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Abstract

A lattice QCD approach to the calculation of the long-distance contributions to ǫK is presented.

This parameter describes indirect CP violation in K → ππ decay. While the short-distance con-

tribution to ǫK can be accurately calculated in terms of standard model parameters and a single

hadronic matrix element, BK , there is a long-distance part which is estimated to be approximately

5% of the total and is more difficult to determine. A method for determining this small but

phenomenologically important contribution to ǫK using lattice QCD is proposed and a complete

exploratory calculation of the contribution is presented. This exploratory calculation uses an un-

physical light quark mass corresponding to a 339 MeV pion mass and an unphysical charm quark

mass of 968 MeV, expressed in the MS scheme at 2 GeV. This calculation demonstrates that fu-

ture work should be able to determine this long-distance contribution from first principles with a

controlled error of 10% or less.

I. INTRODUCTION

The KL − KS mass difference, ∆MK and the measure of indirect CP violation in kaon

decay, ǫK , are two important quantities originating from highly-suppressed, second-order

weak processes. Both have precisely-measured experimental values, making them ideal tests

of the standard model if the standard-model predictions for these quantities could be ac-

curately computed. As second-order weak processes both involve the exchange of two W

bosons and correspond to the CP conserving (∆MK) and CP violating (ǫK) components of

K0-K
0
mixing. However, the largest contributions to each of these quantities come from

very different kinematic regions.

With their larger Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, the up and

charm quarks are the dominant intermediate quarks in the calculation of ∆MK giving a

much larger contribution than the top quark. Consequently ∆MK is described as a long-

distance quantity, coming predominately from the energy scale of the charm quark mass.

As a result the two W boson exchanges that contribute to ∆MK can be treated as two ef-

fective ∆S = 1 four-quark interactions and these two local operators are typically separated

by a distance on the order of the Compton wavelength of the charm quark. For shorter

distances the difference between the up and charm quark masses can be neglected and the

Glashow-Iliopoulos-Maiani (GIM) mechanism implies that the integral over the spatial sep-
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aration between these two operators will converge in this short-distance region where the

two operators approach each other.

The dominance of the charm energy scale makes ∆MK a difficult quantity to compute

using QCD perturbation theory. As discovered by Brod and Gorbahn [1], the next-to-next-

to-leading order (NNLO) contribution to ∆MK is 36% of the sum of the leading-order (LO)

and next-to-leading-order (NLO) contributions, making such a perturbative calculation un-

reliable. Therefore, lattice QCD is at present the most promising approach to determine

∆MK from the standard model, with all errors controlled. Lattice methods to calculate

∆MK have been introduced and demonstrated in Refs. [2] and [3]. However, these are diffi-

cult calculations at present [4] because they must be performed with a lattice spacing that

is small compared to the Compton wavelength of the charm quark.

The situation is quite different for the standard model contribution to ǫK . Because

this quantity is CP violating, the magnitudes of the relevant CKM matrix elements no

longer suppress the top quark and the GIM mechanism no longer applies. As a result the

largest contribution to ǫK comes from energies on the order of the top quark mass and the

two W boson exchanges are well represented at the mass scale of the decaying kaon by

a single local ∆S = 2 four-quark operator. Thus, ǫK can be described as short-distance

dominated. However, there is a subdominant part which comes from longer distances and

can be described by the product of two distinct ∆S = 1 four-quark operators, separated by

distances much larger than 1/MW .

Because of their small size, these long-distance contributions to ǫK are conventionally

treated in an approximate way. All charm quark contributions are treated as far above

the QCD energy scale, ΛQCD and represented by a local, ∆S = 2 operator while the com-

ponent coming from the up quark is effectively neglected. The errors associated with this

approximate treatment of the long-distance contribution to ǫK are estimated to be a few

percent [5].

With this approximate treatment of the long-distance part of ǫK , both the short- and

long-distance contributions to ǫK can be written as the product of a perturbatively computed

Wilson coefficient and the matrix element of a local ∆S = 2 operator between K0 and K
0

states. This matrix element can now be evaluated using lattice methods to 2% accuracy (see

for example Refs. [6–8] and the recent compilation [9]) with the largest uncertainty in the

standard model prediction for ǫK coming from the CKM matrix element Vcb which appears
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to the fourth power in the Wilson coefficient.

As future experiments reduce the uncertainty in Vcb, it will become increasingly important

to improve the accuracy of the calculation of these long-distance effects. In this paper we give

a complete description of methods based on lattice QCD which directly evaluate these long-

distance contributions with full control of systematic errors. We present an exploratory

calculation which demonstrates these methods and provides evidence that such a lattice

calculation determining this long-distance contribution to 10% accuracy should be practical

as a large-scale project on the current generation of supercomputers. As we will describe,

the largest difficulty at present is the practical challenge of using a sufficiently small lattice

spacing that the charm quark can be treated accurately and at the same time a sufficiently

large lattice volume that physical-mass pions can be included without large finite-volume

distortions.

We briefly outline the new difficulties that such a calculation must overcome beyond

those found in a calculation of ∆MK . First, because we are evaluating the imaginary

part of the kaon mixing matrix element M00, the top quark contribution can no longer be

neglected. We therefore must include all the QCD penguin operators in a calculation of

ǫK while in principle a result for ∆MK that is accurate to 1% could be obtained from only

the current-current operators Q1 and Q2, defined below Eq. (A1). The inclusion of QCD

penguin operators requires that significantly more matrix elements be determined as well as

diagrams with a new topology, not present in the calculation of ∆MK .

Second, the absence of the GIM mechanism for these top quark contributions implies that

many diagrams of interest will contain a logarithmic divergence arising when the positions

of the pair of local, four-quark operators collide. In the complete theory such divergences

would be absent, regulated by the non-local structure at short distances coming from the W

boson and top quark propagators. Of course, in our lattice calculation such short-distance

structure is absent and these singular position-space sums are cut off at the lattice scale,

proportional to the inverse lattice spacing a−1. For a proper continuum limit to be taken,

these divergences must be removed.

The appearance of such unphysical singularities is of course a standard occurrence when

the operators that define a first-order effective field theory are used in a second order calcu-

lation. Additional low energy constants must be specified before the second-order theory is

well defined. The ambiguities that appear when products of these lowest order operators are
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evaluated are resolved by these new second-order low-energy constants. We refer to these

products of pairs of local operators as bilocal operators. The singularity that results when

the two operators collide can be removed by the subtraction of a local operator. Such a sub-

traction renormalizes the bilocal operator and can be specified in the MS or a generalized

“regularization invariant symmetric momentum” (RI/SMOM) scheme suitable for contin-

uum or lattice regularization. Once the bilocal operators have been renormalized, additional

local operators corresponding to the necessary subtractions can be added. Their coefficients

are these new, well-defined low-energy constants (LECs). These LECs must then be deter-

mined by comparison with the underlying short-distance theory. This procedure is standard

in perturbative calculations [10] and has been previously discussed and implemented for

lattice calculations as well [2, 11, 12].

Since the necessary low energy constants have already been determined when the bilocal

operators are renormalized in the MS scheme [1, 10, 13, 14], we use QCD perturbation

theory to relate the MS and RI/SMOM schemes and a lattice calculation to provide a non-

perturbative relation between the lattice-regulated bilocal operator and a bilocal operator

renormalized in the RI/SMOM scheme.

In this paper we will refer to the distance scales at which perturbation theory can be

safely applied as “short-distance”, expecting that these correspond to energies at or above a

lower limit of 2-3 GeV. We will describe lower energy scales than these as corresponding to

“long-distance”. This language is intended to distinguish the regions in which perturbative

and lattice methods can be used. The fact that lattice methods may now be viable up to

this 2-3 GeV energy scale and below is the main motivation for this paper. This 2-3 GeV

boundary between the short- and long-distance regions may be appropriate for a target

accuracy on the order of a few percent. Given the presumed asymptotic nature of the QCD

perturbation series, it is likely that to achieve significantly higher accuracy, the perturbative,

short-distance region will need to be revised upward and an even larger long-distance region

treated using lattice methods. Achieving this improvement will require future calculations

with an even finer lattice spacing in order to continue to control discretization errors.

In Section II we review the theoretical framework for the calculation of ǫK in the standard

model and present the combinations of four-quark effective operators that must be used in a

lattice calculation of the long-distance contribution to ǫK . We then describe the techniques

used to evaluate the needed matrix elements using lattice QCD. In Section III we describe
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in detail the method used to subtract the unphysical, short-distance part of these lattice-

regulated matrix elements so that the resulting renormalized operators obey regularization-

independent conditions allowing these operators to be related to the more conventional

bilocal operators appearing in perturbation theory, renormalized in the MS scheme. In

Section IV we present and discuss our numerical results for ǫK while Section V contains

our conclusions. The Appendix contains details of the more conventional renormalization

procedure used to renormalize the local, four-quark operators.

II. THEORETICAL ASPECTS OF THE CALCULATION OF ǫK

In this section we will review the usual formulae which determine the indirect CP-violation

parameter ǫK in the standard model and provide a connection between the perturbative

treatment of ǫK , now partialy carried out to NNLO [1, 14], and the lattice calculation which is

the subject of this paper. The theoretical framework for the standard model determination of

ǫK and the usual electroweak and QCD perturbative approach to the calculation is reviewed

in Section IIA. Section IIB describes the modifications to this conventional perburbative

approach which is proposed here, while in Section IIC we present the new lattice QCD

methods that we employ to calculate the long-distance contribution to ǫK with controlled

errors.

A. Basic standard model formulae

The standard analysis of neutral kaon decay expresses ǫK as

ǫK = eiφǫ sin φǫ

(− ImM00

∆MK
+

ImA0

ReA0

)
(1)

where ∆MK is the mass difference between the long- and short-lived neutral K mesons and

ΓS − ΓL (which appears below) is the difference between their decay widths. Here A0 is the

complex I = 0 amplitude for K → ππ decay after its strong interaction “Watson” phase,

eiδ0 , has been removed, where δ0 is the I = 0, s-wave ππ scattering phase shift evaluated for

a ππ center-of-mass energy equal to the kaon mass. The angle φǫ is defined by

φǫ = tan−1

(
2∆MK

ΓS − ΓL

)
= 43.51(5)◦. (2)

6



The quantity M00 is the dispersive part of the K
0-K

0
mixing matrix and is conventionally

written in the non-covariant form:

M00 = 〈K0|H∆S=2
W |K0〉+ P

∑

n

〈K0|H∆S=1
W |n〉〈n|H∆S=1

W |K0〉
MK − En

, (3)

where the P indicates that the principal part should be taken to resolve the singularity when

En = MK in the generalized sum over intermediate states labeled by the index n. Here and

later in this paper we will use unit normalization for the finite-volume kaon states |K(~p~n)〉:
〈K(~p~n)|K(~p~n′)〉 = δ~n,~n′. We adopt the usual phase conventions in which CP |K0〉 = −|K0〉,
time reversal symmetry requires A0 to be real and T or CP symmetry requires M00 to be

real.

The standard formula given in Eq. (3) involves two local, effective four-quark operators.

The first, H∆S=2
W describes a second-order-weak, ∆S = 2 transition arising from the short-

distance part of the exchange of two W bosons while H∆S=1
W describes a first-order process

in which a single W boson has been exchanged. The second term, containing two inser-

tions of H∆S=1
W , includes both short- and long-distance effects depending on whether the

intermediate state |n〉 carries a large or a small energy. Of course, this term is appropriate

only when the intermediate-state energy En is sufficiently small that the transition ampli-

tude 〈n|H∆S=1
W |K0〉 can be accurately described by a point-like treatment of the W boson

exchange. The contributions of intermediate states of higher energy must be represented by

the first, H∆S=2
W matrix element.

A more explicit and covariant standard-model description of K0 − K
0
mixing is repre-

sented by Feynman diagrams of the sort shown in Fig. 1. However, the expression for M00

given in Eq. (3) is more appropriate for a lattice QCD calculation in which W boson ex-

change must always be described by a local effective four-quark coupling. A well-defined

division of the short- and long-distance effects between the two terms in Eq. (3) is required

for a meaningful lattice calculation and is an important part of this paper.

The two diagrams shown in Fig. 1 each represent one of the two types of diagram which

contribute to K0 − K
0
, mixing. The left-hand diagram shows the connected topology in

which the K0 and K
0
sources cannot be separated unless two quark lines are cut. The

right-hand diagram shows an example of the remaining diagrams which have what we label

as a disconnected topology. Here the K0 and K
0
sources can be separated by cutting only

gluon lines. In the left diagram we do not show the gluon lines that would be present in
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FIG. 1. Two types of ∆S = 2 diagram contributing to ǫK .

both a perturbative or lattice QCD calculation. We do include two curly gluon lines in

the right-hand diagram both to make it clear that it is only the set of quark lines that is

disconnected and to show a topology which contributes to gluonic penguin amplitudes.

In both cases we can identify two quark lines that pass through the diagram and convert

a strange quark into a down quark. Each of these quark lines has two weak vertices: one

converts the strange quark to an up-type quark (up, charm or top) and the second converts

that up-type quark into a down quark. Thus, each line will introduce a factor of λi = VidV
∗
is

where Vqq′ is the CKM matrix element connecting a q′ down-type quark to a q up-type quark

and i = u, c and t. Because of the flavor symmetry of QCD each of these three terms are

identical except for the factor of λi and the mass which enters the up-type quark line joining

the two weak vertices.

The orthogonality of the first and second columns of the unitary CKM matrix implies

λu + λc + λt = 0, (4)

which can be used to combine the sum over the three up-type quarks that appear in Fig. 1

into a sum over two terms. The usual choice is to eliminate λu by subtracting a term with

the sum over the three CKM products in Eq. (4) but with an up-quark line connecting the

two weak vertices, a term which vanishes because of Eq. (4). This subtraction removes the

up-quark contribution proportional to λu and replaces the original terms proportional to λc

and λt with terms containing the difference between the charm- and up-quark line and top-

and up-quark line, respectively.

