network generated outputs were significantly (𝑃 < 0.01) different from random images, 

and significantly different for each scaffold type, which was determined statistically, as 

differences are difficult to visually determine graphically. Thus, output images were not 

random and depended on the input data, with differences to output for both changed scaffold 

material-coating pairings (NG14 and TP14) and changed timescales for cell culture before 

imaging (NG01 and NG14). The statistically significant difference between the randomly 

generated images and corresponding target images (images selected from all testing 

scaffolds) was promising, as it confirmed that randomly generated images could not match 

laboratory obtained fluorescent images. Less promisingly, there were also statistically 

Figure 66: Plots of the mean green pixel value and mean red pixel value for each scaffold type. 
The mean green pixel value (top) and mean red pixel value (bottom) for each scaffold type (NG01, NG14, and TP14) and 

randomly generated images (Rand) against minimum to maximum pixel values (0-255). Blue bars show the averaged values 

for output images and grey bars show the average values for target images. Target for Rand images were randomly selected 

images from NG01, NG14 and TP14. Standard error is shown as vertical grey error bars. *** shows statistically significant 

differences between datasets of P < 0.01. ** shows statistically significant differences between datasets of P < 0.05. Not all 

statistically significant differences are displayed. 
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significant differences between the output and target for NG01, NG14 and TP14, which 

showed that the network had not generated images that matched laboratory obtained images.  

Differences in red and green pixels shown in Figure 65 were visible in the combined 

differences between output and target values for all scaffold types in Figure 66. However, 

while the output and target images did not match value-to-value, the mean pixel values were 

always lower in output images than for target images, which was seen during visual 

inspection in Figure 64, where all the output images were comparable to target images but 

were all less bright in appearance (lower pixel values). Therefore, the differences in mean 

green and red pixel values may not be a result of unsuccessful predictions, just a poor 

approximation of total fluorescence. When target images for NG01, NG14 and TP14 were 

compared, NG14 displayed an increase in pixel values in comparison to NG01, with 93.0% 

increase in mean green pixel value and 82.9% increase in mean red pixel value. TP14 

displayed a decrease in pixel values in comparison to NG01, with 33.4% decrease in mean 

green pixel value and 10.7% decrease in mean red pixel value. Importantly, these changes 

relative to NG01 were evident in the generated network output images, too, with NG14 

increasing in pixel values and TP14 decreasing. The predicted percentages change for red 

pixels was more accurate than for green pixels, with as little as 8.9% difference between the 

predicted and real decrease for TP14. 

7.4.2 CAM ASSAY IMAGE GENERATION ANALYSIS 

Rather than counting vessels, which can be computationally complex with non-uniform 

images, the quantity of vessels was calculated in a simpler manner that still allowed for 

comparison in vessel numbers between scaffolds. The vessels were extracted and 

skeletonised as part of the CAM assay image processing (Figure 63), so the quantity of 

skeletonised vessels as a percentage of the total image area correlated to the number of 

vessels. The number of junctions, or branch points, were calculated computationally from 

areas of intersecting surface-vessels, using AngioTool [275]. 

For output and target images, the quantity of vessels and the number of junctions were 

averaged for each scaffold type, as well as for randomly generated images, and plotted 

(Figure 67). These random images were based on the average number of junctions for all 

target images, and the vessel-width. Together with the set range of vessel-width and number 

of junctions, the random vessel-like lines were coded to branch out from a centralised region, 

where a solid circle imitated the position of a scaffold, with the same diameter as a scaffold 
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but without the varied designs. This resulted in images that were not a collection of random 

pixels, but instead contained several boundaries that would ensure realism. While this 

provided a more difficult benchmark for network output analysis, it was important for 

rigorous evaluation of the generated images.  

