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Mapping Strontium Isotope Geographical Variability as a Basis 
for Multi-regional Human Mobility: The Sybaris Region (S Italy) in the Early 
1st Millennium BC
Céline Zaugga, Martin A. Guggisberga, Werner Vachb, Matthew J. Cooperc and Claudia Gerlinga,b

aDepartment of Ancient Civilizations, Classical Archaeology, University of Basel, Basel, Switzerland; bDepartment of Environmental 
Sciences, Integrative Prehistory and Archaeological Science, University of Basel, Basel, Switzerland; cSchool of Ocean and Earth Science, 
University of Southampton, National Oceanography Centre, Southampton, UK

ABSTRACT  
Archaeological findings from the 8th c. BC settlement at Francavilla Marittima (CS) and its 
necropolis on the nearby Macchiabate plateau point to multi-regional interactions and the 
emergence of new identities in connection with the establishment of the Greek colony 
Sybaris. Strontium isotope analysis (87Sr/86Sr) is an efficient method to reconstruct human 
mobility and provides new insights into the Iron Age and Archaic period in the Calabria 
region. A successful interpretation of Sr isotope compositions in human tissues requires a 
baseline of the bioavailable strontium in the landscape of Francavilla Marittima and its 
surroundings. This study presents 87Sr/86Sr values of modern vegetation and water from 
North Calabria to establish the first finely resolved Sr isotope baseline map of this region. Sr 
isotope compositions vary between 0.7082 and 0.7127 and reflect the geological and 
lithological diversity of the study region. The regional 87Sr/86Sr variability exceeds the 
baseline of bioavailable 87Sr/86Sr at Francavilla Marittima and enables the integration of past 
regional interaction in data interpretation of the human remains. Several mapping and 
prediction methods were tested to produce surface models of the isotopic landscape, and 
the isotope group map is proposed as a suitable representation of the bioavailable Sr in the 
studied region.
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Introduction

Between the 8th to 6th c. BC Greek seafarers, traders 
and settlers expanded their activities to the West and 
East of their homeland and numerous Greek settle-
ments and cities arose all around the Mediterranean 
Sea as well as in the Black Sea region. From the result-
ing contacts with the non-Greek population new cul-
tural identities emerged in the respective areas (Hodos  
2006; Petropoulos 2015; Donnellan 2016; Murray and 
Lucas 2019). Research into the interactions between 
Greek settlers and the native population in the Iron 
Age (ca. 950/25–730/25 BC, Pacciarelli 2005) and the 
Archaic period (ca. 700 – 490/89 BC; Hölscher 2002) 
in Southern Italy has so far been mainly based on 
the study of archaeological findings and ancient 
literary traditions (Giangiulio 2001; Burgers and 
Crielaard 2016; Donnellan 2016; Murray and Lucas  
2019). Bioarchaeological methods like isotopic analy-
sis on human skeletal remains, however, have only 
been used sporadically to investigate this dynamic 
epoch in the Mediterranean region (Stallo et al.  
2010; Gigante et al. 2017).

Strontium isotope analysis (87Sr/86Sr), depending 
on geological variations, is the most common method 
to reconstruct human mobility in the past (e.g. Ericson  
1981; 1985). Since the 1980s, but especially since the 
early 2000s (for an overview, see Salesse et al. 2018), 
radiogenic and stable isotope analyses have been an 
increasingly popular archaeological tool for understand-
ing past populations in the Mediterranean (e.g. Prowse 
et al. 2004; 2007; Nafplioti 2008; 2009a; 2009b; 2011;  
2016; Killgrove 2013; Killgrove and Montgomery 2016; 
Emery et al. 2018; Milella et al. 2019; Stark et al. 2020; 
Frank et al. 2021a; 2021b; Lugli et al. 2022). Isotopic 
studies of the Greek colonial world have so far been con-
ducted in Apollonia (Keenleyside, Schwarcz, and 
Panayotova 2006; Stallo et al. 2010; Keenleyside, 
Schwarcz, and Panayotova 2011; Kwok and Keenleyside  
2015), Syrakus (Tanasi et al. 2017), Metapont (Henne-
berg and Henneberg 2001; 2003), Pithekoussai (Gigante 
et al. 2017), and Francavilla Marittima (Colombi, Villa, 
and Guggisberg 2018; Villa 2021).

Mapping 87Sr/86Sr values of modern water, soil, 
plants, and archaeological human and faunal skeletal 
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remains provides the framework to interpret ancient 
mobility and places of origin (e.g. Price et al. 1994; Sillen 
et al. 1998; Bentley and Knipper 2005; Evans et al. 2010; 
see Britton et al. 2020 also for an evaluation of various 
modern reference datasets). Different methods have 
been used to model the biologically available strontium 
in the landscape, e.g. simple plotting of the collected iso-
tope data to a geology map (Bentley and Knipper 2005; 
Nafplioti 2011; Blank et al. 2018; Brönnimann et al. 2018; 
Cavazzuti et al. 2019), assigning average isotope values to 
geological or lithological units and thus creating isotope 
groups (e.g. Evans et al. 2010; Willmes et al. 2018), or 
using interpolation methods (e.g. Blank et al. 2018; Will-
mes et al. 2018; Britton et al. 2020; Lugli et al. 2022), as 
well as machine-learning approaches (e.g. Beard and 
Johnson 2000; Bataille et al. 2018) to generate smooth 
surface models. The first strontium isotope map for 
Italy was published by M. Emery and colleagues (2018; 
data points n = 333). Recently, Lugli et al. (2022) pre-
sented several Kriging modellings using Emery’s dataset 
of bioavailable and non-bioavailable Sr isotope values 
with added novel data (n = 1920, database available at 
https://www.geochem.unimore.it/sr-isoscape-of-italy/). 
The limited number of data points in the Calabria region 
make both maps less reliable for more regional and 
small-scale studies, however, and prompts the creation 
of more detailed isoscape maps.