This can be illustrated for the lowest-order connected diagram in Fig. 1 by the free field
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propagator formula:

∑

i=u,c,t

λi /p

p2 +m2
i

= λc

{
/p

p2 +m2
c

− /p

p2 +m2
u

}
+ λt

{
/p

p2 +m2
t

− /p

p2 −m2
u

}
. (5)

This use of CKM unitarity to eliminate one of the three products, λu, λc or λt, as in Eq. (5),

is easiest to illustrate for the case in which the up-type quark propagators directly connect

the two weak vertices. However, since the three flavors of quarks have the same gluon

couplings, this simplification applies generally when an arbitrary number of gluon vertices

are inserted on the intermediate up-type-quark line, including the case of one gluon vertex

insertion as in the disconnected graph shown in Fig. 1.

In the conventional calculation of ǫK the entire contribution to the off-diagonal, K0−K
0

mixing term M00 is expressed as the K0 −K
0
matrix element of a local, ∆S = 2 operator

H∆S=2
eff,conv given by

H∆S=2
eff,conv =

G2
F

16π2
M2

W

[
λ2
cη1S0(xc) + λ2

tη2S0(xt) + 2λcλtη3S0(xc, xt)
]
OLL + h.c. (6)

where

OLL = (sd)V−A(sd)V−A (7)

and the subscript V − A indicates the usual difference of vector and axial vector currents.

The functions S0(x) and S0(x, y) are Inami-Lim functions [15] and their arguments are the

mass ratios xq = m2
q/m

2
W for q = u, c and t. The coefficients ηi, i = 1, 2, 3 would each be

unity in a lowest order calculation and incorporate corrections of first or higher order in αs.

In this conventional approach the charm quark is treated as heavy compared to the QCD

scale and integrated out while the up quark is treated as a massless fermion with perturbative

QCD couplings. While we choose not to use this description, the contribution obtained in

this way is often referred to as the short-distance part and long-distance corrections are

computed by adding dimension-eight operators to better represent the charm physics in the

three-flavor theory and a more refined treatment of the light quarks is given using chiral

perturbation theory [5].

B. Alternative application of CKM unitarity

In the approach developed here we rely on these perturbative calculations of the ηi but

make two changes. The most important, discussed in greater depth in Sec. IIC and III, is
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that we use QCD perturbation theory only above the charm quark scale and always work

in the four-flavor theory with an active charm quark. The dominant contribution to ǫK will

continue to be described by a local operator proportional to OLL given by a formula similar

in structure to Eq. (6).

The four-flavor effective theory is then renormalized in such a way that this OLL opera-

tor provides the entire standard model contribution, determined by electroweak and QCD

perturbation theory, to a specific ∆S = 2, four-quark Green’s function in which the external

quark lines carry large non-exceptional momenta specified at a scale µ above the charm

quark mass mc. In contrast, the conventional ηi coefficients in Eq. (6) are chosen so that

this operator will reproduce a perturbative calculation of the standard model contribution

to a similar four-quark Green’s function in the three-favor theory with vanishing external

quark momenta.

There are two important advantages to this modified approach: i) The modified OLL

operator can be determined from perturbation theory in a infrared safe regime and the use

of perturbation theory will become increasingly accurate as the scale µ is increased. ii) All

low-energy, standard-model matrix elements can be computed from this modified ∆S = 2,

OLL operator combined with the usual ∆S = ±1,∆C = ±1 four-quark weak effective theory

evaluated at second order. We can then use lattice QCD, including an active charm quark,

to evaluate the matrix elements in this second-order effective theory, avoiding the use of

QCD perturbation theory at or below the charm quark scale. As is explained in Secs. II C

and III, these two partial representations of standard model physics can be combined to give

the correct standard model prediction if we properly choose the low energy constants in the

second-order effective theory.

The second change that we make to the conventional approach is theoretically less signifi-

cant, but is important for numerical computation. In the conventional calculation, the CKM

unitarity relation given in Eq. 4 is used to remove the up quark contribution proportion λu,

reducing the UV divergences in the terms proportional to λc and λt [15] as suggested in

Eq. (5). However, any quark flavor might have been chosen. Instead of subtracting a term

multiplied by the vanishing sum
∑

i λi containing an up-quark line and eliminating the term

proportional to λu, we instead subtract a term containing a charm-quark line to eliminate

the original term proportional to λc, replacing the substitution shown in Eq. (5) by that
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corresponding to a charm-quark subtraction:

∑

i=u,c,t

λi /p

p2 +m2
i

= λu

{
/p

p2 +m2
u

− /p

p2 +m2
c

}
+ λt

{
/p

p2 +m2
t

− /p

p2 −m2
c

}
. (8)

The effects of this alternative charm-quark subtraction may be easiest to discuss if we

focus on the resulting change to the ∆S = 2 effective Hamiltonian given in Eq. (6). With

this alternative subtraction H∆S=2
W will have the form:

H∆S=2
W =

G2
F

16π2
M2

W

[
λ2
uη

′
1S0(0, 0, xc) + λ2

t η
′
2S0(xt, xt, xc) (9)

+2λuλtη
′
3S0(xt, 0, xc)

]
OLL + h.c.

Since in Eq. (9), we have made the choice of subtracting the charm quark, we use a different

notation to represent the general form of the Inami-Lim functions and the corresponding

QCD corrections.

Here we use a single Inami-Lim function showing three arguments S0(x1, x2, x3) in a way

that explicitly displays the internal quark structure. Now S0(x1, x2, x3) gives the result from

a box diagram where one up-type quark line involves the (q1 − q3) difference of propagators

while the other up-quark line has been replaced by the difference (q2 − q3). Thus the last

argument, x3 depends on the mass of the subtracted up-type quark. For simplicity we have

made the usual choice xu = 0. However, for clarity we do not drop this argument as is

done by Inami and Lim. In this notation, the Inami-Lim functions with the standard u

quark subtraction are given by S0(xc) = S0(xc, xc, 0) and S0(xc, xt) = S0(xc, xt, 0). For the

perturbative coefficients η′i which represent the QCD corrections, we have added a prime to

distinguish those needed in our formulation from the conventional factors.

We make this unconventional choice of charm quark subtraction because we now have only

a single term (the λuλt term) to calculate from lattice QCD, reducing the computational cost

compared to the conventional subtraction. Following the usual choice of CKM phases the

term proportional to λuλu is purely real and does not contribute to ImM00. The remaining

two terms give contributions of nearly the same size. This is because S0(xt, 0, xc) = O(10−3),

S0(xt, xt, xc) = O(1) and λt/λu ≈ 0.0016. The term proportional to λtλt can be calculated in

QCD perturbation theory with very high precision since it is short-distance dominated. One

might think that this term also has a contribution coming from two internal charm quarks

carrying small momenta which could not be accurately evaluated using QCD perturbation

theory. However, such a contribution is suppressed by the ratio λt/λu compared to similar
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effects in the λuλt term. Only the λuλt term has a long-distance contribution which is not

suppressed by CKM factors and therefore this is the only term that requires a lattice QCD

calculation. Thus, this charm quark subtraction significantly reduces the cost of the lattice

calculation.

Since the coefficients ηi and η′i and the Inami-Lim function S(x, y, z) do not depend on the

CKM matrix element products, it is straight-forward to relate the two sets of coefficients

ηi and η′i to arbitrary order in αs by comparing Eqs. (6) and (9) viewed as second-order

polynomials in two of the three quantities, λq, q = u, c and t. Using λt and λu we can

express {η′i}i=1,2,3 in terms of {ηi}i=1,2,3:

η′1 = η1 (10)

η′2S0(xt, xt, xc) = η2S0(xt) + η1S0(xc)− 2η3S0(xc, xt) (11)

η′3S0(xt, 0, xc) = η1S0(xc)− η3S0(xc, xt). (12)

As is required by their definitions, each of the six coefficients ηi and η′i are one at zeroth

order in αs. In the context of Eqs (11) and (12) this requires that

S0(xt, xt, xc) = S0(xt) + S0(xc)− 2S0(xc, xt), (13)

S0(xt, 0, xc) = S0(xc)− S0(xc, xt). (14)

C. Lattice calculation of the long-distance contribution to ǫK

We will now discuss in greater detail how lattice QCD can be used to calculate the λuλt

contribution to ImM00 coming from energy scales on the order of the charm quark mass and

below. While we found it convenient to discuss the unconventional aspects of our calculation

in the context of the ∆S = 2 effective Hamiltonian given in Eq. (9), our calculation requires

a complete effective theory of the low-energy weak interactions including an active charm

quark which we will now determine.

1. Effective theory of ∆S = 2 weak interactions

For completeness, we begin at the energy of the W boson and top quark where the weak

interactions are described by diagrams of the sort shown in Fig. 1. In the first step the
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sums over u, c and t propagators shown in those figures are rearranged following the charm-

quark subtraction scheme described in Eq. (8). Thus, each of the two up-type quark lines

connecting the weak vertices in Fig. 1 will be replaced by a difference of q minus c quark

propagators and each such difference will be associated with the CKM product λq where

q = u or t. It is those terms proportional to the product of λtλu which we must represent

in our low energy effective theory.

These diagrams are simplified by integrating out the W boson and the top quark, result-

ing in an effective bilocal product of two ∆S = 1 operators which correspond to the two

exchanged W bosons. In addition the local ∆S = 2 operator OLL of Eq. (7) will appear,

correcting the contribution of the bilocal product when the locations of the two operators

coincide. This description will be valid at energies sufficiently far below the W scale that

the W propagators cannot be distinguished from four-dimensional position-space delta func-

tions. The Wilson coefficients of the operators in the bilocal product and the local operator

OLL can be reliably computed in perturbation theory provided the energy scale µ at which

these operators are defined is not too far below the W mass so that any logarithms of the

form ln(MW/µ) that appear in the perturbative expansion will not be large.

Next, renormalization group evolution can be used to replace the combination of bilocal

and local operators renormalized at a scale below, but on the order of, MW by a similar

combination of bilocal and local operators renormalized at a much lower energy on the

order of the charm quark mass. Specifically, we will want to evolve to an energy scale

accessible to lattice QCD, but sufficiently large that this perturbative treatment is accurate

and the charm quark is still active. Here the renormalization group can control the large

logarithms that appear, summing all terms of order αn
s (αs ln(MW/mc))

l for all l ≥ lmin(n).

The coefficients of these terms are now known for n = −1 (LO), 0 (NLO) and partially for

n = 1 (NNLO) [1, 14]. Note lmin(−1) = 1 so there is no term which behaves as 1/αs. The

result of this perturbative analysis is an expression for K0-K 0 mixing that is written as the

K0-K 0 matrix element of the sum a local and bilocal operator:

M00 = 〈K0|
{∫

d4xH∆S=1
W (x, µ)H∆S=1

W (0, µ)

}

µ

+H∆S=2
W (0, µ)|K0〉. (15)

The two H∆S=1
W (x, µ) operators are the standard four-quark operators that appear in the

low energy effective theory of the weak interactions at first order in the Fermi constant,

GF . They must be renormalized and the argument µ specifies the scale at which this
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renormalization ofH∆S=1
W is performed. The second term in Eq. (15) is a four-quark operator

which changes strangeness by two units. As discussed above, it serves two purposes. First

it represents the low-energy effects of high-energy phenomena, such as the contribution of a

top quark loop. Second it introduces a counter term or low-energy constant that corrects the

unphysical singularity that is encountered in the space-time integral in Eq. (15) as x → 0.

The large curly brackets surrounding the integrated product of the two ∆S = 1 operators

with the subscript µ indicates that this integral has been regulated at the scale µ. It is

because of this singular part of the bilocal operator that we must specify the scale µ at which

the product of the two ∆S = 1 operators is renormalized. Note, for convenience we are using

the same scale µ to renormalize the lattice operators which appear in H∆S=1
W (x, µ) as is used

to define the bilocal product. In the usual application of these operators, the dependence

on µ should drop out except for errors arising from the truncation of perturbation theory

sums.

Here it may be useful to review in greater detail the further steps that would be taken in a

conventional “short-distance” calculation of ǫK . In such a treatment the scale describing the

kaon state is assumed to be small compared to the charm quark mass and the charm quark is

also integrated out. The result is approximated by the local operator OLL alone, multiplied

by the coefficients in Eq. (9) and the contribution of a remaining bilocal operator that

involves only light quarks is assumed to be adequately approximated by the local operator

OLL. A calculation of the K0 −K
0
matrix element of this OLL operator is then performed

using lattice QCD. Since the charm quark mass (∼ 1.2 GeV) is close to the non-perturbative

scale ΛQCD, this procedure can be subject to large errors from three sources: i) neglect of

higher orders of αs when using QCD perturbation theory to integrate out the charm quark

(truncation errors); ii) omission of higher order terms in the expansion in (ΛQCD/mc) (errors

from higher-dimension operators) and iii) neglect of the nonlocal effects associated with

the exchange of light quarks between the two ∆S = 1 operators (long-distance light-quark

effects). For an estimate of the size of some of these effects see Refs. [5, 13].

These difficulties can be avoided and a result with errors that can be reliably estimated

and systematically reduced can be obtained if we use lattice QCD to evaluate the matrix

element of the combination of bilocal and the local operators given in Eq. (15) and defined

at a scale above the charm quark mass. This method requires an “active” charm quark in

the calculation, which should be possible with controllable discretization errors using lattice
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spacings which are currently being studied. The starting point for such a calculation must

be the perturbative results for the coefficients of the operators which appear in Eq. (15).

These coefficients should be determined at a scale sufficiently far above the charm quark

mass that perturbation theory is reliable.

We will now exploit the detailed perturbative treatment reviewed in Ref. [10] to explicitly

determine the operator OLL and the operators which appear in the ∆S = 1 effective weak

Hamiltonian together with their Wilson coefficients that correspond to the λuλt term which

we wish to evaluate. At this stage these operators and their Wilson coefficients should be

evaluated in the MS scheme at an energy scale µMS well above the charm quark threshold.

Here and in the following we will specialize “µ” to refer to three renormalization scales: µ

with no subscript will indicate a generic scale not connected with any particular renormaliza-

tion scheme while µMS and µRI are the scales used in the MS and RI/SMOM renormalization

schemes.