 

The quantity of vessels was similar for all scaffolds, between 12.5% and 14.0% for target 

images, and between 12.5% and 14.0% for output images. Since visual comparisons were 

Figure 67: Plots of the mean quantity of vessels and mean number of junctions for each scaffold type. 
The mean quantity of vessels (top) and mean number of junctions (bottom) for each scaffold type (NM, NP, TM, and TP) and 

randomly generated images (Rand). Blue bars show the averaged values for output images and grey bars show the average 

values for target images. Target for Rand images were randomly selected images from NG01, NG14 and TP14. Standard error 

is shown as vertical grey error bars. *** shows statistically significant differences between datasets of P < 0.01. ** shows 

statistically significant differences between datasets of P < 0.05. The statistically significant differences between Rand and all 

output scaffold inputs were not displayed. 
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difficult, each scaffold was mathematically compared for statistically significant differences 

between output and target images. Two of the scaffolds, NP and TM, contained significant 

differences, but the scaffolds NM and TP had no significant differences between the output 

and target images. 

Interestingly, that showed that the network was not better at generating a particular scaffold 

material, as nylon was not more or less successful than titanium, or a particular scaffold 

coating, as plain scaffolds were not more or less successful than mineral coated scaffolds. 

Additionally, NP and TP data was included in both training and testing data, although the 

images were from separate experiments, suggesting that additional training data was of 

limited effect. The network was trained on some NP and TP scaffold images from a separate 

experiment than the images included in testing, while mineral coatings were not included in 

the training data. However, the network was less successful with generating the correct 

number of junctions. Only TP output and target images had no significant images, although 

there were significant differences between the number of junctions for nylon and titanium 

scaffolds (there were more junctions for titanium than nylon scaffolds), which was seen in 

both network generated output and laboratory obtained target images. 

Generated outputs more closely matched the mean lacunarity (λ) of target images than for the 

number of junctions (Figure 68), showing the network was more successful in this area. Two 

of the four scaffolds had no statistical differences between output and target images, meaning 

that the network generated images were statistically similar to target images for both NM and 

TP scaffolds, but not for NP and TM. However, there were visual similarities between both 

successful and less successful output-target pairs (Figure 69). Importantly, the lacunarity for 

each output average was close to the target average (< 0.05 λ), while the difference between 

randomly generated images and the average of all target images was almost 0.3 λ. This, along 

with the statistically significant differences between scaffold materials and coatings, showed 

that the network was not randomly generating images, and that the output images depended 

on the fluorescent image inputs. 
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The (statistically significant) differences between each output scaffold are comparable to the 

same differences between target scaffolds, with NM having a higher mean lacunarity than NP 

and TM, and with TP having the lowest mean lacunarity. Visually, this corresponds to CAM 

assay images for TP scaffolds being more heterogeneous and with larger gaps between 

vessels, compared to NM scaffolds. Interestingly, these differences were generated by the 

network with no input data on the scaffold material or coating, as the only input was 

fluorescent images of the scaffolds after in vitro culture, which implies a link between in vitro 

and in vivo biocompatibility was made by the network. 

 

Figure 68: Plot of the mean lacunarity for each scaffold type and randomly generated images. 
Blue bars show the averaged values for output images and grey bars show the average values for target images. Standard 

error is shown as vertical grey error bars. *** shows statistically significant differences between datasets of P < 0.01. ** 

shows statistically significant differences between datasets of P < 0.05. Not all statistically significant differences are 

displayed. 
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7.4.3 LINK-UP OF MULTIPLE NETWORKS 

The final application of the network included using the two networks, one for generating 

fluorescent images and the other for generating CAM assay images, in a series (Figure 61). 

This resulted in a data transformation from the scaffold material and coating combination to a 

CAM assay image for that scaffold, with an additional step in the middle for checking that 

the transformation was visually credible, which was the output from the first network and 

subsequent input to the second. 

