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Burgers’ equation is an important mathematical
model used to study gas dynamics and traffic
flow, among many other applications. Previous
analysis of solutions to Burgers’ equation shows
an infinite stream of simple poles born at t =
0+, emerging rapidly from the singularities of the
initial condition, that drive the evolution of the
solution for t > 0. We build on this work by applying
exponential asymptotics and transseries methodology
to an ordinary differential equation that governs the
small-time behaviour in order to derive asymptotic
descriptions of these poles and associated zeros.
Our analysis reveals that subdominant exponentials
appear in the solution across Stokes curves; these
exponentials become the same size as the leading
order terms in the asymptotic expansion along anti-
Stokes curves, which is where the poles and zeros
are located. In this region of the complex plane, we
write a transseries approximation consisting of nested
series expansions. By reversing the summation order
in a process known as transasymptotic summation,
we study the solution as the exponentials grow,
and approximate the pole and zero location to
any required asymptotic accuracy. We present the
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asymptotic methods in a systematic fashion that should be applicable to other nonlinear
differential equations.

1. Introduction
The field of exponential asymptotics, including the associated techniques of analysing so-called
beyond-all-orders terms in asymptotic expansions, has a variety of applications in physics and
mathematics [1–8], in particular to understand Stokes phenomenon [9–11]. The more advanced
use of transseries, transasymptotic summation and the theory of resurgence is less common in
applied mathematics [11–15], although becoming more popular in theoretical physics (see e.g.
[16–21], as well as [22] and references therein). Here, we apply exponential asymptotics and
transseries to locate singularities and zeros of a solution to a second-order ordinary differential
equation (ODE) that comes from studying Burgers’ equation in a small-time limit, using the
method of transasymptotics developed in [23–25]. Our analysis is motivated in part due to
significant contemporary interest in the tracking of complex-plane singularities of solutions
to differential equations [26–31], but also because the methodology presented here should be
applicable to other nonlinear ODEs, including those without exact solutions or the kind of special
properties that Burgers’ equation has (including integrability).

As mentioned, the application we are concerned with is Burgers’ equation

∂u
∂t

+ u
∂u
∂x

= μ
∂2u
∂x2 , x ∈ R, t > 0, (1.1)

which is an extremely well-studied nonlinear partial differential equation (PDE). On the real line,
it illustrates advection-driven wave steepening competing with linear diffusion, and also acts as
an idealized model for a number of physical processes including gas dynamics or traffic flow.
This PDE was studied in the regime μ � 1 using exponential asymptotics by Chapman et al. [5],
where the authors described how singularities in the analytic continuation of the PDE solution
generate behaviour known as ‘Stokes’ phenomenon’. By studying Stokes’ phenomenon in the
solution, the authors explained the onset of smoothed shock fronts at a catastrophe point. Stokes’
phenomenon also plays an important role in explaining the small-time behaviour that we consider
in the present study.

We consider the μ =O(1) regime of Burgers’ equation (1.1), supplemented with an initial
condition that has simple poles in the complex x-plane, appearing as complex-conjugate pairs. As
studied in VandenHeuvel et al. [32] in some detail (as well as Appendix B of [5]), in the small-time
limit there is an inner problem near one of these poles governed by

− 1
2

U − ξ

2
dU
dξ

+ U
dU
dξ

= μ
d2U
dξ2 , (1.2)

where ξ is a similarity variable, subject to the far-field condition

U ∼ − i
2ξ

as ξ → −i∞, (1.3)

(which turns out to act as two boundary conditions). The condition (1.3) is obtained by matching
the solution of (1.2) to a small-time expansion on the real line in x. The main objective of our study
is to use exponential asymptotics and transseries to estimate the location of the singularities and
zeros of U(ξ ) in the complex ξ -plane. To interpret the results in terms of the original model, these
poles and zeros in the ξ -plane are poles and zeros of Burgers’ equation (1.1) that emerge from the
singularities of the initial condition u(x, 0) with direction arg(ξ ) and speed O(t−1/2) as t → 0+.

The problems (1.2) and (1.3) provide an instructive example to apply our methodology for the
following reasons. First, it serves as a prototype for inner problems that arise by treating PDEs
in a small-time limit, or similarity solutions more generally. Second, all singularities of Burgers’
equation are simple poles, so our analysis of (1.2) and (1.3) avoids any complications from branch
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cuts and multiple Riemann sheets. And finally, there is an exact solution of (1.2) and (1.3) (which
can be written in terms of parabolic cylinder functions; see (2.7)) that can be used to check the
results, although this solution itself is difficult to resolve numerically. While our analysis turns
out to be rather detailed in parts, we shall attempt to make the broader strategy accessible to
those interested in other differential equations.

We provide a comprehensive background on exponential asymptotics and transseries in
appendix A. Additionally, a brief stripped-back summary of our methodology is as follows:

— By direct substitution into (1.2), expand the solution U(ξ ) as a divergent series

U ∼
∞∑

m=1

a(0)
m

ξ2m−1 as ξ → ∞, (1.4)

which applies in a sector of the ξ -plane including the negative imaginary axis. This step
is straightforward (see §2).

— Apply techniques in exponential asymptotics to locate the Stokes curves (also known in
the literature as Stokes lines) and determine the leading-order form of the exponentially
small correction, which turns out to be

Uexp ∼ 2π iΛξ−i/2μe−χ ,

where χ = ξ2/4μ and Λ is a constant (see §3). The important Stokes curves lie where χ is
real and positive [33]. This exponentially small term Uexp is said to ‘switched on’ as the
Stokes curves are crossed in the complex ξ -plane.

— Extend the series (1.4) to include full asymptotic expansions for the exponential correction
and its exponential correction, and so on, to obtain a transseries

U ∼
∞∑

m=1

a(0)
m

ξ2m−1 + τ

∞∑
m=0

a(1)
m

ξ2m−1 + τ 2
∞∑

m=0

a(2)
m

ξ2m−1 + · · · =
∞∑

n=0

τn
∞∑

m=0

a(n)
m

ξ2m−1 (1.5)

as ξ → ∞, where τ = σξ−(1+i/2μ)e−χ and a(0)
0 = 0; such an expansion remains well-

ordered provided |τ | � 1, i.e. away from the anti-Stokes curves (also known as anti-
Stokes lines) Re(χ ) = 0 (see §4(a)).

— Write the transseries (1.5) as a transasymptotic summation

U ∼
∞∑

m=0

1
ξ2m−1

∞∑
n=0

τna(n)
m =

∞∑
m=0

Am(τ )
ξ2m−1 , (1.6)

where now τ is no longer required to be small, and therefore (1.6) holds in neighbourhood
of anti-Stokes curves (see §4(b))

— By direct substitution, determine Am (§4(b)) and subsequently locate the singularities
(§5) and zeros (§6) of A0(τ ), A1(τ ), etc., which ultimately provides an asymptotic
approximation for the singularities and zeros of the original function U(ξ ).

As mentioned already, the above procedure does not rely on the exact solution of (1.2) and (1.3)
and can be adopted to other nonlinear ODE problems [23]. We discuss our results in §7 and
conclude in §8.

2. Problem formulation
In this section, we briefly present the formulation of our problem (1.2) and (1.3), summarizing
relevant parts of VandenHeuvel et al. [32]. We first derive the small-time asymptotic behaviour
of Burgers’ equation (1.1) with an initial condition that is singular at x = ±i, and observe that the
small-time expression ceases to be asymptotic in a small neighbourhood about each of the initial
singularities. We then rescale (1.1) to study the behaviour in the neighbourhood of x = i, and find
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that it is governed by (1.2) and (1.3) in a scaled similarity variable. Finally, for reference, we note
the exact solution of (1.2) and (1.3) in terms of parabolic cylinder functions.

(a) Small-time limit of Burgers’ equation
The background for (1.2) and (1.3) starts with Burgers’ equation (1.1) with the initial condition

u(x, 0) = 1
1 + x2 , x ∈ R. (2.1)

This initial condition was chosen as it has a pair of simple poles at x = ±i, which allows us to
more easily apply matched asymptotic expansions to study the small-time behaviour, especially
the birth of infinitely many simple poles that are born at x = ±i at t = 0+ and propagate in the
complex x-plane for t > 0 [5,32] (for initial conditions with other types of singularities, including
branch points, the analysis is much more complicated [32]).