We begin by reviewing how the various terms in the effective field theory arise from the

two types of diagrams shown in Fig. 1. Referring to that figure and keeping in mind our

scheme to use CKM unitarity to subtract a vanishing term containing a charm quark from

each of the up-type quark lines, we recognize that the term proportional to λuλt has a t− c

propagator and a u− c propagator in the place of the two internal quark lines for both types

of diagram shown in that figure. Since the energy scales of the top and charm quark are so

different, it is useful to separate this (t − c)× (u − c) structure into two parts: t × (u − c)

and c× (c− u).

We first consider the t × (u − c) part. For this case the large top quark mass leads to

different behaviors for the connected and disconnected topologies shown in Fig. 1. For the

connected topology the large mass of the top quark forces the two W propagators to be

separated by a distance of order 1/mt, reducing the entire graph to the effective four-quark

operator OLL with a Wilson coefficient that can be reliably determined in a perturbative

calculation.

However, the situation for the disconnected topology is quite different since here the top

quark and one W propagator appear as a short-distance correction to a gluon vertex. The

result is a QCD penguin contribution described by a ∆S = 1 four quark operator composed

of the two quarks joining the gluon vertex and the two quark which couple to the other end

of the gluon line. The second W propagator leads to a second ∆S = 1 four-quark operator
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which could be of either the current-current or QCD penguin type. (For an explanation of

this standard nomenclature, see for example Ref. [16].) Thus, the t × (u − c) part of the

λuλt contribution is a combination of the operator OLL together with the product of two

∆S = 1 operators, one a QCD penguin operator and the other either a QCD penguin or a

current-current operator.

For the c× (c− u) contribution the connected and disconnected diagrams in Fig. 1 each

generate terms that are given by the matrix elements of the local operator OLL as well as

bilocal products of current-current and QCD penguin operators.

The detailed steps that relate the underlying two-W exchange weak amplitudes illustrated

in Fig. 1 and the second-order effective field theory that can be used in a lattice calculation

are reviewed and summarized in Buchalla, et al. [10]. We begin with the four-flavor, first-

order theory which when taken to second order will describe the λuλt terms of interest:

H∆S=1
W =

GF√
2

(
∑

q,q′=u,c

V ∗
q′sVqd

∑

i=1,2

CiQ
q′ q̄
i − λt

6∑

i=3

CiQi

)
, (16)

where the Ci are Wilson coefficients and

Qq′q
1 = (saq

′
b)V−A(qbda)V−A Qq′q

2 = (saq
′
a)V−A(qbdb)V−A (17)

Q3 = (sada)V−A

∑

q=u,d,s,c

(qbqb)V−A Q4 = (sadb)V−A

∑

q=u,d,s,c

(qbqa)V−A (18)

Q5 = (sada)V−A

∑

q=u,d,s,c

(qbqb)V+A Q6 = (sadb)V−A

∑

q=u,d,s,c

(qbqa)V+A.

where sums over the color indices a and b are understood.

The eight, four-quark operators Qq′ q̄
1 and Qq′ q̄

2 are current-current operators while Q3,

Q4, Q5 and Q6 are QCD penguin operators. The electro-weak penguin operators have been

dropped since they are suppressed by a factor of αEM. For the current-current operators Q
q′q̄
i ,

(i=1,2), the label q′q̄ can be any combination of up and charm quarks. The QCD penguin

operators involve a symmetrical sum over the four relevant flavors in our calculation. Here

the subscript V − A indicates a left-handed vertex and V + A a right-handed one.

The structure of H∆S=1
W shown in Eq. (16) is a consequence of the GIM mechanism and

the Wilson coefficients {Ci}, 1 ≤ i ≤ 6 can be related to the six, 4-flavor Wilson coefficients

{zi}, 1 ≤ i ≤ 2 and {vi}, 3 ≤ i ≤ 6 determined in Ref. [10]. (Note that v1 = z1 and v2 = z2

in Ref. [10].) In order to understand the structure of Eq. (16) we distinguish the irreducible
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representations of SU(4)L × SU(4)R and follow the renormalization group evolution as one

moves from a high-energy scale close to but below MW down to a scale that is close to but

above the charm quark mass. Because of the mass-independence of the RI/SMOM and MS

renormalization schemes which we use, this renormalization-group scale evolution will be

symmetrical under SU(4)L × SU(4)R.

A general four-flavor, four-quark “left-left” operator has the form:

T ab
cd

[
qaγ

µ(1− γ5)qc
] [

qbγµ(1− γ5)qd
]
, (19)

where a sum over the flavor indices a, b, c and d as well as the space-time index µ is

understood. Here the color indices are not shown but are to be contracted within each of

the square brackets, defining “color-diagonal” operators. A similar family of “color-mixed”

four-quark operators can be defined if each color index in one square bracket is contracted

with the appropriate index in the other. Such a left-left operator will be a singlet under

SU(4)R while its representation under SU(4)L is determined by the properties of the tensor

T ab
cd . For this left-left operator, Fierz symmetry implies that exchanging the indexes a and

b on the color-diagonal operator results in the corresponding color-mixed operator with the

original order of a and b.

It is consistent with SU(4)L symmetry to distinguish between tensors T ab
cd which are trace-

less, e.g. obeying
∑4

d=1 T
ad
cd = 0, from the trace term with T ad

cd = tacδ
b
d where δbd is the usual

Kronecker delta. This trace term transforms as the product of the 4 and 4 representations of

SU(4)L and will belong to the (1, 1) or (15, 1) representations of SU(4)L×SU(4)R. For such

trace terms this behavior under SU(4)L×SU(4)R is not changed if the appropriate (1−γ5)

factor in Eq. (19) is changed to (1+γ5). In this way one can identify the four distinct groups

of fifteen (15,1) operators to which the four gluonic penguin operators {Qi}3≤i≤6, belong:

color-diagonal and color-mixed, left-left and left-right.

Of equal interest are the traceless tensors which are can be classified according to their

symmetry under the exchange of indices of the same type: T ab
cd = ±T ba

cd . The symmetri-

cal case defines the (84,1) representation of SU(4)L × SU(4)R while the anti-symmetrical

case corresponds to the (20,1) representation. Because of the Fierz symmetry mentioned

above, the traceless parts of the combinations Qq′q
1 ± Qq′q

2 belong to the (84,1) and (20,1)

representations respectively. Note, if operators containing the charm quark are omitted,

the traceless part of the (84,1) operator Quu
1 + Quu

2 transforms in the (27,1) representa-
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tion of SU(3)L × SU(3)R. However, there is no traceless part of Quu
1 − Quu

2 so there is no

SU(3)L × SU(3)R analogue to the (20,1) SU(4)L × SU(4)R representation.

Thus the eight current-current operators can be divided into two sets of four operators,

Qq′,q
1 ± Qq′,q

2 for q′, q ∈ {u, c} with components which transform in the symmetrical (84, 1)

or anti-symmetrical (20, 1) representations of the flavor symmetry group SU(4)L × SU(4)R.

In contrast, the four QCD penguin operators belong to four distinct irreducible (15, 1) rep-

resentations of SU(4)L × SU(4)R. Thus, if we consider the set of twelve operators defined

in Eqs. (17) and (18) the eight current-current operators will enter with two distinct Wilson

coefficients which evolve independently, each with its own anomalous dimension. Because

each of these eight operators contains a piece belonging to the (84, 1) or (20, 1) representa-

tions, none of these eight operators will be generated when the scheme with which or the

scale at which the four QCD penguin operators are renormalized is changed.

In contrast, the four QCD penguin operators will both mix among themselves and are

generated when the renormalization scale of a current-current operator is changed. However,

it is only the (15, 1) components of the current-current operators that require the introduc-

tion of the QCD penguin operators when their renormalizaiton scale is changed. Since the

GIM mechanism implies that the (15, 1) components of the current-current operators are

proportional to λt, the structure of H
∆S=1
W shown in Eq. (16) can be easily understood. The

two ingredients which require the presence of the QCD penguin operators are both pro-

portional to λt. The first arises from a virtual top quark whose contribution is necessarily

proportional to λt. The second comes from the four current-current operators which do not

change charm and, using Eq. (4) can be written as

Ci (λuQ
uū
i + λcQ

cc̄
i ) = Ci(λu + λt) (Q

uū
i −Qcc̄

i )− CiλtQ
uū
i , (20)

for i = 1, 2. Since the differences Quū
i − Qcc̄

i belong to the (84, 1) + (20, 1) representation,

when renormalized they cannot generate QCD penguin operators and the evolution of the

Wilson coefficients will introduce the QCD penguin operators only from the final term on

the right-hand side of Eq. (20) which is proportional to λt.

The above discussion reviews the origin of the structure of Eqs. (6.5) and (6.21) in

Buchalla, et al. [10] and allows us to relate the 6 Wilson coefficients Ci, 1 ≤ i ≤ 6 to
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the zi and vj introduced in that paper:

Ci = zi, i ∈ {1, 2} (21)

Cj = vj , j ∈ {3, 4, 5, 6}.

2. Identifying the λuλt terms

In Eq. (15), after the replacement of λc by -(λu + λt), only terms proportional to a

factor λuλt contribute to the imaginary component of the matrix element M00. In this

section we identify the terms proportional to λuλt that contribute to the first term on the

right-hand side of Eq. (15), containing the bilocal product of two local H∆S=1
W operators.

The terms proportional to λuλt that contribute to the second term containing the local

H∆S=2
W operator are either straight-forward to identify from the conventional short-distance

perturbative calculation or are determined as counter terms required by the first, bilocal term

which we will now examine. These λuλt terms can appear in a number of ways depending

on which pair of operators is being considered. When both operators are current-current, as

shown in Eq. (23) below, a contribution occurs when both operators have the flavor content

q = q′ = c or when each operator contains both an up and a charm quark. A second

contribution arises when one operator is current-current and the other is a QCD penguin, as

shown in Eq. (24). For these second contributions, the current-current operator must have

the flavor structure q = q′ = u or q = q′ = c, structures which occur with opposite signs as

in the GIM mechanism.

Thus, collecting these terms proportional to λuλt, we obtain the explicit second-order

effective operator which can be used to evaluate the matrix element on the right-hand side

of Eq. (15):

H∆S=2
eff,ut =

G2
F

2
λuλt

∑

i=1,2

{
6∑

j=1

CiCj

∑

x,y

[[Q̃iQ̃j(x, y)]] + C7i

∑

x

OLL(x)

}
(22)

[[Q̃iQ̃j(x, y)]] =
1

2
T{Qcc̄

i (x)(Q
cc̄
j (y)−Quū

j (y)) + (Qcc̄
i (x)−Quū

i (x))Qcc̄
j (y)

−Quc̄
i (x)Qcū

j (y)−Qcū
i (x)Quc̄

j (y)}, (i, j = 1, 2) (23)

[[Q̃iQ̃j(x, y)]] =
1

2
T{[Qcc̄

i (x)−Quū
i (x)]Qj(y) (24)

+Qj(x) [Q
cc̄
i (y)−Quū

i (y)]}, (i = 1, 2; j = 3, ..., 6)

where the T in Eqs. (23) and (24) denotes time ordering.
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The notation introduced in the left-hand sides of Eqs. (23) and (24) is intended to serve

the following purposes. First the tilde which appears over the local operatorQk for 1 ≤ k ≤ 6

indicates that the corresponding factor appearing on the right hand sides of Eqs. (23) and

(24) may be linear combinations of products of the four operators Qcc
k , Q

uu
k , Qcu

k and Quc
k

when k = 1 or 2. The double square brackets indicate that these are specially defined bilocal

operators, specified in Eqs. 23 and 24 as linear combinations of multiple products of single

pairs of local operators. Finally, this notation will allow us to later indicate the renormal-

ization scheme that has been imposed by adding two superscripts. Thus, [[Q̃U
i Q̃

U
j (x, y)]]

V

denotes a bilocal operator constructed from individual four-quark operators renormalized in

the scheme U while the divergence which arises when the two local operators approach each

other is renormalized in scheme V . Here U and V could take the values Lat, RI and MS.

Referring to the discussion of Wilson coefficients and renormalization of local operators

in Section IIC 1, it is important to recognize the limitations on the meaning of the indices i

and j in Eqs. (23) and (24) which no longer identify single factors in a product of two local

operators. Because of Eq. (21), physical, scheme-independent operators can be constructed

from the products CU
i C

U
j [[Q̃

U
i Q̃

U
j (x, y)]] if i is summed over 1 and 2 and j summed over 1

through 6, provided the singularity when x → y is temporarily ignored. However, because

the indices 1 and 2 represent a sum of operators that transform differently under a change

of renormalization scheme, we cannot multiply [[Q̃U
i Q̃

U
j (x, y)]] from the left by a 6 × 6

renormalization matrix ZU→V
ki or ZU→V

kj to change the left or right “operator” Q̃U
i or Q̃U

j

from the scheme U to the scheme V .

As discussed above, the bilocal operator product [[Q̃iQ̃j(x, y)]] is singular as x approaches

y and leads to a divergent position-space integral in Eq. (22) as the continuum limit is taken.

Because of the GIM mechanism and the short-distance chiral symmetry of the domain wall

fermion formalism the singularity of the integral is only logarithmic and can be removed

by adding an appropriate coefficient to the local ∆S = 2 operator OLL. Thus, the Wilson

coefficients C7i multiplying OLL in Eq. (22) will be different from those in Ref. [10] since these

coefficients must now include counter terms to remove these lattice-regulated singularities.
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3. Treatment of bilocal operators in lattice QCD

To describe a second-order process using a Euclidean path integral, we introduce the

product of two first-order effective Hamiltonians H∆S=1
W , integrate their product over a time

interval [ta, tb] and define the “double-integrated” correlator [2]:

A =
1

2

tb∑

t2=ta

tb∑

t1=ta

〈T
{
K

0
(tf )HW (t2)HW (t1)K

0
(ti)
}
〉 . (25)

After inserting a sum over intermediate states and performing the summation of t1 and t2,

treated here for simplicity as integrations, we find

A = N2
Ke

−MK(tf−ti)

{
∑

n

〈K0|HW |n〉〈n|HW |K0〉
MK − En

(
−T +

e(MK−En)T − 1

MK − En

)}
, (26)

where T = tb − ta + 1 is the length of the integration region. The term proportional to T is

the contribution of the bilocal term in Eq. (15) to M00

MBL
00 =

∑

n

〈K0|HW |n〉〈n|HW |K0〉
MK − En

. (27)

To determine MBL
00

from the integrated correlator, the same methods introduced in

Refs. [2] and [3] for the calculation of ∆MK can be used. The intermediate states |n〉
whose energy En is less than the kaon mass are identified. These states result in expo-

nential increasing terms proportional to e(MK−En)T in the integrated correlator and these

exponentially increasing contributions must be explicitly removed. For intermediate states

that have an energy higher than the kaon mass, the choice of integration region T must be

large enough so that their contribution is exponentially suppressed.