In this study, we present the first strontium isotope 
baseline data and isoscape modelling of the Sibaritide 
region, Calabria (S Italy), which will serve as a basis to 
interpret the 87Sr/86Sr values of human skeletons (dating 
from mid 8th to early 7th c. BC) from the Iron Age cem-
etery at Francavilla Marittima (Colombi, Villa, and Gug-
gisberg 2018; Billo-Imbach et al., 2020; Gerling et al.  
2021). We attempt three different, but conventionally 
used mapping approaches. The various map models 
highlight different aspects of the bioavailable Sr isotopic 
landscape. A distribution map (cf. Brönnimann et al.  
2018) emphasises measured datapoints in context with 
the geolithological units, but there is no prediction of 
87Sr/86Sr between the known data. In an isotope group 
map (cf. Evans et al. 2010; Willmes et al. 2018), an esti-
mation of the mean 87Sr/86Sr of a geolithological unit is 
presented. It is a surface model that respects the geologi-
cal variation and its impact on the bioavailable Sr. How-
ever, Sr heterogeneity within geolithological formations 
in a surface model is presented by interpolation processes, 
e.g. Kriging (cf. Blank et al. 2018; Willmes et al. 2018). Kri-
ging predicts values of unknown points in a continuous 
manner. By comparing the different approaches, we 
explore the best-suited method for the Sibaritide dataset.

Francavilla Marittima and the Sibaritide in the 
1st Millennium BC

Before the foundation of the Greek colony Sybaris on 
the Gulf of Taranto (Figure 1), the area was already 

characterised by a dynamic settlement process. Until 
the Iron Age (ca. 950/25–730/25 BC, Pacciarelli  
2005), various ‘central settlements’ were established 
on the marine terraces around the plain, which from 
then on dominated the Sibaritic settlement system 
(Peroni 1994). These ‘central settlements’ controlled 
territories of 12–15 km2 each, limited by the Sibaritic 
rivers. The territory attributed to the settlement on the 
Timpone Motta plateaus at Francavilla Marittima lies 
between the Satanasso and Raganello rivers. The ham-
lets and farm buildings found in the Contrada Damale 
and Contrada Portieri further north may also have 
belonged to the settlement’s territory (Peroni 1994; 
Kleibrink 2004; Attema, Burger, and van Leusen  
2010; Vanzetti 2013; De Neef 2016). In addition, the 
settlement’s burial grounds serve as an important 
source for the reconstruction of the demographic 
developments in the Sibaritide during both pre-colo-
nial and colonial times. Recent research by the Univer-
sity of Basel following earlier investigations by 
P. Zancani Montuoro in the 1960s at the Macchiabate 
necropolis near the settlement on the Timpone Motta 
focuses on three Iron Age and one Archaic burial areas 
(Guggisberg and Colombi 2021). The previously 
uncovered burials in the Strada, De Leo and Est 
areas can be dated mainly to the 8th c. BC, while in 
the area Collina the majority of graves date from the 
Archaic period (ca. 700 – 490/89 BC; Hölscher  
2002). Typical elements of these Iron Age fossa graves 
are the positioning of the body in a lateral, flexed pos-
ition, a rich kit of local ceramic vessels as well as of 
jewellry, tools, and weapons made mostly of bronze 
or iron. In addition to these Oinotrian grave goods, 
objects that were clearly imported or locally imitated 
under Greek and Near Eastern influences have also 
been found in various graves. The large number of 
contemporaneous burials in the Macchiabate necro-
polis compared to the small settlement area of Tim-
pone Motta (Elevelt 2012; Colombi, Villa, and 
Guggisberg 2018), may suggest that people living in 
Timpa del Castello, Timpone Motta di Cerchiara, 
Contrada Damale, Contrada Portieri, and Terra Mas-
seta were also buried in Francavilla Marittima.

Around 720 BC, Achaean settlers from Helike, 
Boura and Aigai, founded the colony Sybaris (Strabo 
V.4.13 in Rainey and Lerici 1967; Petropoulos 2015). 
Sybaris quickly developed into a powerful city and cul-
tivated lively trade relations with the Greek world 
(Petropoulos 2015). In the second half of the 8th 

c. BC, around the time of the establishment of the col-
ony, many of the Iron Age settlements in the Sibaritide 
were abandoned or destroyed (Kleibrink 2004; Peroni 
and Vanzetti 2008). However, some Oinotrian settle-
ments in the Crati basin (Cozzo Michelicchio, Cozzo 
la Torre Castello Torano, Bisignano) and the settle-
ments of Timpone Motta, Castrovillari, and Amendo-
lara continued to exist (Figure 1; Peroni and Vanzetti  
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2008). After the foundation of Sybaris, the settlement 
and sanctuary on the Timpone Motta seem to have 
gained a particular importance (Kleibrink 2011) and 
the Macchiabate necropolis was still in use until at 
least the 6th c. BC (Kleibrink 2011). By that time, the 
former Oinotrian burial custom had been replaced 
by the tradition of extended supine skeletal positions 
and ceramic vessels in a predominantly Greek tra-
dition as grave goods. These changes indicate complex 
and close cultural and economic relationships between 
the residents of Timpone Motta and Sybaris as well as 
their direct interactions in respect to ritual activities 
(Attema, Burger, and van Leusen 2010).