The input was the same as for section 7.4.1, where the scaffold material, coating, and relative 

depth was input to the first network (no additional chemical or physical knowledge was 

provided). Relative depth was computationally calculated from the focus detection 

algorithms, based on convolving the image with a Laplacian kernel to determine the 

blurriness of different sections, with a pixel value assigned to the level of focus. This limited 

3D information was necessary for a biocompatibility prediction: When a 2D depth profile 

Figure 69: Two scaffold predictions and accompanying target images overlayed with the extracted blood vessels 
Two scaffold types, NM (blue) and TM (green), have the network generated and laboratory created image displayed beneath 

the extracted blood vessels. Extracted blood vessels were large enough and close enough to the surface to be labelled during 

the automated extraction process. NM mean lacunarity was successfully predicted by the network, and shows multiple clear 

long blood vessels, while TM mean lacunarity was unsuccessfully predicted, and vessel extraction appears more fractured. 
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was input into the trained network (a uniform focus across the image), no recognisable 

fluorescent image prediction was generated. This could be a result of overfitting to a 3D 

training dataset, or the effect of 3D scaffold design on biocompatibility, which future 

inclusion of 2D images could help determine.  

For this test, two scaffold combinations were used, NG and TP. NG and TP had not been 

used in training of the first network, but had been used in training the second network. These 

two scaffolds were chosen because the scaffolds had both previously been analysed, with NG 

the least successfully generated and TP the most successfully generated in testing. The check 

step, where the first network output is used as the input for the second network with no 

additional processing or alteration, created a way to control the path of, and visually evaluate, 

the data transformation. The output for the data transformation was the CAM assay image for 

the input scaffold, which could then be compared to target images (laboratory obtained CAM 

assay images for that scaffold). 

Two variations for each scaffold, NG and TP, were used during the network in series test, to 

account for variations in possible outputs, seen previously in Figure 64. The input appears as 

many oblong sections with varying brightness, which corresponds to the 3D information as 

explained earlier, and colour, corresponding to the scaffold material and coating. Oblongs at a 

range of rotations were used instead of uniform squares to allow for greater variety in 3D 

profile inputs in application. For NG-1 (the first NG scaffold input variation) and NG-2 (the 

second) in Figure 70, the check step showed a realistic appearing fluorescent images with 

high levels of green and moderate to high levels of red pixels, which matched observations of 

experimental data in Figure 64. TP-1 and TP-2 showed similarly promising transformations 

in the check step. Importantly, when these network generated images were input into the 

network, the images were similar enough to laboratory obtained images that the second 

network was able to utilise the data to form a CAM assay image outputs. This was 

confirmation that the output images from the first network were realistic at both a visual and 

numerical level. 
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The output from the networks, the generated CAM assay images, had mixed results. The least 

promising output was for NG-2, where the scaffold material was clearly titanium and not 

nylon. Only NG-1 produced an approximation to a nylon scaffold, but with substantial 

deformities to the 3D scaffold design. On closer inspection of both the NG-1 and NG-2 

outputs, both were heavily pixilated and the vessels are not as clearly defined as the outputs 

for TP-1 and TP-2. This may show the lack of confidence in the network output for this 

material and coating combination, which could be due to the variation of possible NG 

Figure 70: Results of two networks used in a series for biocompatibility prediction. 
Two variations of each scaffold, NG and TP, were input into the first network through information on material and coating. 

The output from this network was then input into the second network with no alteration, providing a visual check step in the 

form of a fluorescent image. The output for the second network, and the network used in a series, was a network generated 

CAM assay image. These outputs were then compared to target images, which were laboratory obtained CAM assay images 

for the same scaffold. 
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biocompatibility (Figure 66). The outputs for TP-1 and TP-2, in contrast, were promising as 

the vessels were clearly defined, and the scaffolds were almost identical to the laboratory 

obtained target images of plain titanium scaffolds, with minimal structural deformities. 

Without using any laboratory obtained images, the trained networks had successfully 

transformed simple information on a scaffold material and (lack of) coating into visually 

comparable CAM assay images. 