In the exploratory numerical study presented in Sec. IV, MK < 2Mπ, so that the only

intermediate states that we need to consider are the single-pion state and the vacuum state.

In a future calculation with a physical pion mass, two- and three-pion states will need to

be dealt with as well. The three-pion state will be kinematically suppressed and should

not contribute a significant exponential contamination. The matrix elements for the two-

pion state will need to be calculated and subtracted as is done for the physical-mass ∆MK

calculation [4].

Although the “double-integration” method described above (see Eq. (25)) is used in this

paper, there is a more refined approach, developed after the current calculation was complete,
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referred to as the “single-integration” method [4, 17] which has been observed to reduce the

statistical error by approximately a factor of two. In this single-integration approach one

operator is held at a fixed time t1 while the second operator at the time t2 is integrated over

the range |t2 − t1| < tmax. Examining the behavior of the integrand as a function of |t2 − t1|
one can identify a value of tmax which will capture the region within which the integrand is

non-negligible. By limiting the integration to this region the statistical noise may be reduced

because we have omitting larger values of |t2 − t1| which contribute only noise to the result.

A final average over an appropriate range for t1 then gives a more accurate result than that

obtained from the double integration approach used here.

A final topic that must be addressed in a lattice calculation of either ǫK or ∆MK is the

effect of finite volume. The infinite-volume expression for M00 on the right-hand side of

Eq. (3) contains a continuous integral over the intermediate-state energy with a principal

part prescription used to resolve a pole singularity. In contrast, the finite-volume expression

on the right-hand side of (27) involves a sum over discrete finite-volume energy eigenstates

with energy denominators which depend on the difference of a finite-volume eigenvalue

and the mass of the kaon. For the case of two-particle intermediate states the potentially

large difference between such a discrete finite-volume sum and the infinite-volume principal

part integral is known and can be written in terms of on-shell matrix elements so that the

necessary finite-volume correction [18] can be made.

III. SHORT-DISTANCE DIVERGENCE

As discussed above, the important role of the top quark in indirect CP violation implies

that the long-distance contributions to ǫK are less protected by the GIM mechanism than is

the case for the CP conserving mass difference ∆MK . Specifically, in Section IIC 2 we point

out that the terms of interest, proportional to λuλt, will contain logarithmic divergences

when computed to second order in the four-quark ∆S = 1 operators that must be used in

a lattice QCD calculation. In this section we present a method to control such divergent

terms using a combination of non-perturbative techniques to remove these divergent terms

from the lattice amplitudes and QCD plus electroweak perturbation theory, applied at short

distances, to determine the low energy constants with which these divergent terms should

be replaced.
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FIG. 2. An example of a diagram which appears in the ∆MK calculation (left) and a similar

diagram entering the calculation of ǫK (right).

As an example, in Fig. 2 we compare two typical diagrams which appear in the calculation

of ∆MK (left) and ǫK (right), identified as diagrams of type 1 in the discussion below. To

study the ultraviolet behavior, we can ignore the momentum in the four external quark

lines and consider the case of free field propagators. The Feynman amplitude corresponding

to the ǫK example diagram is given in Eq. (28) while the amplitude for ∆MK is given in

Eq. (29).

∫
d4pγµ(1− γ5)(

/p−mc

p2 +m2
c

− /p−mu

p2 +m2
u

)γν(1− γ5)(
/p−mc

p2 +m2
c

) (28)

=

∫
d4pγµ(1− γ5)

/p(m2
u −m2

c)

(p2 +m2
u)(p

2 +m2
c)
γν(1− γ5)(

/p

p2 +m2
c

)

∫
d4pγµ(1− γ5)(

/p−mc

p2 +m2
c

− /p−mu

p2 +m2
u

)γν(1− γ5)(
/p−mc

p2 +m2
c

− /p−mu

p2 +m2
u

) (29)

=

∫
d4pγµ(1− γ5)

/p(m2
u −m2

c)

(p2 +m2
u)(p

2 +m2
c)
γν(1− γ5)(

/p(m2
u −m2

c)

(p2 +m2
u)(p

2 +m2
c)
),

where we have neglected the external momenta and kept only the leading terms for large

loop momentum p. By counting the powers of momenta in Eq. (28), we can recognize a

logarithmic ultraviolet divergence. However, the expression in the lower equation for ∆MK

is ultraviolet finite because we have subtracted the charm and up quark propagators in both

quark lines.

A. Renormalization overview

In the lattice QCD calculation the ultraviolet divergence discussed in the previous para-

graphs is regulated at the scale of the inverse lattice spacing (1/a) and we must identify and

renormalize this unphysical, divergent piece to obtain physical results. We use a general-

ization to bilocal operators [12, 19] of the Rome-Southampton, regularization-independent
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(RI/SMOM) method [20–22] to perform this short-distance correction. At energy scales

below the lattice cutoff, the cutoff-dependent part of the bilocal operator can be represented

by the single local operator OLL multiplied by a coefficient that depends logarithmically on

the lattice spacing. Thus, we will add to each bilocal operator a cutoff-dependent counter

term proportional to the OLL operator so that each combined operator obeys an RI/SMOM

normalization condition. With the addition of these counter terms our lattice-determined

bilocal operators become well-defined, with both the operator mixing among the ∆S = 1

operators entering each factor and the treatment of the singularity when the two factors

collide well-defined.

We will now determine that combination of these well-defined local and bilocal lattice

operators, expressed in the RI/SMOM scheme, which corresponds to the physical second-

order, ∆S = 2 effective weak Hamiltonian proportional to the λuλt product determined

by the standard model. This operator whose determination is reviewed in Ref. [10] is con-

ventionally expressed in MS conventions. More specifically, it is expressed as a sum over

bilocal operators whose factors are defined in the MS scheme and the singularity when the

positions of these two factor coincide is also defined using MS regularization. Of course, in

addition to these bilocal operators there is the usual local OLL operator representing the

short-distance standard-model contribution to K0 − K
0
mixing. The result is a complete,

∆S = 2 effective Hamiltonian density defined perturbatively in the MS scheme, using the

notation introduced in Eqs. (23) and (24):

H∆S=2
W,ut =

G2
F

2
λuλt

∑

i=1,2

{
∑

j=1,6

∫
d4xCMS

i CMS
j [[Q̃MS

i (x)Q̃MS
j (0)]]MS + CMS

7i OMS
LL (0)

}
. (30)

Here the MS superscript on the double square bracket surrounding the product of operators

Q̃MS
i (x)Q̃MS

j (0) indicates that the singularity encountered in the integral at x = 0 is resolved

using MS conventions. The twelve operator products surrounded by square brackets are

defined in Eqs. (23) and (24).

The effective Hamiltonian density given in Eq. (30) should be viewed as a complete de-

scription of the physics of the standard model when studied at energies below the bottom

quark mass where this four-flavor version is appropriate. Of course, the reference to per-

turbation theory and specifically MS regularization prevents its direct use in a lattice QCD

calculation. However, with a change of normalization prescription from MS to the non-

perturbatively-defined RI/SMOM scheme we can express the effective Hamiltonian defined
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in Eq. (30) in terms of quantities that can be directly evaluated in lattice QCD.

The first step is to replace the MS renormalization of the singularity as x → 0 with

that of the following generalized RI/SMOM scheme. Given the GIM cancellation present

in the quantities under discussion the singular terms present in the operator products that

appear in Eq. (30) correspond to singular constants multiplying the operator OLL. The

MS scheme provides a particular choice for those constants. In the RI/SMOM scheme,

generalized to this case of bilocal operators, we instead require a choice of the constants

multiplying OLL which makes the sum of the bilocal operators and the OLL counter terms

vanish when evaluated in a Landau-gauge-fixed Green’s function with four external quark

lines with specific off-shell kinematics specified by the RI/SMOM renormalization scale µRI.

(The RI/SMOM scheme applied to bilocal operators is described in greater detail below.)

This can be done for each operator pair in Eq. (30), directly relating the MS and RI/SMOM

schemes:
∫

d4x[[Q̃MS
i (x)Q̃MS

j (0)]]MS =

∫
d4x[[Q̃MS

i (x)Q̃MS
j (0)]]RI + Y MS

ij (µMS, µRI)O
MS
LL. (31)

Here the coefficient Y MS
ij (µMS, µRI) is determined by applying the RI/SMOM condition to

Eq. (31) since the RI-normalized operator [[Q̃MS
i (x)Q̃MS

j (0)]]RI will vanish at those RI/SMOM

kinematics. This determines Y MS
ij (µMS, µRI) as the appropriate spin-projected MS Green’s

function containing the bilocal operator and evaluated at the RI/SMOM-defining kinematics

for the momenta carried by the four external quark lines. As indicated, Y MS
ij will depend

on both the MS scale µMS and the RI/SMOM scale µRI. This step can also be found in the

method we used in the rare kaon calculations [11].

The next step is to substitute Eq. (31) into Eq. (30) and then to replace the sums of MS-

renormalized operators with their Wilson coefficients in the RI/SMOM-normalized operator

products with equivalent lattice operators multiplied by their lattice Wilson coefficients in

the identical RI/SMOM-normalized operator products to obtain:

H∆S=2
W,ut =

G2
F

2
λuλt

2∑

i=1

{
6∑

j=1

∑

x

CLat
i CLat

j [[Q̃Lat
i (x)Q̃Lat

j (0)]]RI (32)

+

(
CMS

7i +

6∑

j=1

CMS
i CMS

j Y MS
ij (µMS, µRI)

)
ZLat→MS

LL OLat
LL (0)

}
.

Here we are using the usual conversion from MS to RI/SMOM conventions followed by

conversion from RI/SMOM to lattice conventions for the individual four-quark operators as
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is described in greater detail in Appendix A. Since all of the operators appearing in Eq. (32)

can be defined on a space-time lattice, we have replaced the integrals over the position x

with the sum over lattice sites x.

Next we express the RI/SMOM-renormalized product of lattice operators which appears

in Eq. (32) by the lattice-regulated product using the relation:

∑

x

[[Q̃Lat
i (x)Q̃Lat

j (0)]]RI =
∑

x

[[Q̃Lat
i (x)Q̃Lat

j (0)]]Lat −XLat
ij (1/a, µRI)O

Lat
LL.. (33)

Similar to Eq. (31), the coefficients XLat
ij are chosen so that the appropriate Green’s function

containing the bilocal operator [[Q̃Lat
i (x)Q̃Lat

j (0)]]RI vanishes when evaluated at external

momenta obeying the RI/SMOM kinematics at the scale µRI. Now the coefficients XLat
ij

depends on both the lattice scale 1/a and the RI/SMOM scale µRI. Equation (33) can

be substituted into Eq. (32) to express H∆S=2
W,ut entirely in terms of operators whose matrix

elements can be computed using lattice QCD:

H∆S=2
W,ut =

G2
F

2
λuλt

2∑

i=1

{
6∑

j=1

CLat
i CLat

j

(
∑

x

[[Q̃Lat
i (x)Q̃Lat

j (0)]]Lat −XLat
ij (µRI)O

Lat
LL (0)

)

+

(
CMS

7i +
6∑

j=1

CMS
i CMS

j Y MS
ij (µMS, µRI)

)
ZLat→MS

LL OLat
LL (0)

}
. (34)

Essential to this approach of exploiting lattice QCD is the fact that the scale µRI at

which this perturbative matching between the operators in Eq. (30) and the operators used

on the lattice can be chosen to be large, typically above the charm quark mass giving

control over the perturbation theory errors. Thus, we can exploit the detailed standard

model information encoded in the perturbative result given in Eq. (30) while working at an

energy scale that can be made sufficiently large that perturbation theory is accurate. We

will now describe the details of this procedure.

The RI/SMOM renormalization of the bilocal operators appearing in Eq. (30) proceeds

in two steps: i) the perturbative calculation of the coefficients Y MS
ij to convert from the MS

to RI/SMOM renormalization of the singularity that occurs when the operators in a bilocal

pair coincide and ii) the non-perturbative determination of the coefficients XLat
ij . We first

discuss the perturbative determination of coefficients Y MS
ij .

26



B. Perturbative determination of Y MS
ij

The low-energy constants Y MS
ij are defined in Eq. (31) and that equation can be used

to calculate them in perturbation theory. We must simply insert the integrated MS bilocal

operator [[Q̃MS
i (x)Q̃MS

j (0)]]MS into the appropriate five-point Green’s function and evaluate

the result with the external momenta used to define the RI/SMOM normalization condition.