By applying a naive outer expansion of the form

u(x, t) ∼ u0(x) + tu1(x) + t2u2(x) + · · · as t → 0+, (2.2)

we find by direct substitution that

u0 = 1
1 + x2 , u1 = 2(−μ + x + 3μx2)

(1 + x2)3

and

u2 = 60μ2x4 − 32μx + 48μx3 − x2(120μ2 − 7) + 12μ2 − 1
(1 + x2)5 .

In the limit that x → i, we have

u0 ∼ − i
2

1
x − i

, u1 ∼
(

−1
4

− μi
)

1
(x − i)3 , u2 ∼

(
1
4

− 5μ

2
− 6iμ2

)
1

(x − i)5 (2.3)

(with similar expressions in the limit x → −i). Clearly the strongest singular behaviour for u0, u1,
u2, . . ., increases in strength by two at each order, which suggests that (2.2) remains valid for x ∈ C,
except for a region in the neighbourhood of the singular points x = ±i.

(b) Inner expansion near x = i
By comparing terms u0 with tu1 (or tu1 with t2u2, etc.) near x = ±i, we see the expansion (2.2)
ceases to be well-ordered when x ∓ i =O(t1/2) as t → 0+. Understanding what happens near the
points x = ±i is important, because it was shown in [32] that these points generate an infinite
number of singularities in the solution u(x, t) of Burgers’ equation (1.1), which emerge from the
singularities of u0(x) rapidly for small time. For what follows, we will concentrate on the singular
point x = i, but our analysis applies in the same fashion to x = −i.

The above argument suggests an inner region near x = i, which, in terms of the new coordinates

ξ = x − i
t1/2 and u = 1

t1/2 Ū(ξ , t), (2.4)

holds for ξ =O(1) as t → 0+. The form of the second equation in (2.4) comes from substituting
x − i = ξ t1/2 into the leading-order scaling in (2.3), demonstrating that u =O(t−1/2) for the inner
problem. In terms of (2.4), Burgers’ equation (1.1) is written exactly as

t
∂Ū
∂t

− 1
2

Ū − 1
2
ξ

∂Ū
∂ξ

+ Ū
∂Ū
∂ξ

= μ
∂2Ū
∂ξ2 . (2.5)

To leading order, we write Ū ∼ U(ξ ) as t → 0+, so after substituting into (2.5) we end up with our
main ODE (1.2). To match back onto the outer region (2.2), we rewrite (2.3) in terms of the inner
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variables (2.4), which gives

U ∼ − i
2ξ

+
(

−1
4

− iμ
)

1
ξ3 +

(
i
4

− 5μ

2
− 6iμ2

)
1
ξ5 + O(ξ−7) as ξ → −i∞. (2.6)

To leading order, this condition reduces to (1.3). As demonstrated in [32], a Liouville–Green
(WKB) analysis of (1.2) and (1.3) shows that only the leading-term of (2.6) (i.e. (1.3)) is required to
uniquely determine the solution; the correction terms in (2.6) shall be required for our transseries
analysis later on (see (1.4) and (4.3)).

(c) Exact solution of (1.2) and (1.3)
As discussed in [32], our main problem (1.2) and (1.3) has an exact solution (which, as we have
emphasized, we use only for comparing with our asymptotic results), namely

U = 1
2
√

2μ

Up

(
1
2 − i

4μ
, iξ

(2μ)1/2

)
Up

(
− 1

2 − i
4μ

, iξ
(2μ)1/2

) , (2.7)

where Up is a parabolic cylinder function. To derive (2.7), we integrate (1.2) once to give a
Riccati equation, which can be transformed into Kummer’s equation via a change of variable.
The solution follows from carefully enforcing the far-field condition (1.3).

To evaluate (2.7) numerically we can rewrite the solution in terms of hypergeometric functions
which we compute using the HypergeometricFunctions.jl package in JULIA [34]. To
achieve satisfactory resolution, we have had to compute with arbitrary precision using JULIA’s
ArbNumerics.jl package [35,36]. For full details of the derivation and treatment of (2.7),
see [32].

The exact solution (2.7) is illustrated in figure 1a–c via phase portraits for three representative
values of μ. Here, we include only the upper-half ξ -plane, noting that for these values of μ, there
are no poles or zeros in the lower-half plane. In figure 1d, we include a colour wheel that indicates
the phase of the solution [37]. One way to interpret this colour wheel is to note that locally, a
simple zero in figure 1a–c appears locally like the wheel in figure 1d up to rotation, while a simple
pole looks locally like the wheel in figure 1d with the angular direction reversed. Importantly,
from this figure we can visualize a string of poles and zeros that tend to align themselves at
angles arg(ξ ) = π/4 and 3π/4. We shall return to this figure later when we discuss the asymptotic
predictions of these pole and zero locations.

3. Stokes switching analysis
In the limit |ξ | → ∞, the solution to (1.2) and (1.3) exhibits Stokes’ phenomenon in the complex
ξ -plane. This means that subdominant exponential terms are present in different regions of the
solution, and that these terms appear as particular curves, known as Stokes curves, are crossed.
In this section, we will locate the Stokes curves, which are shown in figure 2, and determine
the form of the exponential terms. Further, we will determine the location of anti-Stokes curves,
or curves across which the exponential terms transition in size from exponentially small to
exponentially large. In the neighbourhood of these anti-Stokes curves, an algebraic power series
representation of the solution ceases to be valid, which will lead to a reordering of terms as part
of our transasymptotic analysis in §4.

(a) Power series representation
To study the asymptotic solution to (1.2) and (1.3), we start by setting ξ = z/ε, and treat
the solution when z =O(1). Since U ∼ −i/2ξ as ξ → −i∞, we are motivated to rescale the
dependent variable such that U(ξ ) = εV(z). In these coordinates, studying the large-|ξ | behaviour
is equivalent to taking the small-ε limit while keeping z =O(1).
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Figure 1. Phase plots of the solution of (1.2) and (1.3) (upper-half plane only) for (a) μ = 0.5, (b) μ = 1 and (c) μ = 2,
computed using the exact formula (2.7). The colour indicates the phase according to the colour wheel in (d), where for example
red represents real and positive. Also included in (a–c) are our asymptotic predictions for pole locations (white dots) via (5.15)
and zero locations (black dots) via (6.6).

The exponential asymptotics summarized in this section could be performed in terms of ξ , but
it is more straightforward in the scaled coordinate z; since ε is an artificial small parameter that is
used to index the size of |ξ |, it will not appear in the final result (3.25) when written in terms of ξ .

In terms of z and ε, our governing ODE (1.2) becomes

2ε2

(
μ

d2V
dz2 − V

dV
dz

)
+ z

dV
dz

+ V = 0. (3.1)

Motivated by the far-field condition (1.3), we apply the algebraic power series ansatz

V ∼
∞∑

n=0

ε2nVn(z) as ε → 0, (3.2)

with

V0 = − i
2z

, (3.3)

which describes the solution in a region of the complex plane containing the negative imaginary
axis. From the Stokes structure of the solution, we will later be able to determine the broader
sector in which this power series is valid. By substituting (3.2) and (3.3) into (3.1) and matching
powers of ε, we can obtain a recurrence relation for n ≥ 1,

z
dVn

dz
+ Vn = −2μ

d2Vn−1

dz2 + 2
n−1∑
j=0

dVj

dz
Vn−1−j, Vn(z) = o

(
1
|z|
)

as z → −i∞. (3.4)
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2�

�i�

no exp. corrections

exp. small terms

exp. large terms

poles

zeroes

Stokes curve

anti-Stokes curve

U (�) � –

3

2

1

4

Im (�)

Re (�)

Figure 2. Stokes sectors for the inner problem (1.2) and (1.3). There are no exponential termspresent in the sector containing the
negative imaginary axis, where the boundary condition (1.3) is specified. Any exponentially small terms that could potentially
appear in the expansion would be larger than the boundary behaviour on the negative imaginary axis. This region is shown as
sector①. The anti-Stokes curves in the lower half-plane, therefore, have no effect on the solution. Exponentially small terms
appear across the Stokes curves that follow the real axis, in sectors ② and ④. As the anti-Stokes curves in the upper half-
plane are crossed into sector③, the exponential terms become large, and the asymptotic series terms reorder. The competing
exponentials give rise to simple poles and zeros in the solution, represented by crosses and discs, respectively. The poles and
zeros in this figure come from values computed forμ = 1.