Strontium Isotope Analysis and the Geology of 
the Sibaritide

Strontium isotope analysis is a method to reconstruct 
human mobility in the past (e.g. Ericson 1981; 1985). 
The ratio of 87Sr to 86Sr isotopes in a geological for-
mation depends on the age, geochemistry, type, and 

initial concentration of 87Rb of the investigated bed-
rock (Beard and Johnson 2000; Price, Burton, and 
Bentley 2002; Bentley 2006). Thus, 87Sr/86Sr ratios 
serve as geochemical signatures of certain geological 
formations. Through weathering of the bedrock, sol-
uble strontium gets into the overlying soil layers and 
groundwater (Bentley 2006). Through ingestion, Sr 
isotopes are absorbed into the nutrient cycle of plants, 
animals, and humans and stored in their tissues. Skel-
etal elements mineralise at different times of 
life (Ubelaker 1978). Human tooth enamel mineralises 
during childhood and does not undergo significant 
alteration afterwards; it is also relatively resistant to 
post-mortem diagenesis (Price, Schoeninger, and 
Armelagos 1985; Knipper 2004; Bentley 2006). 
Hence, 87Sr/86Sr values in tooth enamel can provide 
information on the geological area from where the 
food consumed during early life originated (Bentley  
2006). Different 87Sr/86Sr values in the enamel of 
early forming teeth and biological reference samples 
from the last residence/burial place used as an 

Figure 1. 7th/6th c. BC sites in the Sibaritide (after Peroni 1994; Peroni and Vanzetti 2008; D’Alessio and Taliano Grasso 2014; 
Carloni and Pacciarelli 2021; Marino and Colelli 2021). 1: Sybaris; 2: Timpone della Motta; 3: Amendolara; 4: Broglio di Trebisacce; 
5: Castrovillari; 6: Torre Mordillo; 7: Cozzo Michelicchio; 8: Bisignano; 9: Cozzo la Torre Castello Torano; 10: San Sosti; 11: Grotta del 
Tesauro; 12: Rende. Map data: powered by Esri, HERE, Garmin, FAO NOAA, USGS, CIAT-CSI SRTM (https://srtm.csi.cgiar.org), and  
OpenStreetMap, ODbL 1.0.
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approximation to the ‘local’ biologically available stron-
tium, are usually interpreted as indicating changes in 
diet and, related to this, residence changes during life 
(Price, Burton, and Bentley 2002; Bentley 2006). For 
an improved assessment of the isotopic composition 
of the last residence/burial place and human lifetime 
mobility, a fundamental knowledge of the geochemical 
composition not only of the local but also regional 
environment is essential (Bentley 2006; Evans, Mon-
tgomery, and Wildman 2009; 2010). This can be 
achieved by analysing the biologically available stron-
tium in and around the food catchment area of a com-
munity. Although strontium isotopes in the biosphere 
are primarily influenced by its geological underground, 
several atmospheric contributors add to the isotopic 
composition in plants and water. Thus, the local bioa-
vailable strontium is a mixture of different strontium 
in– and outputs, e.g. mineral weathering, rivers, 
springs, rainfall, sea spray, dust, and anthropogenic 
contamination (Price, Burton, and Bentley 2002; Bent-
ley 2006; Thomsen and Andreasen 2019).

The Sibaritide, located in the northeast of today’s 
province of Cosenza (Calabria, Italy) at the Ionian 
Sea, is geologically diverse (Figure 2) and divided in 
different geomorphological zones: Ionian plain, mar-
ine terraces, Pollino and Sila massifs (Cucci 2005; Ele-
velt 2012; added zones 4–5, 7 see Figure 2). The plain 
is traversed by several rivers, which have deposited a 
several metres thick layer of clastic and alluvial sedi-
ments in the lowlands since the Pliocene leading to a 
continuous shift of the coastline to the east (Collella, 
De Boer, and Nio 1987; Cucci 2005; Vespasiano 
et al. 2019). Towards the north, north-west and 
south, the plain gradually rises to the foothills of the 
Pollino and Sila mountains with a band of marine ter-
races extending between the foothills and the alluvial 
plain (Cucci and Cinti 1998; Cucci 2005). Large 
parts of the Pollino mountain range north of the 
Sibaritide are characterised by Mesozoic carbonate 
complexes. The Sila and Catena Costiera mountain 
ranges south of the Sibaritide belong to the Paleozoic 
crystalline Complesso Calabride (Cotecchia 1993; 
Cucci 2005; Vespasiano et al. 2015).

Materials and Methods

Sampling

For a complete isotopic recording of the bioavailable 
strontium in the regions in and around the potential 
food catchment area of the Sibaritic settlements, mod-
ern vegetation and water samples were taken within a 
radius of approx. 50–70 km around Francavilla Marit-
tima. Collecting strategy and spatial distribution of 
sample locations followed the approach published in 
Brönnimann et al. (2018). To avoid possible 

anthropogenic influences (e.g. fertilisers, industrial 
waste, dust, etc.), samples were taken in natural, old 
forests and avoiding constructed, industrial and agri-
cultural areas whenever possible (Declerck et al.  
2006; Britton et al. 2020).

