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The Use of Machine Learning Techniques for the Optimisation of Experimental

Laser Machining Processes

by Michael David Tom McDonnell

In recent decades, laser machining has transformed manufacturing. Pulsed laser
machining, using short and ultra-short pulse durations, has become a standard
technique for the fabrication of features on micro and nano scales. At these power and
length scales, many interesting non-linear effects occur, making accurate modelling of
these processes challenging without introducing simplifications and assumptions.
This thesis presents an alternative to traditional modelling techniques, namely using
machine learning, in addition to predictive regression, full experimental modelling is

conducted.

A broad set of machine learning techniques has been applied to the field of laser
machining. This includes both analytical and generative modelling techniques,
showing that neural networks can achieve very high levels of accuracy. These
techniques are also extended to situations that would be impossible to model, where
knowledge of the system is very limited. In these situations, the presented methods

were still able to achieve high accuracy and be used for data optimisation tasks.

In addition, generative methods are applied for the prediction of depth profiles from a
variety of machining parameters. It is also shown that generative networks could

complement the experimental process by reproducing the results found. This presents
opportunities both for increased levels of data collection and for easy presentation and

investigation of new ideas before committing to a full experimental process.
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Chapter 1

Introduction

Laser machining is a non-contact material removal technique achieved through
light-matter interactions between a laser and a sample. In general, the incident laser
beam heats the target as energy is absorbed, causing melting, ablation and
vaporisation of the material. A certain type of laser, pulsed lasers, will be investigated
throughout this report with a focus on ultra-short pulse lasers. These are typically
lasers with a pulse duration of at most tens of picoseconds, and typically hundreds of
femtoseconds. For this reason, ultra-short pulse lasers will be referred to as

femtosecond (FS) lasers.

Machine learning is a subsection of artificial intelligence where a computer is trained
to be able to complete a specific task without explicit programming. This can be done
by providing the computer data, a way to create similar data, and a way to quantify its
success in the creation process. This report will focus on the use of supervised
learning where explicit inputs and outputs are provided, with the output of the
algorithm compared directly to the desired output.

The objective of this project is to develop a methodology that will lead to an
improvement of laser machining processes. The hypothesis is that this will be
achieved by utilising machine learning, with an emphasis on generative neural
networks. These improvements will focus on increasing the efficiency of material
removal, decreasing the minimum possible feature size, and making the outcome of

laser machining more closely resemble the desired outcome.

1.1 Motivation

Laser machining is important for industry, from the fast cutting of continuous wave
lasers to the high precision offered by FS lasers. However, laser machining, especially

for ultra-short pulses, is an extremely complex process. Modelling and simulation of
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the process are important to understand how to optimise the parameters used,
otherwise a guided but systematic search is often required. This is time-consuming
and requires expertise in the field and familiarity with the system. Existing modelling
approaches, based on fundamental physics, do not scale up to useful sizes, as the
number of interactions takes too much computer processing. Rather than starting with
the underlying physics, the data generated from machining can be used directly to
model and predict the entire process.

1.2 Prior Art

As the laser machining process can be complex to model many research groups have
started to investigate how machine learning techniques can be used to assist the
experimental and development processes. All throughout industry and academia
these techniques have been used to enhance processes that are hard to simulate or
predict.

Within laser machining, artificial neural networks have been used extensively since
the early 2000s to perform task such as predicting machining parameters Casalino
et al. (2017); Campanelli et al. (2013); Yousef et al. (2003); Jeng et al. (2000); Casalino
and Ludovico (2002) and predicting the outcome of the machining process Yousef
et al. (2003); Zhang et al. (2005); Cheng and Lin (2000); Chang and Na (2001).

While some machine learning techniques have been employed for a long time, an area
of massive growth is the use of deep learning for many aspects of industry in general.
One of the biggest improvements allowed through deep learning is the introduction of
2-dimensional data into the prediction process, a key step in tasks such as the
real-time monitoring of beam aberrations Mills et al. (2019a) and preventing over
machining Xie et al. (2019).

Deep learning techniques can also be used outside of monitoring tasks, allowing for
highly detailed predictions such as predicting hardness distribution for heat-treated
steel when machined with a 2kW laser Oh and Ki (2019). Outside of laser machining
of metals, neural networks have been used across industries such as being used to
control optical tweezers Praeger et al. (2021).

While deep learning has seen a lot of activity, generative modelling is a much smaller
tield. Examples of where it has been used within the laser industry include predicting
the appearance of dough when browned with a CO, laser Chen et al. (2019) and
prediction of microstructure formation that occurs during sintering of alumina Tang
et al. (2021). Within the category of laser machining initial work has been conducted
on the visualisation of machining with fibre lasers Courtier et al. (2021b,a) along with
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predicting the results of machining with shaped pulses Heath et al. (2018b); Mills et al.
(2018).

As the work completed in this thesis covers a range of topics, a separate literature
review has been conducted in each chapter where relevant to ensure that the concepts
discussed are understood prior to reading. For an in-depth overview of the use of

machine learning across the laser machining industry, consult Mills and Grant-Jacob
(2021).

1.3 Thesis Outline

This report covers a range of both experimental and computational techniques which
will be discussed in detail in the relevant chapters.

An overview of the fundamental physics of lasers and their uses is given in Chapter 2,
where both theory and equipment are discussed. Along with this, analytical methods
(i.e. from fundamental physical equations) to simulate the effects of laser-material
interactions are explored and the associated challenges presented.

The other major focus of the report is machine learning and its application to
experimental research. An introduction to this area is covered in Chapter 3 where
several techniques for a range of applications are explored. Along with mathematical
and component descriptions of the techniques, there is a particular focus on the types
of networks that are employed later in the report.

Neural networks have been used since 1993 Té6th et al. (1993) to predict the results of
laser machining and optimise laser parameters. This idea is extended in Chapter 4 to
include multiple parameters over a wide range along with experiment modelling. A
selection of analytical and generative techniques are explored and their relative
strength is presented. This chapter presents work completed in McDonnell et al.
(2021a).

Chapter 5 explores two highly related pieces of work. The first represents a significant
advance on previous work aimed at predicting the effects of shaped laser pulses using
generative neural networks. This chapter focuses on extending the prediction abilities
to a sequence of up to 3 pulses (from a known initial condition) while maintaining
accuracy. This network is then used to simulate an experimental environment used to
train a separate network designed to perform the inverse transformation. This
network implements a novel training strategy as well as presents the possibilities of
simulated experimental environments. This chapter presents work completed in
McDonnell et al. (2020) and McDonnell et al. (2021b).
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In many situations, teams will work together, both in academia and in industry, and
not all participants will have full access to the data collection processes. This problem
is investigated in Chapter 6 where the experiment is treated as a black box and details
of the data are kept hidden. Along with presenting that networks can be trained
without any prior information about the data and still perform well, optimisation

tasks aligned with typical practices are explored.

The final chapter of the thesis, Chapter 7, summarises the findings from all of the
preceding experimental chapters. In addition to this, key areas for progress are
identified and the potential next steps are presented.



Chapter 2
Pulsed Laser Machining

This chapter will discuss the use of, and some of the physics behind, lasers and laser
machining. This will include some underlying theory describing the different effects
seen with different types of lasers and explaining why they might be used. As there is
a large focus in this thesis on machining with ultra-short pulses, methods that are
involved in generating them, such as mode-locking and chirped pulse amplification
(CPA), will be explored.

2.1 The use of Lasers in Machining

Lasers are becoming an increasingly popular option for material processing, and the
laser industry was valued at $17.48 billion in 2021 with expectations of its continued
growth noa. Lasers are used throughout a huge range of industries, ranging from
those that need massive power and high throughput, such as welding and cutting Cao
et al. (2003, 2006); Choudhury and Shirley (2010); Schuocker (1989), to those which
involve much finer control, such as surface texturing Arnaldo et al. (2018); Riveiro

et al. (2018); Voevodin and Zabinski (2006); Ryk et al. (2002). Lasers that produce a
constant beam are referred to as Continuous Wave (CW) lasers and are often used
when the process requires a large amount of total energy. Some of the most common
forms of lasers used for this are gas lasers, such as CO; lasers, many operating at
powers of up to 15kW Nath et al. (2005). Another type of laser that is often used in
these high-energy applications is fibre lasers, capable of powers of up to 100 kW
Shcherbakov et al. (2013). CW lasers are used for these processes as they can reach
much higher average powers than pulsed, and especially short-pulse, lasers. Lasers
are used in industry as they offer a non-contact, therefore little to no wear, machining
option that provides consistent results while only removing a minimal amount of
material. Despite this CW lasers do have limitations, they are unable to match the
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cutting depth of some other techniques, such as plasma cutting, and do not allow for
the precision allowed by pulsed lasers.

P,
P peak — s
txf rep

(2.1)

While a lot of industrial-aimed research work has revolved around increasing the
power available from lasers, applications that require precise laser control are often
needed. One type of laser where power is no longer a major limiting factor is an
ultra-short pulse laser. With ultra-short pulse lasers, the material can be removed
precisely and on very small scales assuming that the correct machining parameters are
used. Ultra-short pulse lasers are often defined as pulsed lasers, where the pulse
duration is at most tens of picoseconds Paschotta. Most systems have even shorter
pulses, with a lot of commercial systems along with the ones used in the group, having
pulse durations of hundreds of femtoseconds. Therefore, from this point onwards in
this document, ultra-short pulse lasers with pulse durations on this scale will be
referred to as femtosecond (FS) lasers. The average power from solid-state FS lasers is
often only rated at 10s of watts and the most powerful fibre lasers have reached up to
1kW while CW systems can reach 10s of kWs. Even though the average power is
much lower, their short pulse duration allows them to achieve very high peak powers.
To calculate the peak power available from a pulsed laser, Eq. 2.1 can be used. An FS
laser with average power 16 W, pulse duration 250 fs, and repetition rate of 100 kHz
will reach a peak power of 640 MW. This is much higher than the peak power that is
available from CW lasers, allowing FS lasers to machine structures at scales and on
materials not possible by other methods Heath et al. (2017); Gattass and Mazur (2008).

The two types of lasers discussed are designed to operate under different power and
energy regimes. The CW lasers are aimed at the deposition of very large amounts of
energy to be able to machine as much material as possible. This machining can come
in the form of removal via vaporisation or melting & blowing or thermal shocking due
to the extreme temperatures involved. This large amount of energy being transferred
to the sample means that the material surrounding the machined area will have large
heat-affected zones that will impact the properties of the sample. Even though the
peak power can be much higher in pulsed lasers, the total amount of energy that the
sample receives is far lower, especially when not using the full repetition rate of the
laser.

2.2 Short Pulsed Lasers

Originally thought to happen instantaneously due to an inability to measure at the
time scales involved, electrons in the sample respond rapidly (on the order of 100 as
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Hassan et al. (2016)) to the laser’s electric field, absorbing its energy. In normal
conditions each electron absorbs the energy from a single photon, becoming excited to
a higher band if the incoming photon had sufficient energy. A photon with sufficiently
high energy could excite an electron beyond the ground state, allowing it to become
detached from its original atom independent of the intensity of such photons in an
effect known as the photoelectric effect. The fact that electrons can only be emitted
once the incident light had reached a certain frequency was part of the evidence that
light could also act as particles as well as a wave. While the electron excitation speed
is still fast relative to the shortest pulsed lasers that have been made, the relaxation
time for these electrons, the time taken for them to return to their original energy state
is much longer, around 100 fs to 1 ps von der Linde et al. (1997) by emitting phonons,
quasi-particles carried by vibrations in the crystal lattice. With the advances in laser
technology, this is now very comparable with some of the shorter pulse lengths
achieved in industrial lasers. Even when the durations of the pulses are larger than the
relaxation time, the high peak energies and small beam sizes involved lead to
extremely high intensities, and therefore densities, of photons. When there are this
many photons in a small space and a short amount of time, some of the photons do
not interact with electrons at rest, but instead with ones that have already become
excited to a virtual excitement level. This allows for band gaps larger than the energy
of the individual photons to be breached. This effect is known as multi-photon
absorption and is a key player in the use of ultrashort pulse lasers. The ability of an
electron to absorb more than one photon allows the electron to be exited in a situation
where it would not normally be possible due to the individual photons being of lower
energy than the smallest band gaps. This in turn allows lasers that have high enough
intensities to be able to machine materials that would normally be transparent to the
wavelength of the laser.

2.21 Nanosecond Regime

If the duration of laser irradiance is much greater than the electron relaxation time,
then the electrons and the atomic lattice approach a state of dynamic thermal
equilibrium. This condition is the case for continuous wave or longer pulse lasers.
This effect can even be seen when moving into the nanosecond regime with lasers that
would be considered as having a short pulse duration. Nanosecond lasers at typical
powers used in industry may create the multiphoton absorption effect described
above but the majority of the energy in the pulse with be deposited into the sample.
As the electrons excited by the incoming pulse relax some of the stored energy is
passed to the surrounding atomic latice, with the rest being reemitted in the form of
photons. In the case of a nanosecond laser, the duration of the pulse is far longer than
the combined excitation and relaxation time of the electrons, each electron can become

excited multiple times, each time transferring a portion of its energy into the
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surrounding material. Due to this, and especially true at lower intensities the major
removal mechanism in nanosecond lasers is melting. Despite this, some electrons will
experience multiple photon interactions before relaxation and so will become ejected
from the surface. This will lead to some of the material becoming ionised and
violently ejected. This rapid expansion of the material, combined with the melting of
the material from heating causes both high removal rates along with unclean
machining. Holes made with lasers with nanosecond length pulses are often
surrounded by a crown of raised material, formed of solidified molten slag, and

exhibit large amounts of debris.

2.2.2 Femtosecond Regime

When an electron is emitted from the sample, the energy that it absorbed is also lost
from it. This means that even though large amounts of energy are deposited into the
sample in very short time frames from a femtosecond laser, there is less thermal
damage than can be found with lasers that have lower peak energy but a longer pulse.
This escaped electron also leads to the final sample being ionised as it has lost a
negatively charged particle. This ionised material is then quickly repelled by the
surrounding material, causing it to be vaporised and expelled as plasma. This
expelling of material further acts to dissipate the energy of the original photons,
reducing the temperature increase experienced by the sample. If the peak power of
the laser is high enough, and therefore has a higher intensity at the same spot size,
large amounts of material will be ionised, vaporising it and expelling it in a mixture of
plasma and other species in a process called ablation. This is one of the main

advantages of using an ultra-short pulsed laser.

The lack of heat transfer arising from femtosecond pulses gives rise to another feature
of their use. In CW lasers, and those with pulse durations of at least nanoseconds the
heat build-up will be significant. This heat transference can be limited to avoid
thermal damage and melting to the sample, in these situations it will also be true that
little machining will occur. Even when intensities are increased for nanosecond lasers
to the point that ablation will occur, the length of the pulse will mean that thermal
equilibrium will be reached more rapidly and extensive heat damage be present. In
contrast to this, when machining with a femtosecond laser at low intensities, there will
be very limited impact on the sample. There will be some heat transfer from the
relaxation of electrons, but the sample will be far from thermal equilibrium, especially
if the repetition rate of the laser is kept low. This leads to the existence of the ablation
threshold for materials, below which the intensity of laser will be insufficient to
induce multiphoton absorption, and as such the ionisation of material required for
ablation will not take place.
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When using a laser to precisely machine a material via ablation, it is important to use a
peak power that is only slightly above the ablation threshold of the material. This acts
to improve the quality of the machined feature since too high a power would likely
lead to a crown of molten material around the feature. It will also reduce the
ionisation of the surrounding medium to a minimum. As opposed to the other two
effects discussed (melting and ionisation of the sample), ionisation of the surrounding
medium does not contribute to material removal. In contrast, this effect is detrimental
to the laser machining process and should be avoided. This effect occurs when the
intensity of the beam within the focus causes multiphoton interactions with the
surrounding medium. This leads to scattering of the beam and decreases the fluence

on the surface, reducing the resulting machining quality.

2.3 Generating Ultra-short Pulses

Reaching this point in the creation of pulsed lasers has been a long process. In this
section, some of the techniques that are used to produce short pulses will be
discussed. Along with this, some of the theories that underpin the generation of these

pulses will be explored.

2.3.1 Mode Locking

2L -
A =2t w, i-c

= - 2.2
i 2nL (2.2)

One of the major components of a laser is the cavity which comprises a series of
mirrors designed to reflect light and set up a series of standing waves. Due to the
formation of these standing waves, the laser cavity can also be referred to as a laser
resonator. Within the laser resonator, many longitudinal modes will form, with the
number and size dependent on the cavity length of the laser. Each standing wave will
have a possible wavelength and frequency found by applying Eq. 2.2 where L is the
cavity length and 7 is the refractive index of the cavity. This equation can then be used
to calculate the frequency separation between adjacent modes as shown in Eq. 2.3.

c

L (2.3)

Aw = wit1 —wj =
On their own, the existence of standing waves does not contribute to the production of
a laser pulse, however, when superimposed they can combine to form a beat. This is
achieved by having a fixed phase relationship between the different modes, the more
correlated they are the stronger and more defined the beat will be. The effect of
superposition with both fixed and random phase relationships can be seen in Fig. 2.1
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where each sine wave represents a standing wave frozen in time within the cavity.
While these waves all oscillate around zero, they have been shifted in this figure to
provide more clarity on what is occurring. The top two lines (orange and blue)
represent different possible modes, while the other two (red and green) each represent
a superposition of many modes. The lower line (green) shows the effect of
superposition when the modes have a constant phase relationship, while in the other
(red) the phase relationship is random.

—— Single Mode
3 Single Mode

Interference with random
27 phase relationships

Interference with constant

1 phase relationships
0 . A
_1 -
T T T
0.0 2.5 5.0

T T T T T
7.5 100 125 150 175
Space (arbitrary units)

Electric Field (arbitrary units)

FIGURE 2.1: The effect of phase relationship on laser pulse train. The top two waves

represent a single frequency each. The next wave represents a combination of 20 fre-

quencies with a random p[hase relationship. The bottom wave represents the interfer-
ence pattern from 20 frequencies with a constant phase relationship.].

As can be seen in Fig. 2.1 the existence of any single standing wave will never cause a
beat to occur, to form a pulse the light must consist of multiple wavelengths, as
without it there can be no constructive interference of multiple modes. The maximum
number of modes that can contribute to lasing within each laser is determined by
combining the mode spacing, the frequency dependency of the gain material used,
and the laser threshold. The breadth of possible frequencies found in the resultant
output is known as the bandwidth of the laser.

Even though many modes may be present within the laser cavity,m not all will be able
to contribute to the final produced pulse. Only those frequencies that are able to
achieve a net round trip gain after passing the amplification medium will contribute
to lasing and this effect can be seen in Fig. 2.2. The minimum achievable pulse
duration for a given bandwidth is determined by the Time-Bandwidth Product (TBP)
which itself is dependent on the temporal shape of the wave. The TBP is calculated
using a Fourier transform of the spectral components, and for a Gaussian wave has a
value of 0.441. The value of the TBP can then be combined with the bandwidth to give
a minimum value for the pulse duration as shown in Eq. 2.4 where T, is the
minimum pulse duration and v is the bandwidth in hertz. As can be seen, a laser with
a higher bandwidth will have a lower minimum pulse duration, agreeing with the

example shown in Fig. 2.1.
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FIGURE 2.2: Demonstrating how individual frequency modes with intensities high

enough to induce lasing can contribute to pulse production. Those where the gain is

above the lasing threshold will contribute to lasing while those outside this region will
not.
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In order to ensure that the constant phase relationship can be achieved and
maintained a technique called mode-locking is used. Mode-locking can either be
caused by an active or passive method, depending on the type of laser and the pulse
durations involved. Active mode-locking is generally used with pulses of picosecond
or longer durations and involves modulating the resonator loss in order to control the
leaking of radiation. The modulators often take the form of an electro-optic or
acusto-optic modulator, which works by adjusting the optical losses of the modulator
at a prescribed frequency, such that any pulse that arrives while the losses are low will
be favoured. On each pass, each part of the pulse that does not arrive at the minima
loss position will be attenuated, further acting to shorten the pulse. This effect has to
work in opposition to effects which act to lengthen the pulse, such as chromatic
dispersion, and can produce pulses with length in the order of picoseconds.

In order to produce pulses of sub picosecond durations, an alternative form of
mode-locking, passive mode-locking, must be used. Passive mode-locking can either
be achieved with a saturable absorber or via making use of the Kerr lensing effect. In
both cases, the aim is to achieve a variable loss characteristic within the modulator
dependent on the incoming optical intensity, decreasing with higher intensities. This
produces the same effect as manually adjusting the loss of the modulator, but can be
achieved much more quickly, and without the requirement for precise controls.
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Passive mode-locking acts on a survival of the fittest basis, where those pulses that
have the highest phase coherency, and therefore the highest intensity, are promoted
while those that are out of phases are not. This effect self propagates and is an
automated process, decreasing the complexity of the system as no timing electronics

or precise controls are needed.

When using a saturable absorber, its parameters are chosen so that it can balance with
the gain medium used. This is done by choosing a saturable absorber with a loss
normally greater than the energy increase through the gain medium. This means that
in normal operation, any light simply passing through both would eventually be
dissipated. However, when a spontaneously generated pulse reaches the saturable
absorber the higher intensity of the pulse reduces the loss of the absorber, allowing the
pulse to receive a net gain during the cavity round trip from the gain medium. This
configuration has the added benefit of any unwanted radiation being eliminated due
to the loss from the saturable absorber exceeding the increase from the gain medium.
While the process of changing dissipation characteristics is fast, it is not instantaneous.
This reaction time also acts to shorten the pulse duration as the leading edge is slowed
more, counteracting some of the effects of dispersion from the gain medium. Along
with the time taken for the loss to reduce, there will also be a relaxation time where

the loss increases again after a period of high intensity.

Aperture
\ Gain Medium
High Intensity Pulse
Low Intensity CW

FIGURE 2.3: Kerr lens mode-locking using the Kerr effect from the gain medium to
focus thehigh-intensityy radiation and an aperture to clip and remove background
energy.

Another method of passive mode-locking is achieved with the use of the Kerr effect as
described in Appendix B, and an example setup can be seen in Fig. 2.3. When the
incident beam has a Gaussian profile it will tend to self-focus, loss reduction being
greatest when the light itself has a large intensity, at the centre, when passing through
the gain medium. This means that the main pulse of interest will become more
focused than any background radiation. This can then be combined with a physical
aperture that cuts off more of the less focused, low-intensity light than the more
focused pulse. This leads to a similar effect as found with the use of a saturable
absorber and promotes the amplification of the pulse. One of the major differences
between using a saturable absorber and a system that takes advantage of the Kerr
effect is the response time of the focusing material. The Kerr effect occurs on a much
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shorter time frame than the response from a saturable absorber. While this does allow
for the potential of a much shorter pulse, the inability to slow the front of the wave
means that Kerr lens mode-locking lasers are often not self-starting. Instead, these
lasers require a physical perturbation, such as nudging a mirror, to be added manually
before the mode-locking process will begin.

2.3.2 Chirped Pulse Amplification

One of the key features of femtosecond lasers is the high peak powers they can
produce. While this is useful to their ability to remove material on a target sample, the
high intensities can also cause issues within the laser. The gain material was often a
major limiting factor in the system when it comes to the peak power of the laser as it
would become damaged at these very high intensities. To avoid this, a way to reduce
the peak power through the gain material, while not affecting the overall peak power
available to the system, is required. In ultra-short pulse lasers, this is achieved by
varying the duration of the pulse through various steps. The duration of the pulse can
be increased when passing through the gain material, decreasing the chance of
damage, and then finally reduce the duration again once the desired power has been
achieved. An example of this can be seen in Fig. 2.4 where the pulse is stretched before

passing through the gain medium before being compressed again afterwards.

Stretcher Amplifier Compressor

- - - - - -

FIGURE 2.4: Pulse stretching and amplification. The laser pulse is stretched by tempo-

rally separating the frequencies before passing through the amplifier. Once the pulse

has been amplified sufficiently the frequencies are recombined and the pulse is com-
pressed.

In lasers that operate in the femtosecond regime, a common technique to achieve this
shortening and lengthening is to use chirped pulse amplification (CPA). A chirped
pulse is one where the frequency of the wave varies throughout the pulse temporally
and can be used interchangeably with the term sweep signal. A chirped pulse can
either be up-chirped, where the frequency increases throughout the pulse, or
down-chirped, where the frequency decreases over the pulse in time. The effect of
pulse chirping is similar to that of group velocity dispersion found in dispersive
media such as glass with a wavelength-dependent refractive index. In this effect, the
longer wavelengths will tend to be slowed more than the shorter wavelength parts of
the pulse. The idea of chirped amplification was first proposed to solve a very
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different problem, overcoming the power limitations of radar systems Strickland and
Mourou (1985) and was recognised with the award of the 2018 Nobel prize for physics.

CPA is a method of stretching out the pulse, while still allowing it to be compressed
with little loss. The two major components of CPA are the stretcher and compressor
which allow the chirping to take place. As discussed before, creating a pulsed laser is
dependent on the existence of different wavelengths in the pulse. This also holds for
CPA, where there must be different wavelengths present to allow for parts of the wave
to be slowed by differing amounts. In a grating-based system, this is achieved via the
use of diffraction to angularly disperse the various wavelengths within the pulse.
Once dispersed, each wavelength will travel along a unique path, each with a different
path length. By delaying components of the pulse with different wavelengths by
differing amounts, it is possible to stretch the overall duration of the pulse envelope.