The first few terms of the series are, therefore, given by

V(z) ∼ − i
2z

+
(

z − 2iμ
2z3

)
ε2 +

(
3iz2 + 16μz − 36iμ2

6z5

)
ε4 + · · · as ε → 0. (3.5)

Note that since V0 is singular at z = 0, then so are V1, V2, . . .. Now we must determine the region
in which this power series approximation is valid, and how the solution behaves outside of this
region. We, therefore, need to understand the Stokes’ phenomenon present in V(z).

(b) Late-order terms
A key step in our analysis is determining the asymptotic behaviour of Vn in the limit that n → ∞.
The presence of the summation term in (3.4) means that Vn cannot easily be evaluated exactly for
arbitrary n. Instead, to determine the asymptotic behaviour of the late-order terms, we follow the
method proposed by Chapman et al. [10] and applied in numerous studies (e.g. [2–8]) and assume
that these terms diverge in a factorial-over-power fashion according to the ansatz

Vn ∼ G(z)Γ (n + γ )
χ (z)n+γ

as n → ∞, (3.6)

where χ (z) = 0 at the singular point in the leading-order term V0 (z = 0) and γ is a constant to be
determined. By substituting the ansatz (3.6) into the recurrence relation (3.4) and matching in the
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0.25

–0.25
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Re (Λ)
Im (Λ)

Figure 3. The result of approximatingΛ for different values ofμ. This approximation was obtained by evaluating the ratio in
(B 4) at each value ofμ for n= 1000. This choice ensured that all values converged up to at least six decimal places. The value
of |Λ| becomes large asμ → 0.

limit that n → ∞, we find at the first two orders:

O(Vn+1) : z = 2μ
dχ

dz
(3.7)

and

O(Vn) : z
dG
dz

+ G = i
z

dχ

dz
+ 4μ

dχ

dz
dG
dz

+ 2μG
d2χ

dz2 . (3.8)

Using the condition χ (0) = 0 and solving both of these equations gives

χ = z2

4μ
, G = Λz−i/2μ, (3.9)

where Λ is a constant.
Determining the constant Λ requires using matched asymptotic expansions to ensure that

the late-order terms (3.6) are consistent with a local expansion of the solution in a small
neighbourhood around the pole (z =O(ε) as ε → 0), identified as the region in which the series
terms of (3.2) become comparable in size in the asymptotic limit, and the expansion, therefore,
breaks down. From this matching, we can determine Λ, which depends on μ. The technical details
of this calculation are presented in appendix B. Computed values are presented in figure 3. It is
significant that |Λ| appears to grow indefinitely as μ → 0+; this suggests that our analysis breaks
down in this limit, as the asymptotic scalings are different to those of the small-μ regime, studied
in [5]. The two analyses, ours and that provided in [5], combine to explain the solution behaviour
for both |μ| � 1 and μ =O(1).

The late-order terms (3.6), therefore, take the form

Vn ∼ Λz−i/2μΓ (n + γ )
(z2/4μ)n+γ

as n → ∞. (3.10)

For this expression to be consistent with the leading order (3.3), the strength of the singularity at
z = 0 in (3.10) with n = 0 must be the same as the strength of the singularity in V0 (i.e. equal to
one). Applying this condition shows that γ = 1

2 − i
4μ

.

(c) Stokes switching
Given the divergent asymptotic expansion (3.2) and the late-order terms (3.6), it follows that an
optimally truncated series has an exponential remainder (see (3.16) below). We can determine the
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location of Stokes curves, which are found where this exponential term is maximally subdominant
compared to the leading-order term in the power series [33]; in other words, where

Im(χ ) = 0 and Re(χ ) > 0. (3.11)

These are the curves across which the exponential term is switched by the power series, and hence
behaviour on an exponentially small scale can appear or vanish as these curves are crossed. The
condition on Re(χ ) forces the changing contribution to be exponentially small in the asymptotic
limit, rather than exponentially large.

Anti-Stokes curves are found where the exponential term becomes asymptotically comparable
in size to the algebraic power series. These curves generally denote a change in dominance
between two asymptotic contributions, and satisfy

Re(χ ) = 0. (3.12)

If an anti-Stokes curve is crossed, the terms in the asymptotic series reorder, as the exponential
terms are comparable in size to the algebraic terms. The power series approximation (3.2) is no
longer valid in the region of the complex plane beyond the anti-Stokes curve. The Stokes structure
is illustrated in figure 2.

Note that figure 2 is presented in terms of ξ . While the exponential asymptotic calculations
were performed in terms of z, we recall that taking ε → 0 with z =O(1) corresponds to the limit
|ξ | → ∞. For simplicity of interpretation, we show the Stokes structure in terms of ξ . We will use
the fact that arg(z) = arg(ξ ) to describe the Stokes structure in this section in terms of ξ .

In the red shaded regions of figure 2, the exponential term is larger than the power series. In the
blue shaded regions, the exponential is smaller than the power series. In the unshaded regions,
there are no exponential contributions in the solution.

In the region arg(ξ ) ∈ (−3π/4, −π/4), which contains the negative imaginary axis, any possible
exponential term would necessarily dominate the algebraic leading-order solution in the
asymptotic limit, as Re(χ ) < 0. We, therefore, conclude that there are no exponential contributions
in this region, otherwise the boundary condition (1.3) cannot be satisfied. This region is bounded
by an anti-Stokes curve that satisfies (3.12) along arg(ξ ) = −π/4.

In the region arg(ξ ) ∈ (−π/4, π/4), it can be seen that Re(χ ) > 0, and any exponential term
present in the solution, is small in the asymptotic limit. This region contains a Stokes curve that
satisfies (3.11) along the positive real axis; the exponentially small behaviour in the solution must,
therefore, appear as this curve is crossed into the upper half-plane.

Finally, the curves arg(ξ ) = π/4 and 3π/4 are anti-Stokes curves that satisfy (3.12), across which
the exponential behaviour becomes comparable in size to the algebraic power series. We will use
transasymptotic analysis in §4 to study the asymptotic solution beyond this anti-Stokes curve,
and to approximate the location of the poles, which are generally located in the region arg(ξ ) ∈
(π/4, 3π/4).

(d) Matched asymptotic expansions
There are a number of different methods for determining the behaviour that is switched on as the
Stokes curve is crossed, such as hyperasymptotics or Borel summation methods (e.g. in [1,38–42]).
We apply the matched asymptotic expansion method of Olde Daalhuis et al. [43]. This approach
is typical of Stokes switching analysis (e.g. see similar analyses in [2–8]) but we include an outline
of the details here in order to showcase our full methodology.

We first truncate the power series (3.2) after N terms to minimize the truncation error. We apply
the heuristic from Boyd [44] and truncate after the smallest term in the series. For this purpose, we
use the late-order ansatz (3.6) to identify the value of N at which consecutive terms of the series
are the same size in the asymptotic limit that ε → 0 and n → ∞. This gives N ∼ |χ |/ε2 as ε → 0.
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We, therefore, set the truncation point to be N = |χ |/ε2 + ω, where ω ∈ [0, 1) is chosen so that N
takes integer value. The truncated series is

V(z) =
N−1∑
n=0

ε2nVn(z) + RN(z), (3.13)

where RN(z) is the truncation remainder. If the series is truncated optimally, this remainder will
describe the exponentially small behaviour in the solution [38]. We substitute the truncated series
(3.13) into the governing equation (3.1) and apply the recurrence relation (3.4) to simplify. This
produces

ε2
(

2μ
dRN

dz
− 2V0RN + · · ·

)
+ zRN + i

2
∼ zε2NVN as ε → 0, (3.14)

where the omitted terms are subdominant to those which were retained in the limit ε → 0.
The right-hand side of (3.14) is exponentially small compared to the left-hand side except in an

asymptotically small neighbourhood surrounding the Stokes curve. Applying a Liouville–Green
(or WKB) ansatz to the homogeneous version of (3.14) shows that, away from the Stokes curve