Modern leaf (n = 33) and grass (n = 33) from 33 
locations and water (n = 5) from 5 locations (Tables 1 
and 2) were collected to characterise the bioavailable 
87Sr/86Sr composition of the burial site and its catch-
ment area. The 33 plant sample locations were selected 
(Figure 2) based on the geology of the sampling area. 
Water samples were taken from the five rivers Crati, 
Coscile, Raganello, Caldanello, and Satanasso, which 
flow at <15 km from Francavilla Marittima. All 
sampling locations were recorded using a GPS device 
and documented photographically. Grass and leaf 
samples of approx. 50–100 g each were collected and 
stored separately in zip lock bags and dried. 50 ml of 
river water was taken with a pipette and stored in 
acid-cleaned Teflon containers. For the contextualisa-
tion of the 87Sr/86Sr values measured in water and 
plants, general comparative data (McArthur, Howarth, 
and Bailey 2001; Voerkelius et al. 2010) were consulted.

Sample Preparation and Analysis

Sample preparation for strontium isotope analysis 
took place in the Integrative Prehistory and Archaeo-
logical Science (IPAS), Department of Environmental 
Sciences, University of Basel. Sample treatment fol-
lowed established methods (Maurer et al. 2012; Ger-
ling et al. 2017). Details of the sample preparation 
processes are provided in SI1. Following the chemical 
separation, the samples were analysed for 87Sr/86Sr on 
a Thermo Fisher TRITON Thermal Ionisation Mass 
Spectrometer at the University of Southampton. The 
samples were loaded onto Ta filaments with a Ta acti-
vator solution and run at an 88Sr ion beam of 2 V. The 
standard international reference material NIST SRM 
987 was run alongside the samples, the long-term 
87Sr/86Sr average of SRM 987 for this instrument is 
0.710243 ± 0.000021 (2σ) (n = 303). This is within 
the error of the reported 87Sr/86Sr ratios of NIST 
SRM 987 by Thirlwall (1991) and Avanzinelli et al. 
(2005). Five independent NIST SRM 987 samples, 
that had been through the chemical procedure along 
with the EFM (environment of Francavilla Marittima) 
samples, averaged 0.710240 ± 0.000013 (2σ).

GIS Modelling

ArcGIS Desktop Version 10.6 from ESRI was used to 
create all maps presented in this study. Every per-
formed modelling method highlights unique aspects 
of an isotopic landscape. In order to get the best poss-
ible approximation of the isotopic composition of the 
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landscape, several methodological approaches were 
tested: A distribution map of the 87Sr/86Sr values 
measured in plants and water according to Brönni-
mann et al. (2018), five isotope group maps with 
classifications of the 87Sr/86Sr data according to a) geo-
logical era (three groups), b) geological period (seven 
groups), c) main lithological properties (four groups), 
d) a combination of geological age, rock types, and 
geomorphological zone (21 groups) and e) lithological 
groups from Lugli et al. 2022 (using Isoclasses 2, 3, 7, 
and 8 which correspond with Calabrian geolithologies; 
approaches similar to Evans, Montgomery, and Wild-
man 2009; 2010; and Willmes et al. 2018) as well as a 
prediction model using the Ordinary Kriging method 
as in Willmes et al. (2018).

Kriging is a geostatistical process to estimate a con-
tinuous surface between sampled data points by con-
sidering spatial autocorrelation (Krige 1951). A Root 
Mean Square Error (RMSE) was calculated, and a Pre-
diction Standard Error Map (PSEM) was created to 
check the performance and uncertainty of the gener-
ated Kriging model (Figure s1). For map modelling, 
the mean values of all plant samples per location and 
water values were used (see also SI7 and Table s3). 
Grass sample EFM2 was excluded from the mean 
value calculations due to its unusually high 87Sr/86Sr 
values (see also section 4.1). For the isotope group 
maps, the mean values of the samples from each 
group served as basis for the representation in the 
map (Figure 4).

Figure 2. Geological map of the wider environment of Francavilla Marittima (EFM) in northern Calabria and southern Basilicata 
with 87Sr/86Sr ratios measured in plants (circles) and river water (triangles) in sampling locations EFM1–38 and geomorphological 
zones (expanded after Cucci 2005 and Elevelt 2012) 1: alluvial plain, 2: hill zone with marine terraces, 3: Pollino mountains, 4: 
hinterland of Castrovillari, 5: Catena Costiera mountains, 6: Sila mountains, 7: Crati basin. The 87Sr/86Sr ranges are calculated 
by equal intervals into 10 different classes. Geological map after IGK1500 D6 and Vari, 1970 (modified). Map data: powered by 
Esri, HERE, Garmin, FAO NOAA, USGS, and OpenStreetMap, ODbL 1.0.
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Results
87Sr/86Sr Baseline Data from Modern Water and 
Vegetation

The 87Sr/86Sr ratios of the five river water samples ran-
ged from 0.70820 to 0.71009 (mean 0.70938 ± 0.00071; 
n = 5; Table 1). The isotope ratios measured in plants 
ranged from 0.70817 to 0.71269 (n = 66; Table 2). The 
sampled river waters, grasses, and tree leaves (n = 71) 
gave heterogeneous Sr signals, which reflect the geo-
logical diversity of the study region. A more detailed 
examination of the analysis results is provided in SI3.