2d sinf = nA (2.5)

The stretcher and especially the compressor are often formed using diffractive
gratings, rather than dispersive media, due to the same concerns that affect the gain
material such as damage from high intensities and beam stretching. When chirping,
the beam will pass through several passes of stretching and amplifying, before finally
going through similar passes in the compressor. By utilising a method of multiple
passes through the compressor, fine control can be achieved over the final duration of
the pulse, leaving all other characteristics unchanged as the amplification process has
already been undertaken, although a pulse that is not fully compressed will exhibit a
temporal frequency sweep. As the total intensity must be kept low to avoid damage to
the gain medium, dispersive media can be used within the stretcher. According to
Bragg’s law (Eq. 2.5), when electromagnetic (EM) waves are incident upon a grating it
is the wavelength that determines the angle through which the beam is deflected.
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FIGURE 2.5: Chirping device examples.
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One typical design for a chirping device is a pair of gratings set to pass the beam path
in a Z shape with a mirror to retro-reflect the beam and return it to a collimated state
as shown in Fig. 2.5a. This effect can also be achieved with a single grating and
additional mirrors, reflecting the beam of the single grating 4 times. This is harder to
set up though and loses a very simple method of tuning the amount of chirping. This
is accomplished by changing the separation between the gratings. As this process can
only cause negative chirping it is almost always used as the compressor, requiring
another setup to be used for the stretcher.

One example of a more complex setup is shown in Fig. 2.5b uses two gratings and a
mirror at the end, where the angles of the gratings are mirrored about their centre. An
additional two lenses are required, positioned between the gratings. This is a far more
adaptive setup and can be used to either positively or negatively chirp the pulse; a
distance (L) of less than the focal length of the lens (f) between the lenses and their
respective gratings will give a positive chirp. If L is greater than f a negative chirp
will be applied, if L is equal to f then no chirp is applied.

The main limitation of this setup, and why it is generally not used for compression, is
the inclusion of the optical elements. These suffer the same issues as the gain medium
and have the potential to be damaged by the high peak intensities found in the final
pulse. Therefore, the two-grating setup is used for the compressor when these
intensities are likely to be found. However, this is not an issue before the amplification
of the pulse when it is stretched. This can only lower the peak intensity passing
through the material, as can be seen in Fig. 2.4.

2.4 Modelling Pulsed Laser Machining

To predict the effects of laser ablation is a complex subject. In this section, a method
called the two-temperature model will be explored. Although there is only one
approach discussed here, there are a wealth of other methods which are beyond the
scope of this report to cover. This section is purely intended to highlight some of the
complexities involved with attempting to fully model the machining process that
takes place. The focus here is on pulses on the order of 100s of femtoseconds as that is
the range of pulse length used directly in the experiments discussed later in this
thesis. For further information, the book "3D Laser Microfabrication” Misawa and
Juodkazis (2010) should be consulted.

24.1 Two-Temperature Model

One of the most common techniques for simulating laser machining on these time

scales is the Two-Temperature Model (TTM) which has been often used to describe the
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effects of laser irradiation Zhang et al. (2015); Jiang and Tsai (2004); Fang et al. (2010);
Dong et al. (2019). Similarly to previous discussions, in the TTM, the interaction
between a laser pulse and the target material is understood to occur in the form of
electron excitation via photon absorption. Heat is then transferred to the lattice
through electron-phonon collisions. Due to the large difference between the electron
and lattice vibration’s momentum, the interactions between these two systems take
place on the order of a few picoseconds. When a laser pulse is much shorter than the
thermal relaxation time, the lattice is not able to reach thermal equilibrium with the
electron gas and so the excited electrons will be at a much higher temperature than the
lattice. This means that the electrons and the lattice can be considered as two
connected systems, and these can be represented as a pair of coupled differential
equations. Despite the two systems each being at different temperatures, each
individual is assumed to have a well-defined local temperature and be at a state of
dynamic equilibrium. The equations in this section represent a simplification of the
TTM referred to as the parabolic TTM and are taken from Zhang et al. (2015).

C, - (a;;f) = —A-(=kAT,) —G(T, - T)) + Q (2.6)
(0Ty) _
C - =G(T.-T) (2.7)

These differential equations can be solved using the finite difference method, taking
small steps in time. In the equations C represents the heat capacity, T is the
temperature, k is the thermal conductivity, and G is the electron-phonon coupling. The
subscript e and [ relate to the electron and lattice respectively. While the
electron-phonon coupling factor does depend on the electron temperature, it was
shown by Fang et. al. Fang et al. (2010) that for metals such as aluminium it remained
approximately constant at temperatures below 1000 K. The heat capacity of the
electrons is also dependent on the temperature of the electron lattice, with an
approximately linear relationship. The thermal conductivity of the electrons is instead
dependent on both the lattice and electron temperatures, being proportional to that of
the electrons, and inversely proportional to the temperature of the lattice. It can also
be seen that the equivalent heat transfer term from the lattice heat equation has been
ignored. This is due to the heat transfer in the lattice occurring on a timescale at least

two orders of magnitude slower than that of the electrons in the model.

Q(x,v,2,1) = S(x,y,2) - T(1) 2.38)
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The properties S and T represent the spatial power distribution of the laser and the
temporal evolution of the pulse. In the equations, R is the reflectance of the material, ¢
and ¢, represent the optical and ballistic skin depth, w and w represent the beam
diameter and beam waist, and ¢, is the pulse duration. In this example, the pulse is
assumed to be a focused pulse with a Gaussian profile both spatially and temporally.
Material is assumed to be removed when the lattice temperature reaches 90% of the
critical temperature as described in reference Zhang et al. (2015). When applied over
multiple pulses, the relative times that the pulses are interacting with the sample are
very short. To resolve this it is often optimal to implement a variable time step that has
a high resolution for the duration of the pulse. When the laser intensity is removed the
Q term is zero and the calculations become simpler. The advantage of maintaining
calculation during this time gap is that it allows for the sample to retain heat build-up

in the lattice that can influence the results of future machining.

2
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One major limitation of the implementation of the two-temperature model shown
here is that the material removed with each pulse is not taken into consideration.
Improvements have been made over some previous methods by taking into account
the focus of the laser. This means that various focal positions could be considered as
well as ensuring that machining does not continue for an arbitrary distance. Despite
this, there is still no calculation of the impact of the pulse not being absorbed by the
material it is calculated to have passed through. This means, that while a single pulse
may be accurate, subsequent pulses will become less accurate due to the additional
predicted attenuation from material that is no longer present. There are methods to
avoid this and an example of one such method will be discussed in the next section.
Even with this taken into account, there are still many factors that are hard or almost
impossible to include in whichever model is used. Calculations of these methods are
highly dependent on a good knowledge of the material being machined and are often
designed for static systems that assume the sample is perfectly normal to the beam,
although some works have tried to solve this Dasallas and Garcia (2018).

Beyond simple environmental challenges, many assumptions are still needed, and

system peculiarities are not taken into account such as non-uniformity within the
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beam and aberrations caused by interactions with optical elements. Further to this,
there are other methods that can be used to simulate the material removal and
improve the accuracy of the model including ray tracing Otto et al. (2012) and
deformable meshes Dong et al. (2019).

2.5 Conclusions

The generation and underlying theory behind the generation of short and ultra-short
pulses is a complex topic that has seen much research. Despite this, it has been a very
beneficial area of research due to the potential lasers operating in these regimes offer.
The peak powers found in these lasers mean that areas of machining are possible that
would either be unfeasible with CW lasers, or would cause extreme surplus damage
to the sample in question. Even though nanosecond laser machining produces less
clean results than found with a femtosecond laser, they still offer more precise

machining than many other potions.

The modelling of how these pulses interact with a material is a very complex subject
and goes far beyond what was presented here. Despite this, there was already a high
level of complexity present while still containing many assumptions and

simplifications.

Additionally, the techniques explored in this chapter were entirely focused on the
femtosecond regime and are not very applicable to others without major modification.
While the basis of the TTM is still sound, the model as presented takes advantage of
the very clean machining that such short pulses achieve, with low thermal overspill
and most machining taking place via a single mechanism. Moving up to pulses with
durations on the order of nanoseconds would require many more factors to be
included in the calculations, such as the heat-affected zones, melting, and changing
conditions during the pulse itself. Despite that this simple model does not fully
capture the intricacies of femtosecond machining, with phenomena such as
laser-induced periodic structures not explored. While this has been far from a
comprehensive look into the field of computational modelling of laser machining, it
serves to provide a reference point into the relative complexities of the modelling
processes to be compared to the alternative techniques presented throughout the rest
of the thesis.
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Chapter 3
Machine Learning

Machine learning is an area of computing where the traditional approach of coding a
solution is eschewed in favour of algorithms that are designed to self-optimise. This
allows for very complex problems to be solved without the need for a designed
solution that will only work in that specific situation. Machine learning is a very broad
term that covers a lot of different techniques, each one applicable in different
situations and lots of research has gone into both making the techniques more

powerful and more efficient.

The field of machine learning has grown exponentially over the past few years, with
many factors owing to its growth and success. Three of the most important aspects to
the success of machine learning are the techniques used, the computational power
available, and the amount of data that can be used to train the networks. As machine
learning is such a broad topic, a full investigation of the field is beyond the scope of
this thesis and more information can be found in deep learning by Goodfellow et al.
Goodfellow et al. (2016). Rather than trying to cover the entire field, in this chapter, all
types of machine learning encountered within the thesis will be described. There will
be a large focus on neural networks to match their use throughout the experimental
chapters of the thesis. Alongside descriptions of the techniques themselves, there will
also be discussions on the importance of the data used within machine learning as

well as the computational requirements and restrictions involved.

3.1 Data

As machine learning is a fundamentally data-driven exercise, the data used is of vital
importance, in the quality, quantity, and how it is applied. When training a machine
learning process, the data should be separated into at least 2 sets, the training set and

the validation set. The training set is the set used while the parameters are updated
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during the training phase. This set can indicate the performance of the model, and
indeed it is what is used to update the model. However, an improvement on the
training set does not necessarily mean an improvement in the performance of the
model as it can lead to a phenomenon called memorisation or over-fitting. This
describes when the model can give very good results on the data it is trained with, but
increasingly poor results on unseen data. To get around this issue, the second set of
data should be held back for periodic assessment of the network, and this is the
validation set. This dataset should not include any data from the training set, to assess
the model’s ability to generalise. A third set of data, the test data, can be held back to
assess the performance of the final network by the developers. When a stakeholder is
involved they may hold back an additional set of data that is unseen by the
development team. This allows them to test the performance of the network with data
that the network cannot have been biased towards.

3.1.1 Data Quantity

One of the simultaneously simplest and most difficult methods for increasing the
performance of a model, and reducing the chance of over-fitting, is to increase the
amount of data used in training. For a given number of training steps using the entire
dataset, the length of training will be approximately proportional to the amount of
data used, increasing the length of training, although, with more data, fewer steps
may be required. While it is generally the case that more data leads to better
performance, this is not always the case, and the time required, and ability to collect
the data may play a large role in how much data is used. The impact of the size of the
dataset is also dependent on the task at hand, and the number of trainable parameters.
As the computational difficulty or data entanglement increases, the amount of data

required will also tend to increase

One well-known dataset often used in teaching the use of neural networks is the Iris
Flower dataset Dheeru and Graff (2017), which became a standardised test point for a
machine learning methodology referred to as support vector machines. This dataset
represents a classification problem with 4 input variables and 3 different types of
flowers to assign a sample to. As there are only a few inputs and outputs the dataset
can be quite small, using only 150 data points, while still allowing high performance
from networks. Machine learning techniques have come a long way, but examples of
more difficult tasks include the classification of images from the MNIST Deng (2012)
and CIFAR-10 Krizhevsky (2009) datasets. The classification tasks performed here not
only include a greater number of outputs but the number of inputs is increased greatly
since the images themselves are used as the basis to classify from. These two datasets
contain 60,000 and 50,000 training examples each, although, with modern techniques,
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extremely high levels of accuracy can be achieved, with state-of-the-art networks
attaining an error of 0.17% Zhao et al. (2019) on the MNIST dataset.

3.1.2 Data Quality

While there may be many machine learning techniques that would be able to complete
the tasks set before them, none can do so without data. Even more than this, every
network will only ever be as good as the data used to train it. One of the major issues
with machine learning techniques is that they are largely black box techniques,
especially as the size and complexity of the networks increase. Being a black box
technique means that there is very little ability to understand how the network is
reaching the results it does, and is therefore an empirical rather than theoretical
process. This means that a poorly designed experiment and/or dataset can have a
large impact on the validity of the results, and there can be underlying issues that

cannot be gleaned from just looking at the results.

One famous case of misinterpretation of the results from a neural network comes from
a paper designed to predict if a person was a criminal or not. This network was based
on assessing their facial features Hashemi and Hall (2020) and the validity of the
results is highly questionable. A detailed investigation into this case was produced by
Bowyer et al. Bowyer et al. (2020) where they discussed the effects of the data on the
results. In essence, the data for images of "criminals” were taken from a dataset of
mugshots, while non-criminal images were taken from a variety of other sources.
Other than the major difference in mugshots or not, there were several other
discrepancies in the images, including the format (PNG vs JPEG), greyscale

conversion process (natural vs converted) and original medium (print vs digital).

When trying to create a dataset for machine learning, there is a fine balance to achieve
between including everything you would like to train the network on and removing
human bias that can lead to artificially positive results. This is true for the training
data and especially the validation & testing data, as that is largely what is used to
assess the performance of the network, especially in generative networks. Throughout
the experiments described within this thesis, careful consideration has been given to
how best to meet both the condition of a full data spread, as well as trying to remove
the human bias. Even in cases where there are handcrafted examples in the validation
dataset, other examples also exist that are generated with the same ideals as the

training set.
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3.1.3 Data Relationships

There are two types of connections that can be used to describe sets in machine
learning, the mapping between them, and the combinations, or pairings used for

training networks.

In a general sense, a machine learning task can be thought of as a process to convert
data from one domain to another. In a mathematical sense, a domain is the complete
set of possible values that could replace a variable, for example, in machine learning, it
can refer to all possible inputs into the network. Relationships between domains for
each dataset come in different forms including one-to-one, one-to-many, and
many-to-one. In the example of neural networks, there will usually be two datasets in
different domains, one domain containing the input data from the network, and the
other containing the output data. In a one-to-one mapping, each input data item has a
corresponding output data item. An example of this is the multiplication of two prime
numbers. Each pair of primes will produce a single number, and there is no other way
to reach that number with any two other integer pairs that do not include one and
itself. Taking the product of any two numbers that include a non-prime number is an
example of a many-to-one mapping. Each pair of numbers will produce exactly one
answer, but multiple such pairs will produce that same answer. The one-to-many case
is the same as the many-to-one case but reversed, such as trying to find factor pairs of

a number.

Each of the cases described above offers differing levels of complexity, both in the
calculation and the verification, and each case will be unique with not even each
direction in a one-to-one being identical. There are also issues in the form of the
answer required, whether you want a single response or a range including as many
answers as possible. This fact is one of the key failings of generative networks called
mode collapse, where only very small variations on a single result are produced, even

from very different initial random seeds.

The other type of relationship between datasets is in how the data is paired. Pairing
does not explicitly imply exactly 2 sets of data, but rather how the inputs to the
machine learning process are mapped to the outputs. When data is paired for training
and validation, each input into the network has a corresponding output that it can be
compared to. This leads to the biggest difference between paired and unpaired
training being the losses used to quantify the effectiveness of the network. When data
is explicitly paired, the network can be classified as conditional, and great use can be
made out of comparative losses such as the Mean Absolute Error (MAE) or Mean
Squared Error (MSE). This is a very useful foundation to build on as there is a very
clear distinction between what the networks get correct and incorrect, leading to

strong derivatives with which to update the parameters of the network.
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FIGURE 3.1: Various machine learning techniques. The Linear Regression method is

being used to fit a line of best fit to data, the k Nearest Neighbour is being used to

assign a single item to a category, and the State Vector Machine is being used to define
the separation between two categories.

Unpaired data can come in a few different forms the first being where there the
dataset only contains data representing desired outputs from the network. Despite the
description of transforming data from one domain to another, this does not mean that
all data is explicitly collected. In many cases, part or all of the input to the network
will consist of a latent space, where the network itself learns how it should map
outputs to this input space. A famous example of this is StyleGAN Karras et al. (2019)
where faces were generated utilising latent space. This latent space could then be
explored, with features in the outputs being mapped to the latent space. By doing this
the final results from the network could be manipulated to show desired
characteristics. The use of latent space also allows the possibility of complex
transformations based on vector arithmetic. An example of this is taking the latent
space that would produce a man with glasses, subtracting a latent space for a man,
and adding that for a woman. The final result from this transformation will provide a
woman wearing glasses Radford et al. (2016). Some examples Chen et al. (2016) take
this even further with tricks being used to convert the latent space into a more usable
set of parameters for control over features.

3.2 Machine learning approaches

Machine learning is a broad term that refers to a subsection of artificial intelligence.
Artificial intelligence generally refers to the concept of computers acting in a way
perceived to be smart or intelligent. Machine Learning, however, is the use of
techniques for computers to complete a task without explicit programming of a
solution. ML encompasses several techniques such as k-nearest neighbour support

vector machines, linear regression, and neural networks.
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3.2.1 Regression

One of the simplest Machine Learning (ML) techniques is called regression, where the
task is for the computer to fit a line to a dataset to be able to predict missing results,
either within the current limits or to extrapolate beyond. The simplest form of
regression is a linear regression with one independent and one dependent variable. In
this situation the algorithm tries to fit a line with the equation y = mx + ¢ to the data,
shown in Fig. 3.1a, calculating a loss after each iteration to measure the success. To
calculate this loss the distance of the line from each point is taken by some method,
and the total loss is the combination of all distances. This is a very simple process
requiring little computational power, even when increasing the complexity to fit lines

with more parameters and more variables.

3.2.2 K-Nearest Neighbour

The k-Nearest Neighbour (kNN) technique was a method of machine learning and
was first proposed in 1951 Fix and Hodges (1951) and is often used in classification.
The premise of the kNN algorithm is that each data point is represented by a vector,
with similar data points being contained within an area of the vector space. An initial
set of labelled data is required to be able to classify future objects. When a new object
is to be classified, the distance from its position in the vector space to all other,
labelled, data points must be calculated. The distances are ordered and the highest
classification representation of the closest k points is used to determine the
classification of the new object. With large datasets and high dimensional space, kNNs
become very computationally expensive due to the necessity to calculate the distance
to each point for every classification. In the example shown in Fig. 3.1b, the value of k
chosen was three when trying to classify the blue point. Out of the three closest points,
one is green and two are red, hence the point is classified as red. This method can also
be used with regression when there is a high correlation between the mapping
variables and a desired unknown variable. Here the value for the new data point can

be determined via an average of the same k points discussed earlier.

3.2.3 Support Vector Machines

Support Vector Machines (SVMs) represent a leap in complexity and combined the
idea of both kNN and linear regression first proposed in 1995 Cortes and Vapnik
(1995). In SVMs data is mapped to a high dimensional feature space and the
hyper-plane that optimally separates two distributions is sought. This process allows
for a very effective classification method for data from one of two possible classes.
When more than two classes are involved multiple SVM networks are required and
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the result is given by a combination of the results. Fig. 3.1c shows a two-class dataset
where two boundaries have been fitted to the data. The minimum distance between
the central blue line and the two datasets is larger than that for the central orange line
and therefore would be the preferred fitting line. Support vector regression (SVR)
works in a very similar way to SVMs where data is mapped to a higher dimensional
space to be able to fit a straight line. The support vectors in this case represent a
margin of acceptable error where loss is low, and the aim is to fit the line such that the
most possible points are within this margin. An additional tolerance parameter can be
included to account for outliers and make the model less prone to over-fitting.

3.2.4 Neural Networks

Neural networks (NNs) are an area of machine learning inspired by biological neural
networks. One of the biggest developments in neural networks was the application of
backpropagation algorithms in the 1970s Werbos (1975). Backpropagation is the
method used to find the gradients of the overall loss function using automatic
differentiation. To use backpropagation both a loss function and an optimiser are
required. The loss function is used to measure the success of the network predictions
and is very dependent on the both structure of the data, and the nature of the
prediction. When performing a regression task, losses such as the mean absolute error
(L1 loss) or mean squared error (L2 loss) are used. These two losses are shown in

Eq. 3.1 and Eq. 3.2 with y representing the true result and { representing the predicted
result from the neural network.

L= lvi— il (3.1)
i=1
Ly =) (vi— ;) (3.2)

Often L2 loss is preferable due to its stability compared to L1 loss, however, L2 loss
will be more affected by outliers due to the error being squared. In contrast, for
classification tasks, categorical losses such as categorical cross-entropy are used.
Categorical cross-entropy requires that the true values take the form of a one-hot
encoded vector, where every value is 0 except one that is 1, representing the category
as shown in Eq. 3.3.
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The categorical cross-entropy loss is then defined as:

n

Lee =) —yilog(fom(9):) (3.4)

i=1

where f(#7); is the softmax activation function:
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With the addition of the one-hot encoding on the true values, all values of y; that are
not the correct category will be 0, leading to a reduction of the sum in Eq. 3.4. When
more than one label might be used, in an image with two animals, for example, a
different approach is used. Rather than a softmax activation function, the sigmoid
activation function (Eq. 3.6) is used instead. This is combined with a variation on the
cross-entropy loss, where the loss for each category is calculated individually, called

binary cross-entropy (BCE), shown in Eq. 3.7.
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Using BCE means that the prediction is compared to the true vector for each of the
categories. If the category exists in the true vector, y; = 1, then the first term is used,
the reverse being true for categories which are not present, y; = 0. The BCE loss is also
used when there are only two possible classes.

Hinge Loss
n
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This means that when the output from the network shares a sign with the true value,
the loss will be small, to a minimum of 0 when they have the same value. The
advantage of a hinge loss is that it is very computationally simple and is traditionally
used in SVMs, although it sees use in other applications.

After the loss is calculated the process of backpropagation is then used by the
optimiser chosen, such as stochastic gradient descent, to update the calculation
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parameters used in the network. The loss function itself is used to compare the
outputs from the network to the desired result and this is used by the optimiser.

3.3 Neural Network Deep Dive

One of the areas of machine learning that has seen a lot of growth in recent years is
that of neural networks. These networks are very adaptable and can be found in many
forms depending on the task to be solved. This section will look into the history of
machine learning, how the techniques have been developed over time, and later at

some of the modern advances maximising the performance available from them.

3.3.1 Artificial Neural Networks

Input Hidden Layers Output
Layer Layer

Neuron

Non-Linear
Function

FIGURE 3.2: The Structure of an Artificial Neural Network. The network consists of
a series of inter-connected nodes arranged in layers, with an input, output, and some
number of intermediary layers.

An artificial neural network (ANN) is formed of a series of calculation nodes, called
neurons, grouped into layers. The initial layer is formed of the raw input to the
network, the final layer is the output, and the intermediary layers are called the
hidden layers. The inputs and outputs are vectors, with the neurons in each hidden
acting as a non-linear function acting on all outputs from the previous layer, referred
to as a fully connected network, as shown in Fig Fig. 3.2. In a fully connected ANN
with 1D layers, each layer is referred to as a Dense layer, where each neuron is defined
by a set of weightings and a bias. Each layer is therefore made up of an n X m matrix
of weights and n biases, where m and n are the number of neurons in the previous and

current layers respectively. Within the neurons, a weighted (w;) summation is
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performed across all inputs (x) before the final addition of the bias (b;), as shown in
Eq. 3.10 where i denotes the neuron of interest.

S;=x-w;+b; (3.10)

Each layer will also often contain a non-linear activation function that is used on all
outputs of the layer. Non-linear activation functions are used to ensure that the entire
network itself isn’t just a large combination of linear functions. Commonly used
activation functions include Rectified Linear Unit (ReLU) (Eq. 3.11) and sigmoid

(Eq. 3.6), with ReLU being used in hidden layers and sigmoid for binary outputs.

s;, ifx>0
freru(8)i = (3.11)
0, otherwise

3.3.2 Convolutional Neural Networks

One area where traditional artificial neural networks are less effective is when
working with images, as a lot of information can simultaneously be location
independent, while also caring about what is around it. It is often not the individual
pixels themselves that are important, but how they relate to the ones closely around
them, often with less importance the further away you travel from the original pixel.
The pixel’s overall position in the image can also play an important part in the desired
outcome, although this is not always the case, it will depend on the situation in
question. As a solution to this problem, a convolutional network is used, consisting of
one or more convolutional layers in combination with other types.

60030 | 87 973

FIGURE 3.3: Example hand-drawn digits that form the MNIST dataset.
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Working with images generally requires large amounts of data, with the complexity
growing with increasing image size and channel numbers. With this in mind, a lot of
networks and ideas are tested on one or more standard datasets including the MNIST
dataset, CIFAR-10 and CIFAR-100, and the Celeb HQ dataset. To demonstrate the uses
of CNNs, the MNIST dataset will be used. This dataset consists of 10,000 grey scale
28x28 pixel images of handwritten digits, labelled with the digit represented within,
examples of which can be seen in Fig. 3.3.
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FIGURE 3.4: Example output from a Convolution layer with a kernel size of 3. Each

coloured square in the right grid corresponds to the cell and area marked out by the

same colour in the left grid. The marked area is multiplied elementwise with the cells
in the convolution filter and then summed to give the final value.