RN ∼ kGe−χ/ε2
as ε → 0, (3.15)

where k is some undetermined constant. Motivated by this expression, we apply a variation of
parameters approach to describe the solution to the inhomogeneous expression (3.14). We replace
the constant k with a function S(z), known as a Stokes multiplier, to give

RN = SGe−χ/ε2
. (3.16)

The Stokes multiplier S captures the rapid variation in the exponential behaviour in the vicinity
of the Stokes curve, while being asymptotically constant away from the Stokes curve. Substituting
this expression into (3.14) and using the late-order ansatz (3.6) for the right-hand side gives

ε2 dS
dz

Ge−χ/ε2 ∼ zε2N

2μ

GΓ (N + γ )
χN+γ

as ε → 0. (3.17)

We apply a change of variables to use χ as the independent variable, and use (3.7) to simplify the
expression. After some algebra, this gives

dS
dχ

∼ ε2N−2 Γ (N + γ )
χN+γ

eχ/ε2
as ε → 0. (3.18)

We now express the singulant in polar coordinates, χ = reiθ . The direction of rapid variation
is perpendicular to the Stokes curve [43], which corresponds to setting r to be constant and
considering only angular variation. We, therefore, set N = r/ε2 + ω. This gives

dS
dθ

∼ ireiθ ε2r/ε2+2ω−2 Γ (r/ε2 + ω + γ )
χ r/ε2+ω+γ

exp
(

r
ε2 eiθ

)
as ε → 0. (3.19)

Applying Stirling’s formula and simplifying this expression gives

dS
dθ

∼ i
√

2πr
ε2γ+1 exp

(
r
ε2 (eiθ − 1 − iθ ) + iθ (1 − ω − γ )

)
as ε → 0. (3.20)

The right-hand side of this expression is exponentially small except in a small neighbourhood near
θ = 0, which corresponds to the Stokes curve. The analysis within [43] shows that this variation
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happens within a neighbourhood of size O(ε) surrounding the Stokes curve. Hence, to determine
the variation, we define a local variable θ = εϑ , and find that

dS
dϑ

∼ i
√

2πr
ε2γ

exp

(
− rθ2

2

)
as ε → 0. (3.21)

Integrating this expression gives

S ∼
∫ ϑ/

√
r

−∞
e−s2/2 ds + C, (3.22)

where C is some constant of integration. In fact, taking the limit that ϑ → −∞ corresponds to
moving into the sector arg(ξ ) < 0, in which the exponential is not present. Hence C = 0. This gives
the jump in exponential behaviour as the Stokes curve is crossed as

[S]+−= lim
ϑ→∞

S − lim
ϑ→−∞

S ∼ 2π i
ε2γ

, (3.23)

and therefore the exponential contribution for arg(ξ ) > 0 is given by

Vexp ∼ 2π iG
ε2γ

e−χ/ε2
as ε → 0. (3.24)

Returning to original coordinates using ξ = z/ε and U = εV gives

Uexp ∼ 2π iΛξ−i/2μe−ξ 2/4μ as |ξ | → ∞. (3.25)

This expression is the leading-order behaviour of the exponential terms in regions where these
terms are present but small in the asymptotic limit (i.e. sectors ② and ④ in figure 2). Note that
the ε parameter disappears entirely from this expression. This is expected, as it was an artificial
parameter introduced to index the size of |ξ |.

We have, therefore, determined the solution behaviour in the complex plane in sectors ② and
④ from figure 2, or arg(ξ ) ∈ (0, π/2) or (3π/4, π ). To continue beyond from these regions into sector
③, or arg(ξ ) ∈ (π/4, 3π/4) requires understanding how the exponential terms behave as the anti-
Stokes curve is crossed.

4. Transasymptotic analysis
We wish to determine the location of the poles and zeros in the solution to (1.2) and (1.3), which
requires studying the behaviour of the solution as the anti-Stokes curves on arg(ξ ) = π/4 and
3π/4 are crossed. As these curves are crossed, the exponentially small terms that appear across
the Stokes curves, described in §3, grow and become asymptotically large. Poles are typically
located along curves that asymptotically approach anti-Stokes curves in the large-|ξ | limit [24], so
locating the poles requires understanding the behaviour of the solution in the region where the
exponentials grow and become asymptotically large.

Approximating the solution behaviour in this region requires first writing the solution in the
region where the exponential terms are small as a transseries, or a double series in multiple
scales which describes both algebraic and exponential asymptotic contributions to the solution
behaviour. The final step is to sum the transseries over all exponential terms at each algebraic
order so that it remains valid even where the exponential terms reorder in size. This process
is known as transasymptotic analysis, and it will produce an expression which we study to
determine the location of poles caused by growing exponential terms in the asymptotic behaviour.
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(a) Formulating the transseries
We begin by integrating (1.2) and applying the boundary condition in (1.3), to obtain

μ
dU
dξ

= −1
2
ξU + 1

2
U2 − i

4
. (4.1)

This is not strictly necessary for what follows, but it reduces the order of the differential equation
and makes the subsequent analysis more straightforward. Note that this integration was not
performed in the previous section as it would not have simplified that analysis in a significant
way.

The transseries must contain a power series for U, as well as the exponentially small terms
whose leading-order behaviour is given by (3.25). Furthermore, due to the nonlinearity in the
problem, the transseries will contain exponential terms with exponents that are integer multiples
of the exponential term in (3.25) [22,42]. The presence of these additional exponentials suggests
that we apply a transseries of the form

U(ξ ) ∼
∞∑

n=0

σ ne−nξ 2/4μUn(ξ ) as |ξ | → ∞, (4.2)

where Un(ξ ) can be represented as a power series in ξ−1, and σ is a transseries parameter. This
quantity corresponds to the free parameter allowed by the first-order ODE (4.1), and encodes
initial or boundary conditions. Stokes phenomenon can be concisely encoded by changing the
value of σ in different regions of the plane. In regions with no exponential terms, we will set
σ = 0. In the remaining regions, σ will be determined from the exponential contribution derived
in §3, given explicitly in (3.25).

In sector ① of figure 2, corresponding to arg(ξ ) ∈ (−π , 0), there are no exponentially small
contributions. We capture this behaviour by setting σ = 0, which means that the asymptotic
solution behaviour is entirely described by the power series (2.6). The analysis in §3 showed
that exponentially small terms are present in sectors ② and ④, or arg(ξ ) ∈ (0, π/4) and (3π/4, π ),
respectively, which have the leading-order behaviour given in (3.25). In these sectors we set σ 
= 0,
which produces exponentially small transseries terms.

The power series expansion for U0 as ξ → ∞ may be found by direct substitution (or by
matching with the outer expansion via (2.6)); we find that

U0(ξ ) ∼ − i
2ξ

+
(

−1
4

− iμ
)

1
ξ3 +

(
i
4

− 5μ

2
− 6iμ2

)
1
ξ5 + O(ξ−7) as |ξ | → ∞. (4.3)

Matching at higher orders of the exponential term gives equations for the subsequent transseries
components,

μ
dUn

dξ
= (n − 1)

2
ξUn + 1

2

n∑
j=0

UjUn−j, n ≥ 1. (4.4)

We treat (4.4) differently for the case n = 1, which causes the first term on the right-hand side to
vanish. A Green–Liouville (or WKB) analysis of the solution for n = 1 gives

U1 ∼ K1ξ
−i/2μ as |ξ | → ∞. (4.5)

where K1 is a constant that has yet to be determined. If n > 1, the first term on the right-hand side
of (4.4) does not vanish, and the asymptotic dominant balance is obtained by balancing the terms
on the right-hand side. This gives

Un ∼ Knξ1−n(1+i/2μ) as |ξ | → ∞, (4.6)

where Kn = (−1)n+1K1. The power of ξ in (4.6) suggests that we write the transseries (4.2) as

U(ξ ) ∼
∞∑

m=1

a(0)
m

ξ2m−1 +
∞∑

n=1

σ nξ−n(1+i/2μ)e−nξ 2/4μ
∞∑

m=0

a(n)
m

ξ2m−1 , (4.7)
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where a(n)
m is the constant in the mth term in the power series associated with Un. The range of

index m is chosen for a(0)
m so that the powers of ξ are consistent for corresponding choices of m

across the n = 0 and n > 0 cases. Finally, we are able to write (4.7) as a typical transseries ansatz
by defining a new variable τ ,

τ = σξ−(1+i/2μ)e−ξ 2/4μ, (4.8)

Note that τ is exponentially small in sectors ② and ④ of the solution, corresponding to regions in
which the exponential terms are present and small. We collect the terms to write

U(ξ ) ∼
∞∑

n=0

τn
∞∑

m=0

a(n)
m

ξ2m−1 . (4.9)

which is valid in the limit that |ξ | → ∞ in regions where the exponential contributions are
asymptotically small, or τ → 0; this corresponds to |ξ | → ∞ in the sector arg(ξ ) ∈ (−5π/4, π/4).