The differences between the 87Sr/86Sr values of 
grass and tree samples (Δ87Sr/86Srgrasses-leaves; Figure 
s2) of the same location vary between – 0.00095 and 
+0.00336 (n = 33). A tendency towards smaller 
Δ87Sr/86Srgrasses-leaves (Brönnimann et al. 2018; Isaaki-
dou et al. 2019) occurs more frequently in pairs of 
plants from younger, Cenozoic soils (Figure 3). A dis-
tinct association between the 87Sr/86Sr in grasses and 
trees/shrubs and the mean annual precipitation 
(Figure s3), as proposed in Crete (Isaakidou et al.  
2019) and Israel (Hartman and Richards 2014), 
could not be observed.

Spatial Variation of the Biologically Available 
Strontium in Calabria

The 87Sr/86Sr distribution map (Figure 2) shows the 
isotope value ranges measured within the various geo-
logical units. 87Sr/86Sr ratios are in general low in the 
North (geomorphological zones 1–4) and high in the 
South (zones 5–6) of the study region. Geomorpholo-
gical zone 1 (alluvial plain) has a narrow 87Sr/86Sr 
range of 0.7090–0.7094 (mean 0.70916 ± 0.00021, n  
= 3) due to its homogenous Holocene alluvial sedi-
ment layer. In zone 2 (hills and marine terraces), the 
measured 87Sr/86Sr ranges were narrow over Pleisto-
cene and Pliocene ground with 0.7087–0.7095 and 

widened by schist influence at EFM27 up to 0.7097 
(mean 0.70905 ± 0.00030, n = 15). Zone 3 (Pollino 
mountains) is characterised by an 87Sr/86Sr variability 
of 0.7082–0.7115 (mean 0.70904 ± 0.00077, n = 30), 
due to its heterogeneous geology, including two 
locations (EFM21, 26) with schist influence. This is 
very similar to zone 4 (hinterland of Castrovillari), 
which has an 87Sr/86Sr range of 0.7082–0.7122 (mean 
0.70960 ± 0.00142, n = 9) due to the schist formation 
at EFM8. Paleozoic zone 5 (Catena Costiera) is charac-
terised by a narrow 87Sr/86Sr range of 0.7121–0.7124 
(mean 0.71229 ± 0.00016, n = 4). Zone 6 (Sila moun-
tains) has an 87Sr/86Sr variability of 0.7084–0.7127 
(mean 0.71087 ± 0.00134, n = 9) due to its hetero-
geneous geology.

87Sr/86Sr ranges vary when grouped by geomorpho-
logical zones 1–7, depending on their geological age 
and lithological composition. When grouped by geo-
lithology (Figure 3), however, more homogeneous iso-
tope groups with only few outliers are obtained. In 
general, isotopic differences in the studied region are 
mainly based on geolithological units with occasional 
variations in different geomorphological zones, e.g. 
higher 87Sr/86Sr ratios in Paleozoic Catena Costiera 
vs. lower 87Sr/86Sr ratios in Paleozoic Sila (Figure 3, 
Table s1).

Generated Isoscapes

Several map models were generated to produce a Sr 
isoscape of the area according to various prediction 
methods. With respect to generating isotope groups, 
we compared five potential groupings of sites based 
on information on geology and lithology. The best 
explanation of the variation in the Sr ratio was 
given by the 21 groups (adjusted R2 = 0.799), fol-
lowed by the four groups based on main lithology 
(adjusted R2 = 0.719). All other groupings lead to 
adjusted R2 values of less than 0.53. However, we 

Figure 3. 87Sr/86Sr ratios of modern grass, shrub/tree leaf, and river water samples, grouped by geological periods, and sub-
grouped by lithological units and geomorphological regions. An additional schist group was separated (see also Table s1).
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note that the best R2 value observed for the 21 
groups in part is likely driven by the effect of our 
sampling since in more than half of the classes the 
Sr values are based on only one study site. The cor-
responding isotope group maps are shown in Figure 
4. Both isotope group maps characterise the Pollino 
mountains largely with the 87Sr/86Sr range 0.7085– 
0.7089, with the hinterland of Amendolara having a 
more radiogenic range between 0.7089 and 0.7094 
on average and the western Pollino below 0.7085. 
This probably reflects the rough division of the mas-
sif into the eastern limestone-clay complex and the 
western limestone soil. Also clearly visible in both 
maps are the local schist formations in the Pollino 
mountains. Hill zone, Crati basin, and alluvial plain 
lie within the same 87Sr/86Sr range of 0.7089– 
0.7094. According to their isotope group, the Sila 
foothills have on average lower 87Sr/86Sr values 
between 0.7085 and 0.7089, whereby the extrapolated 
mean value for this region is uncertain due to the 
lack of measurements. Differences between the two 
isotope group maps are mainly seen in the southern 
mountain ranges: While in the map with only four 
isotope groups (Figure 4a, RMSE 0.000672) the crys-
talline basement is generally classified with means 
between 0.7112 and 0.7118, the map with 21 groups 
(Figure 4b, RMSE 0.000568) displays more hetero-
geneity. The Catena Costiera is more radiogenic 
than the Sila region with >0.7122 on average. 
Samples from the central highlands of the Sila massif 
have average values between 0.7113 and 0.7118 and 
in the west between 0.7103 and 0.7108.