In a convolutional neural network (CNN), the input is often not a vector but rather a
2D or 3D array, interpreted as a tensor. A simple example of this situation is a colour
image which would be a stack of three 2D arrays representing the RGB channels of the
image. Although a CNN is different to an ANN, they both still follow the same
principle of input, hidden layers, then output. The biggest difference is the inclusion
of the convolutional layers that act directly on the tensors. Rather than being a single
function at each node, a CNN uses a kernel, a small 2D array that scans across the
entire image, as seen in Fig. 3.4. In this way, features can be identified no matter where
they are in the image and pixel proximity is also taken into account rather than
treating each pixel independently.

Within each convolutional layer, there will be several kernels that are all sensitive to
different things, allowing for many features to be examined. As an example, a kernel
may find vertical or horizontal features, with kernels designed for both being sown in
Fig. 3.5. In Fig. 3.5a the kernel is mostly negative on the right-hand side and
symmetrical vertically. That means that if all pixels have similar values, the overall
convolved value will also be negative. If, on the other hand, there is a decreasing
gradient to the right the convolved value will tend toward positive, depending on the
gradient. This can then be combined with a ReLU activation function (Eq. 3.11) to
have pixel values of 0 except on the right-hand edge of features. The same is then true
for Fig. 3.5b where descending gradients in the vertical direction mean that the lower
edges of the features were captured.
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(A) Kernel for capturing horizontal features (B) Kernel for capturing vertical features

FIGURE 3.5: The effects of kernels designed for different purposes on MNIST images.

The kernels that capture horizontal details show uniformity along the rows and dis-

parity in the columns, the opposite being true for those that capture vertical. details.

The horizontal and vertical kernels capture the lower and right edges of the images
respectively.

0.0 0.0

FIGURE 3.6: Examples of convolutional kernels in a trained network and the informa-
tion they pick up from some example images.

The power of neural networks is that the user does not have to define the features that
should be isolated, but rather the training process will favour those kernels that
identify useful features for the specified task. As can be seen in Fig. 3.6 kernels that
identify horizontal and vertical features have indeed developed throughout training.
Along with this other kernels such as those which find the outside edge of objects in
the image can develop. Typically, CNNs will have many kernels within each



3.3. Neural Network Deep Dive 31

Convolution layer and may contain many Convolution layers. Taking a very
simplistic look using the kernels described above, if, after the convolutions, the image
only contains vertical features and no horizontal features it would suggest that the
image contains a ‘one’. This is a very simple example with only three kernels, but in a
full network containing a far greater number of layers and kernels many more
complex features could be identified.
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FIGURE 3.7: Example output from a Convolution layer with a kernel size of 3 and
a stride of 2. Only the highlighted cels in the input layer are captured by strided
convolution.

In addition to the use of multiple kernels, scaling is used throughout the networks to
look at features of different sizes. There are two common ways of performing the
scaling operations, the first of which is the use of strided convolutions. In a strided
convolution not every position in the input is evaluated, but instead every n'* position
is evaluated as shown in Fig. 3.7.

:{i_i+pJ+1 (3.12)

Using strided convolutions leads to a reduction in the size of the input layer as shown
calculated in Eq. 3.12. The final output size 0 depends on the input size i, the padding
p, the kernel size k, and the stride of the convolutions s. This process has the
advantage of reducing the total number of steps due to the resizing and convolution
happening in a single step.

One disadvantage of strided convolutions is that certain pixels can appear more often
in the calculations than others which can lead to the network giving that pixel higher
importance than others. When using a stride of one, all pixels that are at least the
kernel size away from the edge of the layer will have equal importance transferred
onto the next layer. In strided convolutions, the values of both the stride and the
kernel size play a major part in the final effect. If the kernel size is not divisible by the
stride size, there will be a periodicity introduced into the pixel influence, becoming
multiplied across a 2D grid. This effect can be seen in Fig. 3.8, where Fig. 3.8a shows
the effective influence of each pixel when using a stride of 1 and a kernel size of 3.
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(A) Stride=1 (B) Stride =2

FIGURE 3.8: The effect of convolution stride on pixel weighting. The number of times

each cell is used in a calculation is represented by the darkness of the cell, with darker

cells having been used more often. Using a stride of one gives an almost uniform

distribution with the outer cells seen less often but the inner cells being consistent.

When using a stride of 2, there is a distinct grid pattern where central cells are only
seen once and corner cells are seen most.

While those pixels at the edge have a low influence, those towards the centre have
equal importance. This can be combined with padding which can both improve this,
by having the padded pixels be the least influential, and has the added benefit of
maintaining the 2D size of the layers. In contrast to this, in Fig. 3.8b it can be seen that
when a stride of 2 is combined with a kernel size of 3, there is a highly periodic
relation to the influence of each pixel. This can lead to some areas having far more

influence on the final result than would normally be expected.

A second common method to downscale is the use of pooling, where a value is
calculated from a subset of the pixels. Two of the most common pooling methods are
max and average pooling. In max pooling the maximum value of each n x n region is
evaluated, where 1 is the scaling factor of the pooling layer. While this process does
have a low computational cost, it does introduce the issue of some pixels having far
greater influence than others. While the weights of the Convolution layers can
counteract this, it is not always the case. In average pooling, the mean of each n x n
region is taken with a stride of n. This process can be thought of as a convolution with
a kernel size n, a stride of n, a bias of 0 and fixed weights of % at each position. The
advantage of this is that it is quick compared to a convolution in training as no
updates to the layer are required.
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3.4 Generative Networks

Along with the classification and object detection tasks CNNs have found great
application in the space of generative networks. Often these networks aim to produce
2D image outputs based on either an image-based or vector-based input. Examples of
tasks that generative networks have been designed for include image super resolution
Watson (2020); Ledig et al. (2017), audio and voice generation Huang et al. (2022); Gao
et al. (2018); Liu et al. (2020); Shahriar (2022), and even medical applications such as
protein mapping and drug discovery Cheng et al. (2021); Bian and Xie (2021); Strokach
and Kim (2022); Repecka et al. (2021); Anand and Huang (2018).

Generative networks are often formed from an initial latent space which passes
through Dense layers before being reshaped into a 3D tensor. Once in this form,
convolutions can be used alongside various up-scaling methods until the layers have
the correct size.

Padded Input Layer .
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FIGURE 3.9: Example output from a transposed Convolution layer with a kernel size
of 3 and a stride of 2. The original 2x2 input is padded with 0 values cels placed around
and between all of the cells.

Similarly to down-scaling, up-scaling can be included in the convolutions via
transposed convolutions. To perform a transposed convolution, the input is first
padded with zeros such that the original data is separated by the stride of the
convolution. The convolution itself applies with a stride of one and this padding then
means that there are more convolution steps, and thus increases the size of the output.

o=s-(i—1)+k+p (3.13)

When using a transposed convolution, the final size of the layer is given by Eq. 3.13
where i and o represent the input and output dimensions, k is the kernel size, and p is
the padding.

While transposed convolutions can be used, many networks have opted to use
alternative methods, often found in traditional image manipulation. Networks that
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FIGURE 3.10: Example output from a nearest neighbour upscaling layer. The example
shown here is the equivalent convolutional filter that can produce the same result.

are designed around increasing resolutions in steps of scaling factor 2 may opt to use
methods such as a nearest neighbour or linear interpolation. Similarly to how average
pooling can be thought of as a strided convolution, so too can various up-scaling
methods. An example of how a nearest neighbour up-scaling method with a factor of
2 can be formulated as shown in Fig. 3.10 where the given kernel can be used as the
basis for a transposed convolution with padding 1 and stride of 2. Again, this method
is quicker than a traditional transposed convolution for up-scaling as no weights or
biases need to be updated. Despite this, the transposed convolution can play a role in
the calculation of the generated output and so additional Convolution layers may be

needed to replace those lost.

In a very simplistic sense, a generative network can be thought of as performing a
regression for each pixel in the output image, and so similar losses can be used, with
L1 (Eq. 3.1) and L2 (Eq. 3.2) losses being common. One difference to many regression
tasks is a fixed output space where each pixel will have a fixed range, often between 0
and 1, representing the range of 0-255 used to represent RGB images. This fixed range
means that two of the most common activation functions for the final layer of the
network are the sigmoid and tanh functions, with the former producing numbers in

the range of 0-1 naturally.

3.4.1 Generative Adversarial Networks

In 2014, Dr. Ian Goodfellow released a paper on a technique called generative
adversarial networks (GANs) Goodfellow et al. (2014) as a proposed improvement on
the autoencoder structure. GANSs are an effective method for transforming the style of
one image into another (e.g. turning photos into labelled photos), or even simply
randomly generating a style of image (e.g. images of human faces). GANs are
composed of two different networks, where one is the generator and the other is the
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discriminator. The generator often takes the form of a CNN, following a very similar
idea to that of autoencoders. The discriminator bears more similarity to a
convolutional classification network with a single output in the range of 0-1.

The relationship between the two networks can be thought of as similar to that
between a counterfeiter (the generator) trying to create fake currency, and the police
(the discriminator) trying to detect the fakes. Both start not knowing anything about
what real or fake currency is but are trained simultaneously. The counterfeiter aims to
make fake currency that will fool the police while the police want to be able to detect
fakes with 100 % certainty. The end goal of the training process is to achieve a Nash
equilibrium where neither network can improve its ability to beat the other.

GANSs have shown promise in the field of image generation and a lot of work has been
done with them since, further improving their quality. This ranges from both
supervised to unsupervised learning. Supervised learning refers to situations where
there are direct translation pairs and so the desired result of the GAN is known
exactly; these are often known as conditional GANs. Unsupervised learning, however,
uses unlabelled data to translate from one domain to another. An example of this is
transforming pictures of horses into zebras Zhu et al. (2017). This is useful for tasks
such as stylising images where exact pairs do not exist. While this is powerful,
networks trained on data pairs will often perform better and so should be used where
possible.

3.4.2 Reference Networks

With neural networks and GANSs being such an active field of research, many
companies and research teams are working to continuously optimise their
performance and design novel architectures. These are often large teams working
with powerful hardware to be able to fully test and iterate through designs. Due to
this high volume of development, the decision was taken to utilise and adjust existing
architectures in order to maximise the time that could be spent on the experimental
process, while allowing rapid adaption to the field and continued use of cutting-edge

techniques.

3.4.3 Inception

First competing in 2014 with GoogLeNet Szegedy et al. (2015), Google has competed
in the ImageNet Large-Scale Visual Recognition Challenge Russakovsky et al. (2015)
many times, winning in 2014, and coming second in 2015. After the first entry, Google
went on to develop a series of similar networks, all taking some form of the Inception
nomina Szegedy et al. (2015); Ioffe and Szegedy (2015); Szegedy et al. (2016, 2017).
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FIGURE 3.11: The structure of the first iteration of Inception blocks from Szegedy et al.

(2015).

One of the key features of the inception series was a creative exploration of to better

use of multiple convolutions to reduce the sizes of the networks used, while not

restricting the network to use a single size of convolution kernel. Initially, with

GoogLeNet (Inception-V1) they proposed the use of multiple scales of convolutions,

using 1x1, 3x3, 5x5 convolutions, and a 3x3 Max Pooling layer at each level as can be

seen in Fig. 3.11. This allowed the network to determine the ideal size of the kernel at

each point in the process and apply a higher weighting to it. This process did provide

two complications, it greatly increased the size of the network, as well as increasing

the computational costs. To avoid this each of the 3x3, and 5x5 Convolution layers

were preceded by an additional 1x1 Convolution layer, with the pooling layer

followed by one. These 1x1 convolutions were used to reduce the dimensionality of

the network with cheap operations, while still being able to be trained. This idea was

extended even further in later versions of the inception architecture, with each of the

larger (NxN where N>1) convolutions being broken into sequential Nx1 and 1xIN

convolutions. While this did add to the number of operations, it was more efficient for
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all sizes, with the smaller 3x3 convolutions being ~2.6x as computationally expensive

as the 3x1 convolutions.

Potentially even more than experimenting with interesting Convolution layers, the
biggest impact from the inception series was found in BN-Inception-V2 Ioffe and
Szegedy (2015). In this network, Ioffe et al. proposed the use of batch normalisation to
avoid the vanishing gradient problem in deep neural networks. As networks became
deeper and deeper, there were possibilities that the magnitudes of deviation within
later layers decreased over time, especially when using saturating non-linear
functions. A consequence of this is that not only will it self-propagate, but it will also
lead to a reduction in the gradients fed through the network. In an attempt to find a

solution to this, Ioffe et al. introduced normalisation into the training process.

By this point, almost all networks were utilising the idea of mini-batches, where the
network computes gradients on several samples simultaneously. Using mini-batches
has benefits in both smoothing out training due to gradients being averaged, and
allowing quicker computation due to parallelisation of the operations. The concept of
Batch Normalisation proposed to adjust the distribution of layers prior to the
non-linear functions in order to avoid saturation. Batch normalisation takes the form
of two operations, firstly adjusting the mini-batch such that it has a mean of 0 and a
standard deviation of 1 before extending that with a weight and bias learned per layer,
referred to as gamma and beta. While this was the first major implementation of
normalisation, the techniques introduced have been used throughout neural networks
since. Beyond batch normalisation, several other normalisation techniques have been
used, including instance and layer normalisation, each one suited to different use

cases.

3.4.4 U-Net

Beyond the conceptualisation of the GAN, one of the biggest developments in the
space of image generation was the U-net structure Ronneberger et al. (2015) shown in
Fig. 3.12 that can be used for image-to-image translation. In this network, the
generator used a down and up scaling path to first reduce the input image down to a
size of 28x28 pixels, before gradually increasing the resolution up to the desired
388x388 pixels. This style of network was commonly used in GANs and autoencoders
designed for image translation as it allows for filters of constant size to see different
portions of the image. At large sizes, each filter only sees a very small portion of the
image and so picks out fine details, such as strands of hair. Once the image has passed
through the network to the constriction point, each filter looks at a larger portion of
the image and so will pick out broader features, such as areas of land and sky. This
effect could be achieved by using large filters, but that would not ensure that the large
features would be the focus (the filter may consist of mostly zeros) and would also be
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FIGURE 3.12: The structure of the U-Net network, reprinted from Ronneberger et al.
(2015) Copyright (2015) by permission from Springer Nature.

far more computationally expensive. When these operations have been completed the

image is again up-scaled to the final resolution.

The downscaling section had been traditionally required as only using the
low-resolution scales would lead to a large loss of information that can be captured by
the network at higher resolutions. Despite this, there is still information lost as the
network scales, which is what the U-net is trying to solve. The main distinguishing
feature of this structure is the skip connections that are used to tie layers together from
the down and up-scaling paths which have the same resolution. These connections
allow for the high-level information learned early in the network descaling path to be
utilised by the later parts of the network. The network was originally designed for the
segmentation of cell images, but the technique has seen wide use throughout machine

learning, especially in other image-to-image translation applications.

3.4.5 Progressively Growing GAN

While GANs can produce visually accurate and sharp images, they generally have
greater difficulty the higher the resolution that is used. This is generally true due to
the discriminator having an easier job of differentiating real and generated images at
higher resolutions Odena et al. (2017). This problem is exacerbated by generative tasks
that are not directly similar image-to-image translation tasks due to initial results
being wildly different from the ground truth. In 2018 Karras et al. Karras et al. (2018)
proposed a solution to this issue by breaking the training into various stages. The idea

behind the network was designed to be adaptable to many situations, with the key
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component being an up-scaling decoder that started from a low resolution and would
eventually output at the desired high resolution. The structure of the network
preceding the first decoding layer is not specified and can be adjusted depending on
the input type. This meant that the network could implement Dense layers when
using a latent space or vector input, but could be adapted to use the U-Net structure

for image-to-image translation purposeses.

In order to simulate the use of a reference image and allow the network to learn the
large, coarse features, the output from the network was initially taken from a very
small resolution layer, going down to as low as 4x4 pixels. Once this has been trained
for a time, an additional set of layers can be added to upscale the network to 8x8
pixels. When this is added, none of the preceding parameters in the network are
changed and it remains trainable if required by the network. This process is then
repeated until the desired final resolution has been reached. When implemented
correctly, training a progressively growing GAN, especially for situations where there
is no initial reference image, can be quicker than a traditional GAN due to many
training steps being conducted without the expensive larger layers.

3.4.6 ResNet
X
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FIGURE 3.13: The structure of the ResBlock, the fundamental building block of a
ResNet, from He et al. (2016).

Since the early days of neural networks, one of the most common techniques used to
improve the accuracy of the networks was to increase their size. This increased size
leads to an increased capability for the networks to infer from the data and pick out
import information at all different scales. Despite this, deep networks are not without
issue, and in early 2015 it was often found that errors would saturate and then
worsen, similarly to over-fitting, but would also occur on the training data. The
network called ResNet He et al. (2016) was developed in an attempt to maintain the
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possible benefits of very deep networks, while also working within the limitations of
current frameworks to reduce this degradation. The proposed solution was to
introduce shortcut, or skip, connections between certain layers in the network, as
shown in Fig. 3.13.

A ResBlock, which is the key component of a ResNet, is a combination of multiple
standard Convolution layers, with the skip connections tying the input to the first, to
the output from the last. In the initial implementation, the skip connection was a 1x1
Convolution layer, used to match the dimensions of the final Convolution layer in the
block. This allowed the skip connection to be summed with the output while also
allowing for a change in the number of filters used throughout the network. While
this is one implementation of the ResBlock, the base idea is incredibly powerful and
has been utilised in a range of networks. Another way to combine the two paths is to
use a concatenation, allowing for the pure input to be used throughout the network,
although this can lead to a higher computational cost.

3.4.7 Pix2Pix
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FIGURE 3.14: Examples produced by the Pix2Pix network from Isola et al. (2017).

While there have been many advances in GANSs, in the field of image-to-image
translation, the work by Isola et al. Isola et al. (2017) on the Pix2Pix network acts as a
foundation block. Many networks are designed with a specific task in mind, highly
tuned to that specific purpose. While this leads to some very powerful and accurate
networks, they can be difficult to adapt to other uses, and so lots of work must be
dedicated to this. Pix2Pix was created with the idea of finding out how to make a
flexible network that could be used and adapted to many tasks, specifically in the field
of image-to-image translation, with several examples of different applications shown
in Fig. 3.14. The Pix2Pix network makes use of the U-Net structure (see Section 3.4.4)
and combines a comparative loss with a PatchGAN discriminator. The PatchGAN
discriminator is designed to assess several patches of an image to determine whether

they are real or generated examples. It works by applying down-sampling layers to
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the initial image until each of the pixels represents an area of the desired size on the
initial image. This is then judged in the standard way to calculate the loss. The Pix2Pix
network investigated (and allows the use of) PatchGAN discriminators of various
sizes to determine what caused results to be good for different applications.

Beyond being a powerful and flexible network in its own right, the adaptability of the
network means that has formed a basis for development since its presentation. The
ability to use the network with many datasets also promoted its inclusion on the
TensorFlow website, being used to induce novices to the world of image-to-image

translation.

3.5 Deep learning and Computational Power

Deep learning has been a well-known term to describe aspects of ML since it was
popularised by Hinton in 2006 Hinton et al. (2006), although had been around from as
early as 1986 when used by Rina Dechter Dechter (1986) and is used to describe an
array of methods. Despite this being the first use of the term, the techniques now
described by that term had been in use long before that, not long after the first
implementations of neural networks. In general deep learning is commonly defined
by two axioms: the use of multiple non-linear layers, and the breaking down of
information into progressively more abstract information Deng and Yu (2014). The use
of deep learning is often a task that requires a lot of both computational power and
data to produce the best results. Along with advances in the techniques used, the
growing power and proliferation of Graphical Processing Units (GPUs), which are
ideally suited to many similar operations on matrices, has greatly accelerated the
growth of this area. Alongside traditional GPUs, manufacturers have been improving
their capabilities with the inclusion of technology such as tensor cores, or even
discreet Tensor Processing Units (TPUs) specifically designed to be efficient at the
typical tensor calculations performed in deep learning. While machine learning
techniques can be designed to run on a huge range of devices, from microcontrollers
to supercomputers, generative and deep learning models are generally designed to
work on higher-end devices, often requiring a minimum of a GPU. The work
conducted in this thesis has used a setup on the low end of power for generative
networks, utilising either an Nvidia Quadro P6000 with 24GB of RAM and a newer
Nvidia Geforce RTX 3060Ti with only 6GB of ram, but utilising a newer architecture
including tensor cores that allowed for further speed and memory optimisations.
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3.6 Conclusion

Machine learning as a whole is a huge field that has a long history and is at the
forefront of research across many different fields. Various approaches were presented
here that have been used in the laser machining industry to provide a baseline of

understanding of the topic.

Beyond the high-level overview, the importance of data and computational power
was also discussed. The amount of computing resources being dedicated to machine
learning tasks is growing. It was also shown how more and more hardware is being
developed to assist with machine learning tasks, even at the consumer level in the case
of Nvidia GPUs.

As well as an overview of the topic, greater attention was paid to the technique called
neural networks. It was shown that while they may be designed for different
purposes, and act on different types of data, how they work remains similar. This is
especially true when moving to deep learning where convolutional and generative
networks are built upon a small number of vital blocks that are then combined to

produce very complex networks.
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Using Neural Networks to Optimise
Laser Machining Parameters
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FIGURE 4.1: The experimental setup used to predict properties of machined dimples.

First, a laser is directed with a pair of galvo scanning mirrors before being passed

through a 100 m m lens to focus it at the surface of the iron sample. The sample is then

measured using a confocal microscope to calculate a 3d height map. Neural networks
were then used to model the machining process.

In this chapter, the application of neural networks for the identification of the optimal
laser parameters for machining microscale blind holes (referred to here as dimples) is
demonstrated. The structure of this experiment is shown in Fig. 4.1. where the

dimples are first machined before the depth profiles were captured. This information
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will then be used with a variety of machine-learning techniques to predict certain
properties of these dimples. The performance criteria for this work were that each
dimple crater must be deeper than 4 pm and that the raised rim around the outer edge
of the dimples is minimised. The raised rim is caused by the redeposition of molten
material and is referred to as the crown. Here, it is shown that machine learning can
allow the discovery of the optimal laser parameters that enable the fabrication of
anti-friction surfaces using nanosecond pulses. For this chapter, the experimental data
was collected by technical staff at Oxford Lasers and results have been presented in
McDonnell et al. (2021b).

4.1 Motivation

One of the factors that affect the friction found between two objects is the amount of
surface-to-surface between them. Therefore, in applications that require contact of
moving parts a way to reduce friction can decrease energy consumption, reduce wear,
and prevent excess heat build-up. While common methods of friction reduction
include coating or lubrication these are not always available. One alternative that has
been used in a variety of industries is to machine an array of dimples onto the surface
of a part to reduce the surface area of contact Qu et al. (2014); Mezzapesa et al. (2013);
Scaraggi et al. (2014); Sakai et al. (2007).

These machining tasks are often performed using lasers with pulse durations on the
order of femtoseconds. These lasers are chosen partly for the lack of heat damage
caused to the part, maintaining its desired properties, such as strength. Another
reason for choosing femtosecond laser machining is due to the clean results they can
produce. Due to the lack of melting involved, they often display little displaced
material that is common to other methods. This melted material can either form a
ridge around the machined area or be deposited across the surface, both of which

increase the roughness and so counteract the reduction in friction.

Despite this, many laser machining tasks that are currently carried out on
femtosecond systems could, in principle, be achieved with nanosecond lasers.
Nanosecond lasers do offer several potential advantages over using femtosecond
based ones. The base cost per performance is one of the areas in which nanosecond
laser can beat femtosecond alternatives. While it is not a direct comparison, in general,
a nanosecond laser with the same pulse energy and repetition will be cheaper than an
equivalent femtosecond laser. In addition to this, as discussed in Chapter 2, the longer
pulses allow a higher proportion of the energy in the pulse to be deposited in the
sample. This allows nanosecond lasers of an equal power to have far higher material
removal rates than femtosecond lasers, although at the cost of reduced machining
quality Neuenschwander et al. (2013); Ren et al. (2005). These two effects combine to
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make nanosecond laser an appealing option when companies are constrained both by
the cost of equipment and the time taken to mache a part, as higher throughput can
lead to greatly increased profits.

Due to the complex relationships between laser machining parameters (pulse energy,
repetition rate, number of pulses Cheng et al. (2009); Grant-Jacob et al. (2014); Lorbeer
et al. (2017)) finding a combination of these parameters that will achieve the desired
results can be a difficult process. While the throughput of nanosecond lasers is high,
trying to attain a strong understanding of how all of these parameters and more
interact would require a long investigation and is an area where dedicated machining
companies excel. Despite this, there will always be occasions where a new process or
material is introduced that behaves unexpectedly. In these situations, it may be
imperative to gain a good understanding in a very short period of time, as business
may depend on beating the competition to a solution, or a guarantee that one can be
found. This approach also introduces the risk that human bias will influence the
results in an attempt to reduce the time taken to find a solution and so vital areas of

the data space may be missed.

4.2 Prior Art

When finding a solution to a machining task, the ideal solution is often the starting
point and the optimisation process tries to reach that goal. The other method is to start
at the solution and predict what can be done to reach it. This was the approach taken
by Yousef et. al. Yousef et al. (2003) where a network was designed that would take
the desired depth and diameter value, and return the pulse energy that would meet
this requirement. A second network was also used that, using the result of the first,
would then predict the stability of the result, an often desirable attribute in a
commercial setting. This approach worked well as duplicate results for the combined
depth and diameter were unlikely to be achieved by changing a single parameter.
Other investigations into the use of ANN to predict the results of laser machining have
also looked at using a single variable parameter Casalino et al. (2017); Campanelli

et al. (2013), focusing on making a network as effective at these tasks as possible.