We require that a(0)
0 = 0 is consistent with (4.7) and the power series solution, which is O(ξ−1)

as |ξ | → ∞. The values of a(0)
n for n ≥ 1 may be read directly from the series (4.3), giving

a(0)
1 = − i

2
, a(0)

2 = −1
4

− iμ, a(0)
3 = i

4
− 5μ

2
− 6iμ2. (4.10)

We may obtain all terms of the form a(0)
m by directly calculating subsequent terms of the algebraic

power series (4.3).
We determine σ by considering the term indexed by a(1)

0 , given by τξa(1)
0 . This term is the

leading-order behaviour of the first exponential correction to the power series, and is given by
Uexp from (3.25) in sectors ② and ④. By equating these expressions, we have

τξa(1)
0 = 2π iΛξ−i/2μe−ξ 2/4μ. (4.11)

Substituting the definition of τ in (4.8) into (4.11) and simplifying the result shows

σa(1)
0 = 2π iΛ. (4.12)

We are free to set σ = 2π iΛ, which gives a(1)
0 = 1. Recall that σ = 0 in sector ①. The value of σ is

different on either side of Stokes curves in the complex plane—this is typical behaviour for the
transseries parameter.

We now substitute the transseries (4.9) into the differential equation (4.1) and match at higher
orders in τ, recalling that τ → 0 exponentially fast as |ξ | → ∞. At higher orders, we find

O(τ ) : a(1)
1 = i

2
+ 1

8μ
and O(τξ−1) : a(1)

2 = 3iμ
2

+ 1
2

+ 1
128μ2 . (4.13)

We can continue to match in this fashion, and it is straightforward to compute an arbitrary
number of coefficients a(n)

m in both the m- and n-indexed directions. Incrementing m gives

a(1)
3 = 10iμ2 + 55μ

12
− 7i

16
+ 1

24μ
− i

256μ2 + 1
3072μ3 , (4.14)

while incrementing n gives

a(2)
0 = −1, a(2)

1 = 2μ − 1
4μ

, a(2)
2 = −12μ2 − 7iμ + 1

4
+ i

8μ
− 1

32μ2 . (4.15)

The values presented in (4.10) and (4.13) give sufficient information about the behaviour in sectors
② and ④ to approximate the pole locations in sector ③.

(b) Transasymptotic analysis
The transseries (4.9) is a valid asymptotic expression for the solution behaviour in arg(ξ ) ∈
(−5π/4, π/4). In sector ①, or arg(ξ ) ∈ (−π , π ), the exponential terms are absent, so σ = 0. In sectors
② and ④, or arg(ξ ) ∈ (0, π/4) and arg(ξ ) ∈ (−5π/4, −π ), the exponential terms are small, and
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hence τ is exponentially small in the limit that |ξ | → ∞. To determine the location of poles in
the solution, we must approximate the behaviour in arg(ξ ) ∈ (π/4, 3π/4), or sector ③. Continuing
the solution into this region requires extending the expression (4.9) so that it remains valid as the
anti-Stokes curves are crossed and the exponential terms in the transseries become asymptotically
large.

The key idea of transasymptotic analysis is that the terms in the transseries (4.2) can be
resummed to approximate the behaviour in regions where τ is not exponentially subdominant
compared to ξ . This is possible because the transseries (4.2) describes all of the subdominant
exponential terms in the solution; hence, any change in the asymptotic balance of the problem
corresponds to a rearrangement of the terms in the transseries.

For convenience, we rewrite the transseries as

U(ξ ) ∼
∞∑

n=0

∞∑
m=0

τna(n)
m

ξ2m−1 , (4.16)

as |ξ | → ∞ and τ → 0, where we set a(0)
0 = 0 to be consistent with (4.9). This is a divergent

asymptotic series, and we change the order of summation to obtain the asymptotically valid
expression

U(ξ ) ∼
∞∑

m=0

1
ξ2m−1

( ∞∑
n=0

τna(n)
m

)
, (4.17)

as |ξ | → ∞ and τ → 0. Finally, we sum the series over the index n. This is the resummation step,
which allows us to describe the asymptotic solution behaviour even in regions where τ is not
small. We write the resultant expression as

U(ξ ) ∼
∞∑

m=0

Am(τ )
ξ2m−1 , (4.18)

which is valid as |ξ | → ∞, irrespective of the size of τ . In regions of the complex ξ -plane where
the inner sum of (4.17) converges, it is equal to Am(τ ); however, Am(τ ) can also be evaluated in
regions of the complex plane where the inner sum does not converge. It is a continuation of the
inner sum from (4.17) to the entire complex plane.

Substituting (4.18) into the differential equation (4.1) gives an expression for the series terms

μ

∞∑
m=0

(
1

ξ2m−1
dAm

dξ
− (2m − 1)Am

ξ2m

)
= − ξ

2

∞∑
m=0

Am

ξ2m−1 + 1
2

∞∑
l=0

∞∑
m=0

AlAm

ξ2l+2m−2
− i

4
. (4.19)

Because τ is a function of ξ , the chain rule gives

dAm

dξ
= dτ

dξ

dAm

dτ
= −τ

[
ξ

2μ
+ 1

ξ

(
1 + i

2μ

)]
dAm

dτ
. (4.20)

Applying (4.20) to (4.19) and matching terms as |ξ | → ∞ gives the recurrence relation

A0 − A2
0 − τ

dA0

dτ
= 0, (4.21)

A1 + 2μA0 − 2A0A1 − τ
dA1

dτ
− (i + 2μ)τ

dA0

dτ
+ i

2
= 0 (4.22)

and Ak+1 − 2μ(2k − 1)Ak −
k+1∑
m=0

AmAk+1−m − τ
dAk

dτ
− (i + 2μ)τ

dAk

dτ
= 0, k ≥ 1. (4.23)

Solving (4.21) gives

A0(τ ) = τ

k + τ
, (4.24)

where k is an arbitrary constant. To determine the value of this constant, we must match this
expression to the leading exponential behaviour in sector ②, or (3.25), where τ is small. In this
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region, the inner sum from (4.17) converges, and

A0(τ ) =
∞∑

n=0

τna(n)
0 ∼ a(0)

0 + τa(1)
0 + O(τ 2) as τ → 0. (4.25)

Recall that a(0)
0 = 0 and a(1)

0 = 1. Hence, we find that A0(τ ) ∼ τ as τ → 0, so k = 1 and

A0(τ ) = τ

1 + τ
. (4.26)

This rational expression is singular at τ = −1. This is sufficient for us to approximate the pole
locations to leading order; however, it is straightforward to improve the approximation by
calculating the first correction term, A1.

The governing equation for A1(τ ) is given by (4.22), and the boundary condition can be found
by considering the behaviour of A1(τ ) in sector ②, where τ → 0 and the inner sum of (4.17)
converges. In this region, we have

A1(τ ) =
∞∑

n=0

τna(n)
1 ∼ a(0)

1 + τa(1)
1 + O(τ 2) as τ → 0. (4.27)

Using the values determined in (4.13), we find that

A1(τ ) ∼ 1 +
(

i
2

+ 1
8μ

)
τ as τ → 0. (4.28)

Solving (4.22) subject to this boundary condition gives

A1(τ ) = 1
(1 + τ )2

[
τ (1 − 4μi)(1 + 4μiτ )

8μ
− i

2

]
. (4.29)

The functions A0(τ ) and A1(τ ) provide sufficient information for us to approximate the pole
locations in sector ③ up to the first correction term in the limit that |τ | → 0. We could continue
this process to find further corrections using (4.23), with boundary conditions that depend on a(0)

m

and a(1)
m . For instance, the next correction term is

A2(τ ) = − 1
128μ2(1 + τ 3)

(32μ2(32μ2 + 12iμ − 1)τ 3 + 32μ2(1 + 4iμ) +

+ (192iμ3 + 32μ2 − 1)τ + (1536μ4 + 704iμ3 − 128μ2 − 16iμ + 1)τ 2). (4.30)

Finally, we approximate the behaviour of U(ξ ) in sector ③ using the resummed series (4.18), as
well as (4.26) and (4.29),

U(ξ ) ∼ τξ

1 + τ
+ 1

ξ

1
(1 + τ )2

[
τ (1 − 4μi)(1 + 4μiτ )

8μ
− i

2

]
+ O(|ξ |−3) as |ξ | → ∞. (4.31)

This expression has the correct asymptotic behaviour in sector ②, and can be extended past the
anti-Stokes curves at arg(ξ ) = π/4 and 3π/4.