After removal of point EFM21 with undue influ-
ence (Figure s4), the Kriging model (RMSE 
0.000883) generally provided similar results (Figure 5): 
The lowest values are in the western Pollino massif. 
The highest 87Sr/86Sr ranges were modelled in the 
Catena Costiera throughout the Crati basin to the wes-
tern Sila mountains. The alluvial plain downhill the 
Sila mountain range has slightly higher 87Sr/86Sr 
values than north of the Coscile and Crati rivers.

Discussion
87Sr/86Sr Isotopic Outliers

As shown in Figure 3, EFM 2, EFM17, EFM1, EFM5, 
and EFM27 are identified as isotopic outliers within 
their geolithological groups. The ground vegetation 
of EFM2 has an unusually high 87Sr/86Sr value for cal-
careous underground (Voerkelius et al. 2010, 0.7070– 
0.7090), maybe due to an influence by atmospheric 
sources or gravel deposits from the surrounding crys-
talline Sila mountains (cf. Evans, Montgomery, and 
Wildman 2009). The Fiume Coscile (EFM17) is low 
in 87Sr/86Sr, probably due to the river’s spring in the 
Jurassic calcareous Pollino, however, still within the 

predicted Mesozoic Sr isotope range of 0.7070–0.7090 
(Voerkelius et al. 2010). Plants from Fossiata (EFM1) 
have lower 87Sr/86Sr values than expected for its Paleo-
zoic granite unit (>0.7100; Price, Burton, and Bentley  
2002; Bentley 2006). Decreased isotope values might 
be an indication for the usage of fertilisers or agricul-
tural lime (Thomsen and Andreasen 2019), but no 
signs of agricultural or other anthropogenic influences 
were observed. A possible explanation might be the 
influence of the snow cover (ca. 0.7092; Hess, Bender, 
and Schilling 1986) at the time of sampling. Although 
low in 87Sr/86Sr, EFM5 is within the expected Paleozoic 
range >0.7100 (Price, Burton, and Bentley 2002; Bent-
ley 2006), and the differences might be interpreted as 
regional variations between the Sila and the Catena 
Costiera mountains. River sample EFM27 has lower 
87Sr/86Sr values as plant samples EFM8 and EFM21, 
although all are primarily influenced by the presence 
of schist, regardless of other mineral components 
within their geological formations or age. The Cretac-
eous catchment areas of the rivers may lead to a 
lower isotope signal despite the local presence of schist. 
Summing up, although geolithology is the main 
influencing factor on Sr isotope compositions, slight 
variations within geological units in different geo-
graphic or geomorphological regions occur.

Evaluation of the 87Sr/86Sr Isoscape Models

By comparing different groupings of site samples, we 
observed that lithological property-based classifi-
cations are more effective than those based on rock 
age. Therefore, within the sampled area, the lithological 
unit present is primarily impacting the strontium in the 
biosphere. The four lithological isotope groups defined 
rather connected areas with good agreement between 
many sites and the group specific values, but a few dis-
tinct exceptions. The main discrepancy described in 
Figure 4a of crystalline and schist is that the classifi-
cation of mean group values is no longer in agreement 
with the majority of the measured values. The crystal-
line Catena Costiera and Sila are characterised with 
values between 0.7113–0.7118 by the model while the 
measured values have increased variability of 0.7096– 
0.7127. With 21 groups (Figure 4b) we have often a per-
fect match with the values of single sites, as many 
groups consist only of one site (cf. Table s1). For 
these 12 lithological units, the map may reflect rather 
the variation in Sr of the sites than of the areas. A sub-
stantial degree of averaging is only performed for one 
group with seven sites, and in this group the range 
from 0.7086–0.7095 was indeed limited.

The Ordinary Kriging model does not take into 
account the geolithological units, which leads to an 
unrealistic smoothing of the formation boundaries 
(Blank et al. 2018). This is particularly visible in the 
areas around Castrovillari and the Crati basin 
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(Figure 5), with significantly more radiogenic 87Sr/86Sr 
ratios than expected based on geology. Simultaneously, 
the measured variations within the geolithological 

units were considered in the interpolation model com-
pared to the isotope group maps (Figure 4). Generally, 
the Kriging model reflects local variations of the 

Figure 4. Two isotope group maps of northern Calabria and southern Basilicata, based on a) the four isotope groups clastic depos-
its (mean 0.70903 ± 0.00028), marine carbonate sediments (mean 0.70885 ± 0.00068), crystalline basement (mean 0.71155 ± 
0.00104), and schist (mean 0.71111 ± 0.00099) and b) the 21 isotope groups shown in Figure 3 and Table s1. The 87Sr/86Sr ranges 
are calculated by equal intervals into 10 different classes. Units with similar geolithological characteristics but no sampled data 
were coloured in 40% transparency. Geological units with no comparative data were left white. Map data: OpenStreetMap, ODbL 
1.0.
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bioavailable strontium and are better suited for small- 
scale analyses. However, as the evaluation of the ana-
lysed plant and water samples has shown, the main 
influencing factor for the bioavailable strontium is 
lithology. Kriging functions lead to spatially continuing 
surface models, which contrasts with the spatially dis-
crete system of geolithological formations and there-
fore with the strontium isotopic landscape (Bowen 
and West 2019). Considering this, we propose the iso-
tope group map with 21 groups (Figure 4b) as the most 
representative isoscape model for the regions in and 
around the Sibaritide. In addition, the plotted 38 data 
points are indicative of the isotopic variations within 
the 21 isotope groups (Figure 2).