An additional test was also performed, to determine if the assumption that two networks in a 

series would be necessary (with the GPU and computing power available) was correct. A W-

Net was therefore trained on the same CAM assay image data as used previously, with an 

input of the scaffold material and coating. Hyperparameters, number of epochs, and other 

variables were maintained for an accurate comparison between outputs from a single network 

and a series network. There was no in vitro data used for training the single network, only 

scaffold information and in vivo images (Figure 71).  

 

One of the similarities between outputs of the single network and series network, shown in 

Figure 72, was the unchanged TP output, for both TP-1 and TP-2. However, the single 

network also produced unchanged outputs for NG-1 and NG-2 because there was no variation 

in scaffold material and coating, which was the only information input to the network. Other 

Figure 71: Using a DNN to go from scaffold information to CAM assay images without fluorescent images. 
The DNN (purple arrow) directly links the scaffold information (a) and CAM assay images (b). Additional data (grey dotted 

arrow) was not included, and neither was an additional DNN. 
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differences include the visual quality of the outputs, such as the ability to extract blood 

vessels visually and computationally, and the scaffold shape.  

 

While both networks struggled with NG, TP output from the single network was pixelated, 

provided no clear scaffold structure, and had no extractable vessels for analysis. Comparisons 

of the quantity of vessels, number of junctions, and mean lacunarity was not possible for a 

single network, as the output quality was too poor to obtain meaningful results. This also 

meant that the single network, unlike the networks used in a series, was not fit for purpose, as 

Figure 72: Outputs from a single network trained without in vitro data and a network trained in a series using in vitro data. 
An input of scaffold materials and coatings, NG and TP, was input into two networks that were trained on the same CAM 

assay image data. The single network produced identical outputs for both NG and TP variations, The series network produced 

identical outputs for only TP variations. A target image obtained from laboratory experiments shows what the networks were 

trained to produce. 
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no important variable could be obtained from the output images, and it could not be applied 

for any form of prediction or experimentation.  

While the testing input data remained the same for both the single and series networks, the 

training data was different for the series network than for the single network, as in vitro data 

used to train the series. This implies that there was a correlation between in vitro and in vivo 

data that could be extracted by a network for biocompatibility prediction. If this work were to 

be expanded in the future, it is possible that networks in a series could be used to predict 

biocompatibility results for more complex biological systems, such as large animal studies or 

even human in situ application. As using multiple networks in a series increased the quality 

of predicted output than when using a single network alone, this series approach could be 

applied to other areas of AI-integration where GPU and computation power are not yet 

sufficient for successful application. 

7.5 SUMMARY 

The research in this chapter focussed on advancing the work presented in chapter 6, where 

cell response to physical cues was successfully predicted by a DNN. Instead of a few cells 

cultured in 2D, this research targeted the cell layer cultured on a 3D scaffold, with DNNs 

generating predictions of collective cell response to both physical and chemical cues. The 

predicted biocompatibility of scaffolds was divided into in vitro and in vivo sections, with 

one network trained to generate fluorescent images and another trained to generate CAM 

assay images. These two networks could then be used in a series to predict both in vitro and 

in vivo biocompatibility of scaffold material and coating combinations that are potentially 

untested in a laboratory. 

When tested individually, the networks had areas of success and areas that need further 

improvement. The first network generated fluorescent image predictions capable of only 5% 

red pixel difference to laboratory images. However, green pixel difference was over 20% for 

other scaffold types, which could be improved with a larger and more varied training dataset. 

Similarly, the second network produced images with a mean lacunarity within 10% of the 

target image values, but also had statistically significant differences in all analysed values for 

at least one scaffold type. 

Regarding the first aim, correction to the uniformity of fluorescence and dataset 

normalisation may overcome the comparative dimness of generated images. When the lower 

mean green and red pixel values are ignored, the comparisons between different scaffold 
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types for output images matched those seen with target images, with highest fluorescence 

(mean pixel value) for NG14 and lower fluorescence for TP14. Additionally, all results were 

significantly different (p < 0.01) from randomly generated images of green and red pixels, 

and there were significant differences between different scaffold outputs (p < 0.05). This 

showed success in generating comparative in vitro biocompatibility data between scaffolds, 

which is important for evaluating different scaffold material and coating combinations, and 

confirmed that the network was not randomly generating fluorescent images.  