Thus, in this calculation of Y MS
ij (µMS, µRI), the external momenta are set to the energy

scale p2 = µ2
RI and we perform the integration over the internal quark lines in the left-hand

panel of Fig. 3 . This bilocal operator Green’s function is then equated to the Green’s

function containing the local operator OLL multiplied by the coefficient Y MS
ij . Fortunately,

in the conventional perturbative calculation of ǫK [10] something very similar is evaluated at

NNLO [1, 14]. In fact, exactly this calculation is performed except the external momenta are

all set to the value zero. We can therefore define a quantity ∆Y MS
ij , which is the difference

between Y MS
ij (µMS, µRI) evaluated for off-shell momenta at the scale µRI, minus Y MS

ij (µMS, 0)

evaluated at zero external momentum. The quantity ∆Y MS
ij (µMS, µRI) = Y MS

ij (µMS, µRI) −
Y MS
ij (µMS, 0) is therefore a quantity that is both ultra-violet and infra-red finite at order α0

s

in four dimensions and is independent of the MS scale µMS, making it an straight-forward

quantity to compute. The calculation of ∆Y MS
ij is illustrated in Fig. 3. (The fact that this

calculation of Y MS
ij (µMS, µRI) is carried out only to order α0

s, reduces the accuracy of the

final numerical results presented in this paper from a NLO calculation containing all terms

of order αn
s (αs ln(MW/mc))

l for n = −1 (LO) and n = 0 (NLO) to one that is incomplete

at NLO.)

c− u

c

p2 = µ2
RI

−

c− u

c

p = 0

FIG. 3. Illustration of the calculation of ∆Y .
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With this perturbation theory step Eq. (34) can be written

H∆S=2
W,ut =

G2
F

2
λuλt

2∑

i=1

{
6∑

j=1

CLat
i CLat

j

(
∑

x

[[Q̃Lat
i (x)Q̃Lat

j (0)]]Lat −XLat
ij (µRI)O

Lat
LL (0)

)

+

(
6∑

j=1

CMS
i CMS

j

[
Y MS
ij (µMS, µRI)− Y MS

ij (µMS, 0)
])

ZLat→MS
LL OLat

LL (0)

+

(
CMS

7i +

6∑

j=1

CMS
i CMS

j Y MS
ij (µMS, 0)

)
ZLat→MS

LL OLat
LL (0)

}
. (35)

The first line of Eq. (35) involves the ∆S = 1 lattice operators and the coefficient XLat
i,j

determined from non-perturbative renormalization (NPR), described in greater detail below.

We refer to this term as the “long-distance” (LD) part and use Mut,LD

00
(µRI) to denote its

contribution to the kaon mixing matrix element. The second line involves the coefficient

∆Y MS
i,j (µRI) calculated from perturbation theory. This term is described as the “perturbative

MS to RI/SMOM correction” and we use Mut,MS→RI

00
(µRI) to denote its contribution to the

kaon mixing matrix element. The last term is the conventional standard model result for ǫK .

We will describe the combination of the second and third terms as the “short-distance” (SD)

part of the standard model calculation of ǫK and useMut,SD

00
(µRI) to denote its contribution to

the kaon mixing matrix element. Thus, the scale µRI separates the long- and short-distance

parts. We anticipate that in the future Y MS
ij will be computed directly in perturbation theory

to NL or higher order, avoiding our use of the conventional standard model result for ǫK

and the quantity Mut,MS→RI

00
(µRI), whose current value is accurate only to order α0

s. making

our full calculation incomplete at NLO.

C. Non-perturbative determination of XLat
ij

Finally we describe in greater detail the non-perturbative calculation of the twelve co-

efficients XLat
ij (µRI). These coefficients are determined by solving the twelve independent

equations:

(
ΓBL,amp
αβγδ,ij (p1, p2, p3, p4)−XLat

ij (µRI)Γ
L,amp
αβγδ (p1, p2, p3, p4)

)
Pαβγδ = 0. (36)
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Here ΓBL,amp
αβγδ,ij (p1, p2, p3, p4) is the five-operator Green’s function:

ΓBL,amp
αβγδ,ij (p1, p2, p3, p4) = (37)

〈0|T
{
(
sα(p1)dβ(p2)

)
[
∑

x1x2

[[Q̃Lat
i (x1)Q̃

Lat
j (x2)]]

Lat

]
(
sγ(p3)dδ(p4)

)
}
|0〉amp,

with its four external legs amputated. The color indices of each spinor pair enclosed in

curved brackets, (. . .) are contracted; αβγδ are spinor indices. The choice of the external

momenta is discussed in Section IVB.

The second Green’s function in Eq. (36) is similar but with the local operator OLat
LL (x)

replacing the bilocal operator [[Q̃Lat
i (x1)Q̃

Lat
j (x2)]]

Lat:

ΓL,amp
αβγδ (p1, p2, p3, p4) = 〈0|T

{
(
sα(p1)dβ(p2)

)∑

x

OLat
LL (x)

(
sγ(p3)dδ(p4)

)
}
|0〉amp, (38)

using a notation similar to that in Eq. (37). The spinor projector Pαβγδ appearing in Eq. (36)

is defined by:

Pαβγδ =
∑

µ

[(1− γ5)γµ]αβ [(1− γ5)γµ]γδ . (39)

With the choice of non-exceptional momenta entering the amplitude ΓBL,amp
αβγδ,ij (p1, p2) this

quantity is infrared safe and the corresponding perturbative calculation of Y (µMS, µRI)ij

performed in Section IIIB is given by an expansion in αs(µRI) which should make the

perturbation theory increasingly accurate as the scale µRI is increased. In the exploratory

calculation reported here we choose µRI = 2.11 GeV for the renormalization of the bilocal

operators and µRI = 2.15 GeV for the renormalization of the individual four-quark operators,

each of which may be sufficiently large to allow the use of NLO QCD perturbation theory.

Phrased differently, when the energy scale µRI of the external momentum that enters the

renormalization condition is sufficiently high, the integrated correlator will be dominated by

short-distance contributions. We will test this statement in Section IV.

IV. LATTICE IMPLEMENTATION

This calculation is carried out using 200 gauge configurations from a 2 + 1 flavor ensem-

ble generated by the RBC and UKQCD collaborations [23] using the domain wall fermion

(DWF) and Iwasaki gauge actions. These configurations have a 243×64 lattice volume with
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an inverse lattice spacing 1/a = 1.78 GeV. Throughout we use the Shamir variant of the

DWF formulation with an extent in the fifth dimension of Ls = 16. The pion and kaon

masses are 339 MeV and 592 MeV. We use a valence charm quark with mass renormalized

in the MS scheme at the scale of 2 GeV with the value mc(2 GeV) = 968 MeV. These

unphysical values for the quark masses are chosen to reduce the computational cost of this

first, exploratory calculation. Having demonstrated that this calculation is practical, we

anticipate future calculations with physical masses and several smaller values of the lattice

spacing to allow a continuum extrapolation and quantifiable systematic errors.

A. Correlation Function Construction

To calculate the long-distance contribution to M00, we evaluate four-point functions with

the bilocal operators of Eq. (22) appearing between two K0 interpolating operators as in

Eq. (25). There are five types of four-point diagrams to calculate on the lattice. Each type of

diagram, except type 5, can have either a pair of current-current operators or a combination

of a current-current operator and a QCD penguin operator. The flavors of the internal quark

lines will depend on the type of diagram and the specific weak operators which appear.

u− c

c

d

s d

s

uu− cc

d

s d

s

uu cc

type 1, C − C type 1, C − P

d

s
d

s

u− c

c

d

s
d

s

uu− cc

type 2, C − C type 2, C − P

FIG. 4. Type 1 and type 2 four-point diagrams. In the captions of the subfigures C indicates a

current-current operator and P labels a QCD penguin operator.

The type 1 and 2 diagrams are shown in Fig. 4. If both operators are current-current op-

erators then the structure of Eq. (22) requires that there is a single charm quark propagator
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in one internal quark line and a charm minus up propagator difference in the other. If one

of the operators is a current-current operator and the other is a QCD penguin operator, we

will have the difference of two diagrams where in one diagram the two internal quark lines

are both charm quarks while in the other diagram both internal quark lines are up quarks.

These are the only types of diagram without disconnected quark loops, so they will be more

statistically precise than the rest.

d s

s d

u− c c

sd

s
d

u− c
u, c, s, d

V ± A

type 3, C − C type 3, C − P

d

s d

su− c c
d

s d

s

u− c

u, c, s, d

V ± A

type 4, C − C type 4, C − P

FIG. 5. Type 3 and type 4 four-point diagrams. In the captions of the subfigures C indicates a

current-current operator and P labels a QCD penguin operator.

The type 3 and 4 diagrams are shown in Fig. 5. If both operators are current-current

operators, we have a single charm quark self-loop connected to one vertex and the difference

of a charm quark and an up quark propagator connected to the other. If one of the vertices is

a QCD penguin operator, we have the difference of charm and up quark self-loops connected

to one vertex and a sum over all four flavors connected to the other self-loop.

The type 5 diagrams are shown in Fig. 6. The type 5 diagrams are absent in the ∆MK

calculation because one of the vertices of a type 5 diagram must be a QCD penguin operator.

We have two varieties of type 5 diagram. One variety contains an (sd)V−A(dd)V±A QCD

penguin operator while the other contains the combination (sd)V−A(ss)V±A. In each case

any one of the four QCD penguin operators {Qi}3≤i≤6 can appear.

For all five types of diagrams, a wall source propagator is used for each kaon. The two

kaon wall sources are separated by a fixed distance of 28 lattice units and each of the two

weak vertices is required to have a minimum time separation of six lattice units from each
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s

s d

u− cV ±A

d

s

s

d

d

d s

u− cV ±A

FIG. 6. Type 5 four-point diagrams. These have a current-current operator at one vertex

while the other vertex must come from a QCD penguin operator of the form (sd)V −A(dd)V ±A

or (sd)V −A(ss)V±A.

wall to reduce excited-state contamination. Therefore, the times at which the two vertices

are inserted are integrated over a range of 16 lattice units.

In the calculation of type 1 and type 2 diagrams, we used a point source propagator

located at one of the weak vertices while at the other weak vertex we combined the sinks

of four propagators and summed the location of this second vertex over the relevant space-

time volume. The point sources are chosen to have the space-time coordinates (4t, 4t, 4t, t),

and periodic boundary conditions are used when an (x, y, z) coordinate crosses a lattice

boundary. Thus, we place the point source on the time slice t at the spatial point (4t mod

L, 4t mod L, 4t mod L). In the calculation of the type 3 and type 4 diagrams, all-to-all

propagators are used for the self-loop.

To construct the self-loop, Nev = 450 eigenvectors generated using the Lanczos algorithm

are used and the propagator is calculated as

D−1(x; x) =
Nev∑

i=1

hi(x)h
†
i (x)

λi

+

Nhit∑

j=1

(D−1
deflηj)xη

†
j(x) (40)

D−1
defl = D−1 −

Nev∑

i=1

hi(x)h
†
i (x)

λi
, (41)

where hi is the ith eigenvector and λi the corresponding eigenvalue. The ηj are random

vectors which which are functions of both space and time and satisfy 〈ηi(x)η†j(y)〉 = δijδxy.

This procedure will have the advantage that the low-mode part of these self-loop propagators

is more accurate than the simpler random source propagators that were used in Ref. [3]. For

each gauge configuration we have averaged over Nhit such random volume source vectors

with Nhit = 80. For the self-loops in the type 5 diagrams, we used the same point source

propagators that were used for the type 1 and 2 diagrams. The other vertex is treated as a

sink for the four propagators and summed over the space-time integration region.
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B. Details of Bilocal Operator Renormalization

Figure 7 shows three examples of the diagrams used to determine the RI/SMOM counter

term XLat
ij . The diagram on the left represents the calculation of ΓL,amp

αβγδ , defined in Eq. (38),

determining the off-shell normalization of the local operator OLL. The diagrams in the

center and on the right in the figure represent the calculation of ΓBL,amp
αβγδ,ij defined in Eq. (37),

from a Green’s function containing two ∆S = 1 operators. The diagrams shown correspond

to the operator combination Q1Q1 if both the vertices are V − A and the internal quark

lines are c× (c− u). The diagrams will correspond to Q1Q3 if both vertices are V −A, but

the internal quark lines are c × c − u × u. The diagram will correspond to Q1Q5 if it has

one V −A vertex and one V +A vertex and the internal quark lines c× c− u× u. We can

also obtain the diagrams with the operators Q2, Q4 and Q6 by making one or both of the

vertices color mixed.

d s

s d

α, a

β, b γ, c

δ, d

Γµ Γµ

p1
p3

p2 p4

β, b

x y

p1

p2

p3

p4

d

s d

s

α, a

β, b γ, c

δ, d

V ± A

α, a
s

p2
p4

δ, d
d

γ, c

p3

s

β, b

d

p1

V ± A

x

y

β, b

FIG. 7. Some example diagrams that determine the RI/SMOM counter terms XLat
ij . The diagram

on the left determines the RI-SMOM normalization of the operator OLL while the diagrams in the

center and on the right have two ∆S = 1 operators. The symbol Γµ stands for γµ(1 − γ5) and

V ± A stands for γµ(1 ± γ5). The right hand vertex in the central diagram could come from the

operators Q3 and Q5. The Greek and Roman indices on the external quark lines represent spin

and color respectively.

Here we choose momentum-conserving kinematics:

p1 + p4 = p2 + p3, (42)

and all the momenta have the same energy scale µRI. Our choice of the momentum has the
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form:

p1 =
2π

L
(M,M, 0, 0) (43)

p2 =
2π

L
(M, 0,M, 0)

p3 =
2π

L
(0,M, 0,M)

p4 =
2π

L
(0, 0,M,M).

This choice of non-exceptional momenta (in which no partial sum of incoming momentum

vanishes) leads to better controlled IR behavior. Exceptional momenta would allow the

internal propagators to carry small momenta resulting in increased sensitivity to infrared

effects. When M is not an integer, twisted boundary conditions are used to obtain a quark

propagator carrying a momentum not allowed by periodic boundary conditions. To study

the scale dependence, calculations will be performed with scales µRI = 2π
√
2M/L between

1.41 and 2.56 GeV.

The short-distance correction is performed only for type 1 & 2 diagrams. We have done a

similar study for the other three types of diagrams with four external quark lines but made

no short-distance correction because the amplitude ΓBL,amp
αβγδ,ij obtained for the type 3, 4 and

5 diagrams is much smaller than that for the type 1 & 2 diagrams and is consistent with 0

within statistical errors.

C. Standard Model Inputs

Before presenting the numerical results from our lattice calculation, we give a brief in-

troduction to how we define the operators on the lattice and their corresponding Wilson

coefficients. We can find the MS values of the Wilson coefficients by using Eq. (12.43) -

Eq. (12.61) in Ref. [10]. The strong coupling αs is evaluated using Eq. (3.19) in Ref. [10].

To obtain ΛQCD, we use αs(MZ) = 0.1184 to find Λ5
QCD in the five-flavor theory and then

by requiring αs(Mb) to be the same in the five- and four-flavor theories we can find Λ4
QCD

in the four-flavor theory. The standard model input parameters are summarized in Table I

while the values we use for Λ4
QCD and αs are summarized in Table II. We renormalize the

MS operators at µMS = 2.15 GeV and the six Wilson coefficients are listed in Eq. (44):

CMS(2.15 GeV) = (−0.2967, 1.1385, 0.0217,−0.0518, 0.0102,−0.0671). (44)
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mt MW MZ αs(MZ) mb

172.2 GeV 80.379 GeV 91.1876 GeV 0.1184 4.19 GeV

TABLE I. Standard model input parameters [24] used for the evaluation of the six ∆S = 1 Wilson

coefficients.