Note that (4.31) only applies in regions where σ 
= 0, or the upper-half complex plane. In the
lower-half plane we instead have σ = 0, and therefore Ak(τ ) = 0 for k ≥ 0. We, therefore, do not
predict any far-field poles to be located in sector ①, or the entire lower-half complex plane (poles
close to the origin of the ξ -plane may lie in the lower-half plane, and indeed this does occur for
μ � 0.147 [32]).

5. Pole locations
From the form of (4.26), we see that the singularities occur at τ ∼ −1 as |ξ | → ∞, which can be
mapped back to coordinates in (x, t). We can obtain a correction term to this expression which
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permits us to approximate the pole locations more accurately. We will write the corrected pole
location as

τ ∼ τ0 + τ1ξ
−2 + τ2ξ

−4 + · · · as |ξ | → ∞. (5.1)

We know that all poles in the solution must be simple, and therefore write

U(ξ )
ξ

= P(τ )
τ − τ0 − τ1ξ−2 − τ2ξ−4 − · · · , (5.2)

where P(τ ) is a polynomial expression. Expanding (5.2) as |ξ | → ∞ gives

U(ξ )
ξ

∼ P(τ )
τ − τ0

+ τ1P(τ )
ξ2(τ − τ0)2 + O(|ξ |−4). (5.3)

Now, we compare (5.3) with (4.31). Dividing (4.31) throughout by ξ gives

U(ξ )
ξ

∼ τ

1 + τ
+ 1

ξ2(1 + τ )2

[
τ (1 − 4μi)(1 + 4μiτ )

8μ
− i

2

]
as |ξ | → ∞. (5.4)

Matching the first term of (5.3) with that of (5.4) near τ = τ0 gives

τ0 = −1, P(τ ) = τ . (5.5)

We obtain τ1 by matching the second term of (5.3) with that of (5.4) in the vicinity of τ = τ0 for
large |ξ |. Matching (5.3) and (5.4) requires

P(τ0)τ1 =
[

τ0(1 − 4μi)(1 + 4μiτ0)
8μ

− i
2

]
, (5.6)

and gives

τ1 = − i
2

+ 1
8μ

− 2μ. (5.7)

To obtain further corrections to the pole position, we would have to include further corrections to
U(ξ ) in (4.25). For instance, if we include A2(τ ) from (4.25), a similar analysis shows that

τ2 = 8μ2 − 1
128μ2 + 9μi

2
. (5.8)

We now have sufficient information for us to approximate the pole locations explicitly in terms
of ξ . We need to invert the expression

τ = σξ−αe−ξ 2/4μ ∼ −1 + τ1ξ
−2 + · · · as |ξ | → ∞, (5.9)

where we define α = 1 + i/2μ for notational convenience, and τ1 is given in (5.7). After taking
logarithms of both sides and some further algebraic manipulation, we find

log(σ ) − α

2
log(ξ2) − ξ2

4μ
+ (2M + 1)π i ∼ log

(
1 − τ1

ξ2 + · · ·
)

, (5.10)

where M is any integer. For large values of |M|, the poles will be located at

ξ ∼ ±
√

8μiMπ as |M| → ∞. (5.11)

Here the positive (negative) sign is associated with positive (negative) M, so that the poles lie
in the first (second) quadrant. The result is a string of poles along the rays arg(ξ ) = π/4 and
arg(ξ ) = 3π/4, corresponding to the anti-Stokes curves labelled in figure 2. The expression (5.11)
agrees with the leading-order approximation from VandenHeuvel et al. [32], obtained from a
transcendental equation derived using properties of the exact solution (2.7).

The derivation of (5.11) only requires A0(τ ), which in turn requires only the explicit calculation
of a(0)

0 and a(1)
0 . In order to improve the accuracy of (5.11), we will use the correction term A1(τ ).

We set
rp = log(σ ) + (2M + 1)π i, (5.12)

and we will find an asymptotic expression for the pole location in the limit that |rp| → ∞, which
corresponds to M → ∞. Although we are only determining the asymptotic behaviour of the pole
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locations in this limit, we will compare our results to numerical solutions in §7 and find that the
approximations are accurate even for poles that are relatively close to the origin.

Note that (5.10) only contains ξ2 terms, so we can write a series expression for this variable.
Due to the logarithmic term in (5.10), we expect that this series also contains logarithmic terms.
We set

ξ2 ∼ c0rp + c1 log(4μrp) + c2 + c3 log(4μrp)
rp

+ c4

rp
+ · · · , (5.13)

where the omitted terms are small in the limit that |rp| → ∞, and the 4μ in the logarithmic terms
is included for algebraic convenience. By substituting this into (5.10) and matching as |rp| → ∞,
we find

c0 = 4μ, c1 = −2μα, c2 = 0, c3 = α2μ, c4 = τ1. (5.14)

We combine these terms to obtain

ξ2 ∼ 4μrp − 2μα log(4μrp) + α2μ log(4μrp) + τ1

rp
+ · · · , (5.15)

where rp depends on M, which takes integer values that index the poles. The expression (5.15)
gives an asymptotic expression for ξ2, and hence it is straightforward to compute ξ . More terms
could be obtained using the expression in (5.8) for τ2, but we do not require any further corrections
here. Note that this approximation becomes more accurate as |M| grows, because |rp| grows
correspondingly.

6. Zero locations
We apply an essentially identical method to determine the asymptotic location of zeros of U(ξ ).
We write the location of the zeros of U(ξ ) as τ ∼ τ0 + τ1ξ

−2 + τ2ξ
−4 + · · · as |ξ | → 0, as before.

From (4.26), it is evident that τ0 = 0 yields A0(τ0) = 0.
Substituting the series expression for τ into (5.4) and setting U(ξ ) = 0 gives

τ1ξ
−2

1 + τ1ξ−2 + 1
ξ2(1 + τ1ξ−2)2

[
τ1ξ

−2(1 − 4μi)(1 + 4μiτ1ξ
−2)

8μ
− i

2

]
+ O(|ξ |−4) = 0, (6.1)

as |ξ | → ∞. Matching terms in (6.1) at leading order as |ξ | → ∞ gives τ1 = i/2, and hence that the
location of the zeros of U(ξ ) satisfies τ ∼ i/2ξ2 as |ξ | → ∞. We determine the location of zeros by
inverting the expression

τ = σξ−αe−ξ 2/4μ ∼ τ1ξ
−2 + · · · as |ξ | → ∞. (6.2)

By taking the logarithm of both sides and rearranging, we find that

log(σ ) − α − 2
2

log(ξ2) − ξ2

4μ
+ 2Mπ i ∼ log

(
i
2

+ · · ·
)

, (6.3)

where M is any integer. This approximation is valid for large |ξ |, and hence M. For large values of
|M|, this expression gives the asymptotic relation

ξ ∼ ±
√

8μiMπ as |M| → ∞, (6.4)

which is identical to the leading behaviour of the pole locations, given in (5.11). The description of
the pole and zero locations in (5.11) and (6.4) is consistent with the behaviour seen in [32], where
it was shown that the poles and zeros interlace. Consequently the difference between the pole
zero locations is small compared to |ξ |, and should not appear at leading order as |M| → ∞.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 O

ct
ob

er
 2

02
3 



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20230516

..........................................................