Alongside ANNS, there are many other machine learning techniques that can be used.
Methods such as fuzzy expert systems and genetic algorithm-based approaches were
compared to other modelling techniques by Parandoush and Hossain Parandoush
and Hossain (2014). Here it was found that the machine learning options were able to
predict the results of machining well and could complement other theoretical and
analytical methods that have been employed traditionally. Another investigation into
the effectiveness of different machine learning techniques was carried out by Kim et.
al. Kim et al. (2018). It was found that, while not the most robust method, ANNs
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provided some of the best results in the field. Another promising alternative was
SVMs that approached the performance of the ANNS. While not directly in the field of
laser machining the conclusions can still be used to direct the investigations
conducted here.

Previous work Arnaldo et al. (2018) has shown that the nanosecond lasers can be used
to achieve the results required in surface texturing and that improvements to the
process could still be made. This will be combined with the findings of previous
machine learning investigations to expand the capabilities in two directions,
introducing the ability to simultaneously predict and explore multiple output
parameters, and experimental re-creation with the use of generative networks.

4.3 Equipment Setup

While the experimental setup and design were performed by Oxford Lasers, details
will be included here in order to provide a greater overview of the process. This
experiment was based on the previous tribological work conducted by Oxford Lasers
Arnaldo et al. (2018) and this influenced the choice of both laser and target material.
The laser itself was a Ytterbium fibre laser with a central frequency of 1060 nm, in the
near infra-red range, with an M? < 1.8. While the laser had a selectable pulse
duration, the shortest value of 0.17 ns was chosen to best approximate the quality of
ultra-short pulse machining. To machine the sample a 100 mm focal length lens was
used to focus the beam down to a diameter of 36 pm measured using the D2 method
Liu (1982) such that I(w) = Lyqy/e?. The sample itself was a cylindrical section of grey
cast iron DIN GG20 (ATSM A48 n.30) with 20% max ferrite phase, cut into 30°
segments. In order to machine the full array of dimples, the samples were mounted on
a 5-axis stage, which was combined with control over the optical axis via the use of
galvanic scanning mirrors. Once machining was complete, a confocal microscope was

used to measure the depth profile of all dimples.

4.4 Experimental Data

The goal of this experiment was twofold, being able to predict certain values from the
experimental data, as well as recreating the experimental outputs. The data itself was
paired data, with inputs of the laser machining parameters used, and outputs of a 2d
array of values, representing the height at each position in microns. Each dimple
consisted of 3 main features shown in Fig. 4.2: the surrounding (un-machined)
surface, the raised crown of material caused by the redeposition and melting, and the
crater itself. To calculate the values for the dimple depth and crown height, the 15 and
99" percentile of the data were taken respectively.
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FIGURE 4.2: Cross-section through the centre of a machined dimple. The blue line at

0 represents the level of the material if it had not been machined. The peaks found

near the edge of the view are the area of the raised crown, and the value taken is the

95th percentile of the data for each dimple. The depth was calculated using the 5th
percentile of the same data.

Part of the process was for us to fully explore the possibilities of neural networks to
perform the desired tasks, and as such, all of the data was preprocessed to ensure it
was well suited to training a neural network. Initially, the raw data was provided in
the form of arrays of 2d values, representing the height in microns, with a size of
301x301 pixels square. This data was captured in an automated fashion using a
confocal microscope to measure the surface profile of the material. Within each of
these arrays, the height data for a single dimple was contained, although the data was
not centred. While this issue could be avoided, for the purpose of generating dimple
profiles, it was desirable for them all to be centred in the final arrays to provide fewer
parameters for the network to learn, and better utilise comparative losses.

Some data was discarded at this stage due to the dimples being too close to the edge
of the provided arrays, in some cases, clipping the edge. These cases were discovered
by analysing the values at the edges of the arrays and highlighting the ones where the
values deviated significantly from 0. These arrays were then reviewed on a
case-by-case basis to determine whether they would be within tolerance. Once all
valid data had been selected, the arrays were then 0 padded to a size of 400x400
pixels. The images were centred by recursively cycling the images until the centroid of
their absolute values was positioned at the centre of the new size array. The initial 0
padding allowed easy determination of the edge of the initial image, and therefore the
maximum size that all images could be cropped to before including non-contiguous
data. Once this maximum was calculated, the arrays were cropped to a size of 244x244

pixels, including none of the Os used to pad the images in the final crops.

The base dataset itself consisted of 884 height profiles, machined using 170
combinations of laser parameters. Due to the high variation within the machined

dimples, each combination was machined between 4 and 6 times to both capture some
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Minimum Value Maximum Value

Pulse Energy (1)) 5 50
Number of Pulses 50 400
Repetition Rate (kHZ) 10 1200

TABLE 4.1: The range of parameters used to machine dimples in the training and
validation datasets.

variance, and provide duplicate data in the case that some were not suitable for use.
This could be caused by several issues, including the aforementioned positioning of
the dimple in the height data, along with machining defects such as gas pockets in the

surface leading to very uneven machining.

Each of the sets of 4-6 samples were machined using a unique combination of the
variable parameters. The three parameters that were adjusted were: repetition rate,
laser pulse energy, and the number of pulses used to machine the dimples as shown in
Table Table 4.1. The repetition rate of the laser was adjusted in the range of 10 to

1200 kHz, which was the maximum possible with the laser. Each dimple was
machined with between 50 and 400 pulses, each with an energy of between 5 and 50 pJ

4.5 Network Architecture

A major focus for the investigation of this work was the determination of the
efficiency and effectiveness of a variety of machine learning techniques, with a further
exploration of the most promising options. The techniques used were: a Gaussian
Process regression, a Support Vector Machine, an Artificial Neural Network, and a
Generative Adversarial Network. Some advantages offered by the Gaussian Process
and SVM are that they are very quick and easy to implement, being used with the
python scikit learn library. Each of these methods was tested using different kernels to
find which would perform the best.

To optimise the machining parameters, two different neural network architectures
were investigated. The first of these was a simple fully connected ANN that took in
the three input variables to output both the crown height and depth. This allowed for
the optimisation of inputs based purely on the output conditions. The second method
chosen was a GAN used to recreate the full experimental results. The GAN was used,
due to its capability to transform numbers into arrays, such as laser parameters into a
predicted surface.

The model used for the ANN was also relatively simple, consisting of a set of
sequential layers as shown in Fig Fig. 4.3. After taking the input, three identical sets of
layers were used, consisting of a dense layer, a dropout layer, and a batch

normalisation layer. In each of these three blocks, the Dense layers were followed by a
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FIGURE 4.3: Block schematic of the Artificial Neural Network, from McDonnell et al.
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FIGURE 4.4: Block schematic of the Generative Adversarial Network generator, from
McDonnell et al. (2021a).

ReLU activation layer. The dropout layer was used during training, where the value
was set to 50% retention, being put to 100% retention during the interrogation of both
training and validation data. Dropout is a technique used to reduce the risk of
overfitting by not using the activation from all neurons during training, but a random
subset of them. Following the final of the three blocks were two further dense layers,
the first of which followed the same pattern as the ones used earlier in the network,
with the same number of neurons and a ReLU activation. The final dense layer only
had 2 neurons and no activation function, each one representing a different output, the
dimple depth and height of the raised crown of material. The final layer was designed
without a final activation layer to allow for it to be used for regression purposes. The

network itself was trained using an Adam optimiser using a learning rate of 1e-5

In contrast to the previously discussed methods, the GAN used had a much more
complicated structure. This owed to both the requirement for 2 separate networks and
the designed task, profile generation as opposed to regression. The generator was
based on a truncated encoder-decoder network, only utilising the up-scaling decoder
path as there was no initial image to encode. As there was no initial image and the
amount of data was low, it was decided to use an implementation of the Progressively
Growing GAN (as discussed in Section 3.4.5). The input into the network was very
similar to that for the ANN, but also included a noise vector representing latent space,
allowing for variation in the final results as seen in the experimental data. Following

the input was a formatting block that consisted of a Dense layer to interpret the input
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Method Variant Error (%)
Base Data 13.0
Constant 62.2
Rational Quadratic 13.1
. Exponential Sine Squared 25.7
Gaussian Process Dot Product 38.9
Matérn 13.3
Radial Basis Function 26.8
Linear 38.5
SVM Polynomial 19.5
Radial Basis Function 13.9
8 Neurons 44.6
16 Neurons 29.2
32 Neurons 20.6
ANN 64 Neurons 16.9
128 Neurons 16.6
256 Neurons 12.8
512 Neurons 13.3
GAN 14.9

TABLE 4.2: Percentage error in predicted crown heights for various methods.

and a reshaping layer to allow that to be used in convolutional layers. After
formatting, the bulk of the network was formed of a series of ResBlocks containing 2

convolutional layers with ReLU activation layers after each.

After each of the ResBlocks was a 1x1 convolution, that would act as the output and,
except for the block at the desired output size, a bilinear up-scaling layer to increase
the resolution. The network structure for each desired resolution was identical except
for the number of ResBlock and up-sampling combinations. With the layers that are
shared between desired resolutions, the shapes are identical, allowing for the weights
from any to be loaded into another for continuous learning. While the outputs from
lower resolutions were not used for training, they were maintained as their cost was
very low and allowed the continual monitoring of network performance at various

scales.

4.6 Analysing Performance

In order to determine the machine methodology to focus on, an initial test run was
performed, using a number of different setups for each of the methodologies
discussed in Section 4.5, the results being presented in Table 4.2. Since the initial
publication of McDonnell et al. (2021b) further investigation was performed on a
number of the cases, with optimisations made. For the Gaussian Process, an alpha

value of 1 x 1073 was found to produce stable results across all kernels. This was
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FIGURE 4.5: Examples of experimental and GAN generated height maps of dimples.
Figs. 4.5a and 4.5b represent dimples machined using 100 pulses at a pulse energy of
12.42 ] and a repetition rate of 1200 kHz. Figs. 4.5c and 4.5d represent dimples ma-
chined using 100 pulses at a pulse energy of 38.67 p1J and a repetition rate of 600 kHz.

combined with an allowance of 10 iterations, after which further gains were not
noticeable. The set of parameters was used with 5 different kernels, with the strongest
kernels being the Rational Quadratic (RQ) kernel, and the newly tested Matérn kernel,
reaching an error 0f 13.1% and 13.3% respectively, much better than the previously
presented best of 32.0% found using the RQ kernel. Similar gains were seen when
using the SVMs, with the best performing kernel being the Radial Basis function (RBF)
at 13.9%, with the Polynomial kernel close behind at 19.5% using 2 degrees of
freedom. Even with the improvements found in the intervening time, the highest
performing ANN Still outperforms the Gaussian Process with RQ kernel and SVM
with RBF kernel by a small margin without having had any intervening changes.

While it is designed for a different purpose, and not as optimised for this specific task
as the previously discussed methods, the GAN could still be tested similarly. Rather
than the numerical outputs of the former methods, the GAN provided a full 3d
profile, from which the crown height and dimple depth could be calculated in the
same manner as the original, experimental data. A visual comparison between
experimental and GAN generated profiles is shown in Fig. 4.5. Both Figs. 4.5a and 4.5c
are taken from the experimental data in the training dataset. Fig. 4.5a was machined

using 100 pulses at a pulse energy of 12.42 ] and a repetition rate of 1200 kHz while



52 Chapter 4. Using Neural Networks to Optimise Laser Machining Parameters

Fig. 4.5c was machined using 100 pulses at a pulse energy of 38.67 ] and a repetition
rate of 600 kHz. The other two profiles (Figs. 4.5b and 4.5d) are GAN generated
profiles, with Fig. 4.5b using the same laser properties as Fig. 4.5a and Fig. 4.5d using
the laser parameter from Fig. 4.5c. While there are differences between the GAN and
the experimental profile, there is a high correlation in all three of crown height, depth,
and dimple diameter between the experimental data and the predictions. Some level
of difference would be expected due to the variance within the experiment, even
between experimental examples using the same parameter, as evidenced by the 13%
deviation within the data. This demonstrates that while the network is designed for
the generation of visual data, this can be used to calculate the same data as a numerical

network with a similar degree of accuracy while providing far more information.

Despite the similarities, there are key differences that cannot be passed off as simple
variations. The biggest factor that differentiates the GAN and experimental is the
smoothness of the profiles. It is possible that adjustments to loss weighting, either
fixed before training or variable throughout, could resolve some of this. The reason for
this is that smoothness in the profiles, analogous to blurriness in images, is a common
limitation in autoencoders that comes from the comparative loss, with the GAN
discriminator model losses tend to lead to sharper images. While the comparative loss
can greatly expedite training, especially in the early stages, at later stages of
fine-tuning, loss weightings could be adjusted to put a greater focus on the GAN loss.
Even with the visual discrepancies, the GAN was tested using by calculating the
dimple depths and crown heights using the same method that was used to calculate
the same values on the original experimental data. When tested on the same
validation combinations used for the other methods, and calculating the crown height
directly from the results of the GAN, the network had an error of 14.9%. While this is
the worst out of the optimal setups for each method, it still beats many of the other
setups used for all methods, including the ANN with reduced numbers of neurons
per layer. This shows that for this exact task, the GAN is not the network of choice,
although that is expected for regression problems. The GAN does, however, offer
flexibility and visual output that could be very valuable, and is unique out of the
methods tested.

As can be seen in Table Table 4.2 and Fig. 4.6 the size of the layers in the ANN was
adjusted in an attempt to optimise the process. The layers being adjusted were the
three Dense layers, with the number of neurons being consistent across the three
within each individual test. The network was tested with layers containing only 8
neurons each, up to a maximum of 512 neurons per layer. As expected, when the
number of neurons was low the performance of the network was also low, due to the
limited capacity of the network. Additionally, with low numbers of neurons, the
initialisation states of the layers play a big factor in the performance with the average
percentage error over 10 runs being 39.7% with a standard deviation of 5.0%. Very
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FIGURE 4.6: The effect of varying network complexity on the possible performance of

the network shows that increasing the number of neurons in each layer of the network

generally increased the performance of the network to calculate the hight of the raised
crown of material around each dimple. Modified from McDonnell et al. (2021a).

quickly the performance of the ANN improves, with the average percentage error
dropping to just 16.9% when the number of neurons per layer was increased to 64. At
this stage, the initialisation of the network became less important, with a standard
deviation of only 2.4%. Beyond this the gains are small, peaking at 12.7% when 256
neurons are used for each layer.

The general trend up to the 256 neuron point was for higher numbers of neurons to
reduce the error. The only exception to this is the test with 128 neurons, which also
had a much larger deviation than the surrounding data. The large variation indicates
that the initialisation state can still provide a factor at these scales, with only 10 runs
not sufficient to gain a full statistical description of the results. Having stated this,
there is an interesting data point at 512 neurons per layer, which has both a higher
error than that found at 256 neurons, at 13.3%, as well as having a slightly smaller
deviation. While this does go against the previous trend and was still tested using a
small statistical sample, interesting observations can be drawn from this. While
increased network size can lead to increased performance, the higher number of
trainable parameters meant that memorising issues could arise where the network
‘remembers’ the answers. This presented itself in the form of over-fitting, where the
loss on the training data decreased over that of the network with 256 neurons, while
the validation loss was higher. Alongside this, the training time for the network with
512 Neurons was higher than that of the others, further making it a less suitable
candidate for further investigation than the other options of 256 neurons per layer.
Due to its slightly better performance and similarity to other paths of investigation, it
was decided that the ANN should be used to further study the impact the dataset and
training parameters would have on network performance.
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FIGURE 4.7: The effect of varying dataset size on the possible performance of the
network shows that the performance of the trained network is loosely coupled to the
amount of data used to train it. modified from McDonnell et al. (2021a).

4.7 Artificial Neural Network Investigations

Beyond just providing predictions of machining outputs, the machine learning
techniques discussed can be used as a tool to solve a number of problems. This section
will investigate how to optimise the data collection process as well as looking into
how the network can be used to explore the experimental domain.

4.7.1 Optimising the Number of Training Combinations

While, ultimately, the accuracy of the network is likely to be high in the priorities of an
end user, there are many other factors that come into play in the design, training, and
use of neural networks. One major factor that makes machine learning techniques
appealing is the time-saving measure that can be gained from reduced requirements
for experimental processes. This effect can be amplified by reducing the amount of
initial data needed to train the network in the first place. Many factors can play into
this, with the main two for a single data collection run being the set-up time and per
sample time. Each of these is calculated for each step in the processes, for example,
laser machining and height map measurement. If the set-up time and network
training time are low compared to the per sample time then the incentive is pushed
towards being able to continuously update the network. In contrast, if the set-up time
and especially training time is high then erring on the side of more data collection
would be the ideal choice. One of the more complicated situations is where the
training time is much lower and the data collection portion is time-consuming. In this
situation knowing how much, and what, data to collect is vital to maximising the
efficiency afforded by machine learning techniques.
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In an effort to explore the ideal amount of data, the ANN was trained on various
subsets of the entire training dataset. While this is not an overarching experiment and
cannot be applied universally it can provide insight and a data point for future
investigation. To do this, the network was tested using between 10 and 130 training
combinations, randomly sampled from the full set, in increments of ten combinations,
with results presented in Fig. 4.7. Additionally, the full dataset is included to provide a
reference for the network performance at lower quantities of training data. In each
case, 10 subsets of the full dataset were randomly chosen to train the network, with

the error bars on the graph representing the standard deviation within these results.

While the results do show that with lower numbers of training combinations, there is
a decrease in the accuracy of the network. Even with only 10 training combinations
used the network was able to perform better than some alternative methods discussed
previously, and even beat the same network when using a low number of neurons.
Errors quickly drop to an average of below 20% with an initial training set of 30
combinations. This value further improves to 15% with just 70 training combinations,
just over half of the total data collected. While this value is not quite as good as the
full dataset, it is within 3% of the internal error of the data and may well be deemed
suitable. To reach the full potential of the network it appeared that only 100
combinations were required, meaning that the data provided contained unnecessary

data points, increasing the time to collect data and train the network.

Within all of these tests, as the data was randomly selected, the more combinations
that were included, the more likely it was that the full range of the input domain
would be covered. This means that these results could likely be improved to ensure
that only interpolation was used rather than extrapolation. This does tie in with the
requirements for a machine learning dataset, where a wide range of combinations
should be collected. As discussed, while ultimate accuracy is usually desired, in this
case, for example, it may have been beneficial to undertake investigatory multiple
stages. Even with the huge advances in neural networks and machine learning
capabilities, they cannot be guaranteed, and all results should be experimentally
verified when it comes to novel combinations. To reduce the time taken for
investigation, fewer initial samples could be taken, with a slightly higher error,
followed by a more specialised investigation into areas of interest indicated by the
network. For example, if it was known that the optimal combination used a low pulse
energy then the parameter combinations chosen could focus on that area. This would
improve the accuracy in the vicinity of focus but may lower the overall accuracy and
may lead to better combinations being missed. This example shows how machine
learning can be combined with traditional experimental processes to enhance the
capabilities of both.
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Repetition Pulse Number of Dimple Crown

Rate (kHz)  Energy () Pulses Depth (um) Height (um)
Prediction by ANN 1200 7.62 364 4 1.26
Best from data (15) 1200 7.58 400 4.04 1.29
Best from data (29) 1200 10.1 400 5.25 1.62
Best from data (3"%) 1000 8.91 200 4.19 1.63
Best from data (4%) 1200 124 400 4.44 1.74

TABLE 4.3: Optimisation results from the network testing.
4.7.2 Finding Optimal Parameters

One of the most useful tasks to perform with the neural network is the determination
of optimal parameters. Without the use of machine learning tasks, or other
databases/algorithms there are two major approaches that can be taken. The first of
these is taking a high-level sweep of the data, as exemplified in the dataset provided
by Oxford lasers. This dataset can then form the basis of a database of data for current
and future use. Once this has been performed, traditional optimisation techniques can
be used to find a better solution. The issue with this is that the iterations required for
optimisation will each require a full experimental setup which becomes unfeasible if
any of the experimental collection or the set-up is time intensive. To combat this data
will normally be collected in batches, but it can still be time-consuming, and overly
large batch sizes can add time if unnecessary data is collected. In addition to this, a
condition will be set to be good enough rather than finding a true optimum in the
form of value caps or floors, or tolerances on fixed targets. While the tolerance issue

will be true for any empirical method, the issue is the magnitude of the allowed error.

The amount of data that can be collected, and the speed of doing so is where the
machine learning approach can offer a large advantage. When interrogating the ANN,
receiving a prediction took 0.77 ms, without any need for set-up time or multiple
stages of machining and measurement. As an example, performing a scan over the
entire data space with a granularity of 50 steps per parameter would lead to 50°, or
125,000 combinations to measure. Assuming a generous case of each experimental
measurement taking 1 second total for machining and measurement, and no set-up
time, the entire run would take more than 1.5 days. In contrast, running the entire set
of combinations on the neural network took less than 100 seconds. This is combined
with the lack of set-up time to allow the best use of optimisation techniques possible,

all in an automated manner.

While many black-box optimisation techniques exist and can be used, that is not the
focus of this investigation and so will not be explored here. The idea behind a
black-box process is that it is independent of the process used to produce the data and
so to assess the performance of the machine learning algorithm as it compares to an

experimental technique, any optimisation search could be used. Here a simple
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FIGURE 4.8: Investigation into optimising machining speed showing a decrease in the

minimum achievable crown height while maintaining the desired depth of 4 um and

increasing the number of pulses. This is achieved by reducing the pulse energy and
varying the repetition rate. Modified from McDonnell et al. (2021a).

parameter sweep is used, testing each data point at an evenly spaced 50 points with
the range of each of the variables using the ANN described previously. this parameter
sweep was chosen as it does not rely on any aspects of the underlying data and will
always contain a set number of steps. The best result that was found from the ANN is
shown in Table Table 4.3 alongside the four best results from amongst all data in the
training and validation datasets. The proposed optimisation task was to minimise the
height of the raised crown of material while maintaining a dimple depth of at least

4 pm. The prediction from the ANN has managed to produce a solution that gives a
smaller crown height than any of the data in the experimental set when keeping to the
depth condition.

In each of the combinations, both experimental and network generated, the repetition
rate was kept near the maximum of the allowed range, 1200 kHz. The number of
pulses was also mainly kept high, with all of the experimental data except the 3™ best
from the dataset. While this example appears to be much lower, at 200, it was the next
lower step in the number of pulses tested in the original data collection. The prediction
by the neural network drops the number of pulses slightly, down to 364 pulses,
slightly below the maximum seen value. In the best combinations from the dataset,
the pulse energy was kept low with the above-discussed parameters, the same being
true with the prediction from the ANN. While these results were not experimentally
verified, they did match the expectations of the technical staff at Oxford Lasers.

The fact that the prediction from the ANN does not utilise the maximum number of
pulses brings up an interesting point for investigation. Finding an acceptable trade-off
between crown height and the number of pulses used can act to minimise the time
taken to machine a feature. This problem is investigated in Fig. 4.8a where the
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minimum achievable crown height has been plotted against a range of numbers of
pulses while maintaining a dimple depth of 4 um. As expected from the results shown
in Table 4.3, the lowest crown heights were found at the highest of the tested numbers
of pulses. There is a peculiarity in that at the very high numbers, there is a turning
point with a minimum value found at 360 pulses as shown in the table. While this
could be a true effect, it goes against the general trend of decreasing crown height
with increasing numbers of pulses. In addition to this, the technical staff at Oxford
Lasers suggested that at higher pulse numbers than those tested, better results might
be found.

To investigate the effect further, the corresponding pulse energy and repetition rate
were plotted in Fig. 4.8b for each data point in Fig. 4.8a. This graph shows a possible
explanation for the up tick in crown heights. Around the turning point of 360 pulses,
both the repetition rate and pulse energy stabilise. This stabilisation occurs at the
highest and lowest tested values respectively, with the repetition rate being the
maximum possible with the laser. This capping of values would have put a limitation
on the optimisation possible for reducing the crown height. A clear example of this is
the inverse relationship between the number of pulses and the energy per pulse to
balance the amount of energy deposited into the sample. Once the minimum tested
energy is reached, the deposited energy cannot be offset and just increases, raising the

crown height and the dimple depth.

If, however, the results are incorrect, it might highlight a limitation in the provided
data. Rather than true, continuous, random values, each of the machining parameters
had different individual steps they could be chosen from. The pulse energy was the
most diverse, although this was due to the way the parameter selection occurred.
Rather than being directly chosen, the pulse energy was chosen as a percentage of the
maximum and then measured. The maximum energy, however, was not a fixed value,
but rather changed with the repetition rate. This created a lot of granularity within the
pulse energy parameter, although without a lot of cross-comparison. The repetition
rate and the number of pulses were both fully independent variables, with the
repetition rate having selections of 10, 100, 400, 600, 800, 1000, and 1200 Hz. The
number of pulses had fewer steps with either of these, with steps appearing in powers
of 2 having 4 data points of 50, 100, 200, and 400 pulses. This leads to very large gaps
between the data points, especially between 200 and 400, which could be a cause of
the uptick in the crown height after 360 pulses.