αs(mb) αs(µMS) Λ5
QCD Λ4

QCD

0.2265 0.2974 231 MeV 330 MeV

TABLE II. The values for αs at different energy scales and ΛQCD for different numbers of active

quark flavors.

The generic products of current-current operators [[Q̃iQ̃j ]] for i and j equal one or two

appearing in Eqs. (22) have multiple flavor structures. However, the operators with different

flavor structures but the same values for i and j have the same Wilson coefficients and hence

common values for the product CiCj . We use the NPR procedure described in Appendix A

to obtain the six Wilson coefficients CLat
i that obey

6∑

i=1

CMS
i QMS

i =
6∑

i=1

CLat
i QLat

i . (45)

This allows us express the ∆S = 1 effective weak Hamiltonian H∆S=1
W directly in terms of

lattice operators. As described in Appendix A this is done by introducing an intermediate

non-perturbative RI/SMOM scheme at the energy scale µRI = 2.15 GeV and applying

the QCD perturbation theory results of Ref. [25] to express H∆S=1
W in terms of operators

renormalized in the RI-SMOM scheme:

6∑

i=1

CMS
i QMS

i =
6∑

i=1

CRI
i QRI

i . (46)

Specifically we use the (γµ, /q) RI-SMOM scheme as described in Section V.A. of Ref. [26].

Finally a non-perturbative lattice QCD calculation is used to express the RI-SMOM-

normalized H∆S=1
W in term of lattice operators and Wilson coefficients which will therefore

obey Eq. (45). The resulting six lattice Wilson coefficients CLat
i are given in Eq. (47), where

the numbers in the parenthesis are the statistical errors:

CLat = (−0.2290(1), 0.6654(2), 0.0138(8),−0.0275(11), 0.0106(9),−0.0312(9)) . (47)
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D. Evaluation of XLat
ij

To remove the unphysical lattice-regulated, short-distance divergence present in our eval-

uation of the product of two ∆S = 1 weak operators, we must calculate the short-distance

artifact represented by quantity XLat
ij (µRI) defined in Eq. (36). By evaluating XLat

ij (µRI)

using large non-exceptional external momenta, we force all of the internal momenta in the

five-point function that defines XLat
ij (µRI) to be large. This in turn requires that the sep-

aration between the positions of the two operators x1 and x2 must be small, on the order

of 1/µRI. This can be easily demonstrated in our calculation of XLat
ij (µRI) if we introduce a

upper limit R into the summation over x1 and x2 in Eq. (37) and sum only the points x1

and x2 that satisfy (x1 − x2)
2 ≤ R2. The amputated Green’s function will now depend on

the space-time cutoff R:

ΓBL
αβγδ,ij(p1, p2, p3, p4, R) = 〈sα(p1)dβ(p2)




∑

x1x2
(x1−x2)

2≤R2

Qi(x1)Qj(x2)


 sγ(p3)dδ(p4)〉. (48)

Note, the sum over x1 in the definition of the quantities ΓBL
αβγδ,ij and ΓSD

αβγδ introduces a simple

factor of the space-time volume because the total incoming momenta is zero: p1+p4− (p2+

p3) = 0, see (42). This sum over x1 is included never-the-less, to better represent the actual

calculation in which the external lines correspond to volume-source quark propagators with

the specified momenta and the space-time sums over both x1 and x2 in the case of ΓBL
αβγδ,ij

are performed in order to exploit the added precision that comes from volume-averaging.

We then use Eq. (36) to find theXLat
ij for different values of the upper limit R and different

operator combinations. The results are shown in Table III for an external momentum scale

µRI = 1.41 GeV. We have dropped the statistical errors because they are very small in this

calculation. We can see that for R ≥ 4, the results are close to those without the cutoff,

indicating a very small contribution from larger distances. This conclusion will become

stronger at larger momenta.

By summing over these coefficients multiplied by the lattice Wilson coefficients we can

determine X(µRI) =
∑

i,j C
Lat
i CLat

j XLat
ij (µRI) for each choice of momentum scale µRI. To

obtain results with a non-integer momentum, we have used twisted boundary conditions. We

show the quantity X(µRI) in Table IV. Because this quantity is logarithmically divergent, we

expect it to behave as ln(µRIa) when µRI and 1/a are both larger than the charm quark mass.
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R 3 4 5 6 7 none

XLat
1,1 -0.0491 -0.0530 -0.0534 -0.0533 -0.0533 -0.0533

XLat
1,2 -0.0240 -0.0254 -0.0255 -0.0254 -0.0254 -0.0254

XLat
2,2 -0.0140 -0.0148 -0.0148 -0.0148 -0.0148 -0.0148

XLat
1,3 -0.1098 -0.1222 -0.1237 -0.1233 -0.1229 -0.1226

XLat
1,4 -0.0258 -0.0275 -0.0275 -0.0274 -0.0273 -0.0272

XLat
1,5 0.1340 0.1370 0.1371 0.1372 0.1374 0.1375

XLat
1,6 0.0547 0.0561 0.0561 0.0562 0.0564 0.0567

XLat
2,3 -0.0258 -0.0275 -0.0275 -0.0273 -0.0273 -0.0273

XLat
2,4 -0.0302 -0.0324 -0.0325 -0.0323 -0.0322 -0.0322

XLat
2,5 0.0357 0.0364 0.0364 0.0364 0.0364 0.0363

XLat
2,6 0.0444 0.0451 0.0451 0.0451 0.0451 0.0448

TABLE III. The short-distance subtraction constant XLat
ij (µRI) for various values of the space-time

cutoff R and operator combinations [[Q̃iQ̃j]]. The external momenta have the scale µRI = 1.41 GeV.

We see the expected independence of R as it is increased above 4 lattice units.

The dependence of X on µRI is shown in Fig. 8 together with an uncorrelated logarithmic

fit.

µRI (GeV) 1.47 1.54 1.60 1.67 1.73 1.79 1.86 1.92 1.99

X(×10−3) -5.5788 -5.3028 -5.0661 -4.8582 -4.6607 -4.4588 -4.2453 -4.0362 -3.8439

µRI (GeV) 2.05 2.11 2.18 2.24 2.31 2.37 2.43 2.50 2.56

X(×10−3) -3.6596 -3.4741 -3.2959 -3.1340 -2.9859 -2.8489 -2.7225 -2.6045 -2.4904

TABLE IV. Values of X(µRI) =
∑

i,j C
Lat
i CLat

j XLat
ij (µRI) for different values of the momentum

scale µRI. We do not show the statistical errors because they are less than 1%.

E. Evaluation of Y MS
ij

As explained in Section IIIB, instead of evaluating Y MS
ij (µMS, µRI), we evaluate the more

accessible quantity ∆Y MS
ij (µMS, µRI) = Y MS

ij (µMS, µRI) − Y MS
ij (µMS, 0) which is evaluated at
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FIG. 8. A plot of the quantity X(µRI) as a function of momentum scale µRI obtained from 3 gauge

configurations. Also shown is the result of an uncorrelated logarithmic fit. The abscissa is plotted

in units of GeV.

one-loop to zeroth order in QCD perturbation theory and contributes at NLO because the

subtraction has removed the large logarithm ln(MW/mc). The Wilson coefficients which

multiply ∆Y (µRI) in Eq. (35) introduce some of the terms needed for a complete NLO sum

over terms of O
(
αs ln(MW/µRI)

)l
. However, here we do not attempt to determine additional

NLO terms that appear in Y MS
ij (µMS, µRI) arising for example from the external momentum

dependence of the higher order QCD corrections to the bilocal operators [[Q̃iQ̃j ]]. Conse-

quently our final result does not include all NLO logarithms. These, as well as potentially

important NNLO terms [1, 14], are omitted from the present unphysical-mass calculation

which is intended only to demonstrate the practicality of the proposed approach.

Because of the convergence resulting from the subtraction defining ∆Y MS
ij , we can perform

this one-loop calculation in perturbation theory as suggested in Fig. 3 without the use of

dimensional regularization or the introduction of the scale µMS. The calculation of Y (µMS, 0)

with zero momentum on the external legs can be found in Eqs. (12.63)-(12.66) of Ref. [10].
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We have also listed the result here:

Y MS
ij (µMS, 0) =

m2
c

8π2
rij(µMS) (49)

rij =





(−4 ln(µMS/mc) + 2)τij, j = 1, 2

(−8 ln(µMS/mc) + 4)τij, j = 3, 4

(8 ln(µMS/mc)− 4)τij, j = 5, 6

(50)

τ1,1 = τ1,3 = τ1,5 = 3 (51)

τ1,2 = τ1,4 = τ1,6 = 1 (52)

τ2,j = 1, for any j. (53)

We have made the necessary modifications to these formulae required by our use of CKM

unitarity to eliminate λc instead of λu. We note that even for a NLO calculation, we do not

need to take the scale dependence of the charm quark mass into consideration and use a

constant charm quark mass given by the input lattice quark mass (0.363) converted to MS:

mc = 0.363× 1.78(GeV)× 1.498 = 968 MeV, where 1.78 GeV is the inverse lattice spacing

and 1.498 is the mass renormalization factor ZLat→MS
m (2GeV) taken from Ref. [27].

Our results for ∆Y MS
ij (µRI) are given by:

∆Y MS
ij (µRI) =

m2
c

8π2
∆rij(µRI) (54)

∆rij =





[
µ2
RI+m2

c

m2
c

× c(mc, µRI)− b(mc, µRI)− 1
]
τij , j = 1, 2

−
[
µ2
RI

m2
c
× d(mc, µRI) + 2× b(mc, µRI)

]
τij , j = 3, 4

4b(mc, µRI)τij , j = 5, 6

(55)

b(mc, µRI) =

∫ 1

0

dx ln
m2

c

x(1 − x)µ2
RI +m2

c

(56)

c(mc, µRI) =

∫ 1

0

dx ln
x(1− x)µ2

RI +m2
c

x(1− x)µ2
RI + (1− x)m2

c

(57)

d(mc, µRI) =

∫ 1

0

dx ln
x(1− x)µ2

RI

x(1 − x)µ2
RI +m2

c

. (58)

We have done this calculation in two ways. The first is to analytically perform the Feynman

integral over the internal quark loop. The second is to perform a numerical free-field calcu-

lation, using the same projector as in Eq. (36). We have checked that they give the same

result when computed at the same the values for µRI and mc. The results given in Eqs. (54)
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- (58) depend only on the energy scale of the external momenta µRI and are independent of

the specific choice of the four external momenta in Eq. (43), provided they have the same

energy scale and momentum conservation is satisfied, as in Eq. (42).

We also provide the numerical values for ∆Y (µRI) =
∑

ij C
MS
i CMS

j ∆Y MS
ij (µRI) in Table V

for the same set of energy scales that we used to calculateX(µRI)ij. We note that these values

for ∆Y (µRI) can not be directly compared to the results forX(µRI) given in Table IV because

X(µRI) is multiplied by an operator with lattice normalization while ∆Y (µRI) multiplies an

MS operator.

µRI (GeV) 1.47 1.54 1.60 1.67 1.73 1.79 1.86 1.92 1.99

∆Y (×10−2) 2.3032 0.9698 1.1117 1.2425 1.4059 1.5552 1.7132 1.9086 2.3032

µRI (GeV) 2.05 2.11 2.18 2.24 2.31 2.37 2.43 2.50 2.56

∆Y (×10−3) 2.4993 2.7043 2.9547 3.1790 3.4520 3.6956 3.9481 4.2541 4.5260

TABLE V. Numerical value for ∆Y (µRI), at the same scales used to evaluate X(µRI).

F. Lattice results for the long-distance contribution to ǫK

We have measured all five types of four-point contractions using lattice QCD. Similar to

what was done in Ref [2] for ∆MK when computing the four-point correlator, we compute

separately the parity conserving and the parity violating parts. This separation is useful for

identifying which intermediate states are present and need to be subtracted if lighter than the

kaon. This is achieved by separating the spin structure of each of the two weak vertices into

the part that conserves parity and the part that violates parity. We use (V −A)×(V −A) =

(V V + AA) − (AV + V A) and (V − A) × (V + A) = (V V − AA) + (V A − AV ), where V

corresponds to a γµ vertex and A to a γµγ5 vertex. The AA and V V structures conserve

parity while the AV and V A violate parity.

For the parity conserving part, the single-pion intermediate state is lighter than the kaon.

For the parity violating part, only the intermediate vacuum state is lighter than the kaon.

We note that the single pion states contributes to type 1,3,4,5 diagrams while the vacuum

state contributes only to type 4 diagrams. We can sum over all five types of diagrams and

then perform a subtraction of the lighter-than-kaon intermediate states, or we can do an
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intermediate state subtraction for each type of diagram and then combine them. We note

that the second approach is less well-defined because we have to determine the single-pion

contribution to each type of diagram independently when only the sum of the diagrams is

guaranteed to correspond to actual Hilbert space matrix elements where intermediate states

can be identified. Thus, in our final result, we use the first approach while when we show

how each type of diagram contributes, we must attempt the second approach.

After subtracting the intermediate states that are lighter than the kaon from our inte-

grated correlator, we can do a linear fit to the dependence of the integrated correlator on

the length T of the integration region. We show these linear fits to the type 1 and type 2

diagrams for all eleven bilocal operators in Figs. 9 and 10. We plot three versions of the in-

tegrated correlators: without any subtraction, after only the pion state has been subtracted

and after we subtract both the pion state and the unphysical short-distance part determined

by coefficient XLat
ij .

Next we include the contributions of the remaining diagrams, those of type 3, 4 and 5.