–10 –5 0 5 10
0

5

10

0

5

10

15

–20 –10 10 200
0

10

20

Im
 (
ξ)

Im
 (
ξ)

Im
 (
ξ)

–15 –10 –5 0 5 10 15
Re (ξ)Re (ξ)

Re (ξ)

(a)

(c)

(b)

Figure 4. Comparison of numerical poles and zeros with asymptotically calculated pole positions for (a)μ = 0.5, (b)μ = 1
and (c)μ = 2. The numerical poles and zeros are represented by empty blue and red circles, respectively. The asymptotic pole
and zero locations from (5.15) and (6.6) are represented by filled blue and red circles, respectively. The anti-Stokes curves are
shown as grey lines. The asymptotic results provide accurate predictions of the pole and zero locations, with increasing accuracy
for larger |ξ |.

We use identical methods to the previous section to invert (6.3). First, comparing this equation
with (5.10) we see that it is natural to define

rz = log(2σ ) + (2M − 1
2 )π i, (6.5)

and we then invert expression (5.10) to obtain

ξ2 ∼ 4μrz − 2(α − 2)μ log(4μrz) − 6μπ i + 4μlog2 as |ξ | → ∞. (6.6)

Note that π i/2 − log2 = log(τ1). Because τ1 is the leading contribution to the position of the zeros,
we do not have sufficient accuracy to compute r−1

z corrections for the variable ξ , unlike in the
pole calculations. We could obtain more terms of accuracy in this expression using the value
of τ2 from (5.8) in the inverted expression for τ (6.2), but (6.6) is sufficient to obtain reasonable
approximations for the zero locations. Finally, note that there is some numerical imprecision for
larger values of |ξ |, which is visible in figure 4 for the case μ = 0.5.

7. Results and discussion
We now compare the transasymptotic predictions (5.15) and (6.6) with the numerically calculated
pole and zero locations, obtained numerically from the exact solution (2.7) given in [32] (see
§2(c)). Examples are provided in figure 4 for (a) μ = 0.5, (b) μ = 1 and (c) μ = 2. Note that there is
some loss of numerical precision in the calculations for locating zeros via the exact solution for
larger values of |ξ |, particularly in the μ = 0.5 case. As this is the region in which the asymptotic
predictions are most accurate, this provides further motivation for studying poles using both
asymptotic and numerical approaches.

For both poles and zeros, the asymptotic approximation becomes more accurate as |M|
increases, corresponding to poles and zeros that are further from the origin. For smaller values
of |M|, the pole locations are significantly more accurate than the zero locations; this is expected,
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Figure 5. Comparison of asymptotic and numerical predictions of pole locations (denoted ξa and ξn, respectively), for (a)μ =
0.5, (b)μ = 1 and (c)μ = 2. Poles in the first quadrant are represented by blue circles, while poles in the second quadrant are
represented by red circles. In each case, the absolute error decreases as |ξn| increases, due to the increase in |M|.

as we obtained more terms of accuracy in the approximation for the pole locations (5.15) than in
the approximation for the zero locations (6.6). Further, for the values of μ used in figure 4, it is
remarkable that the approximations (5.15) and (6.6) are particularly effective for identifying the
location of the nearest pole and zero to the real axis, which, as we have just noted, are the least
accurate.

Returning to figure 1, we overlay the asymptotic predictions of poles (5.15) and zeros (6.6) on
phase portraits of the exact solution (2.7) of (1.2) and (1.3). We can see the phase changes rapidly
in the vicinity of each pole and zero. Indeed, these plots support the claim made in VandenHeuvel
et al. [32] that the simple poles and simple zeros occur in interlaced pairs. This pattern is explained
by the form of (5.12) and (6.5). The poles are offset by (2M + 1)π i and the zeros are offset by
(2M − 1/2)π i, where M ∈ Z. This will result in each pole being nearest to a particular zero with an
offset that differs by π i/2.

In figure 5, we show the error in the pole positions for each value of μ. The location of the
poles obtained from the numerical solution is denoted as ξn, and the location of the poles obtained
from the asymptotic solution is denoted as ξa. By plotting the difference between the numerical
and asymptotic pole locations as a function of |ξn|, we see that the accuracy of the approximation
increases as |M|, and hence |ξn| grows.

Finally, we emphasize that poles and zeros of U(ξ ) relate to Burgers’ equation (1.1) via
x = i + t1/2ξ . Thus, in the x-plane each pole and zero moves with speed O(t−1/2) as t → 0+.
For a discussion about the ultimate behaviour of these poles for the initial condition (2.1), see
[32]. Included in [32] is an application of matched asymptotic expansions to determine the
leading-order location of poles for t =O(1) and t � 1. This brief analysis exploits the fact that
a series expansion for large x has a leading-order term that is the same size as the exponential
correction along anti-Stokes curves, which suggests an appropriate rescaling. In this way, the
matched asymptotic expansions approach in [32] for t =O(1) and t � 1 is similar in spirit to our
own analysis for t � 1 (although the former only derives a first-order approximation for pole
locations).

8. Conclusion
We have studied solutions to (1.2) and (1.3), which represents the small-time solution to Burgers’
equation (1.1) near singular points of the initial condition (2.1). This work was motivated by
VandenHeuvel et al. [32], who used special function theory to show that the analytic continued
solution (2.7) contains two rays of simple poles and simple zeros which rapidly stream out of the
singularities of the initial condition (2.1) for t � 1.

We have presented a methodology (based on [23–25]) to approximate locations of poles and
zeros in the solution of (1.2) and (1.3) for μ =O(1), which, in principle, allow us to derive
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asymptotic expansions to arbitrary asymptotic order. This approach does not rely on the exact
solution or special function theory in any way, and can be applied to differential equations which
do not have such a convenient formulation.

The approach used is as follows:

— We applied exponential asymptotics to determine the Stokes structure of the solution,
and to calculate the form of exponentially small terms (3.25) that appear across Stokes
curves.

— We expressed the solution as a transseries (4.9), which contains all of the subdominant
exponential contributions to the solution. This transseries is asymptotically valid in
regions where the exponential terms are small.

— We switched the order of summation in the transseries, and summed the expression over
all exponential terms at each algebraic order. This allowed us to extend the range of
asymptotic validity so that the new series (4.18) describes the solution in regions where
the exponentials are large.

Using this method, we calculated the location of poles and zeros in the transseries expression,
which we then inverted to obtain asymptotic expressions for the pole locations (5.15) and zero
locations (6.6) in terms of the original coordinate ξ . These could be extended to include further
corrections using additional terms in the transseries (e.g. those in (4.14) and (4.15), or (4.30)).

Another purpose of this study was to illustrate the relationship between exponential
asymptotics and transasymptotic analysis, and how they combine to describe the solution to
differential equations. This connection is explicit in that the exponentially small contribution
described in (3.25) was used to specify the transseries parameter σ . This parameter fixed the
transseries coefficients a(n)

m , and hence the boundary conditions used to solve the differential
equations for A0(τ ) and A1(τ ). Exponential asymptotics describes the small exponential
contributions that appear across Stokes curves, and transasymptotic analysis allows us to find an
asymptotic expression for the solution when these contributions become large across anti-Stokes
curves. Together, the methods provide a rather complete picture of the solution behaviour.

There are extensions to this analysis which were not considered here. As discussed in [32],
if the complex singularities in the initial condition for Burgers’ equation (1.1) are not simple
poles, we must introduce an extra boundary layer into the small-time analysis. In general, we
expect additional complications of this nature to arise when the strength of the singularity in the
initial condition does not match the strength of singularities in the solution of the PDE for t > 0
predicted by dominant balance arguments. For Burgers’ equation, this further work will involve
the prediction of branch point locations in the solution (see [26]).

Finally, we note that singularities and zeros of solutions to ODEs are often arranged in more
complicated lattices, rather than rays (as we have been dealing with here for (1.2)). This famously
occurs in solutions to the Painlevé equations (e.g. [25,29]), which frequently describe the solutions
to partial differential equations near catastrophes, as in [45]. For solutions to ODEs with a lattice
of singularities, the transasymptotic analysis for locating singularities and zeros becomes more
complicated; we either have to resolve each ray of the lattice individually [25], or use more
sophisticated methods to determine the full lattice behaviour (see [27]).
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Appendix A. Background on exponential asymptotics and transseries

(a) Exponential asymptotics
Exponential asymptotic methods were developed by Berry [9,46] and others to study
exponentially small contributions to asymptotic expansions for singularly perturbed problems
which Stokes’ phenomenon [47]. This theory describes the rapid appearance of exponentially
small contributions as certain curves in the complex plane, known as Stokes curves, are crossed.
Exponential asymptotics provides a means to study this switching behaviour in the exponentially
small terms.