4.8 Conclusions

This examination of an experiment using a neural is a perfect example of how
machine learning techniques can be used alongside traditional experimental
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processes. In this example, the initial data collected by Oxford Lasers allowed for
initial training of the network. This network was then interrogated to quickly test the
results of machining a much larger array of different laser parameter combinations.
This test revealed a turning point in the data that did not match previous expectations.
The next step in this process could be to perform a more focused experimental search,
investing the areas of higher numbers of pulses, high repetition rates, and low pulse
energies. This data could then be fed back into the neural network as training data
and additional training epochs performed. Generative techniques were also shown to
provide a full experimental recreation. While initial results were not perfect they
could be used for similar tasks to the analytical methods, trading a small amount of

accuracy for the ability to visualise the results.
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Chapter 5

Simulating Shaped Pulse Laser
Machining via Neural Networks

As discussed in Chapter 2 modelling of femtosecond laser machining is a large topic
that involves many difficult calculations and steps, even for simple Gaussian pulses.
Scaling these models to three-dimensions with multiple incident pulses, would
require a very complex model or a large number of assumptions and simplifications.
These effects are especially true when using a spatial light modulator and the beam

profile is poorly defined at its incidence to the surface.

In this chapter, pulses with computer-controlled, spatial intensity profiles are used to
machine an electroless nickel-coated sample. The overall process for the investigation
is shown in Fig. 5.1, with the first steps being the pattern generation before the laser
machining (Fig. 5.1a). Once all patterns had been machined, the resultant depth
profiles were measured using a white light interferometer (Fig. 5.1b), completing the
data collection portion. This data was then used to train two generative neural
networks (Fig. 5.1c), one performing the transformation in each direction. In this
chapter, the details of the networks will be presented, along with the outputs they
produce. These results will be investigated to answer the question of whether the

neural network can be used to simulate the experimental process.

The work discussed in this chapter has been published in McDonnell et al. (2020,
2021a)

5.1 Motivation

While simulating the result of a single pulse is challenging, these techniques become
even more complex when the sample will be machined with successive pulses in a

single location on the sample. The simplest cause of this difficulty is the fact that the
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FIGURE 5.1: The experimental setup used with digital micro-mirror based experi-

ments. The initial experimental data was machined using a digital micromirror device

to shape pulses. The resultant depth profiles were then measured using white light
interferometry. Modified from McDonnell et al. (2021b).

sample can no longer be assumed to be flat before any pulse except the first. Along
with the obvious example of slopes in the surface, the interaction with the pulse will
have also changed the properties of the material of the sample itself. While The effects
will be less than with other types of laser machining, femtosecond laser will still
introduce a heat effected zone that will grow over time as more pulses are used. This
will change the material removal mechanisms as the incubation effect increases the
temperature and leads to a higher proportion of melting. The importance of including
these effects in a simulation are shown in Fig. 5.2. In this figure, the simple pixel
removal method uses that same spatial pattern as the experimental profile, but

assumes a fixed depth of material removal wherever the laser is transmitted.

On top of any difficulty in modelling the interaction mentioned above, the two
domains do not share a one-to-one relationship. When machining with a laser there
are a number of random or semi-random properties that can influence the results
including: power variation of the laser, beam cross-section inhomogeneities, and
imperfections and roughness on the surface of the target material. This means that
using the same pattern sequence to machine in multiple locations across the sample
may result in slightly different depth profiles. To a greater degree, the same is true in
reverse, owing to phenomena such as the diffraction limit Hecht (1987), where the
same depth profile could be caused by many pattern sequences. This becomes
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FIGURE 5.2: The central column shows a cross-section of the depth profile produced

by machining with the corresponding sequence of DMD patterns in the first column.

To demonstrate the complex interaction the final column represents the cumulative

value that would be machined assuming the laser machined a fixed depth with a per-
fectly square profile.

especially true when more than one pattern is used, as the sequencing can lead to
further possibilities, such as when there are two unconnected machined areas with a
large (compared to the diffraction limit) area between them. These factors result in the
initial sequence of patterns to the final, machined, depth profile having an
approximately many-to-one relationship. This one-to-many relationship means that
traditional comparative techniques can cause overfitting and a lack of variation that
would be expected. The comparative losses can also lead to results that are correctly
being labelled as wrong and so must be used with care.

The primary motivation for the work presented in this chapter is to demonstrate the
effectiveness of neural networks, and GANSs in particular for use in modelling laser
machining. Novel neural network techniques are demonstrated to best suit the
particular domain relationships.
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5.2 Prior Art

One of the biggest advances that the group has made is in the use of Digital
Micro-mirror Devices (DMDs). This work was initially started by Dr Ben Mills with
simple pattern ablation tests demonstrating the abilities of the DMD Mills et al.
(2013a). In this paper, it was shown that a DMD is a much cheaper alternative to a
transmissive spatial light modulator (SLM). It has also been shown that the use of a
DMD along with multiple exposures allows for sub-diffraction limit machining Heath
et al. (2017). This approach has been shown to work on a number of materials and the
use of a femtosecond laser allows for machining of materials that would otherwise be
transparent at the wavelength of the laser, such as diamond Mills et al. (2014). This
was made possible due to the use of multiphoton absorption as described in

Section 2.2. Use of this effect has also been extended to multiphoton polymerisation to
create complex patterns in a photoresist Mills et al. (2013b) useful for engraving and
etching processes.

Along with the novel use of DMDs there has been an increasing utilisation of ML
techniques and NN, in particular, which are well suited to modelling the complex
interactions involved. Machine learning has been widely used within laser machining

(as discussed in Chapter 3) and this includes lots of work in combination with DMDs.

Work started with a demonstration of the ability of a GAN to be able to reproduce the
surface of a machined sample, first in the form of scanning electron microscope
images Mills et al. (2019b), and later full 3D depth profiles Heath et al. (2018b). These
experiments involved exposing an electroless nickel-coated sample to a single
femtosecond pulse, spatially shaped with a DMD. An electro9less nickel coating uses
a chemical deposition process rather than a chemical on which leads to a high surface
uniformity. The resultant patterns were analysed and then used, along with the initial
DMD pattern, as the training input pairs for the networks. Once trained the networks
could be used to predict the surface of the material after being exposed to a pulse with
an arbitrary (binary) spatial profile, including those not seen while training.
Throughout this process, the algorithm is never explicitly programmed with a
theoretical understanding of the problem, but rather gathered all information
empirically. This is a benefit when trying to model systems as complex as the ones

seen here as no simplifications or assumptions were required.

5.3 Equipment Set-up

The experimental setup shown in Fig. 5.3 is the one used in most experiments within
the group. In this setup patterned laser pulses are projected onto a sample with a
digital micro-mirror device (DMD) acting as a spatial light modulator (SLM).
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FIGURE 5.3: The experimental setup used with DMD experiments.

The laser used in the setup shown is a Ti:sapphire laser with a central output of 800 nm
and pulse duration of 150 fs, seeded by an 800 nm, 80 MHz Ti:sapphire oscillator.

Immediately after exiting the laser the ideal beam has a Gaussian spatial intensity
profile. This is not suitable for producing detailed structures from the DMD as a flat
intensity profile is required. To rectify this, the beam is first passed through a Pi
Shaper (7 Shaper 6_6 — AdlOptica), which acts to transform the beam from a
Gaussian spatial intensity profile to a top hat spatial intensity profile Laskin and
Laskin (2011). After the Pi Shaper is the DMD, which acts as a blazed diffraction
grating as well as its primary function as an SLM. From this grating, only a single
diffracted order is captured, the one that is perpendicular to the surface. Additionally,
if the beam is incident on the DMD from the correct angle, then this order carries the
highest intensity. Selecting the central order minimises beam distortion, ensuring, for
example, that circular patterns defined on the DMD do not produce elliptical beams.
The selected order is then reflected by a series of 45° mirrors and directed towards the

objective.

Before the objective, the beam passes through a lens in order to re-collimate the beam
and to counteract some of the spatial dispersion caused by diffracting from the DMD.
This is needed to preserve the wide bandwidth of the laser and allow short pulses. A
dichroic mirror then directs the beam through the objective and onto the sample. The
dichroic mirror was used so that the surface of the sample could be imaged from
above while in position to be machined. The sample surface can be illuminated via a
co-linear white light source that is positioned behind the multi-layer femtosecond
mirror (which is transparent to visible wavelengths). Alternatively, there is a ring light

attached to the objective to provide a dark-field view.
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Samples are mounted on a 3-axis stage allowing movement in the horizontal plane for
position and vertically to adjust the focus. The DMD can be set to display a simple
shape, such as a circle or square, and then the laser used in a traditional way, by
moving stages to track the beam across the sample. Alternatively, more complex
patterns can be machined quickly by using the DMD to display discrete patterned
areas. If a pattern is needed that is larger than the projected DMD area, then multiple
pulses and displayed patterns can be used to create a single stitched pattern.

The flip mirror and camera allow the beam on the DMD surface to be imaged directly.
This helps with Pi Shaper alignment, allowing the minimising of aberrations, and
helps to ensure that the beam is centred on the DMD area.

To calculate the depth profiles of the samples, a Zygo Zeescope interferometric optical
profiler, accurate to below 1 nm for depth measurements, was used after all desired
positions had been machined.

5.3.1 Digital Micro-mirror Device
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FIGURE 5.4: Diagram of the DLP-3000 DMD with a diamond grid pixel pattern.
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A lot of the work conducted with the FS laser in the group uses a DMD. A DMD
consists of an array of mirrors that can be used to reflect light in a structured way. The
DMD used in all experiments in this report is a DLP3000, which has mirrors arranged
in a diamond pattern as seen in Fig. 5.4. They are often used in projectors where they
reflect light from LEDs through a lens and onto a surface. The use of them in a laser
machining setup is slightly different for several reasons. The most significant
difference is that it is not possible to use the DMD to control the exposure of each pixel
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with a continuous value, only as a binary mask. Despite this, it is possible to simulate
a greyscale value when the projected pixel sizer is smaller than the diffraction limit of
the machining process with the use of static dithering. In normal operation, exposure
is controlled by rapidly rotating the mirror, equivalent to rapidly turning an LED on
and off, however, this will not work for FS pulses as the pulse duration is shorter than
the oscillation period of the mirrors.

The DMD can be used for several tasks, most simply changing a spot diameter by
displaying a circle of any size. In more complicated cases, it can be used to project
complex shapes, difficult to achieve via other methods in a single exposure. Smooth
intensity gradients can even be achieved by using a chequered pattern of active pixels
Heath et al. (2018a). This offers the opportunity to study unique interactions at the
cost of being harder to model.

DMD

FIGURE 5.5: A demonstration of the light interaction with the mirrors in the DMD.
Due tho their fine pitch they act like a diffraction grating rather than a pure reflective
surface.

One of the biggest problems in modelling the light interactions on the surface is trying
to model the beam properties after the DMD. Immediately before the DMD, the beam
is well-defined as a uniform top hat beam. After the DMD, however, the beam has
changed significantly with diffraction, as the DMD itself is a grating as illustrated in
Fig. 5.5. The other effect is that when passing through lenses that are small compared
to the angular spread of colours within the beam, clipping may occur. This means that
high-frequency spatial information, along with the extremes of the spectral
bandwidth, will be lost, further reducing the resolution of the pattern projected to the
surface. All these factors combine to make modelling of the machining process almost
impossible, although the focus of the work here is looking at the effect of multiple
pulses rather than that specifically of the DMD.
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5.3.2 Pi Shaper

As stated previously, to be used effectively, the incident beam onto the DMD should
have a top-hat spatial intensity profile. To convert the Gaussian profile from the laser,
a Pi Shaper is used which enables a pulse of a specified diameter to be converted with
very little loss. The Pi Shaper works with the use of two paired specially shaped lenses
as shown in Fig. 5.6. The first lens acts to diverge the beam in the centre and converge
the beam at the extremities. This flattens the distribution with an opposing lens
collimating the beam. The beam path throughout the Pi Shaper is kept constant to
ensure there is no tilt on the pulse.
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FIGURE 5.6: The Pi Shaper works by refracting some of the high-intensity radiation at

the centre of the pulse towards the edge of the pulse as well as directing some of the

low-intensity skirt inwards. Due to the fixed shape of the lens shape the Pi Shaper was
only designed to work with an ideal 6 m m Gaussian beam.

5.4 Experimental Data

The extension from 1 pulse to 3 pulses was chosen for a few reasons. One was to
provide enough permutations (2° = 8) in order to demonstrate the effectiveness of this
technique for predicting the effect of the order of multiple laser pulses during laser
machining. The reason that the limit was chosen as three rather than higher was to
keep the data easily understandable by humans and as a stepping stone to prove the
concept that multiple pulses (i.e. an unlimited number of pulses) could in principle be
simulated via a neural network.

The dataset used for the experiment consisted of 484 positions at which between 1 and
3 machined patterns were machined into the sample surface. These patterns were
semi-randomly generated patterns consisting of lines, circles, and arcs with an overall
predetermined fill density. In a third of cases, the areas to be machined are inverted

and so the patterns represent the areas not to be machined. Examples of these patterns
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FIGURE 5.7: Example generated DMD patterns using a range of sizes of lines, arcs and
cirles. In a third of cases, the image was inverted in the machining region.

can be seen in Fig. 5.7 where the white pixels represent ‘on” pixels where the material
should be machined.

Each pixel in the depth profiles shown corresponds to a theoretical size of 92 nm on
the sample. The sizes of the features ranged both above and below the diffraction limit
of the setup when the patterns were imaged onto the sample. This variety of input
shapes was designed to allow the neural network to learn the laser machining process
without simply remembering what the output of each pattern should be. Each overall
structure produced via up to 3 pulses was around 30 pm across. For the training of the
NN, a total of 404 input-output pairs were recorded and used.

N : . L-20 o,

- =1 = =

» 15 . 1) — g
L L H-60 £

| i
A oD <@
o O

--60

nanometres

]
e}
(e}

FIGURE 5.8: Example depth profiles from the experimental process.

Once the laser machining step had been completed and the height maps had been
measured using WLI, the data was available in the form of 2 dimensional arrays of
float values. Pictoral representations of a sample of the final height profiles can be
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seen in Fig. 5.8. It is worth noting that the general depth across the machined area is
consistent with a greater depth of machining in the upper left corner of the images
shown in Fig. 5.8. This is a real effect in the laser used where the intensity incident on
the surface was not uniform. This effect justifies one of the decisions made when
training the network, not to include any rotational augmentation. While rotating the
data pairs in increments of 90 degrees would provide effectively 4 times as much data

and reduce the risk of overfitting, the network can lose some specifics of the system.

5.5 Neural Network Architecture

To complete the planned experiments covered in this chapter, a number of neural
networks were created and combined in a way to maximise their performance. The
first case of interest was the generation of depth profiles given a sequence of DMD
patterns. To allow for simplicity and to reduce the size of the dataset required,
sequences of between 1 and 3 DMD patterns were chosen. The use of a maximum of
three sequences in the pattern allowed for easy compatibility with existing neural
networks. It also gave the ability to easily display information in the form of RGB
images, with each colour channel representing a unique DMD pattern as shown in
Fig. 5.9. Due to the equipment set up it was only possible to capture the 3D surface
profile after the machining had taken place and so fixed sequences were used. With
the ability to capture the surface before and after each laser pulse, the network could
be extended to be able to calculate an arbitrary number of pulses, each with a unique

spacial profile.

As all laser parameters, excluding the spatial intensity profile, were kept consistent
between each pulse, only two sets of information were needed for training. The first of
these was the sequence of DMD patterns, formatted as a 512x512x3 array, examples of
which can be seen in Fig. 5.9. The first two dimensions formed the binary masks
representing each pattern displayed on the DMD while machining, with the third
dimension representing the ordering of the up to three patterns used, with the first at
index 0. The depth profile was represented by a 512x512, 2D array with each value in
the array representing the depth in nanometres, compared to the un-machined area, of
the corresponding position on the sample.

Due to the ability to collect one-to-one paired data, and the existence of random
features in the output, such as debris and variations in the laser intensity profile, it
was decided to use a GAN for these tasks. As discussed in Chapter 3, GANSs allow for
the creation of realistic images that are indistinguishable from the experimental data.
The GAN would also be capable of learning features of the beam without having to be
explicitly stated, such as an uneven intensity distribution across the pulse.
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Pulse 1 (Red) Pulse 2 (Green) Pulse 3 (Blue) Combined (RGB)

FIGURE 5.9: RGB representation of individual three-pulse sequences. The final col-

umn shows a combination of the previous columns using the colour shown in the

header as their channel. As the images were provided to the network as 512x512x3
arrays the RGB representation is an accurate view of what the network uses.

5.5.1 Generating Depth Profiles

Previous
Layer

FIGURE 5.10: A block diagram of a SPADE Normalisation Block combining a revised
version of the initial input image with the previous layers of the network.

The network used to generate depth profiles from DMD patterns was based on a
development of the pix2pixHD network Wang et al. (2018), called SPADE Park et al.
(2019). This network was specifically developed to convert flat, semantic images, into
photo realistic images. Semantic images consist of flat (unshaded) blocks of colour,
where each colour has a specified meaning. For example an area of light green could
represent grass, and light blue could represent the sky. This shares a lot of similarities
with the representation of the sequences of DMD patterns, as shown in Fig. 5.9. In
these representations, each of the primary colours relates to the ‘on” pixels for each
pattern. One of the major developments of this network was the incorporation of the
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SPADE normalisation block, the structure of which is shown in Fig. 5.10. The SPADE
normalisation block replaces other normalisation techniques, such as instance
normalisation, and is designed to better preserve the semantic information. The
SPADE normalisation block, takes two inputs, one is from the preceding layer in the
network, and another is an appropriately resized version of the initial image input of
the network. The image is first convolved onto an embedding space before two
further independent convolutions produce two modulation tensors, labelled «y and S.
These two tensors are then multiplied and summed element wise respectively to the

batch normalised output from the previous layer.

Input Image l l l
3x3 4x4 SPADE 8x8 SPADE 512x512 SPADE 3x3
» ResBlock » ResBlock »»» ResBlock ‘

Previous
Layer

(B) SPADE ResBlock

FIGURE 5.11: Network Block Diagram showing both the generator and the discrimi-
nator parts of the GAN.

The generator uses an up-scaling generator, eschewing the down-sampling path of a
traditional U-net structure Ronneberger et al. (2015). This allows for the network to
contain fewer parameters and therefore be quicker to train. The full structure is shown
Fig. 5.11a the method of building from the initial input, all the way to the final output
is shown. One of the frequently occurring components in the network is the SPADE
ResBlock (Fig. 5.11b). This performs the same task as the initial ResBlocks He et al.
(2016) but has been updated to incorporate the SPADE normalisation block Park et al.
(2019). Each block is formed of a repeated set of three layers: a SPADE normalisation
block, a ReLU activation, and a convolution with a kernel size of 3. The initial SPADE
normalisation block takes an input of the output from the layer preceding the block, as
well as an appropriately resized version of the network input image. The second uses
that same resized image as the first, but also uses the output from the proceeding
convolutional layer. As in the original ResBlock, the output after the final layer of the

block is summed with the output of the layer preceding the block.

The first layer of the network is a Convolution layer with a kernel size of 3, which
takes in a single input of the initial image resized to 4x4 pixels. This is then followed

by a sequence of a SPADE ResBlock and a 2x up-sampling layer using nearest
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neighbour interpolation, increasing the working size to 8x8 pixels. This is then
repeated until the desired size of 512x512 has been achieved. After the last
up-sampling layer there is a final SPADE ResBlock followed by a Convolution layer
with a kernel size of 3 and 1 filter to form the output image.

(B) Comparative (GAN) loss

FIGURE 5.12: Network loss configurations. X and W are network inputs, Y is the
experimental output target, and Z is noise. Modified from McDonnell et al. (2021b).

In order to train the network the Adam optimiser was used with a beta; of 0.5, a betay
of 0.999, and a learning rate of 2 x 107%. As this network was trained on paired data, it
could be trained based on two of losses shown in Fig. 5.12, using the traditional GAN
loss (Fig. 5.12a) and a comparative loss (Fig. 5.12b). In the figure, The letters related to
different inputs, and in the case of this network, X is the depth profile to be used to
generate the sequence of DMD patterns. The other inputs are W, the weighting vector
used for pulse ordering, and Z, the noise input used to provide variance. Where
multiple inputs are used there are two methods used, they are concatenated in
situations with a plus, and treated as separate variables where there is a blank circle.
In some cases one of two inputs are used, as in Fig. 5.12a, and this is indicated by a
dashed and curved line between the two possibilities. The generator (G) in the images
all refers to the same network but has been included in each of the configurations for
the sake of clarity.

The first of the losses described is the traditional GAN loss, using the discriminator to
determine the quality of the generator. Using this loss can generally not provide a
learning cut-off point as both networks are continuously learning, even though the
generator will improve. The ideal case is that the two networks will balance each
other and should maintain an even ability to generate and recognise images, therefore
the loss will not show a downward trend. The other loss used was the direct

comparative loss, and in this case, the specific method used was the mean absolute
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error. This again was used to provide a loss to train the network with, and to give a
better overall idea of how the training was progressing throughout. While an exact
cut-off was not used training was stopped after 300 epochs, once the losses had
stabilised, and the depth profiles produced were with an MAE of less than 3 nm.

5.5.2 Generating Sequences of DMD patterns

A slightly different approach was taken for the network used to produce DMD
patterns. This generator was again based on the SPADE network, formed of an
up-scaling convolutional network comprised of SPADE ResBlocks and x2 nearest
neighbour up-scaling layers. The network started at a resolution of 4 pixels by 4
pixels, going up to the final resolution of 512 pixels by 512 pixels. In an addition to the
previously described network, a mapping input was also used, comprised of the
weighting vector and random noise. The noise portion of the input was included to
allow for the network to perform the one-to-many transformation, as it allowed for
different results from the same depth profile and weighting pairs. The weighting was
used to describe the desired pulse make-up of the final sequence of DMD patterns,
allowing control over the pulse breakdown. The weighting this way could only be
used as an input to the network rather than an output, and this was decided as a way
to investigate the amount of control possible over the network, rather than to use it as

a direct optimisation tool.

The mapping input was included in the network with a series of 4 Dense layers
followed by a reshape layer to form a 4x4x128 layer. This output was then resized and
used at each SPADE ResBlock in the network, being concatenated with the input. The
tirst SPADE ResBlock used 1024 filers, reducing with each scaling value, reducing
down to 32 filters by the final block operating at 512 pixels by 512 pixels. After the
tinal SPADE ResBlock there was a single Convolution layer with 3 layers that formed
the output of the network and produced the sequence of DMD patterns.

The discriminator used was a variation on a patch GAN discriminator, taking inputs
of both the weighting vector and the sequence of DMD patterns. Through a series of
strided convolutions, the sequence of DMD patterns are downsized gradually from
original size down to 32 pixels by 32 pixels, with the final convolution only having a
single filter. The output from this layer was then flattened to form a vector of size
1024. Concurrently the weighting vector passes through a Dense layer to then be
concatenated with the flattened DMD sequence vector. This combined vector is then
passed through a further two Dense layers, the final one having a single filter to
produce the output. This output was a prediction on whether the input pair
corresponded to a real, experimental pair, or to one created by the generator.
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One of the major differences with the GAN to produce the sequences of DMD patterns
was the structure of the losses chosen. Due to the losses available to them, in
particular comparative losses such as MAE, GANs that are trained on paired data are
often easier to train than those where the data is not directly paired. As discussed in
Chapter 3 one method to get around this was the CycleGAN, where the advantage of
comparative errors can be used. While traditional paired data techniques worked for
the GAN discussed in Section 5.5.1, they were found to be ineffective in this situation.
This was likely due to the highly many-to-one nature of the data, and comparative
losses being ineffective. To counter this, a partial CycleGAN was used, with only the
DMD generation GAN utilising this technique. This was chosen as the depth profile
generation GAN could be proven to be effective without this, and that meant that it
could be used in this process, as well as reducing training time by only having to train
one further network rather than both operating under the CycleGAN simultaneously.

FIGURE 5.13: Cycle consistent loss. X and W are network inputs, Y is the experimental
output target, and Z is noise. Modified from McDonnell et al. (2021b).

The network used to produce the sequences of DMD patterns was trained via the use
of three different loss functions simultaneously. These three losses include the two
shown in Fig. 5.12, as well as a new one shown in Fig. 5.13 utilising all three of: the
traditional GAN loss (Fig. 5.12a), a comparative loss (Fig. 5.12b), and cycle consistent
loss (Fig. 5.13). The first two losses were used in the same way as the previous
network, although with less emphasis on the comparative loss due to the difference in
aims between the two. The main addition here was the cycle consistent loss, which
utilised the depth profile prediction network as the secondary network shown in the
figure. While in a traditional cycle consistent setting, both networks would be trained
simultaneously, in this situation this was not required as the secondary generator had
already been trained and tested. While the comparative loss had less importance later
on in training, early on it was heavily weighted to promote initial pixel accuracy,
before later refinement. The traditional, comparative, and cycle losses had a
normalised weighting at a ratio of 1:10:1 respectively initially, dropping to 5:1:5 by the
end of training. This meant that the comparative loss contributed to the training of the

network far more initially, dropping to a fifth of the other two by the end.
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5.6 Analysing Network Performance — Generating Depth
Profiles

/\
AN /

FIGURE 5.14: Examples of patterns designed to investigate the limits of the network
while also displaying features that could be easily judged by humans.