The second aim was the same as the first, but related to analysis of CAM assay images. This 

was partially achieved, as the tests showed areas of success and areas where further work was 

required. A less successful area was the number of junctions, where only TP had no 

statistically significant differences between the output and target images, but the quantity of 

vessels was more promising, with both TP and NM showing no differences. Importantly, both 

TP and NM also showed no significant differences between output and target images for 

mean lacunarity, which gives a quantitative value to the layout of blood vessels. That means 

that, for two scaffolds of different material and coating, the network generated realistic blood 

vessel patterns. As mineral coated nylon was not included in the training dataset, the results 

are impressive, and suggest that, with enhancements to the dataset, the generated output can 

be improved. 

While the first two aims were not fully achieved, there were some promising results in red 

pixel difference and mean lacunarity, therefore work continued towards completion of the 

third aim. Building on these areas of success, the third aim was achieved, as the two networks 

were successfully used in a series to generate biocompatibility predictions of scaffold 

material and coating combinations. The outputs for NG scaffolds were not as good as for TP 

scaffolds, but this could be due to the increased variability in possible biocompatibility 

outcomes for NG. Additional NG images in the training dataset, among other scaffolds, could 

improve this result, or further information may be needed to increase network confidence in 

biocompatibility predictions.  

The hypothesis that two independently trained networks can be used in a series to generate 

CAM assay images for a scaffold of specified material and coating was not proven, as the 

success of the independent networks (and subsequent series application) was mixed. Overall, 

this work has implications in the reduction of animal testing, but further work is required 

before it should be applied in a biomaterial research environment. This project focussed 
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solely on a select number of scaffold material and coating combinations, and in vitro data is 

limited to fluorescent image data and in vivo data is limited to CAM assay images after 8 

days of growth. Further studies should include larger and more varied datasets, and animal 

testing kept to a minimum by collecting images from a range of separate biomaterial research 

experiments where data collection has been completed.
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8 CONCLUSION 

There were three aims linked to the hypothesis of this project, with one for each chapter. 

These were naturally split into two areas – using AI for labour-intensive tasks and using AI 

for modelling. Each of these chapters contain research that can be used for either area, but 

chapter 5 focussed more on the former while chapter 6 and chapter 7 focussed more on the 

latter. The outcome of each aim is summarised below, with the first covered in section 8.1, 

the second in section 8.2, the third in section 8.3, and finally a note on future application of 

this research in section 8.4. 

8.1 CHAPTER 5 

The labelled images were SBFSEM stacks of treated placental tissue, containing several 

different cell types and acellular material. If deep learning could complete the lengthy task of 

labelling each 2D slice within a 3D SBFSEM stack, it could enable more quantitative 

analytical approaches, and eradicate subjective labelling at boundary regions. For a single 

cell, there was an effective error of less than 1% across all networks used, including those 

trained on minimal data (less than 20% of the SBFSEM stack). Less data used in training 

undoubtedly leads to overfitting and lower output quality, but the trade-offs in terms of time 

management and resources make finding a minimum an important achievement, as a trained 

network can process an image in under a second. The networks not only identified singular 

cells, but also distinguished specific cell types and labelled large cellular structures with an 

average error less than 2%.  