Implications of Isotope Mapping on the 
Definition of the Local Bioavailable 87Sr/86Sr at 
Francavilla Marittima

Sampling locations were located up to 70 km from the 
archaeological site of the Timpone Motta, but the 
settlement’s cultivation area in the 1st mill. BC, and 
thus the bioavailable strontium that entered the 
human food web, was much more restricted. Archae-
obotanical (Nisbet 1984; Vallino and Ventura 1984; 
Nisbet and Ventura 1994; Coubray 2001), 

archaeozoological (Attema et al. 1998; Kleibrink  
2006; Elevelt 2012; Post 2014), and archaeological 
land evaluation (Van Joolen 2003) data suggests that 
the protohistoric communities in the Sibaritide prac-
ticed a mixed subsistence economy based on transhu-
mant livestock management, dry farming, gardening, 
gathering, and hunting. The marine terraces on and 
around Timpone Motta are considered as important 
areas for agriculture during the 8th c. BC (Elevelt  
2012; De Neef 2016). Potential pastures for transhu-
mant livestock include the highlands around Contrada 
Maddalena, Monte Sellaro, and San Lorenzo Bellizzi 
during summer (Van Joolen 2003; Kleibrink 2011; 
De Neef 2016) and the coastline between the rivers 
Raganello and Satanasso during winter. The latter is 
discussed as a hunting and foraging ground of the 
Iron Age settlement (Elevelt 2012). Natural springs 
are unknown in the settlement (Kleibrink 2011), mak-
ing it likely that water of nearby rivers served as drink-
ing water, e.g. the river Raganello. During the rainy 
season, rainwater (approx. 0.7092; Hess, Bender, and 
Schilling 1986) could also have been collected. Based 
on these considerations, the potential resources of 
the food catchment area of the Timpone Motta 
cover a range of up to 20 km from the site and include 
87Sr/86Sr values ranging between 0.7085 and 0.7101.

Figure 5. Isoscape map created with Ordinary Kriging (OK) interpolation function, excluding radiogenic point EFM21. The Kriging 
model was calculated with mean 87Sr/86Sr values per sampling locations. The 87Sr/86Sr ranges are calculated by equal intervals into 
10 different classes. Map data: OpenStreetMap, ODbL 1.0.
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The estimation of the local 87Sr/86Sr signature of a 
community is often based on using the 87Sr/86Sr 
mean ± 2SD of locally restricted living archaeological 
fauna or infant teeth (Price, Burton, and Bentley 2002; 
Bentley and Knipper 2005; Bentley 2006; Brönnimann 
et al. 2018). Due to the susceptibility of bone to diage-
netic contamination, bone is considered to reflect the 
isotopic composition of the burial place (Beard and 
Johnson 2000; Knipper 2004; Bentley 2006). Published 
87Sr/86Sr data from the Macchiabate cemetery includes 
four teeth from two infants (Colombi, Villa, and Gug-
gisberg 2018), with a range of 0.70875–0.70885 and six 
bones from adult individuals, resulting in 0.70880– 
0.70917. A comparison to the suggested main agricul-
tural areas of the Timpone Motta community (marine 
terraces, EFM29–33, cf. Table 3) shows that the 
87Sr/86Sr of both, modern plant data and the archaeo-
logical skeletal remains, are in good agreement with 
plant ratios, the latter being slightly more variable.

Macchiabate individuals that fall within the range of 
local 87Sr/86Sr of 0.70889 ± 0.00025 (Table 3) probably 
obtained their food from the agricultural fields sur-
rounding Timpone Motta. Individuals within this 
range could also come from other locations in the Sibari-
tide or from other regions in southern Italy with a simi-
lar isotopic composition, e.g. northern Pollino region, or 
the Crati basin. Modern vegetation and water from the 
area considered as catchment area or settlement terri-
tory of Timpone Motta showed more varied 87Sr/86Sr 
(0.7085–0.7101). This shows that people buried at the 
Macchiabate necropolis could also fall outside the esti-
mated local Sr range when following different nutri-
tional strategies. Humans with tooth enamel 87Sr/86Sr 
falling outside this range (<0.7085 and >0.7101), how-
ever, can be classified as ‘non-local’, at least in respect 
to their 87Sr/86Sr, i.e. not originating from the Timpone 
territory as defined by Peroni (1994).

Non-locals in the Macchiabate Cemetery?

Human skeletons (18 enamel samples from 13 burials) 
from the Macchiabate cemetery dating to the 8th c. BC 
have 87Sr/86Sr ratios between 0.7084 and 0.7097 
(Colombi, Villa, and Guggisberg 2018; Figure 6). 
Based on the comparison between the 87Sr/86Sr values 
in tooth enamel and sediment soil of the necropolis, 
the analysed Macchiabate individuals were interpreted 
as a homogeneous group that grew up in an area of 
‘similar geological features in the Francavilla 

Marittima district’ (Colombi, Villa, and Guggisberg  
2018). All analysed individuals were buried in the 
Oinotrian custom, three of them (Strada 5, Strada 
14, and De Leo 1) were additionally given non-local 
objects.