As always in machine learning, a validation dataset was kept separate from the main
training data, and used to verify the performance of the network. Alongside the
randomly generated images of the style shown in Fig. 5.7, input data with
user-defined structure was also included in the validation set, and can be seen in

Fig. 5.14. These were included to try to interrogate the network and see what it had
learned with human-understandable data, such as the letters. This also allowed
specific situations to be investigated such as the effect of ordering on different
structures, such as looking at the grid structures.

Once trained the network was able to generate predictions for the depth profiles
produced by sequences of DMD patterns, examples of which can be seen in Fig. 5.15.
The two experimental and generated profiles, while not identical, show good
agreement, and the differences can be attributed to random noise within the
experiment that the network could not be expected to match perfectly. Examples of
things that contribute to the noise include any power fluctuations within the laser,
both peak power and intensity distribution, as well as any defects in the sample. This
can be seen especially in the unmachined area beyond the extent of the laser pulse,
where the random features on the surface of the sample exist. A more accurate result
could have been achieved by capturing the depth profile before each pulse, however,
at the time of conducting the experiment, this was not feasible. The reason for the
difficulty was due to the fact that the machining setup, and the white light
interferometer were not in the same setup, but were in different buildings. Another

option would have been to use a camera image, but this would not contain all depth
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FIGURE 5.15: A comparison of experimental and generated depth profiles over a series
of three shaped pulses, each building on the previous.

information and with the setup, it was not possible to capture images of sufficient
sharpness and clarity.

To better compare the experimental and generated profiles, a cross-section of each of
the depth profiles is shown in Fig. 5.16. While each of the matching profiles were not
exact matches, this is not expected due to the variations in the machining process such
as laser power fluctuations and sample imperfections. Despite this, the results were
far superior to the simple removal shown in Fig. 5.2, where a pixel-perfect removal
method was shown. The overall softening of features has been captured well with
many small rounded peaks present and similar depths across the profile. The mean
absolute errors of the generated profiles, in this case, were 3.5nm, 4.3 nm, and 4.5nm,

for the one, two, and three pulse case respectively.

5.6.1 Pulse Ordering

When performing a laser machining task, there is generally a goal to be reached for
the resulting surface profile, and one factor that can affect this is the shape and order



78 Chapter 5. Simulating Shaped Pulse Laser Machining via Neural Networks

DMD Experimental Generated

Patterns Profiles Profiles
DA -’
£ 50 2 50

5 5
5-100 5-100
0 15, 30 45 0 .30 45

microns microns

0 0

(nm)

h
(=]

|
=
S

Height

0 15. 30 45
microns

ight (nm)
b

c
I
(=
o

H

=]

15. 30 45
microns

=1

(nm)
(nm)

|
Lh
=

: ght
: ght

100

He
He

0 15, 30 45 15, 30 45
microns microns

FIGURE 5.16: A comparison of depth profile cross-sections over a series of three

shaped pulses. The generated profiles show similarities to the experimental profile

in the softness of the machining and the comuliliative effects of machining in a single
location.

of the pulses. As an example, when trying to machine clean, sharp features in an
overall recess, would it be beneficial to first machine the detailed area first, or would
the results be better when machining the overall depression initially? This situation
was explored using various overlapping grid structures solid squares, examples of
which are shown in Fig. 5.17. Grids of varying sizes were used to test this, with

Figs. 5.17a and 5.17b showing the extreme fine example and Figs. 5.17c and 5.17d
represent the sequences with the largest features and spacings. The sequences where
the solid square is listed as the final pulse (as in Figs. 5.17a and 5.17c) are referred to as
grid first sequences, while ones where the squares are machined first, are referred to as

grid last sequences.

dg(x,y)  dg(x,y)]
//g[ 2 + a2 dxdy (5.1)

In order to quantify this effect, a way to measure the difference was required. The
method chosen for this was measuring the sharpness of the depth profile, with the
crisper depth profiles having a higher sharpness. This sharpness was calculated using
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(A) DMD pattern with a fine grid machined before a large square

(B) DMD pattern with a fine grid machined after a large square

=]]||(|[

) DMD pattern with a coarse grid machined before a large square

ME

(D) DMD pattern with a coarse grid machined after a large square

FIGURE 5.17: Sequences of DMD patterns used to test pulse ordering with fine and
course grid li9nes machined before and after a large square.

the Laplacian energy Wee and Paramesran (2007) of the depth profile array. To
calculate the energy Eq. 5.1 is used, with g(x, y) representing the depth profile array.

The results from machining the fine grids shown in Fig. 5.17 are presented in Fig. 5.18
alongside the predictions from the neural network. The profiles shown in Fig. 5.18a
were produced using the grid first sequence of the fine grid patterns shown in

Fig. 5.17a and Fig. 5.18b was produced using the grid last sequence of the same scale.
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LIl

Experimental Depth Profile Generated Depth Profile

(A) Machined with the grids first

LIl

Experimental Depth Profile Generated Depth Profile
(B) Machined with the grids last

FIGURE 5.18: Depth profiles produced using the sequences of DMDs shown in
Fig. 5.17a and Fig. 5.17b respectively. When the grids were machined first the details
are softer than when they were machined after the square.

When examining the experimental depth profile from the two profiles, it is clear to see
that the features produced by the grid last sequence remain sharper than those
produced by the grid first sequence. This can be seen in particular along the vertical
ridges which are all clearly visible in the grid last profile, but become difficult to make
out in the grids first profile. The same is true for the profiles generated by the neural
network, although to a lesser extreme in both cases, indicating that there is still room
for improvement within the network. In all cases it can be seen that there is an area of
higher machining (greater depth) in the lower left corner, which is present to a greater
extent in the profiles where the final machining step was the solid square.

The same effect can be seen When the grid size is larger, with both thicker features and
larger gaps as demonstrated in Fig. 5.19. Both the experimental and the generated
profile in Fig. 5.19b, where the grid has been machined last, are sharper and better
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Experimental Depth Profile Generated Depth Profile

(A) Machined with the grids first

Experimental Depth Profile Generated Depth Profile

(B) Machined with the grids last

FIGURE 5.19: Depth profiles produced using the sequences of DMDs shown in
Fig. 5.17c and Fig. 5.17d respectively. Again, when the grids were machined first the
details are softer than when they were machined after the square.

defined than when a solid feature is machined afterwards. This is as expected,
however, in both examples, the grids predicted by the neural network are more
well-defined in most areas than the predicted depth. This contrasts with the examples
shown in Fig. 5.18 where the features in the generated depth profile are slightly softer
than those in the experimental profile.

Using Eq. 5.1 the energy can be calculated for all depth profiles shown in Figs. 5.18
and 5.19 and the results are presented in Table 5.1. Looking at the fine grids in

Fig. 5.19b, when the grids are machined after the large feature, the energy of the
experimental depth profile was calculated to be 8.89 x 10~ with a standard deviation
of 0.298 x 10~ compared while the energy of the generated profiles was calculated as
11.08 x 10~*. Taking the case of machining the grids before the square, the mean

energy of machined patterns was 7.27 x 10~* with a standard deviation of
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Sharpness (a.u.)
Experimental Profile Generated Profile
Grid First 727 x10°* 9.05 x 10~*
Grid Last 8.89 x 1074 11.08 x 104

(A) Fine Features

Sharpness (a.u.)
Experimental Profile Generated Profile
Grid First 13.0 x 10~* 10.2 x 10~*
Grid Last 14.5 x 10~* 11.1 x 10~*

(B) Coarse Features

TABLE 5.1: The sharpness metrics for experimentally measured and generated depth
profiles

0.154 x 10~*. This compares to the value of 9.05 x 10~* when calculating the energy of
the generated profile for the same case.

Taking the alternate case of the coarse features, as presented in Table 5.1b, The mean
Laplacian of the experimental profile when the square was machined first was
calculated as 14.5 x 10~* with a standard deviation of 0.218 x 10~%, higher than the
value of 11.1 x 10~ for the generated profile. Similarly, the energy of the experimental
profile for the square machined last case of 13.0 x 10~#, standard deviation of

0.142 x 10~* is also higher than that of the generated profile which was calculated as
102 x 107,

The sharpness values for each of these conditions roughly relate to how well-defined
the machined edges are. This suggests that the edges are sharper when the large solid
square is machined before the grating structure than when it is machined after. This
agrees with the idea that features will be softened by re-machining the same area,
hence reducing edge steepness. The other most notable feature of the data is that the
sharpness in the generated data is less varied than the experimental data.

While The GAN does correctly predict that machining solid features will soften any
previous features, the difference between the two grids is very small. Part of this is
due to artefacts in the profiles that are not easily visible. The artefacting only appears
when taking the sharpness of the profile, with a noticeable difference between the
experimental and generated profile. These artefacting issues are likely due to the
kernel size influence on pixels discussed in Chapter 3 where there are periodic effects.
Despite this, the trend is the same between the experimental and generated profiles
and this suggests that the neural network is capable of determining the effect of
ordering of pulse patterns.
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5.6.2 Multiple Pulses and the Diffraction Limit

Beyond simple rapid prototyping, one novel use of neural networks is an
investigation of the physics involved in the experiment. One aspect that can be
investigated is the diffraction limit of the laser machining setup for a single exposure.
This is a good value to look at, as an approximate value can be calculated very easily
using the Abbé diffraction limit (Eq. 5.2).

Previously experiments have also been conducted using this setup which have
investigated both the diffraction limit of the system and the effect that multiple
exposures would have Heath et al. (2017). This experiment uses the same 50x objective
and was machined on a matching electroless nickel sample. In the work it was found
that by using multiple exposures they could produce features at a factor of 2.7 x
smaller than the diffraction limit of the system. The predictions from the neural

network could therefore be compared to the results presented in this paper.

A

The single pulse diffraction limit (d) for the setup used for this experiment was
calculated as 952 nm, using the wavelength of the laser (A = 800nm) and the
numerical aperture of the objective (NA = 0.42). Features with a size smaller than this
were achieved with the use of multiple overlapping pulses, and a similar effect can be
simulated with two pulses machining separate, but nearby, areas and looking at the
non-machined area between them.

To investigate how well the neural network was able to capture the effects of the
diffraction limits, a series of patterns were used with the network to simulate their
corresponding depth profiles. In each pattern there was a solid region machined
across the image with three spokes from the centre left unmachined. The effect of the
diffraction limit was tested by varying the width of each of these spokes, from 1 pixel
all the way up to 15, corresponding to a range of 92 nm to 1380 nm. Each of these
separations were tested under two conditions, firstly each was simulated using a
single pulse, and secondly, each of the three regions was machined with separate
pulses, each region was still only machined with a single pulse. Examples of these can
be seen in Fig. 5.20 where the sequences using separations of 92 nm, 828 nm, 1104 nm
are shown, along with the resultant generated profiles. As discussed previously the
colouring method for the sequences of DMD patterns is the same as that described in
Fig. 5.9.

Looking at the sequence shown in Fig. 5.20a the separation is well above the
calculated diffraction limit. As the un-machined feature is large, there should be very

little difference between the cases where there is a single pulse, and where the
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Single Pulse Three Pulses
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FIGURE 5.20: Demonstrating the ability of the network to differentiate between the
effects of a single pulse and multiple pulses. In the images with only red regions, the
machining was conducted in a single pulse, while in the multicoloured sequence, each
primary colour was machined using a separate pulse. Modified from McDonnell et al.

(2020).

machining is separated. As can be seen, this is the case, with the only differences

found within the machined areas.

When reducing the separation between machined areas to less than the diffraction

limit, it would be expected to see a difference between the two cases. This is explored

in Fig. 5.20b where the separation is 828 nm, lower than the diffraction limit of 952 nm.

It can be seen here that for the multiple pulse case, the ridge between the two

machined areas is narrower than in Fig. 5.20a, however, the height of the ridge is the

same. In the case of machining being completed in a single pule, the same is not true,
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and it can be seen that the ridge between the two machined areas is lower, indicated
by the lighter colour.

The situation changes again when machining far below the diffraction, and can be
seen in Fig. 5.20cc where the separation was reduced to 92 nm. In both cases it was
predicted that the ridge would be heavily affected. When the machining took place in
a single pulse, the ridge for the upper and lower left spokes completely disappeared.
In contrast, when the multiple pulse situation, the spokes have not completely
disappeared, but do show a greatly reduced height.

(4] x b ¥ & * =
x
" b X
= 4 4
E
£
o
— _10 -
g0
¥ Three Pulses
-154 | k  Single Pulse
200 400 &00 800 1000 1200

Separation (nm)

FIGURE 5.21: The effect of separation on the height of remaining non-machined area
for both single and multiple pulse cases. The vertical line represents the diffraction
limit of the system, from McDonnell et al. (2020).

While a trend can be seen in Fig. 5.20, a full analysis of all tested sequences can be seen
in Fig. 5.21. In this figure, the height of the ridges of non-machined material has been
plotted along with the diffraction limit of the system. Above the limit of 952 nm, there
is no difference between the cases where the machining was done in a single or in
multiple pulses. In both cases, while the width of the ridge decreases, the height of the
material stays constant and matches that of the surrounding material, indicated by a
depth of 0. Going below the diffraction limit, Heath et al. Heath et al. (2018b) found
that features were still visible, even down to a quarter of the diffraction limit, although
the maximum height of the feature was reduced. The reduction in feature height was
predicted by the GAN, with the height reduced beyond the diffraction limit indicated
by the vertical blue line. In contrast, the GAN predicts that when neighbouring
regions are machined in different pulses the height remained constant until around
half of the diffraction limit before a small drop. The height of the un-machined ridge
for three pulses remains roughly equivalent to that of the single pulse case machined
at twice the separation. This shows that the network has learned that the single pulse
diffraction limit can be beaten with the use of multiple pulses.
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5.7 Data Preparation for generating sequences of DMD

Patterns

As discussed previously, the one-to-many relationship between the depth profiles and
the sequences of DMD patterns used to create them, makes this transformation more
complex. As such it would be expected that a method of improving network
performance would be to simply collect more data. As an alternative, techniques
could be implemented to reduce the amount of data required by the network while
still maintaining comparable performance. This is not an insurmountable task to
overcome, and indeed has been an area that has seen a lot of research (Noguchi and
Harada (2019); Shaikhina and Khovanova (2017)) due to the sheer amount of data
used by some of the state-of-the-art networks. Despite this, many of these approaches
are very situational such as highly specific augmentation that relies on a peculiarity of
the data, and so not suitable in all situations. Even when the solutions can be applied,
they are aimed at reducing the amount of training images down from millions to the
order of thousands Karras et al. (2020). At this scale, to collect the experimental data
would still involve an unfeasibly large period of data collection, making this an

unattractive option.

As techniques to reduce the amount of data would not be completely suitable, this led
to another option of artificially creating more data to match the style of the data
collected through the experimental process. For use with neural networks, this
creation of data often takes the form of data augmentation. Augmentation can take
many forms, and can include scaling, rotating and cropping. Due to the nature of the
data involved, having multiple scales involved would not be suitable due to the size
relationship of machined features, such as the diffraction limit discussed in the
previous section. For example, if the images were scaled differently then the machined
features in a more zoomed-in region would appear comparatively softer than those in
a less zoomed-in area. Similar restrictions are true for cropping, where features
outside the view would impact the result. While the beam used was nominally
gaussian, through the beam optics an intensity slant was introduced across the profile
and introducing any rotation of the images would have obscured this information,

leading to less accurate results.

With this in mind, it was decided that while more data should be used to train the
network collecting more data was not the most practical option. In addition to the
amount of time required to collect the data itself, over the time the previous study had
been carried out, the laser became non-operational. This posed the issue of not being
able to collect more data that would be equivalent to that used in the previous
experiment. The first option present was to set up the beamline on a new laser and

repeat the entire experiment including data collection, network training and
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validation. All of this would take a lot of time on top of that required for collecting a
larger dataset.

With the excessive time required to recreate the experiment, and the limited ability to
use data augmentation, an alternative, novel option was chosen. In the previous
section, it was established that it was possible to create a generative network that was
able to simulate the experiment. Therefore, it was decided that this pretrained and
proven network would be used to artificially create an entirely new dataset while
maintaining compatibility with the true experimental results. This allowed for the
very quick creation of a dataset containing 5000 pairs of DMD pattern sequences and
depth profiles, taking about 20 seconds to produce. This provided a far larger dataset
than the original 200 data pairs. This was used in place of regular data augmentation
which would have the problems described previously. Using the trained network,
however, new data could be created that was in effect an interpolation of the original
data and contained the same features and distribution while allowing for less chance
of overfitting. While the network was proven to be capable, it was decided that this
should form the training dataset, while all experimental data would be kept in the
validation dataset. This includes all the structured data, such as grids and letters,
designed as validation for the initial network, as well as all the random patterns used
in both the training and validation datasets.

5.8 Verifying the Validity of the Network

v
Experimental » Experimental . Generated DMD » Generated Depth
DMD Sequence Depth Profile Sequence Profile
A
(A) Starting from a sequence of DMD patterns
Desired Depth * Generated DMD
Profile Sequence
Designed DMD Generated Depth
‘_.
»

(B) Starting from a depth profile
: DMD Generation ;

FIGURE 5.22: The process for creating and testing the trained, NN generated, DMD
profiles.

Generated Depth
Profile

Depth Profile
Generation Network
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Before looking deeply into the capability of the network to generate sequences of
DMD patterns, the network was analysed using the experimental data that was not
included in the training. As discussed previously, the important metric to assess the
capability of the network is how well the generated sequence DMD patterns would
lead to the initial depth profile. In Fig. 5.22 an example is shown of the full generation,
prediction, and validation process. The first shown step in testing the network is the
initial sequence of DMD patterns created from the random combination of lines, arcs,
and circles. The next step shown is the measured depth profile captured using the
white light interferometer after the laser machining took. This depth profile was then
fed into the new neural network to produce a prediction of a sequence of DMD
patterns that would have produced that depth profile. Finally, in order to measure the
critical performance of the network, the generated sequence of DMD patterns is used
along with the previously demonstrated neural network to produce a newly predicted

depth profile.

This process allows a comparison both between the sequences of DMD patterns that
are the actual output from this network, and the depth profiles that result from those.
The sequences of DMD patterns are relatively simple binary masks, albeit in three
layers, and are therefore quite easy to comprehend. This allows for very quick
inspection by humans to be able to tell how close the generated sequence is to the
initial one. Ultimately, while this is usually a good metric for neural network
performance, the differences between the DMD patterns could be misleading with
regard to the performance of the network. This is especially true when considering the
ordering of machined locations. The second comparison, between the resultant depth
profiles, represents the true goal of the network, and so will form the basis of all

quantitative analysis performed on the network.

Fig. 5.23 shows an example of a sequence of DMD patterns which were generated by
the neural network. In this example, a further depth profile has been generated from
the sequence of DMD patterns that was itself created using the neural network. This
allows for both the sequence produced to be compared to the ground truth, as well as
the final result of machining both of them. The aspects of the DMD patterns that can
be assessed are the overall, combined shapes of the sequence, where in the pulse order
machining took place, and the number of pulses used to machine at each location. The
final depth profile that would be machined using the sequence produced is shown
alongside the experimental version to allow for easy visual comparison. While the
generated DMD sequences could not be tested using the laser, simulations were

performed using the neural network.

While all of these aspects are important, and very visually obvious to a human
observer, the true determination of success is in the depth profile those sequences
would produce, and this is the process that the network is attempting to optimise.
This newly generated depth profile has been compared to the experimental one with
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FIGURE 5.23: An example of the full process from initial DMD, Experimental depth
profile, generated sequence of DMD patterns, and finally a depth profile.
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FIGURE 5.24: Comparing an experimental profile to one predicted from a generated
sequence of DMD patterns. Most of the differences are centred around 0 with almost
all being in the range of £ 5 pm.

both a pixel-wise comparison shown in Fig. 5.24a combined with a histogram of depth
differences shown in fig:Shape:Various:Hist. Due to the previously discussed
relationship between the sequences of DMD patterns and depth profiles, the final
result will never match the original experimental profile, the same being true of even
two experimental profiles. While an exact match cannot be attained, the similarity of
the result can be assessed using several metrics including the depth at each position,
the total overall removed material, and the sharpness of machined and un-machined

features.
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To get a measure of the error in the network, it was decided to use the error from the
generated depth profile when compared to the original corresponding experimental
depth profile. To do this the average error was calculated across the entire validation
dataset for this network, which included all of the experimental data collected for the
previously discussed network. This allowed for a true comparison, while removing
some potential for a network bias that would skew the results. When taking a
comparison of all of the depth profiles, there was an average error of 1.23 nm, which
reduced to only 1.01 nm when only including sequences of DMD patterns only using a

single pulse.

5.9 Examination of the network

5.9.1 Controlling the weighting of pulses

As stated, one of the important features to highlight in this work was the ability to use
neural networks to predict situations that were more complex than the use of a single
pulse. With the use of up to three pulses in this particular network, the weighting
vector discussed in Section 5.5.1 gave a powerful tool to investigate the network. It
could be used to determine how the network was able to capture how the choice of
when to machine would affect the sequence of DMD patterns required. Each value in
the weighting vector represented the proportion of the machining that would take
place in the first, second, and third pulses respectively, with the total of all three values
summing to one. As an example, if the weighting vector 1,0, 0] was given, then all
machining should ideally take place in the initial pulse. If however a weighting vector
111

of [3, 3, 3] was provided then the machining should be as evenly spread as possible.

The weighting vector acts more as a style guideline to the network rather than a strict
rule; if it is not possible to machine the shape found in the way the weighting vector
suggests it will be overruled. For example, if an area had a depth typically associated
with that found after three pulses in one location, but a weighting vector only
allowing a single pulse was given, the network would still use all three pulses.

Fig. 5.25 demonstrates this effect, where for each generated profile, a different
weighting vector has been given for the same experimental depth profile. The vectors
for Fig. 5.25b, ¢, and d were given as [1,0,0], [0,1,0], and [0, 0, 1] respectively. For each
of the generated sequences it can be seen that almost all of the machining took place in
the pulse specified in the weighting vector. In fact, the only sequence that includes
”on” pixels in pulses other than the one specified by the weighting is Fig. 5.25d where

there is some machining shown in the second pulse.

While this was a very simple example, it could be the case that multiple pulses would

be required, and the weighting vector will be more complex. While it may be
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FIGURE 5.25: Using the weighting input of the network to control the temporal posi-
tion of white pixels in the sequence of DMD patterns. Modified from McDonnell et al.
(2021b).

beneficial to reduce the number of pulses used to decrease total machining time, due
to the desired structure of the depth profile, this may not be possible. In these cases,
the network will incorporate the restrictions imposed by the weighting vector while
still producing a viable sequence of DMD patterns. This is explored in Fig. 5.26 where
a depth profile that requires three pulses is combined with a variety of weighting
vectors to test the resilience of the network.

To provide a baseline for the comparisons, a sequence of DMD patterns was generated
321
67676
original sequence shown in Fig. 5.26a. The generated sequence can be seen in

using a weighting vector of | |, which matched the pixel distribution in the

Fig. 5.26b where the colour palette predominantly matches that of the original.
Looking at the predicted depth profile that would result from the generated sequence,
the overall structure of a cube effect is still present, although there is some distortion
present, especially in the central area. To investigate more explicitly, the difference
between the predicted and experimental depth profiles is shown on a pixel by pixel
bases in the "Depth Difference” image. This agrees with the observation that most of
the difference is in the centre of the image, as well as some difference around the edge
for a total MAE of 1.37 nm.

As most of the machining already took place in the third pulse, the next test was
conducted using a weighing vector of [1,0, 0] as shown in Fig. 5.26¢. This was chosen
as the network would be encouraged to produce a sequence of patterns close to that of

the original. Again, the network has managed to produce a sequence of patterns that
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(D) Sequence of DMD patterns generated with a weighting vector of [0,0, 1]

FIGURE 5.26: Demonstration of the effect of the weighting vector on a profile requiring
three pulses. Modified from McDonnell et al. (2021Db).

is visually similar to that requested. To do this the network has correctly predicted
that to produce the required depth profile, the full three pulses would be required and
so has utilised all three channels. One of the differences to the results shown in

Fig. 5.26b is that where only a single pulse is required, only the blue channel is used,
which is closer to the original sequence. Visually the generated depth profile is again
similar to the previous example, with distortion on a central patch. Despite this, the
MAE for the depth profile is actually higher at 1.86 nm.
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The final test conducted was to use an inverse weighting vector, using [0,0, 1], to
promote the use of pulses in the red channel. The first observation, seen in Fig. 5.26d,
is that the sequence of DMD patterns has a very different colour bias to that shown
previously. Similarly to Fig. 5.26¢c, wherever only a single pulse was perceived as
necessary, only a single channel was used, in this case, channel 1, matching the request
in the weighting vector. Despite this, the next most populated pulse was the blue
channel. This appears to be in a direct attempt to match the sharpness characteristics

of the initial depth profile and has still managed to maintain an MAE of 1.88 nm.

In the original sequence, the coarse features were machined first, leading to a sharp
depth profile as described in Section 5.6.1. This property was matched with Fig. 5.26¢
where the network was prompted to make the highest use of the initial pulse allowing
it to again machine coarse features predominantly in earlier pulses. This paradigm is
changed in Fig. 5.26d however, where the network has been instructed to prioritise the
third pulse. While this was indeed the case, the network was not given any
instructions regarding the first and second pulses, allowing it to determine an ideal
order. In an attempt to maintain the sharpness of the depth profile, the network has
prioritised the coarsest reaming features in the first pulse, with the finest features in

pulse two.