8.2 CHAPTER 6 

Investigation of every topography is inefficient, as previously explained. Keeping to less than 

1000 images when the potential feature space is infinite could have resulted a DNN unable to 

output reliable approximations. However, application of a DNN trained on only 203 image-

pairs generated a model capable of producing statistically significant cell responses. Visually 

compared to experimentally-obtained data, the network-generated images contained many 

realistic qualities, including the size, shape, and behaviour of the cells. Mathematically 

compared, using a hypergeometric distribution probability mass function, one test image 

managed a statistical significance 𝑃 < 0.001. Additionally, the minimum line separation 

required for stem cell alignment, 11.7 ± 1.3 μm, which was verified by experimental data, was 

derived only using network-generated data.  
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8.3 CHAPTER 7 

The research in this chapter focussed on advancing the work presented in previous chapters, 

but targeted the thousands of cells cultured on a 3D scaffold, with DNNs generating 

predictions of collective cell response to both physical and chemical cues. Unlike in previous 

chapters, multiple networks were used in a series, with one network trained to generate 

fluorescent images and another trained to generate CAM assay images. These two networks 

were then able to predict both in vitro and in vivo biocompatibility of scaffold material and 

coating combinations that were potentially untested in a laboratory. The generated in vitro 

biocompatibility data differed between scaffolds, which is an important step for evaluating 

different scaffold material and coating combinations, and confirmed that the network was not 

randomly generating fluorescent images. However, the success of the independent networks 

and subsequent series application was mixed. Overall, this work has implications in the 

reduction of animal testing, but further work is required before it should be applied in a 

biomaterial research environment. 

8.4 A NOTE ON FUTURE RESEARCH 

This project started with the hope of using AI for both labour-intensive tasks and data 

modelling. While both have been achieved for tissue engineering purposes, only the former 

was applied for placental research. However, since the completion of this postgraduate 

project, the research into this area has continued, with supervisor Ben Mills and collaborator 

Rohan Lewis (both University of Southampton) advancing the methods used in Chapter 3 for 

SBFSEM image generation. Initial results have been promising, with successful image 

generation based on i.e. the size and positioning of singular or multiple different cells. This 

work could revolutionise placental modelling, with implications to both prenatal and lifelong 

medical research. Some of this work has recently been submitted to BIOSTEC 2022 (James 

A Grant-Jacob, Ben Mills, Benita Mackay, Rohan Lewis, Bram Sengers. “Modelling of 3D 

Placental Cell Features using Deep Learning”.) For more information please contact Ben 

Mills (bm602@orc.soton.ac.uk). 

8.5 RESEARCH CAVEATS 

While the research undertaken throughout this project has potential in future application of 

DNNs across many areas, the scope of specific results are less broad. Less than two thousand 

images from three placenta SBFSEM stacks were used for the training and testing of cell 

labelling. Training on additional materials would be required for cell labelling to be achieved 

in other 3D imaging techniques. Similarly, the modelling of stem cells was accurate on a 

mailto:bm602@orc.soton.ac.uk
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system of one topographical material laser-machined by a single laser set-up, but results for 

stem cell prediction on, for example, titanium would require additional training materials 

beyond the roughly two hundred used here. The system for predicting biocompatibility is 

limited in the same way by the low quantity of images within the training dataset. Each of 

these networks would likely not produce such impressive outputs when provided inputs from 

different data sources (until they are trained further on datasets with greater variation and a 

larger number of feature combinations).  

8.6 FINAL CONCLUSION 

DNNs were capable of labelling, modelling, and predicting cell biocompatibility. This can 

lead to increases in efficiency of 3D-image processing, which could help researchers analyse 

how cellular and acellular structures in placental tissue affects lifelong health. DNNs may 

also potentially help increase understanding of stem cell behaviour through accurate 

modelling of stem cell response to biophysical and biochemical cues, which may also lead to 

a reduction in animal testing. If this research is progressed, DNN application to regenerative 

medicine could one day help reduce levels of chronic poor health in later life.
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APPENDIX 

STRO-1 ISOLATION METHOD AND PROTOCOL 

The procedure, step by step, of isolating Stro-1 positive antibody cells from bone marrow. 