These include quark-line disconnected topologies which increase the statistical noise and

require the subtraction of the vacuum state. For the parity violating parts of the integrated

correlator, we have added the pseudo-scalar operator sγ5d to each ∆S = 1 operator with

a coefficient chosen to cancel the vacuum intermediate state. For the parity conserving

part, we add the scalar operator sd to cancel the pion intermediate state. We determine

the coefficients cs and cp of these two operators by requiring that the new operator Q′
i =

Qi − csisd − cpi sγ5d have a zero matrix element between both the kaon and vacuum states,

〈0|Q′|K0〉 = 0, and between the kaon and single pion states, 〈π|Q′|K0〉 = 0. Thus, csi and

cpi are determined by the equations

〈π|Qi − csisd|K0〉 = 0 (59)

〈0|Qi − cpi sd|K0〉 = 0. (60)

We can make these alterations to the ∆S = 1 effective weak Hamiltonian without chang-

ing its physical predictions because the scalar operator and pseudo-scalar operators are

proportional to the divergence of a vector and axial current respectively, which implies that

any process in which the initial and final four-momenta are equal will not be changed by

adding these two operators. With this construction we can remove the contribution of the

vacuum intermediate state from amplitudes of type 4 and the contribution of the single-
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FIG. 9. Integrated correlators for the products Q1Qj with j = 1 . . . 6 including only type 1 and

type 2 diagrams. We show the results without subtraction, with subtraction of only the single-pion

state, with subtraction of both the pion and the short-distance part. We use a correlated fit with

the fitting range 12 ≤ T ≤ 16. The Wilson coefficients are not included.
42



2 4 6 8 10 12 14 16

T

-0.5

0

0.5

1

1.5

2

2.5

3

in
te

gr
at

ed
 c

or
re

la
to

r

10 -3

2 4 6 8 10 12 14 16

T

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

in
te

gr
at

ed
 c

or
re

la
to

r

10 -3

Q2Q2 Q2Q3

2 4 6 8 10 12 14 16

T

-1

0

1

2

3

4

5

6

7

8

in
te

gr
at

ed
 c

or
re

la
to

r

10 -3

2 4 6 8 10 12 14 16

T

-4

-3

-2

-1

0

1

2

in
te

gr
at

ed
 c

or
re

la
to

r

10 -3

Q2Q4 Q2Q5

2 4 6 8 10 12 14 16

T

-4

-3

-2

-1

0

1

2

3

4

5

6

in
te

gr
at

ed
 c

or
re

la
to

r

10 -3

Q2Q6

FIG. 10. Integrated correlators for the products Q2Qj with j = 2 . . . 6 including only type 1 and

type 2 diagrams. We show the results without subtraction, with subtraction of only the single-pion

state, with subtraction of both the pion and the short-distance part. We use a correlated fit with

the fitting range 12 ≤ T ≤ 16. The Wilson coefficients are not included.
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pion intermediate from amplitudes of type 1, 3, 4 and 5. We point out that these scalar and

pseudo-scalar two-quark operators enter only in diagrams of type 3, 4 and 5.

The subtraction of the pseudo-scalar operator sγ5d is particularly important because of

the large coupling to the vacuum state, especially when we have a right-handed vertex.

Without the subtraction of this operator, we must determine the kaon to vacuum matrix

element 〈0|Qi|K0〉 and directly subtract it using 〈K0|Qi|0〉〈0|Qj|K0〉/MK . Because of the

large size of the kaon to vacuum matrix element, the subtraction term is very large and

after subtraction, the size of the integrated correlator is reduced by a factor on the order

of 100. Fortunately, this sγ5d subtraction makes a comparable reduction in the statistical

error. On the other hand, the subtraction of the scalar operator sd is less important because

the kaon to pion matrix element 〈π|Qi|K0〉 is not that large. However, the scalar operator

subtraction still reduces the error by roughly a factor of 5.

In Figs. 11 and 12 we plot the analog to Figs. 9 and 10 but now show the result only after

the subtraction of the short-distance piece XLat
ij and both the pion and vacuum intermediate

states. Shown also are linear fits to the matrix elements of the eleven, three-times-subtracted

bilocal operators as functions of the length T of integration interval.

In the results plotted above, we have removed the short-distance lattice-regulated contri-

bution to the bilocal lattice operator using our intermediate RI/SMOM scheme with scale

µRI = 2.11 GeV. The sum of all the contributions from different operator combinations QiQj

will be the total lattice result for ImMut
00
, which includes all the low energy contributions up

to a high-energy cutoff determined by µRI. As explained earlier, we label this as ImMut,LD

00
.

This corresponds to the contribution to ImMut
00
, from the RI operator defined in Eq. (33),

or from the first line in the total ∆S = 2 weak Hamiltonian given in Eq. (35).

In the fits shown in of Figs 11 and 12 we have used a correlated fit with fitting range

10-16. We show the χ2 per degree of freedom in the figure. In fitting the connected diagrams

in Figs. 9 and 10 we used a fitting range of 12-16. This reduced fitting range was needed

because a linear fit did not represent the data well for smaller T , giving a poor χ2 (with

χ2/d.o.f of order 5 or more). While this choice of fitting range results in a larger statistical

error when compared to 10-16, it gives more reliable results because of the better χ2.

We tabulate the contributions to ImM00 from each operator combination in Table VII.

The three sections of the table show three sets of results. The top section shows the contri-

butions from the type 1 and 2 diagrams before we remove the short-distance divergent
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FIG. 11. Integrated correlators including all five types of diagrams for the products Q1Qj with

j = 1 . . . 6. We use a correlated fit with fitting range 10 ≤ T ≤ 16. The Wilson coefficients are

not included. Here we show only the result after subtraction of the short-distance piece and the

contributions of the vacuum and single-pion intermediate states.
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FIG. 12. Integrated correlator including all five types of diagrams for the products Q2Qj with

j = 2 . . . 6. We use a correlated fit with fitting range 10 ≤ T ≤ 16. The Wilson coefficients are

not included. Here we show only the result after subtraction of the short-distance piece and the

contributions of the vacuum and single-pion intermediate states.

46



part XLat
ij . The middle section shows the contributions from the type 1 and 2 diagrams after

this lattice-regulated contribution has been removed. Finally the bottom section shows the

contribution of each bilocal operator product including all five types of diagram after the

XLat
ij piece has been removed. As is required, the appropriate Wilson coefficient factors have

been included. We note that the imaginary part comes only from the λt factor because all

the Wilson coefficients and λu are real. The values of XLat
ij are given in Table VI.

By comparing middle and bottom sections of Table VII we can see that the inclusion of

the disconnected diagrams does not change the result for ImMut
00

significantly for most of the

operators combinations QiQj. This is different from our experience in the ∆MK calculation

with similar unphysical quark masses where inclusion of the disconnected diagrams partially

cancels the connected diagram result, decreasing the final result by roughly a factor of

2. Finally in Table VIII we list the contributions from different types of diagrams to the

imaginary part of Mut
00

in which the contributions from the eleven different bilocal operator

products have been combined.

XLat
1,1 XLat

1,2 XLat
1,3 XLat

1,4 XLat
1,5 XLat

1,6

0.0374 0.0183 0.0818 0.0193 -0.1092 -0.0432

XLat
2,2 XLat

2,3 XLat
2,4 XLat

2,5 XLat
2,6

0.0101 0.0196 0.0214 -0.0310 -0.0359

TABLE VI. The values for XLat
ij expressed in lattice units calculated using the external momentum

scale µRI = 2.11 GeV. In the calculation of XLat
ij , we only calculate i < j, since the value for XLat

ij

with i > j is the same and is included in these coefficients.

To obtain the long-distance correction to the conventional short-distance result for ǫK , we

must finally add the perturbative MS to RI/SMOM matching factor, which corresponds to

the second line of Eq 35. We have evaluated the lowest order contribution to ∆Y MS
ij , which

is independent of the MS scale µMS, following the procedure specified in Section IVE. The

amplitude ∆Y MS
ij is defined in the MS scheme and must be multiplied by the K0−K

0
matrix

element of the OLL operator which is also normalized in the MS scheme. This matrix element

is most easily obtained from the MS kaon bag parameter BK(µMS) using its definition:

〈K0|OLL(µMS)|K0〉 = 4

3
F 2
KMKBK(µMS). (61)
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Q1Q1 Q1Q2 Q1Q3 Q1Q4 Q1Q5 Q1Q6

Q2Q2 Q2Q3 Q2Q4 Q2Q5 Q2Q6

-0.629(0.007) 0.795(0.011) 0.131(0.006) -0.013(0.002) -0.077(0.005) 0.175(0.008)

-2.054(0.030) -0.020(0.002) 0.261(0.010) 0.010(0.002) 0.116(0.017)

-0.385(0.007) 0.445(0.010) 0.099(0.005) 0.002(0.002) -0.042(0.003) 0.135(0.007)

-1.505(0.029) 0.003(0.002) 0.214(0.008) -0.019(0.002) 0.213(0.017)

-0.384(0.016) 0.438(0.069) 0.067(0.006) 0.004(0.012) -0.016(0.013) 0.091(0.113)

-1.565(0.121) -0.013(0.011) 0.200(0.027) -0.001(0.038) 0.193(0.328)

TABLE VII. Results for the imaginary part of Mut
00

including the Wilson coefficients and statistical

errors. All numbers are in units of 10−15 MeV. The results are divided into three sets of two rows

separated by a double line. The top set shows the contribution of type 1 and 2 diagrams before the

subtraction of the short-distance divergent part. The middle set gives the contribution of the type

1 and type 2 diagrams after the subtraction of the short-distance, divergent part. The bottom set

contains the contribution of all five types of diagram after the subtraction of the short-distance

divergent part.

We note that this equation is different from the conventional formula by a factor of 2MK

because we have used a different renormalization for the kaon energy eigenstate. To perform

this perturbative MS to RI/SMOM correction consistent with the other terms in our lattice

calculation, we choose to use values for the parameters BK , FK and MK appearing in

Eq. (61) that were determined from the same gauge ensemble that we have used for the

lattice calculation, rather than more accurate values from more recent calculations. We take

the value for BK and FK from Ref. [7], which gives

BRGI
K = 0.750(15), FK = 155.5(8)MeV. (62)

The RGI value for BK is the renormalization-group-invariant value, which is defined in

Eq. (18.4) of Ref. [10]. We can use this formula to find BK at any energy scale, µMS. We

could use this ability to vary the µMS scale to equal that used in the conventional short-

distance result which we were correcting. Of course, this scale dependence of BK will be of

order αs, so including this µMS dependence would be required only in an NNLO calculation.

In the right-most column of Table VIII and later tables we have used the value of BK at
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ImMut,lat,type 1+2

00
ImMut,LD,type 1+2

00
ImMut,LD

00
ImMut,LD,MS→RI

00

-1.328(0.038) -0.865(0.037) -0.986(0.389) -0.552(0.389)

TABLE VIII. Combined contributions from the eleven bilocal operator combinations to ImMut
00
,

in units of 10−15 MeV. The first column shows the results before we remove the short-distance

divergence from our lattice result and only includes the type 1 & 2 diagrams. The second column

again shows the contributions of only type 1 and 2 diagrams but with the short-distance divergence

removed. The third column gives the contribution from all five types of diagram after the lattice-

regulated short-distance contribution has been removed. The last column is the long-distance

correction to the conventional perturbative short-distance result for ImMut
00
, with the perturbative

MS to RI/SMOM correction included.

µMS = 2.11 GeV to find the perturbative MS to RI/SMOM correction. Thus, the number

in the final column of Table VIII is the sum of this MS to RI/SMOM correction which is

proportional to BK and the long-distance result given in the third column that we obtained

from the lattice calculation. In Table IX we list additional standard model parameters that

were used in these calculations.

GF 1.16637 × 10−5 GeV−2

FK 0.1562 GeV

MK 0.4976 GeV

mc(mc) 1.29 GeV

mt(mt) 1.70 GeV

∆MK 3.484 × 10−15 GeV

λu 0.2196

λc −0.2193 − 1.1572 × 10−4i

λt −2.9565 × 10−4 + 1.1572 × 10−4i

TABLE IX. Additional standard model parameters used in this calculation [24].

In Table X, we show the result of this calculation for five different intermediate RI/SMOM

scales µRI and in Table XI we show the same quantities but include only the results from

type 1 and type 2 diagrams. The fourth and fifth columns in these tables do not con-
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tain the complete short-distance contributions to ImMut
00

or ǫutK . However, by including

the perturbative MS to RI/SMOM correction Y MS(µRI), these quantities do combine the

RI/SMOM-renormalized (and therefore µRI-dependent) long-distance contribution with the

µRI-dependent part of the missing short-distance contribution giving a quantity which should

not depend on the long-to-short distance matching scale µRI.

Examining Tables X and XI, we can see this RI/SMOM matching appears successful

because these combinations, ImMut,LD,MS→RI

00
or ǫut,LD,corr

K , have only a small dependence on

µRI.

µRI ImMut,LD

00
ImMut,MS→RI

00
ImMut,LD,MS→RI

00
ǫut,LD,corr
K

1.54 GeV -0.746(0.389) 0.282 -0.464 (0.389) 0.0911(0.076)

1.92 GeV -0.912(0.389) 0.384 -0.527 (0.389) 0.104(0.076)

2.11 GeV -0.986(0.389) 0.434 -0.551 (0.389) 0.108(0.076)

2.31 GeV -1.050(0.390) 0.486 -0.565 (0.390) 0.111(0.077)

2.56 GeV -1.115(0.390) 0.548 -0.568 (0.390) 0.111(0.077)

TABLE X. The long-distance contributions to the conventional short-distance part of ImMut
00

(in

units of 10−15 MeV) and the corresponding contribution to ǫK as we vary µRI. The second column

presents our results from the lattice calculation, after the removal of the short-distance divergence.

The third column is the perturbative MS to RI/SMOM correction that involves ∆Y MS. The

fourth column is the final long-distance correction to the conventional short-distance contribution

to ImMut
00
, which is the sum of the previous two columns. The last column is the corresponding

contribution to ǫK , in units of 10−3.