5.9.2 Comparing designed and generated DMD pattern sequences

Apart from simply generating a sequence of DMD patterns from a measure depth
profile, one could also be generated from the desired depth profile as shown in

Fig. 5.22b. An example of this process is seen in Fig. 5.27 where a simple square-edged
depth profile (similar to that shown in Fig. 5.2) has been designed. This profile is then
passed into the network using a weighting vector of [0, 1, 0], suggesting the machining
all be completed with a single pulse. The resultant sequence from the network was
then used with the previously demonstrated network to simulate the depth profile
that was produced from it, which can then be compared to the desired depth profile,

this process is shown in Fig. 5.27a.

Comparing the final generated depth profile to the initially designed one, there are
several similarities as well as a few differences. While both the surface and machined
areas of the designed profiles are perfectly flat, this is not true in the generated profile.
For the surrounding un-machined material this will be due to the simulation of
machining a real surface, and so is unavoidable, the perfectly flat surface will not be
possible under these conditions. For the material in a depression, the generated profile
is also not perfectly flat. This again matches experimental results and is due to a
variety of effects such as the small variations in laser power. Beyond the simple
non-flatness, another observation to make is that the neural network has produced a
sequence of DMD patterns that contains machining in more than one step. This can be
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FIGURE 5.27: Generation of sequences of DMD patterns to machine a designed depth
profile compared against a naively designed DMD pattern that could be used to pro-
duce the desired output.

seen with the coloured band along the edge of some unmachined parts of the depth
profile.

To give a comparison to work against, a simple sequence of DMD patterns was
created from the final depth profile, before also being used with the depth profile
generation network to produce a new depth profile as shown in Fig. 5.27b. Similarly
to the case with the network-generated sequence, the final depth profile has
differences from the designed profile, most notably in the flat areas. Again this is an
artefact that cannot be solved using the current setup and implementation. There are
however two major differences between the two sets of DMD patterns, the first being
the number of pulses used. As the depth profile has a uniform depth, the converted

set of patterns only contains machining in a single pulse.

The second difference present is the shape of the features, with the converted
sequence containing much smoother lines, and wider features. One impact of that is
the two more vertical straight lines in the depth profile have a cleaner rendering in the
depth profile generated from the converted sequence. Despite this, the un-machined
ridges are noticeably thicker in the depth profile generated from the converted

sequence, than in the one generated from the generated sequence, which shows a
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much closer correlation to the base, designed depth profile. This can also be seen in
the lower left of the depth profile, where there is a small machined area in the
designed depth profile. This still exists in the depth profile in Fig. 5.27a, while on the
depth profile in Fig. 5.27b that area is all at the level of the surrounding material.
Taking an overall comparison of each generated depth profile against the designed
one, the generated sequence of DMD patterns produces a depth profile with an MAE
of 4.8 nm. This error is lower than the MAE of 5.1 nm produced when looking at the

depth profile generated from the directly converted sequence.

5.10 Conclusions

Here it was shown that generative networks can be used to predict the outcomes of
highly complex machining tasks, producing results that match the look and values
found in the experimental data. The network designed to predict the results of laser
machining was able to predict the effects of non-linear effects such as diffraction
limiting and pulse ordering without any specific instruction to do so. The network
build to create the sequences of patterns required for machining was able to produce
results that would accurately reproduce the desired depth profiles while having never
been trained on any experimental data, providing a closed-loop experiment and

showing one potential application in the use of laser machining.

Based on the accuracy of the results presented here, it is anticipated that the result of
laser machining with a much larger number of pulses could similarly be predicted by
a neural network, provided that appropriate training data was provided. The
inclusion of additional pulses may also require modifications to the neural network
architecture, for example increasing the number of parameters. The additional
physical complexity of exposing an already-machined surface strengthens the
previous results. Here, it was shown that this approach offers a template for
modelling processes whose underlying principles are too complicated to model

accurately or that are entirely unknown.
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Chapter 6

Using Generative Networks to
Simulate Unknown Machining
Processes

In Chapter 4 the concept of optimisation was explored, and several machine learning
techniques were investigated. Amongst those, the option of using generative
networks was discussed briefly, showing its strengths and weaknesses. This Chapter
will be exploring processes where generative networks can be used and their
strengths best utilised. Previously there have been discussions about the impact of
human bias on the results of the ML processes and how this may affect the apparent
validity of the results, both positively and negatively. To examine both of these points,
an entire experimental process was simulated without knowledge of the system or the
parameters used, making use of anonymised and randomised inputs. This
demonstrates how Neural networks can be used to find information from closed
systems and aid in experimentation, investigation, and understanding. This is an

ongoing piece of work with further progress continuing to be made.

For the data used in this Chapter, data was collected by the technical staff at Oxford
Lasers, with many of the details intentionally hidden to ensure that any conclusions
found are the result of the network rather than human interpretation or expectation.

The experiment consisted of machining vias in a substrate using a set laser which had
several parameters that could be tweaked in order to change the results of the
machining. During this machining process, the intention was to produce a hole
passing completely through the material. Despite the idea to train the network
without any human bias, the Oxford Lasers technical staff made the decision to ensure
that the bounds of the parameters were limited such that all results should result in a

clean via. While this would add a small measure of bias, there were no excluded
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combinations, and each parameter would have an approximately uniform

distribution.

6.1 Experimental Data

Within this experiment, the data was formed from strict pairs of vector inputs and
image outputs. For the input, there were up to 15 parameters used each being
provided in a uniform normalised range from 0 to 1. These parameters represented
the laser parameters used to machine the sample at each location. Throughout the
process, the number of provided inputs was varied to scale the complexity, with an
initial test with 5 parameters conducted before a total of 9 being used in the final
experiment presented here. Each of the 5 parameters used in the initial investigation
were later used when testing with more parameters in use. The full set of 9 parameters
tested were labelled with letters (from a to i) with letters a through to e being the
initial 5 parameters that were used in both of the experimental runs. This was a choice
made to increase the opportunities for interrogation and comparison of the neural
network, especially on the impact of increased numbers of parameters. These
variables were all anonymised and their meaning was kept hidden from both us and
the neural networks. While the results were normalised, they were still not in an
optimal format for training a neural network. To avoid mode collapse or vanishing
gradients the variables were all remapped to have a mean of 0 and a standard

deviation of 1, matching the initialisation of the weights within the network.

6.1.1 Laser Parameters

The other part of the data used for this investigation was formed of images of the
holes machined by the laser, shown in Fig. 6.1. The images were captured on a
microscope using a backlight behind the sample from the perspective of the camera.
This produced images that were dark, tending to black, except for the location of the
hole which was lit with white light. Each data point was supported by two images,
one taken from each side of the sample, and in total 2000 combinations were
machined. For each set of machining parameters, a set of 20 holes were machined in a
grid format, providing repeated samples for variance. These sets were imaged in a
single exposure, capturing all of the holes in one large image rather than each hole
individually. As the machining was designed to produce through holes, with both
sides being of interest, there were two sets of images, one from each side. The part of
the hole visible from the side of laser incidence is referred to as the neck of the hole,
and examples of these can be seen in Fig. 6.1a, the other side being the exit, shown in
Fig. 6.1b.
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(A) Hole neck (B) Hole exit

(C) An exaggerated diagram of the areas of interest

FIGURE 6.1: Example output data images pair. The neck image is taken from the side

of laser incidence, focused on the inner direction change within the hole, leading to a

slightly blurred image. The exit image is taken from the opposite side, focussed on the
surface of the material.

In the initial set of data presented by Oxford Lasers, their standard data processing
techniques had been used to create the dataset provided to us. This process involved
using a fixed range on the camera, and the default, JPEG, saving format. The fixed
range of the data led to two issues that could hinder the performance of the network.
The first of these issues was that the chosen range was a highly compressed version of
the full dataset available to use in standard image encoding. In greyscale image
processing, the overwhelming standard is the uint8 data format, providing data in a
range of 0 to 255. The data received from Oxford Lasers only contained a range of 0 to
34, indicating that some amount of pre or post-processing had taken place. The low
upper value of the data suggested that the exposure setting on the camera had been
set too low or calibrated for too bright a light. These values were likely set on an
empty stage where there was the maximum amount of light reaching the sensor. This
would normally be a sensible process, except that in this case, the holes used are each
small when compared to the field of view, meaning that a lot of light was lost. This
reduced upper bound meant that large portions of the information were lost due to
the compression of the raw light levels into the uint8 format. This compression was
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exaggerated by the small range of values use, making the effect far worse. While this
is not just a limitation applied to the neural, but also the standard inference
techniques, bad data can lead to a poorly trained network.

The existence of 0 values in the data could indicate that a good lower bound for the
exposure was set, although in the data provided it is the prevalence of 0 values that
was concerning. The vast majority of all unlit areas were completely black, lacking
any evidence of camera noise within those areas. This artefact suggested that a
background reduction operation had taken place on the data, although the source of
this was unknown. The problem with this was twofold, the first being that with the
background reduction, information in the data was lost. The loss of the noise
information would likely not have caused any issues and increased the performance
of the network. Rather than the loss of the noise itself, the issue with this was that the
degree of background reduction was unknown, possibly removing useful information
from the data, especially in cases where lots of information was contained within that
low-level data.

The second issue with the background reduction was that, without knowing the
process used, it couldn’t be guaranteed that the operation was performed uniformly. If
different values of the background subtraction were used on two similar images, this
could lead to the values calculated using the output of the network to be incorrect, in
the same way as using the raw data. Beyond this, an uneven background subtraction
could easily increase the one-to-many nature of the dataset, increasing the learning
difficulty. It is also likely that images that contain large openings would also contain
more light bleed through them, illuminating the surrounding area. Given constant
camera settings, there should be an equal amount of noise present in all images,
however, if an automatic noise reduction algorithm has been used, it will likely be
more aggressive in the lower light images as the noise will form a greater portion of
the background. If, however, a background reduction has been used, which is more
likely due to the solid black region, images with softer lighting will be more affected.
When the noise in the image is the main part of the background, the background
reduction will mostly just remove the noise from the image. In contrast, when there is
a high level of background light, there will be a more aggressive reduction, causing a

larger loss of information.

The fact that sets of holes for a single parameter combination were captured in a single
image led to several data processing steps. Firstly the overall image location was not
perfectly set, meaning that the locations of the holes must be found. This process was
conducted by Ben Mills, and followed a similar process as that described in Chapter 4.
Rather than using the centre of mass of the image, as described there, a grid of weights
was used instead. This was possible since all holes had an equal and consistent
spacing between machining and capturing steps. There were two main issues
encountered in this step, the first being when there is very little breakthrough in the



6.1. Experimental Data 101

(A) Neck image numbering (B) Exit image numbering

FIGURE 6.2: How all of the holes were numbered after saving. These were then used to

match up the neck and exit images to use as data pairs when training the network. All

images here relate to a single set of laser parameters used and are not representative
of the full range found within the data.

machining process. This, combined with the limited dynamic range, led to some holes
not being centred in their desired locations. The second issue arose when the image
was very misaligned and in the area of interest for each hole, there was an overlap.
When this occurred, it was often found that the image would be marked as aligned
while having partial sections of multiple holes in the corners. As there were only a
small number of cases where the initial alignment was off enough that the holes were
centred in the corners, a rough manual alignment was performed initially, before
running the full alignment algorithm, fixing the issues.

Once the holes were centred on the grid, the overall image was then cropped to form a
set of 20 images, each containing a hole that should be centred. These images were
then numbered based on the position of the cropping, with the numbering order
specific to each of the neck and exit images. The numbering had to be unique for each
as the substrate was flipped between imaging, introducing a plane of symmetry, and
the overall numbering for each is shown in Fig. 6.2. The cropped and saved image
files use a prefix of the number shown in the figure with the upper left hole in Fig. 6.2a
and the upper right hole in Fig. 6.2a both having a suffix of 1 in the file name and both
representing different sides of the same machined hole. Once cropped, the various
holes in each parameter combination were compared to each other, with the
maximum values for each hole showing a common trend across combinations. Rather
than having a consistent maximum value across all of the cropped images, it was
found that the central holes had a consistently higher brightness than those found at
the edge of the large image. This effect was likely caused by a natural difference in the
lighting in the imaging rig, with the bulb causing a bright spot in the centre of the
image, although could also have been an effect of vignetting in the camera itself. This
question was posed to the staff at Oxford lasers, and while a definitive answer was not
obtained, the theory of a bulb bright spot was ruled out as the entire sample was

mounted on an illuminated jig. While this is a real effect of the image processing, and
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would not have a large impact on the calculation of values from the images, it would
introduce a new factor for the network to learn, increasing the training time. Rather
than include this artefact in the final images, a fit function of the lighting was
calculated across the entire dataset and the images were scaled accordingly. This
method worked well due to the low value background providing a baseline to scale
from. An alternative method would have been to ask for an image of the pure lighting
with no sample to create a full profile of the lighting, but this approach was decided
against due to the aim of the project to prove the capability of networks to perform a

task without large prior knowledge.

While the aim was to stay separated from the data collection process to avoid
introducing accidental bias, there were clear improvements that could be made to the
data and so there was a decision point about requesting changes to the data capturing
methodology. Despite the desire to be uninvolved, it was decided that having better
data could also be useful, both for training the neural network and to provide a
demonstration point. The other factor at play is that no more data processing was
requested but rather less. The three main areas of change requested were the
background noise reduction, the image data format, and the use of the dynamic range.
While the original data was provided in JPEG format, this is a very lossy compression
technique, and even though it results in smaller images, there are many artefacts
introduced in the process. In order to remove this, a lossless compression method was
requested as this would still cause image sizes to be reduced, but would not introduce
artificial items in the images for the network to learn. Another area of change was the
background noise reduction process, and again it was requested that nothing be done
for this, and all automatic processing be turned off. This allowed us to receive a much
purer form of the images that could then be processed in a more appropriate way for
the neural network. The final request made was to increase the dynamic range of the
supplied images, making better use of the 255 light levels available in the uint8 data
format. While the data will always be converted to float values within the network,
having a larger initial range means that once the data was normalised there was more
granularity and therefore more opportunities for the network to learn features slowly

and smoothly.

6.1.2 Analysing the images

With the plan of this experiment being to use a GAN to simulate the experiment came
the requirement to set up a method of testing the performance of the network. In the
previous work with Oxford Lasers (Chapter 4) the experiment aimed to calculate two
properties of the machined dimples in order to perform an optimisation task. These
properties could be calculated directly from the experimental data provided, and the
same could be done for the GAN-generated images. While a specific task was not
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(A) Original (B) After Thresholding (C) After Quartering

FIGURE 6.3: Image processing steps to calculate network performance. The image is
first thresholded to provide a clear boundary to the hole to use to calculate the area.
The image is then quartered to calculate the variance in the radius of the holes.

provided for this experiment, the same process could be used, with properties of the
holes calculated from both the experimental data and any future generated data. The
image properties chosen to form the basis of the investigations were the radius and
circularity of each hole. An example of the processing steps is shown in Fig. 6.3, with
the base image shown in Fig. 6.3a.

In order to ensure that consistency was maintained between all data calculations, a
script was set up to perform each of these calculations. This script was written in
python to allow for easy integration with the machine learning process and simple
comprehension. The first step in both of these processes was to threshold the images
using a value of 50% of the maximum value, with values above set to one, and values
below set to 0, shown in Fig. 6.3b. This was deemed suitable as the images were clean
with no anomalies detected beyond the observed hole. This meant that it would be

very likely that any pixels with a final value of one were initially part of the hole.

The next step for both of the calculations was to split each of the images into 4 along
both centre lines, creating four quartered circles, each 128x128 pixels, as shown in
Fig. 6.3c. The average pixel radius for each of these quadrants was then determined
using Eq. 6.1 where n is the sum of all pixels in the sub image, or the number of pixels
above the threshold. Note that all values here were calculated in terms of pixels as no

n
r:2~\/; (6.1)

The final step in calculating the radius of the hole was to simply take the mean of the

units of scale were provided.

four radii calculated from the image. In a similar manner to this, the circularity, or
regularity, was calculated by taking the standard deviation of these same four values.
This method does have flaws, such as potentially giving non-circular shapes a good,
low, value for the circularity. While this is a detriment, the methods of calculating the

radius and circularity were chosen based on several criteria. Firstly, the methods used
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had to be quick. Training a GAN can be a long and involved process and these
calculations may be required many thousands of times. A second requirement was
that the algorithm should be easily describable and recreatable if it was determined
that the results found should be confirmed while not having access to the original
code. Because of this requirement, it was decided that no opaque algorithms should
be used as, even if a standard library was used, the same algorithm in a different
library or language may have a subtly different implimentation, making it potentially

hard to diagnose differences.

6.2 Network Architecture

As the experiment that is described within this chapter was focused on the creation of
images that are both accurate and had high visual fidelity, using a GAN was a good fit
for the task. Based on the success of the networks demonstrated in Chapters 2 and 4 a
similar structure was chosen for this network with small variations to account for the
differences in input and output data structures. While the data does share a lot of
similarities in structure to the regression task from Chapter 4 some of the advances in
neural network techniques, such as better normalisation techniques, were

incorporated from the later network demonstrated in Chapter 5.

The inputs to the network were purely numeric with the laser parameters formed into
a vector. As mentioned previously each of the laser parameters had been provided as
a normalised value falling between 0 and 1. In addition to this, each of the values were
selected randomly from within this range using a normal distribution. While not all
the values appeared to be continuous, the generation condition of range and
uniformity on the randomness remained true, with no weighting as seen in the
number of pulses parameter from Chapter 4. This meant that it was assumed that each
of the parameters would have a mean value of 0.5 and a standard deviation of \/%
The data was then scaled accordingly to match the mean of 0 and standard deviation
of 1. While this is not strictly necessary it is common practice and allows for easy
transference of techniques and pretrained parameters between networks if there were

all designed with a standardised input.

One of the key features of the provided dataset was that it was not just implicitly
one-to-many, but explicitly so as each of the combinations of parameters had been
used to machine a set of 20 holes. To ensure that this condition was maintained, a
secondary random noise vector input was used alongside the provided parameters. It
was decided to use a vector of size 100 to provide the random element into the
network.

While the number of values in the input vector would change throughout the different

stages of the experiment, the output of the network would remain constant. The
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FIGURE 6.4: A block diagram of the generator network in the GAN. The input is first
formatted and then put through a series of SPADE ResBlock and upsampling layers,
using the original input as a secondary input at each stage.

outputs were the pairs of images extracted from the grids provided by Oxford Lasers,
each of the individual holes isolated from the original 20. These images were
processed as described previously and concatenated to provide an output tensor of
size 256x256x2. As this data represents image data rather than the height data of
previously discussed experiments the output format could be more constrained. The
original images were in the uint8 data format and so were converted to be floats
within the range of 0 to 1 by dividing the values by 255. This conversion allowed for
the sigmoid activation function to be used, providing hard limits on the final values to
allow for easy conversion back to images. The sigmoid activation function highlighted
the importance of ensuring that as much of the image range as possible should be

used to avoid areas of very steep gradients found at the extremities of the function.

The final structure of the generator used in this experiment was again based on the
SPADE network proposed by Park et. al. Park et al. (2019) with some variations that
can be seen in Fig. 6.4. There were two major differences in how this network was
structured compared to those used in the original paper, and in previous experiments
conducted within the group. One of these differences in the input into the SPADE
normalisation layers, which in the original paper was the base image used for
translation. Rather than this, the same approach was taken as that described in
Section 5.5.2, where the vectorised parameter input was first concatenated with the
noise. This larger vector then passed through 3 Dense layers and then reshaped to
form a tensor of size 4x4x1024. This input then formed the image portion of the
network, being upscaled throughout using the Nearest Neighbour interpolation
algorithm as described in Section 3.4. The other input to each of the SPADE ResBlocks
was based on the original, combined, vector input passed directly to each of the
SPADE ResBlocks.

The other major difference from the previous networks used was in the final layers of
the network. The network used for this experiment was designed to output the two
images, the neck and the exit. During initial testing it was found that, at most, only
one of the images would be gaining visual fidelity at any one time, the other seeming
to contain a ghost of the other, and in some cases neither would be clear. To rectify
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this, a decision was made to truncate the network before the final layer and instead
add a separate output layer for each desired image. Each of these was then treated as a
separate network for training purposes, although shared a common base network.
This meant that while the training time for each epoch was increased, the memory
required for the network was negligibly affected due to the training of final layers
updating on a reference of the same base network. Even though each epoch would
take twice as long, total training time would not, as the majority of layers were still

updated in each pass.

The first of the SPADE ResBlocks acted on the 4x4 output from the mapping layer and
has the same structure as that shown in Fig. 5.10. In total there were 5 Spade blocks,
with all except the final one being followed by the Nearest Neighbour upscaling
blocks. The first and second SPADE ResBlocks used Convolution layers with 1024
filters, with each subsequent reducing the number of filters by a factor of 2, with the
tinal block taking 64 filters. The final step for each of the separate networks was a
Convolution layer with a kernel size of 1, 1 filter, and a sigmoid activation function as
described earlier. The overall structure of the network remained consistent when
testing with different numbers of input parameters. The only change was to adjust the
size of the noise input as this allowed for each layer to have a consistently sized input.
This was important as it allowed for maximum compatibility when it came to the
possibility of using the pre-trained network on new samples before conducting

transfer learning.

To complete the GAN structure, a discriminator was required to contribute to the
losses and training of the generator. As there were effectively 2 generators, producing
two different types of images, two discriminators were required to assess each of the
images. Each of the two discriminators used here had the same network structure as
each other. The discriminators had two inputs, one being the images, either collected
experimentally or created using the generator network. The other input to the
network was the vectorised laser parameters used to machine the holes. The
image-based input was passed through 4 Convolution layers with a kernel size of 3
and stride of 2 to reduce the size of the layers by 2 each time. After the Convolution
layers, the image path was then reshaped to form a vector. The other path was based
on the vector input passed through 2 Dense layers, the output of which was then
concatenated with the flattened output of the image path before a final Dense layer

with a sigmoid activation layer.

To train each of the generators a combination of hinge loss and MSE was used, with a
relative weighting ratio of 100:1 and the structure of these losses is shown in Fig. 5.12.
These losses were used in combination with an Adam optimiser with a beta; of 0.9, a
beta; of 0.999, and a learning rate of 2 x 107°. The discriminator was trained using the
same hinge loss and an Adam optimiser with the same parameters as the one used for
the generator.
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6.3 Network Analysis

While the original intention was to use the earlier set as a comparison point, the
changes in the data collection format meant that this process was not as easy as
multiple factors had been changed. Despite this, it still provided a useful reference
point to compare training times and quality, as this would be expected to become
worse with the increased number of input parameters. There was also significant
testing performed on this network in order to demonstrate the possible performance
of the network.

6.3.1 Initial Testing: 5 Laser Parameters

As in all previous experiments, there was a separate validation dataset that was kept
apart from the data used for training. This data was selected randomly from within
the full dataset. While all of the initial machining parameters were selected randomly,
there was no way to ensure that there were no systematic influences in the data such
as changes in the laser power over time or imperfections in the makeup of the sample.
Once trained the two generators described previously were used to recreate both the
training and the validation dataset. While the images from the training dataset
couldn’t be used to fully test the network, they provided a reference point to ensure
that the results seen in the validation set are representative of a properly strained
network. If there was a large disparity between these it would indicate that overfitting
had taken place. While this would be true in all cases, as the data was completely
anonymised data high levels of feedback were provided to allow the qualification of
the network ability.

After training the GAN for 20 epochs, the network was able to generate clean images
that approximated the experimental neck and exit images as shown in Fig. 6.5 without
any network artefacts being visible. As can be seen, the network was able to closely
match the size and style of both sets of images. The generated neck image in Fig. 6.5b
has the characteristic soft edge that is seen in all neck images, such as that in Fig. 6.5a.
The exit images in both Figs. 6.5c and 6.5d show a sharp edge around the hole. As well
as the sizes being consistent, the generated exit also exhibits some of the asymmetrical
nature of the hole that is also present in the experimental example rather than a perfect
circle as seen in some of the experimental patterns. The network also captures some of
the specle seen in the true images. The network doesn’t quite manage to match the full

skew of the image, however, and the generated images are generally both dimmer.

As an additional data point, the average of all validation samples was taken for both
the experimental images, as well as those generated by the network and the difference
between them can be seen in Fig. 6.6. It can be seen that the central points of the image
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(A) Experimental neck image (B) Generated neck image

(C) Experimental exit image (D) Generated exit image

FIGURE 6.5: Example images from the validation dataset. These holes were produced
with normalised laser parameters of 0.21056, 0.356136821, 0.0725, 0.3375, and 0.41.

FIGURE 6.6: The difference (subtraction) between the experimental and generated im-

ages. On average the background is slightly higher in the experimental images. The

central equality indicates the similarity in the maximum brightness. The two turning

points indicate that the experimental images had a softer fall off and wider base than
the generated ones.
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show little difference between the two sets of images. This shows that the network
was able to accurately determine the light levels that should be present within the
holes. In a similar manner, the average background level is also very similar in the
generated images. This is likely due to the effect explored in Section 6.1 where the
background of the experimental images was mostly low if not zero. Due to this, there
was little information for the network to learn, and as all images experienced the same
phenomena in the background, it was an area that could be easily trained. Despite this
when taking the difference the small variations are exaggerated that would not be
seen in a normal image and it can be seen that there is still evidence present of the

network artefacts that are consistent across generated images.