Bone Marrow Cell Isolation Passage 0 (P0) – 1 hour 

• Remove marrow tubes from the fridge 

o Label any tubes with ALL marrow sample details and date 

• Open marrow tube and spare universals 

o Pipette 5-7 mL of αMEM into marrow tube and shake vigorously 

▪ Tubes don’t have a proper seal on them. Wrap up well with tissue when 

shaking 

o Transfer liquid into universal 

o Repeat several times, using small pipettes to crunch the bone if needed. 

Continue until bone chips are pinky white 

o Discard remaining marrow into virkon 

▪ Add virkon to tube and discard in blue box 

• Centrifuge tube at 1200rpm (400G) for 5 minutes 

• Carefully discard supernatant and fat into virkon without risking the pellet 

• Wash the cells in αMEM 

o Wash 1 

▪ Re-suspend pellet in 10-20 mL of αMEM  

▪ Centrifuge tube at 1200rpm for 5 minutes 

▪ Discard supernatant and fat (carefully) 

o Wash 2 

▪ Repeat 

• Re-suspend the pellet in 25 mL of αMEM per intended Lymphoprep 

o If sample too blood rich than separation will not work 

o For dense samples re-suspend the pellet in 50 mL of αMEM and prepare two 

tubes of Lymphoprep after straining 

• Filter the cell suspension through a cell strainer 
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o Open the cell strainer and HOLD BY THE EDGE 

o Place on top of new 50 mL tube 

o Pipette cell suspension through strainer, gently scraping bottom of filter to 

prevent clogging 

▪ Safest to pastette by hand and slowly. Splashback is likely otherwise. 

 

Lymphoprep with Human Marrow Cells – 2 hours 

• Pipette 20 mL Lymphoprep into a freshly labelled tube 

o 20 mL of Lymphoprep per 10 mL of cell suspension 

o If have large bloody sample/lots of cells, dilute cell suspension up to 20 mL and 

split into 2 tubes and maintain above ratio 

• Using a 3 mL disposable pastette, tilt the tube, slowly and gently layer the cell 

suspension over the surface on the Lymphoprep and DO NOT RUSH 

o Build up a layer of cell suspension on top of Lymphoprep by holding the pastette 

close to the side of the tube and releasing a slow stream of the cell suspension 

down the side of the tube. 

• Centrifuge at 2200rpm (800G) for 20 minutes at 18˚C with the brake off. 

o This will take 40 minutes – 20 minutes spinning and 20 minutes slowing down 

to a stop 

o At the end of the spinning there should be a distinct layer of media at the top 

and then the BMMC (Bone Marrow Mononuclear Cells) layer beneath at 

interface with Lymphoprep 

▪ Called the “buffy coat”. Red blood cells and other granulocytes will be 

pelleted at the bottom. 

• Use pastette to carefully remove all cells from the interface “buffy coat” layer and 

transfer to a new tube. Try not to take the Lymphoprep – taking media is better. 

• Make up to 50 mL with αMEM to wash and pellet the cells 

o Wash 1 

▪ Centrifuge tube at 1200rpm for 4 minutes 

▪ Carefully discard supernatant into virkon 

▪ Re-suspend the pellet in 50 mL of αMEM 

o Wash 2 

▪ Centrifuge tube at 1200rpm for 4 minutes 



Appendix 

179 

 

▪ Pour off supernatant into virkon 

 

MACS (Magnetically Activated Cell Sorting) Stro-1 Isolation – over 2 hours 

• Re-suspend in 2 mL of MACS Blocking Buffer 

• Incubate for 30 minutes at 4˚C 

o MIX REGULARLY or use the rocker in the cold room 

o Get a tube of Stro-1-hybridoma supernatant 

▪ Collect from -80˚C freezer and thaw in fridge 

▪ Sign out number of vials used in the black folder (top drawer next to the 

sink) 

• Take tube from the fridge and make up to 10 mL with MACS buffer (chilled) 

o Remember to put MACS buffer back into fridge during incubations 

o Centrifuge at 1200rpm for 5 minutes 

• Re-suspend in 0.5 mL aliquot of Stro-1-hybridoma supernatant (use neat) 