Ten out of 13 individuals (i.e. twelve out of 18 
tooth samples, Figure 6) lie within the local baseline 
and likely fed on food from the marine terraces 
around the Timpone Motta or an isotopically similar 
region during time of tooth enamel formation. Five 
individuals showed 87Sr/86Sr ratios that are not con-
sistent with the local baseline in at least one enamel 
sample. Based on the isoscape (Figure 4b) these ratios 
are common in the presumed settlement territory of 
the Timpone. It is therefore conceivable that these 
individuals lived within the Timpone territory but 
ate food derived from different agricultural fields, 
e.g. on the Contrada Damale, or Contrada Portieri. 
The four individuals Strada 4–7 can also originate 
from regions farther away, e.g. from the southern 
part of the Sibaritide. All of them were accompanied 
by typical Oinotrian objects attesting to their embed-
ment in a local context. On the other hand, grave 
goods such as the bronze spearhead in grave Strada 
5 testify of specific connections with other regions, 
such as southern Campania (Colombi et al. 2021). 
Isotopic outlier De Leo 1 seems to have a special sta-
tus within the Macchiabate community due to its 
funerary equipment attesting intensive relationships 
with the Greek world. The 87Sr/86Sr values of De 
Leo 1 isotopically match the surroundings of Castro-
villari, the western Pollino mountains, and the east-
ern highlands (Figure 4b), but similar 87Sr/86Sr 
values have been reported from the entire Mediterra-
nean region, e.g. Apulia (Tafuri et al. 2016; Emery 
et al. 2018), Campania (Stark 2016; Stark et al.  
2020), Lazio (Killgrove and Montgomery 2016) and 
northern Italy (Cavazzuti et al. 2019; Milella et al.  
2019). Furthermore, the De Leo 1 87Sr/86Sr values 
match the baselines of various Greek regions estab-
lished by Frank et al. (2021a), e.g. West Greece 
(incl. Achaea, after Voerkelius et al. 2010; Petropou-
los 2015; Hoogewerff et al. 2019; Frank et al. 2021b) 
and Attica (incl. Euboea, after Nafplioti 2011; Petro-
poulos 2015; Hoogewerff et al. 2019).

The isotopic locals Strada 9, 11–12, 14–15, and 17 
have predominantly Oinotrian grave inventories 
except for Strada 14. This woman, ‘local’ to the Tim-
pone community in respect to her 87Sr/86Sr, had ‘exotic’ 

Table 3. Estimated local 87Sr/86Sr signature of the Timpone Motta community based on average ± 2 SD of infant teeth enamel and 
bone samples from the Macchiabate cemetery and modern plant samples from Francavilla Marittima.

samples average local baseline material
87Sr/86Sr 87Sr/86Sr ± 2SD

Baseline of the Timpone Motta 
community

49/2012, 51/2012, 45/2012, 75/2013, FMM2.1, 3.1, 28.1, 
32.1, 33.1 (n=10)

0.70889 0.708886 ± 
0.000248

infant enamel, human 
bones

EFM29-33 (n=10) 0.70887 modern plants
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objects presumably from the eastern Mediterranean 
(Colombi et al. 2021). She also agrees isotopically 
with the eastern Mediterranean, i.e. Knossos (Nafplioti  
2011; Isaakidou et al. 2019), Kea and Euboea (Nafplioti  
2011), as well as Thessaly (Panagiotopoulou et al. 2018) 
and the South Aegean (0.70889 ± 0.00083; Frank et al.  
2021a after Nafplioti 2011; Petropoulos 2015; Hoo-
gewerff et al. 2019). The discussion of ‘isotopic outliers’ 
is solely based on the results obtained from 87Sr/86Sr 
analysis and will be combined with additionally 
obtained δ18O and δ13C data from the tooth enamel, 
currently under investigation.

Conclusions

This paper presents the first high spatial resolution 
87Sr/86Sr isoscape of North Calabria. 66 modern veg-
etation and five river water samples were analysed to 
characterise the bioavailable strontium in the catchment 
area and the wider surrounding of the Iron Age settle-
ment and cemetery at Francavilla Marittima. From the 
four Sr baseline maps that were produced and evaluated, 
the isotope group map with 21 groups obtained the most 
representative results. It has the advantage of taking the 
influencing geolithological formations into account, 
while averaging the isotopic variability within one geo-
logical unit. The generated surface model provides a 
robust basis for archaeological mobility studies at Fran-
cavilla Marittima and the Sibaritide. The geological 
diversity of the region is reflected in the broad range of 
87Sr/86Sr ratios, the heterogeneity of the 21 isotopic 

groups and finally in the isoscape modelling. The esti-
mated 87Sr/86Sr baseline of 0.70889 ± 0.00025 for Fran-
cavilla Macchiabate was compared to the primary food 
catchment area of the Timpone Motta. The generated 
isoscape enables a more detailed differentiation between 
local, regional, and non-locals, e.g. individuals with 
87Sr/86Sr ratios outside the local baseline may have 
belonged to the local community, although feeding on 
food from fields located off the marine terraces. 
Additionally, the presented data set serves as a robust 
baseline for further machine-learning modelling 
approaches. In a future perspective, a combined analysis 
of strontium, oxygen, and carbon isotope data obtained 
from the tooth enamel of the buried skeletons at Franca-
villa Marittima, local land use strategies, and settlement 
dynamics in the Sibaritide as well as the archaeological 
grave findings and additional bioarchaeological studies, 
which is currently under preparation, will support a finer 
differentiation between local and non-local individuals 
in the Macchiabate.
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