While parts of the images are similar, there is also a band of distinct differences
between the images, with an inner band of higher predicted values, and an outer band
of lower ones. This suggests a potential cause for the overall difference in predicted
radii for the generated images. If the network was simply predicting smaller holes,
there would be a single band where the generated images would have a lower average
value than the experimental ones. The existence of a band of higher values indicates
that the network is not correctly reproducing the falloff in light. Rather than a soft
reduction in the values, the images generated by the GAN have a wider solid circle of
light surrounded by a sharper gradient. The soft falloff appears to stem from the lack
of focus found in the neck images. While the exit images are taken at the bottom
surface of the material, providing a clear focal point on which to base the image

capture, the neck images are taken with a focal plane that is within the hole.

Having a focal plane that is difficult to determine could cause issues in image capture
in two ways, each based on a method of choosing the plane to image. One option is to
attempt to focus on the neck of each of the holes in turn. The issue with this is that
there is no single feature to provide a reference point for the autofocus algorithm,
especially one that is based on maximising sharpness. This method would also have
difficulties in calculating the ideal focal distance in the situation of imaging the necks
as there were multiple holes imaged in each frame. While the surface should be at a
tixed distance, assuming that the sample is flat and properly aligned, the necks of each
of the holes may be at different heights. The other option is to keep the focal distance
constant, choosing a value that should provide a good image in the majority of
situations. The issue with this is that the neck of the hole will not be at a fixed position
and so the images will have a different level of blur.

As the network had difficulty with the falloff of light, it suggested that there was an
inconsistency in the focusing of the neck images. Whichever focusing method was
used, it means that the images themselves would have an internal inconsistency that
would be almost, or entirely, independent of the laser parameters chosen. While this is
not an ideal set of requirements for the network to learn, two possibilities could have
resulted from this. The first is that the network could have predicted an average level
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of light falloff and then produced approximately this for each of the images generated.
The other possibility would be for the network to predict a random level of focus for
each image, with the best case being that this distribution matched the distribution of
focus in the original training dataset. In this case, it is evident that the network has
defaulted to predicting a good focus in the image. If the network were to be producing
a distribution that matched that of the dataset, the average difference in the predicted
radii would still be similar, but the average luminosity would show a much closer
correlation and the errors would be distributed in both the positive and negative
directions.

The failure of the network to produce a wide variety of light falloffs represents one of
the common failings of generative networks, mode collapse. The network has found a
value that can achieve constantly “not bad” results that produced a lower error than
when small deviations to this pattern are applied. One of the main causes of mode
collapse is the loss function used, and this was one of the problems that GANs were
designed to solve. In the GAN presented here, the comparative loss was given a high
weighting when compared to the GAN loss, which in this case was a hinge loss. Mode
collapse can be caused by the comparative loss as it can lead the network into
producing the exact form averaging seen here. The other contributing factor is the
type of comparative loss used, here being an MSE loss. Traditionally in GANs, an MSE
loss is preferred as it encourages the network to produce sharper results than when
using an MAE loss. This is because the network will suffer higher losses when further
from the ground truth due to the error being squared. This works well when the
ground truth can be determined from the input directly, but when there is a highly
many-to-one relationship and differences from causes beyond the scope of the input,
the network may prefer a consistent error as opposed to a mixture of high and low
errors. In the particular example here, the mode collapse is not overly detrimental to
the performance of the network, but if the network were to predict a consistently
out-of-focus image the result would be far worse. While mitigation steps can be put in
to avoid this it is ultimately a data quality issue with no obvious solution, especially
without direct control over the data collected. For example, the data received could be
adjusted manually to cover the full range of the 255 light levels recorded by the
camera, but this would not improve the precision of the data and would provide no
more information. To train the network, the levels were normalised to the same degree
as they would have been with the full range used to avoid any vanishing gradient
issues. Some of this could be avoided by simply using a numerical network, but that
would have the same limitations discused in Chapter 4 and could not be used to
investigate any aspect of the data not captured in the output values.
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6.3.2 Varying size of the input dataset

As stated previously, as well as the quality of the data used, another factor that can
contribute to the success of the network is the amount of data available to train the
network. In Chapter:Optimise it was found that training the ANN was possible with
far less than the total amount of data that was provided within the investigation. As
data collection can be a major bottleneck in the initial training of a network, it was
decided that further investigation on this front would be beneficial and could provide
interesting information. In a similar manner to the previous investigation, the amount
of input data was varied by taking subsets of the initial training dataset. In order to
maintain consistency throughout the testing process, the data used for each task was
not fully random. The first step was to separate the initial validation dataset from the
data to be used as inputs as this would allow accurate comparisons between all tests.
While there would be additional data that was not seen by networks that saw fewer
training examples, the randomness of the data in the training set should ensure that a
representative sample is shown, and the benefits of direct comparison were deemed to
be sufficiently greater than any additional benefit from having an increased number of

validation points available.

XCY < |X|<|Y| 6.2)

In addition to the validation data being kept consistent throughout, an additional
decision was taken, that each progressively smaller dataset should simply be a subset
of any larger dataset such that Eq. 6.2 is satisfied. This meant that any data pair found
in dataset X would be found in dataset Y assuming that there are at least as many data
points in Y as there were in X. This was by storing all of the unique combinations in a
list before shuffling with a set sort after having removed the validation dataset. This
would put the list in repeatably random order, with the ability to change the ordering
possible by changing the seed, and allowing for the selection of the training data via a
slice of the list. While possible to train the network with any number of parameter
combinations, due to the time constraints involved, only 5 sets of data were tested, the
original set along with 4 smaller sets. These sets were chosen as percentages of the
total training dataset, with values used being: 1%, 3%, 10%, and 30%. While this was
not the only way to choose the data for the experiments, it was felt that it would
represent the process of data collection and periodic training to assess performance,
with data collection runs being conducted after an initial training period. In this
situation, the network would have access to all previous data seen by the network in
addition to the new data collected by the additional experiments. The values for this
progression were chosen based on an approximation of collecting twice again the total

amount of data already seen by the network.
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(A) 100% of the total data (B) 1% of the total data

FIGURE 6.7: Example neck images generated by GANs after 20 epochs with varying
dataset sizes from 100% of the potential date, down to just 1%.

Along with selecting the data to use, a method of determining the allowed training
time was required, which in the previous experiment was simply the total number of
epochs required for the network to converge. In the case of an ANN, this is possible as
in a fully trained network you will reach a plateau point, beyond which no further
gains will be made and the risk of overfitting increases. This network was a GAN,
however, and therefore convergence cannot be determined by simple stabilisation of
the losses therefore an alternative method was required. The first option trialled was
to use a fixed number of epochs based on the number required for the originally
trained dataset, training all networks for the same number. This proved ineffective as
the networks with smaller numbers of images were not trained for long enough to
even produce clear images. This effect can be seen in Fig. 6.7 where the GAN trained
on the full dataset was able to produce visually sharp and clean images (Fig. 6.7a). In
contrast to this, when the dataset used to train the network only contained 1% of the
total samples, the results shown in Fig. 6.7b show an image that still has very visible
convolution artefacts, caused by the effect shown in Fig. 3.8. Another option would be
to provide the network with an equal number of images for training, as is often used
to describe the training of GANSs. The problem with this option was that the time
available made this option prohibitive due to the length of training required on the
full dataset, which took a full week to train. This length of training would to two
further issues above making the experiment take over a month for a single run and
locking up resources from any other task. The first of these issues was that training a
network for such a long time on the smaller datasets would lead to high amounts of
repetition as well as a high risk of overfitting, with very little possibility of further
gains. The long training time is also in antithesis to the aim of this experiment which
was to simulate a situation where a small dataset was taken initially to reduce the time
taken. If network training time is high and constant then it would likely be beneficial

to simply collect more data to maximise the efficiency of training time.
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Dataset Size Training Time Radius Errors (px)
(images) Number of Epochs (hours) Exit Images Neck Images
19 140 10 1.46+9.42 2.99£8.54
57 70 16 1.39+11.9 1.47+5.41
190 50 28 0.23£7.95 1.11+4.75
570 24 38 0.63+8.37 1.33+£3.99
1900 20 100 -1.049.11 2.70£7.53

TABLE 6.1: The effect of changing the dataset size on network training and perfor-
mance.

With the limitations discussed it was decided the training would run without
interruption for at least 20 epochs, checking the results at least every 10 epochs.
Training would only be stopped once the images produced by the generator had
reached a visual fidelity that was hard to distinguish from the experimental samples.
This stopping condition led to the networks each being trained for the number of
epochs shown in Table 6.1, starting at 140 epochs for the network trained on 19
samples and decreasing to the final 20 found when training on the full dataset. The
total time for training each was measured to allow a better comparison of the
efficiency of the networks. This was required due to an epoch, one complete set
through the full dataset, taking a different length of time for each network. Excluding
the network trained on the full dataset, which did not have the same stopping
condition as the 4 new ones tested here, the time taken to train the networks closely
matches an inverse exponential function with an R? value of 0.9998. This shows that
while training time did tend to increase with increasing amounts of data, the time to
reach visual fidelity did not follow linearly with the amount of data. Other than the
amount of time to train the networks, the other factor to consider was the accuracy of
the networks in predicting the values chosen for their qualification. This data is again
presented in Table 6.1 where it can be seen that there was no general decrease in the
errors from the network. In contrast, the error reaches a minimum for the error in the
predicted radii for both sets of images with the network trained on 10% of the data
where the standard deviation in the errors is also close to being the minimum. This
shows that simply waiting for the network to generate images with high visual fidelity
is not enough to provide confidence in the performance of the network. In the cases of
low amounts of data, the high losses indicate that there is insufficient variation within
the training dataset to provide the network with a good ability to generalise. At the
other end, when there are high numbers of data points, it might be expected that
losses would further decrease. This can be combined with the fact that the networks
with more data were also trained for the longest time and so may again be expected to
have better performance. Despite this, it is possible that the generators in question did

not have sufficient exposure to repeated data to fully train all parameters.
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6.3.3 Initial Testing: 9 Laser Parameters

As stated previously, the next step after training with the data produced with 5 laser
parameters was to train a network with data that was collected using additional
parameters. There were a further 4 parameters used, keeping the original 5 used in the
previous experiments to allow for potential data comparison. For this dataset, it was
estimated that more training examples would be required due to the increased
complexity of the input-to-output mapping. Despite this fewer data points were
requested, and this was driven by the previous investigation into the amount of data
required for training. It was clear that when using 5 parameters, fewer than 2000 data
points were required to achieve acceptable results, and so requesting even more than
that would likely just be detrimental to the training process and introduce
unnecessary experimental time required. Due to the convenience of data collection
timeframes, a similarly sized dataset was provided, with a total of 1500 combinations
of laser parameters provided. This was again split into the internal training and

validation dataset using the same method as described previously.

Training on this dataset again proved successful with both neck and exit images
having high accuracy and visual fidelity as shown in Fig. 6.8. While there are some
differences, such as the non-circularity seen in the bottom left of Fig. 6.8¢, that cannot
be accounted for at an image-to-image comparison level, the general size and shapes
of the holes are consistent between the two sets. In addition to this, it can be seen that
the network has been able to correctly predict the light falloff seen in the neck image
from the experimental dataset, one of the problematic areas from the previous dataset.
Using the calculations for the radii on images generated from the validation dataset,
the network was able to produce neck images with an MAE of 2.79 pixels, which is
larger than the MAE of 1.07 pixels when measured on the training dataset. This
indicates that there is still room for improvement in the training of the network, either
with further training or with careful monitoring of the validation loss to prevent
overfitting. A similar situation is seen with the neck images, with an error of 2.42
pixels for the validation set and 1.04 pixels for the full dataset. When the true value of
the error is calculated, rather than the absolute values, the errors on the neck and exit
images reduce to 0.78 and 0.83 pixels respectively, showing that while the network
does predict images with larger and smaller radii, it is predominantly guessing higher.
While the error found in this training run of the 9 parameter data is larger than the
best error achieved when the data was only produced using 5 laser parameters, it was
better than the results when it was trained on the full dataset. This suggests that while
the increased number of parameters may have provided additional difficulties to the
network, there is potential for varying the number of training data points to increase
the performance of the network.
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(A) Experimental neck image (B) Generated neck image

(C) Experimental exit image (D) Generated exit image

FIGURE 6.8: Example experimental and generated images from the validation dataset

where holes were machined using 9 parameters displaying both neck and exit images.

The holes were machined using normalised parameters of 0.899762233, 0.759299781,
0.151282051, 0.987341772, 0.913793103, 0.72, 0.495, 0.266666667, and 0.8.

In addition to the comparisons described above, the maximum and background
values were calculated to see how the network had captured some of the more
variable information that was less directly tied to the machining parameters used.
While not directly linked, it would be expected the fixed exposure of the camera
would allow for some coupling to occur, with larger holes both offering less occlusion,
and more light bleed to provide higher background and peak values. The first of these
was the maximum values from each of the images, also used to observe the effect of
the uneven lighting. The second of these values was the background level described
earlier. To ensure consistency with the previously calculated values, a truncated mean
was taken for each of the images. The low cutoff value was set to 0, and the high
cutoff value set the same threshold as used when calculating the radius of the
machined holes.

A broad comparison between the experimental and generated images across both
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FIGURE 6.9: A comparison between predicted maximum and background levels from

experimental and generated images, grouping the results by the value of the ”i” pa-

rameter used to machine them. While sparse the generated data (using values found

in the training set) shows a good correlation in all cases. The brightness values start
low at low values of “i” and grow at an increasing rate.

discussed parameters can be seen in Fig. 6.9. While the data seen for the generated
images is slightly harder to picture, as it is far more sparse, consistent trends can be
seen in all comparisons. For example, the maximum values in both the experimental
and generated images shown in the exit images, in Figs. 6.9c and 6.9d, are both, in
general, higher than their counterparts from the neck images seen in Figs. 6.9a

and 6.9b. The main area that the generated images are lacking is in the highest values
for each of the background and maximum values. For example, the maximum
background brightness shown in Fig. 6.9g is close to 25, the comparative highest value
from Fig. 6.9h is below 10. While this may be a real effect due to anomalous values not
being present in the validation dataset, it is more likely that the network is tending to
predict middling values to have a better chance of being close to the truth.
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6.4 Conclusions

One of the aims of the experiment described in this chapter was to identify how a
neural network might be used in an industrial setting where training may take place
over periods of time and with slowly increasing amounts of data. The data found here
showed that there was not a simple relationship between the amount of data and the
quality of the network, and that simply collecting more data from the start may not be
the best option for setting up a neural network. This is caused by two factors, the first
being that there may be an inefficiency in the process by both spending more time
collecting data than is useful and subsequently causing the network to take longer to
train. It also indicates that with a large amount of input data the network may give an
artificially low level of confidence due to long training times and comparatively low
performance. Training with smaller and progressively growing datasets both
naturally matches with the process of experimentation and allows for visibility in the
training of a network when compared to the amount of data, indicating when
sufficient data may have been collected. One opportunity that should be explored to
gain a better comparison to the concept of a growing dataset is the idea of transfer
learning. In this situation, the network would be continuously trained on larger sets of
data while still maintaining the updated weights from the previous training epochs.
Transfer can greatly reduce the training time of large networks when they are used for
new tasks, and this would be especially true for the example here. When testing on
networks of varying sizes a lot of time was spent on image style, with visual fidelity
being the stopping point, and networks trained on smaller datasets took far less time
to train than those trained on larger ones. While each epoch would take longer with
more data, fewer epochs may be required to reach equal or better results. It would be
valuable to investigate how new data should be added to the training dataset as data
that has been available since the initial training of the network will have been seen
more and so may cause an undesirable bias in the training.

In addition to the testing on data collected with 5 parameters, an additional set of data
was taken using an additional 4 parameters. A network was then trained on this data
to observe the effect of increasing data complexity on the ability of the network to
learn. It was found that not only was the network able to be trained on a similarly
sized dataset that could be used for the original network, but the performance also
exceeded the network at that point. While it was not possible to test the training of
this network with varying amounts of data, a full investigation would be valuable to
determine the effect of data complexity on the possible performance of a network
trained on it. This would provide valuable information with which to determine the
amount of data that should be collected if the experiment was to be attempted with a
greater number of variables, up to the 15 available. Again this is a situation in which
transfer learning should be examined, using the network trained on the data collected

with 5 parameters as a basis for the 9-parameter data.
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While there has been some interesting information drawn from this experiment, the
most important aspect was the investigation into the process. Every laser machining
and machine learning task will be different and so it is impossible to determine an
absolute number of parameters that would be ideal. This will depend on a huge
number of factors, from the structure of the network, the complexity and type of the
data, and even the time taken to perform the experiment and train the networks. Here
a problem was presented and some of the possible routes to optimisation were
presented, rather than assuming that simply collecting as much data as possible would
be the ideal situation. It was shown that it is possible to gradually increase the amount
of data to provide good results while showing that a relationship between training

time and data volume should be observed as it may provide valuable information.

An additional step that could be taken to improve the quality of the results achieved
would be to move away from the single model approach and go with an ensemble of
networks designed for different tasks. The dominating feature of the images is the size
and brightness of the holes and so many loss functions will focus on those aspects and
can lead to more averaging than would be desired. The use of a GAN loss helps to
mitigate this but cannot remove entirely. Of more interest perhaps would be to also
develop a network with a loss function designed to capture the shape of the speckle
seen in the images as that could provide important information about the internal
structure of the holes.
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Chapter 7

Conclusions and Future Work

Throughout this thesis, an investigation has been performed into how various
machine-learning techniques can be applied to the field of laser machining. It was
discussed how these methods can be used to both predict the properties of the
features that would be machined as well as provide visualisations of these results. In
addition to all of the following discussions, there are continuous advancements in the
field of generative neural networks and the trade-off these provide should be fully
considered. For example, one novel type of network that was not discussed in this
report is the diffusion style model that slowly and iteratively creates images. These
can produce images with very high fidelity but at a slow speed offering an interesting

alternative that would be well worth exploring.

7.1 Optimisation of Laser Machining Parameters

In laser machining tasks data collection and processing can be a lengthy process,
requiring preparation time and expensive equipment. To avoid some of the pains
involved in collecting and presenting the results of a machining process, a variety of
machine learning techniques were investigated. Throughout this investigation 4
different techniques were employed, each having several variations to provide an
understanding of the tools available and which could be best applied. The task to be
solved was the prediction of the dimple depth and crown height that would result

from machining with different laser parameters in a cast iron sample.

It was found that out of the analytical methods investigated, the ANN was able to
outperform both an SVM regression technique as well as a Gaussian Process. The
ANN used was able to produce an accuracy that matched the internal variation within
the data. Along with the accuracy of the method, the network was able to perform

predictions far more quickly than could be achieved in an experimental setting.
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Beyond simple quick calculation, the network has an instant setup and so would be
possible to integrate into another process, such as parameter optimisation and instant

verification of prediction.

Other than the analytical approach demonstrated by the ANN, a generative method
was also tried, utilising a GAN to simulate the full 3-dimensional profile of the
dimples. Despite the extra complexity involved, the GAN was able to produce results
that matched the crown height and dimple depth close to the quality of the ANN and
better than some of the other analytical attempts. While the GAN would not be
suitable for the optimisation tasks discussed it could be used as an additional
verification tool to complement the other methods. The results from the GAN also
contained far more data, so it would be possible to extract any information from it that

could be gained from true experimental samples.

While the results from this experiment were positive, there were still areas that could
be improved. The data collected was heavily influenced by human bias as the
engineers collected most of the data in regions they thought were of particular
interest. This meant that the data used did not provide a range and granularity that
could be fully utilised by the network. The GAN, while able to provide accurate
estimations for crown height and dimple depth, did not match the visual fidelity of
the true values, with the results being smoother than expected. Further investigation
would be required to determine the cause and to find a solution.

Now that the use of machine learning has proven to be accurate at predicting the
results from the machining tasks at hand a future task would be to increase the range
of values seen by the network. Alongside this, a catalogue of networks could be
developed to provide solutions to a wide range of problems. The speed of creating
these networks ensures that it could coincide with other work that is undertaken,
providing a complementary technique.

7.2 Modelling Laser Machining Processes that use Spatial
Light Modification

In this chapter initial work was focused on improving the capabilities of neural
networks produced within the group to simulate the effect of a shaped pulse on a
sample. Through the use of novel GANS, the effect was scaled to use up to three
pulses in the machining process. Even with the added complexity of more inputs and
more variable output space, the network was able to produce results that closely
matched the results from the experiment. The use of multiple pulses also provided an
opportunity to investigate whether the network could learn effects that could only be
introduced by a subsequent pulse. The first of these was the effect of the ordering of
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the pulses, where the network was able to correctly show that fine features machined
early on would be smoothed by any coarse machining that took place afterwards.
Along with this the network correctly predicted that the diffraction limit of laser
machining is mainly a concept of a single pulse and that when machining with
multiple pulses, it is possible to produce features that beat this limit.

The second task attempted was to create a network that performed the same operation
as the first but in reverse. This was particularly challenging due to two factors. The
tirst was that the translation from depth profile to a sequence of pulses was expected
to be far more difficult than the previous task, and had been attempted previously
without success. The difficulty arose from the task being highly one-to-many, with the
three output patterns having many possibilities that were all correct. The other issue
was that it was not possible to either collect more experimental data, which would
have helped with the complex problem. The solution to this was two-fold and
represented the major advance in the chapter. The first step was the introduction of a
hybrid cycle consistent network that used the previously demonstrated network as
part of the loss for the new network. This was combined with using the previous
network to generate large amounts of data on which to train the new network. Based
on this the GAN used to generate depth profiles simulated the full experimental
process, providing an artificial feedback loop. Even when tested on previous

experimental data, the new network was able to achieve impressive results.

To improve the process described here, a possible next step would be to create a
network that was able to take in both a surface profile and a spatial intensity mask.
Having this would allow for the network to predict the results from an arbitrary
number of pulses as the process could become iterative, predicting a single pulse at a
time. This could also be combined with an increased variation within the input, such
as including the laser power as an input to the network. This would provide a more
robust network that could be used across a wide range of applications. Data collection
for this would be one of the challenges to overcome, as for successive machining, the
surface profile would need to be measured between each pulse, either in place or

moved with a high level of repeatability.

7.3 Simulating Unknown Machining Processes

While careful control over, and creation of, the data used in a machine learning
process is a good way to improve the likelihood of achieving good results it is not
always possible. This experiment took the example to the extreme, taking a situation
where nothing about the data was known apart from what could be seen in the data
itself. This provided an excellent opportunity to showcase the raw possible
performance of a neural network. Removing knowledge of the data also acted to
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remove human bias from the results, which in turn could lead to a better
representation of the data space. It was shown that even with no knowledge of, or
control over, the data, preparation of the data is still highly important, with poor data
still leading to poor results. Not knowing the final purpose of the data made it
difficult to develop a suitable process to determine the quality of the network.

As this task was linked to industry one of the key problems investigated was the effect
of data quantity and complexity on the results from the network. It was discovered
that even with few data points and little augmentation it was possible to produce both
visually and numerically accurate results, and show how the improvements scaled
with increasing data set size. An important issue was also discovered in the setting of
goals. When training a GAN it is hard to define a stopping point without a very clear
goal, and when using the visual fidelity of the image as that stopping point, the
performance of the network for other tasks was affected.

This is an ongoing experiment with many avenues left to explore. One path is to
conduct a more thorough investigation into the data requirements for the network
based on machining with 9 laser parameters. While the network was able to produce
accurate results, the investigation of the smaller dataset proved that varying the size
of the dataset can have a large impact. The next step would be to use these results to
decide on a data collection plan for increasing the complexity of the task by
introducing increased numbers of parameters, up to the 15 available to use.
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Appendix B

Kerr Effect

The Kerr effect is a result of third order non-linear polarisation of light as is passes
through a material. As the first order susceptibility is generally much larger than those
of higher orders, at low intensities only the linear interactions need to be considered.
However, at greater intensities higher orders become increasingly important. The
polarisation (P) can be calculated as shown in Eq. B.1 where x, represents the nth
order susceptibility, € is the permeability of free space and E is the electric field.

P:€0(XOE+X1E2+"') (B.1)

This demonstrates that even when x1 > x3 if the electric field is great enough then the
contributions from the third order susceptibility will become relevant. To explore this
further the electric field can be considered as a one-dimensional wave of the form
show in Eq. B.2 where E is the electric field, the amplitude of the field oscillations is

Eo, and w is the angular frequency of the wave.

E = Epcos wt (B.2)

Specifically investigating the effect of the third order susceptibility, the third term
becomes XZES cos® wt. Using standard trigonometric identities, the cube of the electric

field can be rewritten as:

E3
E3 = ZO (cos 3wt + 3 cos wt)

Written in this form, the contributions from third order non-linearities can be
separated into two terms. The term containing the cos wt represents third harmonic
generation, with light being emitted with a wavelength a third of that of the incident
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wave. The other term can be rewritten as % - E3 - (Eg cos wt) where E3 is proportional
to the intensity (I) of the electric field. This combined with the fact that Eq cos wt was
the definition of the initial wave means that the refractive index of the material

becomes intensity dependent and can be rewritten as:

n=mnyg+ Iny

Where 7, is the contribution from third order non-linearities. This has the effect for a
beam with a Gaussian spatial intensity profile, as is typical in many situations
involving laser beams, the beam will become self-focussing when passing through a
medium with sufficiently large x» This is because the central region of the beam along
the optical axis has a higher intensity and as such experiences a larger refractive index.
This in turn leads to the higher intensity sections being delayed due to the rest of the
wave, the same effect as a lens.
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