• Incubate for 30 minutes at 4˚C (mix regularly) 

• Take tube from the fridge and wash the cells three times with MACS buffer (chilled) 

o Add <20 mL of MACS buffer 

o Wash 1 

▪ Centrifuge tube at 1200rpm for 5 minutes 

▪ Carefully discard supernatant into virkon 

▪ Add <20 mL of MACS buffer 

o Wash 2 

▪ Centrifuge tube at 1200rpm for 5 minutes 

▪ Carefully discard supernatant into virkon 

▪ Re-suspend the pellet in 5 mL MACS buffer 

o Cell Count for determination of number of MACS IgM microbeads required  

▪ Dilute small volume from cell suspension in a microfuge tube (25x or 

50x) 

▪ Mix 1:1 with Trypan Blue 

▪ Count cells 
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o Wash 3 

▪ Add <20 mL of MACS buffer 

▪ Centrifuge at 1200rpm for 5 minutes 

▪ Discard supernatant in virkon 

• Re-suspend in appropriate volumes of MACS Rat a-mouse IgM Microbeads and 

MACS buffer based on the cell count: 

o 80µL per 107 cells of MACS buffer. 

o 20µL per 107 cells of MACS Rat a-mouse IgM Microbeads 

▪ 200µL of MACS Rat a-mouse IgM Microbeads is the maximum that can 

be used for 1 column, for higher cells numbers divide accordingly. 

• Incubate in the Microbeads for 15 minutes at 4˚C (mix regularly) 

o Collect the Magnet stand and columns and spray into hood ready 

• Wash the cells three times with MACS buffer (chilled) 

o Wash 1 

▪ Add <20 mL of MACS buffer 

▪ Centrifuge tube at 1200rpm for 5 minutes 

▪ Carefully discard supernatant into virkon 

o Wash 2 

▪ Repeat 

o Wash 3 

▪ Repeat 

• Re-suspend pellet in 2 mL MACS buffer (use 4 mL for 2x108 cells) 

 

MACS Magnetic Separation – over 1 hour 

• Remove the column and place in magnetic holder, push to secure into bracket. 

o Leave the plunger in the sterile packet until required in the last step 

• Label universal tubes with the marrow ID and (-) and (+). Place the (-) tube in a rack 

underneath the columns to catch liquid that drips through 

• Add 3 mL MACS buffer to wet the column 

o Let it drip through until the level reaches the top of the black  
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• Add 2 mL cell suspension to the column with a pastette 

o Drip slowly and avoid bubbles 

• Add 3 x 3 mL of MACS buffer to wash out all (-) cells into collecting tube 

o Remove (-) tube 

• Remove the column from the bracket and place in (+) tube 

• Add 5 mL MACS buffer to the column 

• Place plunger at top of tube and press down firmly and swiftly to push (+) cells out 

• Wash twice in plain αMEM 

o Wash 1 

▪ Add <20 mL of αMEM 

▪ Centrifuge at 1200rpm for 5 minutes 

▪ Discard supernatant in virkon 

o Cell Count 

▪ Resuspend pellet in 5 mL MACS buffer 

▪ Mix ie 10 µL 1:1 with Trypan Blue in microfuge tube 

o Wash 2 

▪ Add <20 mL of αMEM 

▪ Centrifuge at 1200 rpm for 5 minutes 

▪ Discard supernatant in virkon 

• Re-suspend in COMPLETE αMEM (+ 10% FCS + 1% P/S) and seed into 12 well plate 

o Additional 1 mL of FCS always helps 

o If cell count too sparse seed into flask as they will not grow (not everything will 

stick down) 

▪ Leave in culture for 1 week before washing with PBS and changing the 

media 

• Incubate cells under normal conditions (37˚C, 5% CO2) for minimum three days 

Change the media and transfer to machined substrate when approaching confluence.   
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