V. CONCLUSIONS AND OUTLOOK

We have described in detail a method based on lattice QCD to calculate the long-distance

contribution to the indirect CP violation parameter ǫK . In such a lattice calculation the weak

interaction must be represented by its low-energy effective theory described by a dimension-

six Hamiltonian density HW written as the sum of twelve four-quark operators given in

Eqs. (16)-(18). The parameter ǫK is determined by the K0 − K
0
mixing matrix element

M00, a quantity that is second order in HW . We separate long- and short-distances at the
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µRI ImMut,LD

00
ImMut,MS→RI

00
ImMut,LD,MS→RI

00
ǫut,LD,corr
K

1.54 GeV -0.620(0.036) 0.282 -0.337(0.036) 0.066(0.007)

1.92 GeV -0.786(0.036) 0.384 -0.401(0.036) 0.079(0.007)

2.11 GeV -0.860(0.037) 0.434 -0.425(0.037) 0.084(0.007)

2.31 GeV -0.924(0.037) 0.486 -0.439(0.037) 0.086(0.007)

2.56 GeV -0.989(0.037) 0.548 -0.442(0.037) 0.087(0.007)

TABLE XI. Results similar to those in Table X but including only the contributions from the

diagrams of type 1 and 2.

inverse energy scale above which QCD perturbation theory should be adequately accurate

and below which the methods of lattice QCD can at present be applied. Currently this

energy scale may be 2-3 GeV. As a result the lattice calculation described here is performed

in the four-flavor theory, including an active charm quark.

We use the identity λu + λc + λt = 0 of Eq. (4) to eliminate λc, expressing M00 as a com-

bination of terms proportional to λ2
t , λ

2
u and λtλu. The last term contains the long-distance

contribution to ǫK . For this CP violating quantity the GIM cancellation is incomplete and

the singularity in the second-order product of the two factors HW (x)HW (y) as x → y re-

sults in a logarithmic singularity. The presence of this singularity requires that we combine

our lattice calculation with a short-distance calculation which replaces this short-distance

singularity with the actual short-distance contribution of the standard model.

Such a combination of a lattice calculation using the low-energy effective theory and a

QCD and electroweak perturbative calculation which involves the W , Z, Higgs, top- and

bottom-quark degrees of freedom is achieved by imposing an RI-SMOM condition on the

second-order lattice calculation of an infrared-safe, off-shell, ∆S = 2 four quark Green’s

function at a scale µRI. Imposing this condition requires the addition of a µRI-dependent

counter-term proportional to the operator OLL of Eq. (7). If the scale µRI is chosen to be

sufficiently large, then the usual QCD and electroweak perturbation theory calculation of

this same off-shell, four-quark Green’s function at a scale µRI then can be used to determine

the term proportional to OLL that must be added to the lattice result to obtain Mut
00

to any

specific order in QCD perturbation theory.

In the preceding sections we have determined the steps needed to carry out this lat-
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tice QCD calculation of ǫK including the needed four-quark operators and their Wilson

coefficients. With the exception of the incomplete GIM cancellation that appears in the

calculation of ǫK , the lattice calculation of the long-distance contribution to ǫK is similar to

the calculation of ∆MK . Of course, with the need to compute eleven instead of three bilinear

operator combinations, the calculation of ǫK is significantly more difficult. A calculation of

the long-distance component of ǫK can naturally be combined with future calculations of

∆MK and such combined calculations are being actively pursued by the RBC and UKQCD

collaborations.

In order to explore all of the issues involved in such a calculation of the long-distance

contribution to ǫK we have carried out a complete lattice calculation using a 243×64 lattice

with an inverse lattice spacing 1/a = 1.78 GeV and unphysical light and strange quark

masses which result in Mπ = 339 MeV and MK = 592 MeV. Given the relatively coarse

lattice spacing we chose a lighter-than-physical charm quark mass of 968 MeV (renormalized

in the MS scheme at 2 GeV). Just as in the calculation of ∆MK the connected contribution,

coming from diagrams of type 1 and 2, can be calculated quite precisely with statistical

errors from 200 configurations on the order of 5%. However, as in the ∆MK case, the

disconnected graphs are much more difficult with statistical errors of order 40%. We expect

that a calculation with physical quark masses will be practical with statistical errors on the

order of 10% as is the case for ∆MK [4] where improved methods and a focus on obtaining

increased statistics for the disconnected parts has given results with 10% statistical errors.

As have been found in the calculation of ∆MK , we must expect relatively large discretization

errors on the order of 40% for a calculation performed on a lattice with 1/a = 2.38 GeV. This

suggests that results with less uncertainty than present perturbative or phenomenological

estimates for both ∆MK and the long-distance part of ǫK will require at least a second

lattice spacing and a continuum extrapolation.

A complete result for ǫK requires that a lattice QCD calculation of the long-distance con-

tribution to ǫK of the sort described here be accurately joined to a perturbative calculation

of the much larger short-distance part (which also requires a lattice calculation of the single

long-distance, hadronic amplitude BK). The short-distance QCD and electroweak perturba-

tion theory calculation, reviewed for example in Ref. [10], has been carried out to NLO [28]

and partially to NNLO [1, 14]. While we anticipate that in the future such a calculation will

be performed to evaluate the needed off-shell four-quark Green’s function at an energy scale
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µRI to NLO, at present such a result is not available. However, present results do provide

this four-quark Green’s function at NNLO evaluated at the scale µRI = 0. This allows us to

obtain the required Green’s function for a larger value of µRI to order (αs)
0 by evaluating a

simple convergent one-loop integral.

This one-loop calculation allows the RI-normalized lattice calculation to be matched

to the MS perturbative result, providing an “MS to RI/SMOM correction”, denoted

ImMut,LD,MS→RI

00
, is added to the lattice result. At the order we are working this de-

pends on µRI but not on µMS. However, when this correction is added to our RI-normallized

lattice calculation the result should be independent of the scale µRI. This µRI-dependence

can seen in Tables X and XI. If we examine the more accurate result in Table XI from

diagrams of type 1 and 2 only (appropriate since the omitted disconnected diagrams only

enter at higher order in QCD perturbation theory) we see the 14% dependence of lattice

result for Im Mut,RI

00
as µRI is varied from 2.11 GeV to 2.56 GeV decreases to 4% when

combined with this MS to RI/SMOM correction.

The unphysical quark masses and single lattice spacing used in our calculation make the

present result an unreliable long-distance correction to ǫK . Nevertheless it is of interest to

compare the size of this correction to the current short-distance result for ǫK :

ǫLDK (µRI = 2.11GeV) = 0.195(0.077)eiφǫ × 10−3 (63)

ǫSDK = 1.446(0.154)eiφǫ × 10−3 Ref. [29] (64)

ǫRI→MS
K (µRI = 2.11GeV) = −0.086eiφǫ × 10−3. (65)

Here the first number is our result for the long-distance contribution to ǫK including con-

nected and disconnected diagrams with the bilinear operator product renormalized in the

RI-SMOM scheme with µRI = 2.11 GeV. (We have explicitly included the phase of ǫK in-

troduced in Eqs. (1) and (2) so that we can display the magnitude of ǫK and still combine

the quantities shown algebraically, including their relative signs.) The second number is a

recent result for ǫK without long-distance correction [29]. The third number is the O(1)

correction that should be added to the second number giving a sum which represents the

complete RI-SMOM-normalized short-distance contribution, also evaluated at µRI = 2.11

GeV. This sum could then be added to the first line to obtain a consistent prediction for ǫK ,

had these quantities been computed with consistent quark masses and other weak interac-

tion input parameters. The 8% relative size of the difference of the sum of the first and the

53



third lines compared to the second is somewhat larger than the phenomenological estimate

of 5% [5] because we are comparing to a short-distance prediction which itself is somewhat

smaller than the measured result |ǫK | = 2.228(0.011)× 10−3. The discrepancy between the

experimental result and the standard model short-distance prediction given in Ref. [29] is

not understood but may be related to the significant discrepancy between the exclusive and

inclusive experimental results for the CKM matrix element Vcb.
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Appendix A: Four-quark operator mixing and non-perturbative renormalization

The four-flavor RI-SMOM non-perturbative renormalization scheme used here to deter-

mine the Wilson coefficients for the four-quark operators defined on the lattice was first

used in the calculation of ∆MK in Ref. [2]. In the case of ∆MK , only the coefficients of the

two current-current operators are needed. For the calculation of ǫK , the nonperturbative

renormalization (NPR) will be more challenging because we must also include the QCD

penguin operators which mix among themselves and also appear when the renormalization

scheme or scale for the two current-current operators is changed. The procedure is similar

to what we have done in Refs. [30] and [26] when computing K → ππ decay but with the

difference that we are now working in the four-flavor theory and do not need to include the

electroweak penguin operators. We impose the RI/SMOM condition specified in Ref. [25] on

Landau gauge fixed, amputated Green’s functions with off-shell external momenta p1 and
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p2. These momenta obey p21 = p22 = (p1 − p2)
2 = µ2

RI. We have chosen to use µRI = 2.15

GeV, the same as our choice in Ref. [2]. Four different RI-SMOM schemes are studied in

Ref. [25]: the (γµ, γµ), (γµ, /q), (/q, /q) and (/q, γµ) where the first factor indicates the structure

of the four-quark projector used in the RI-SMOM condition while the second determines the

scheme used for the quark operator renormalization. Here we use the (γµ, γµ) and (γµ, /q)

schemes.

We begin by rewriting the effective four-flavor weak Hamiltonian in Eq. (16) as:

HW =
GF√
2

{
V ∗
usVud

[
(1− τ)

∑

i=1,2

zi(µ)(Q
uu
i −Qcc

i ) + τ
6∑

i=1

vi(µ)Qi

]
(A1)

+V ∗
usVcd

∑

i=1,2

ziQ
uc
i + V ∗

csVud

∑

i=1,2

ziQ
cu
i

}
,

where τ = −λt/λu. The operators {Qqq′

i }i=1,2 represent four distinct current-current opera-

tors for each value of i = 1 or 2 depending on the combination qq′ of up and charm quarks

which appears. The operators Q1 and Q2 without superscripts indicate Quu
1 and Quu

2 . We

note that a single Wilson coefficient Ci can be used for all four operators with the subscript

i for the case i = 1 or 2.

In order to apply the RI-SMOM intermediate renormalization procedure, we need to

specify a minimal complete set of operators which transform into themselves when either

the renormalization scheme or the scale is changed. Examining the operators which appear

in Eq. (A1) we recognize that first term in that equation, Quu
i − Qcc

i , does not mix with

the QCD penguin operators {Qj}j=3,4,5,6 because of GIM cancellation and the terms on the

second line of Eq. (A1) also do not mix with the QCD penguin operators because of their

flavor structure (either Quc
i or Qcu

i ). As we have observed above, the Wilson coefficients for

the current-current operators do not depend on the flavor structure. So we have z1 = v1

and z2 = v2, as is explained in Section IIC 1 and in Ref. [10].

We can use the equality of the Wilson coefficient Ci for all four operators Q
qq′

i for i = 1 or

2 to focus on the normalization of the six operators {Qj}j=1,2,...,6 whose Wilson coefficients

we denote by {Ci}i=1,2,...,6.

Using this basis of six operators, we first transform the operators to the RI-SMOM scheme

using the 6× 6 mixing matrix ZLat→RI:

QRI
k = ZLat→RI

kj QLat
j . (A2)
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Then we transform the RI/SMOM operators to the MS scheme using the 6 × 6 matrix ∆r

obtained from Ref. [31]:

QMS
i = (1 + ∆r)RI→MS

ik QRI
k . (A3)

Finally, we can substitute Eq. (A2) into Eq. (A3) to obtain:

6∑

i=1

CMS
i QMS

i =
6∑

i=1

CLat
i QLat

i . (A4)

where

CLat
j =

6∑

i,k=1

CMS
i (1 + ∆r)RI→MS

ik ZLat→RI
kj . (A5)

We have performed the needed NPR calculations on 100 configurations from a 163 × 32

Iwasaki ensemble which has the same lattice spacing as the ensemble we used in the ǫK

calculation. In the (γµ, γµ) scheme with Z
γµ
q = 0.7404(4) we find the mixing matrix:

ZLat→RI =




0.505(0.000) −0.050(0.000) 0.004(0.002) −0.003(0.002) 0.001(0.002) −0.003(0.001)

−0.050(0.000) 0.505(0.000) −0.003(0.001) 0.010(0.001) −0.003(0.001) 0.008(0.001)

0 0 0.514(0.008) −0.043(0.007) −0.001(0.009) 0.006(0.005)

0 0 −0.056(0.006) 0.540(0.005) −0.008(0.006) 0.027(0.004)

0 0 0.002(0.007) −0.006(0.006) 0.537(0.008) −0.089(0.005)

0 0 −0.012(0.003) 0.033(0.003) −0.040(0.003) 0.410(0.002)




(A6)

Using this mixing matrix and ∆rRI→MS for the (γµ, γµ) scheme, we find the following lattice

Wilson coefficients:

CLat =
(
−0.202(0.000) 0.588(0.000) 0.012(0.001) −0.024(0.001) 0.009(0.001) −0.027(0.001)

)

(A7)

In the (γµ, /q) scheme, we use Z
/q
q = 0.8016(3). The mixing matrix ZLat→RI differs from that given

in Eq. (A6) by an over-all factor of (Z
γµ
q /Z

/q
q )2. Using this rescaled mixing matrix and ∆rRI→MS

for the (γµ, /q) scheme, we find the following lattice Wilson coefficients:

CLat =
(
−0.222(0.000) 0.645(0.000) 0.013(0.001) −0.027(0.001) 0.010(0.001) −0.030(0.001)

)

(A8)

This second determination of the lattice Wilson coefficients differ by an overall-factor of 1.09

from those in Eq. (A7). This discrepancy is a useful indicator of the size of the systematic errors in
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the lattice Wilson coefficients arising from two sources: i) The QCD perturbation theory truncation

errors associated with the perturbative calculation of the coefficients ∆rik that appear in Eq. (A3)

and ii) the discretization errors that enter the lattice QCD calculation of the coefficients ZLat→RI in

Eqs. (A6). The discrepancy arising from QCD perturbation theory can be reduced by performing

the NPR calculation at a higher energy scale or to a higher order in αs. The lattice discretization

error can be made smaller by using a finer lattice for these ǫK measurements or by using step-

scaling in the NPR calculation so that the large energy scale needed to reduce the perturbative

errors need not be used at the lattice scale adopted for the ǫK calculation.
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