The version of exponential asymptotics that we use here in our study was developed by
Chapman et al. [10] and Olde Daalhuis et al. [43]. Typically, this method involves writing the
solution V(z; ε) of some singularly perturbed equation as a power series such as (3.2). We obtain
an expression for Vn by substituting the series (3.2) into the governing equation and matching
terms at powers of ε. To calculate each term Vn, we typically differentiate earlier terms in the
power series. If the leading-order solution V0 contains singularities in the z-plane, the repeated
differentiation guarantees that later terms in the series must contain stronger singularities in
the same location, and therefore exhibit asymptotic behaviour known as ‘factorial-over-power
divergence’ [33].

To capture the factorial-over-power divergence, Chapman et al. [10] proposed an asymptotic
ansatz for the terms Vn in the limit n → ∞, known as ‘late-order terms’, of the form (3.6). We set
γ to be constant, and G and χ are functions of the independent variable but are independent of n.
The function χ is known as the ‘singulant’. It is equal to 0 at each singularity of the leading-order
solution, meaning that each Vn is also singular at the these points. The function G is known as the
‘prefactor’.

By substituting (3.2) and (3.6) into the governing equation and matching orders of ε, we can
find χ and G. To determine γ , we apply the condition that the late-order terms (3.6) must have
the same singularity strength as V0 if we set n = 0.

The series (3.2) is then truncated. A key result from Berry [9,46] is that if the series is truncated
optimally to minimize the truncation error, the remainder will be exponentially small, and can
be studied to determine the behaviour of the exponentially small contributions. We define this
truncation point to be n = N − 1 and obtain

V =
N−1∑
n=0

ε2nVn + Vexp, (A 1)

where RN is the exponentially small truncation remainder.
By substituting (A 1) into the governing equation, we can obtain a new equation for the

exponentially small remainder term. Following Olde Daalhuis et al. [43], we can apply matched
asymptotic expansions in the neighbourhood of the Stokes curve to find that the remainder has
the form

Vexp ∼ SGe−χ/ε2
as ε → 0, (A 2)

where S is known as the Stokes multiplier; it is a function of the independent variables in the
problem. The Stokes multiplier is essentially constant except in the neighbourhood of Stokes
curves, where it undergoes a rapid jump, often switching the contribution on or off entirely.
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From (A 2), we see that the singulant controls the asymptotic behaviour of the exponential
term in the expression. Finding the singulant allows us to determine the location of the Stokes
curves, as Stokes switching occurs along the curves where the exponential is most asymptotically
subdominant compared to the leading-order power series. This corresponds to the condition
(3.11). Stokes curves originate at singular points of V0, where χ = 0, and follow curves on which
(3.11) is satisfied. This method, therefore, determines both the form of the exponentially small
terms (A 2) and the location of the curves across which this behaviour appears (3.11).

The other important class of curves is anti-Stokes curves, which satisfy (3.12). These are curves
where the exponential terms are no longer exponentially small, but are in fact algebraic in the
asymptotic limit. The series (3.2) is not able to accurately describe the solution behaviour beyond
these curves, as the series is no longer asymptotically valid. The competition between these
growing exponential terms is what will give rise to poles and zeros in the solution of the original
problem, so locating these poles and zeros requires continuing the solution past the anti-Stokes
curves. For this purpose, we apply transseries methods.

(b) Transseries
Transasymptotics was introduced in the context of Painlevé equations to predict the position
of movable poles given boundary data [23–25]. The theory has been effectively used to extend
models of relativistic hydrodynamics [26,48,49] and field theories [50] beyond their initial regime.
Further, it has been used in previous analysis of the Burgers equation for small viscosity [5], and
to predict the appearance of different scales in discrete bifurcation phenomena [12].

The starting point for our transseries method is constructing the asymptotic series of some
solution U(ξ ) in powers of a large parameter ξ . We denote the algebraic power series for U(ξ ) in
the limit that |ξ | → ∞ as U0, where

U0(ξ ) ∼
∞∑

m=0

a(0)
m

ξm . (A 3)

The asymptotic expansion of U(ξ ) can also contain exponentially small terms, which have
asymptotic series of their own that are not contained within U0(ξ ). We represent the exponent
of these terms, which will be the singulant from §A(a), by χ (ξ ); in some references, this exponent
is known as the action. In nonlinear problems, integer multiples of each exponential contribution
also appear, with higher integers creating successively smaller exponential terms. We denote the
series for each exponential term as Un, where

Un(ξ ) ∼ ξnβe−nχ(ξ )
∞∑

m=0

a(n)
m

ξm . (A 4)

If Re(χ ) > 0, the exponential term is small in the asymptotic limit. Typically, exponentially small
terms appear as Stokes curves are crossed. If we continue the solution across anti-Stokes curves
into regions of the plane where Re(χ ) < 0, the exponential terms become large, and the series
terms reorder.

To study the behaviour of the solution in regions beyond anti-Stokes curves, we require an
asymptotic description that includes not only its algebraic (or perturbative) power series, but
also the exponentially small (or non-perturbative) contributions. We track these contributions
by writing an expression for the solution known as a ‘transseries’, which is a multiple series
expansion in both the large parameter ξ as well as the exponential terms e−χ(ξ ), or

U(ξ ) ∼
∞∑

n=0

σ nUn(ξ ) =
∞∑

n=0

σ nξnβe−nχ(ξ )
∞∑

m=0

a(n)
m

ξm . (A 5)

We have introduced a transseries parameter σ which encodes information about initial or
boundary conditions. In regions where there are no exponentially small terms we set σ = 0. If we
continue past a Stokes curve that produces exponentially small contributions, we select a nonzero
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value of σ using the known leading behaviour of the exponential contributions obtained using
exponential asymptotics.

The expression in (A 5) is the simplest transseries that can be written, and is suitable for
solutions to nonlinear ODEs containing multiples of a single exponential. Problems containing
multiple exponential contributions, such as [2], require transseries that contain integer multiples
of each distinct exponential, each of which has a corresponding transseries parameter.

The series associated with each exponential in the transseries (A 5) are all asymptotic, and
accurate numerical values can be found using summation techniques [1,22,38–42]. The transseries
in (A 5) also provides a starting point for analytically continuing past the anti-Stokes curve.

We now use a method known as ‘transasymptotic summation’, which corresponds to changing
the order of summations in the transseries (A 5) and taking the sum over all exponentials at each
power of ξ−1. We write

U(ξ ) ∼
∞∑

m=0

1
ξm

∞∑
n=0

(σξβe−χ(ξ ))na(n)
m =

∞∑
m=0

Am(τ )
ξm , (A 6)

where we introduced the new variable τ and functions Am such that

τ = σξβe−χ(ξ ), Am(τ ) =
∞∑

n=0

τna(n)
m . (A 7)

Note that this equality for Am is only valid in sectors where τ → 0 as |ξ | → ∞; outside of these
sectors, Am is equal to the analytic continuation of the summed expression. This definition allows
us to continue the summed expression (A 6) beyond anti-Stokes curves and into regions of the
plane where τ is not necessarily small in the asymptotic limit. Hence, while the original transseries
was obtained with the assumptions e−χ(ξ ) � |ξ |−1 � 1, the transasymptotic summation allows us
to study regions where the parameter ξ is large,1 but the exponentials are not small.

The functions Am(τ ) satisfy ordinary differential equations with boundary conditions that
depend on a(n)

m . In general, poles and zeros in τ will be introduced by the nonlinear differential
equation for A0. Subsequent terms Am for m ≥ 1 are generated by linear equations and do not
introduce new poles; instead, these terms provide asymptotic corrections to the locations of the
poles that appear in the leading order A0.

Finally, we will express the pole and zero locations in τ as a series in ξ−1, and invert the
expression to obtain an asymptotic description of the pole locations in terms of ξ that is valid
as |ξ | → ∞. We will apply the same general procedure to also determine the location of zeros in
the solution.

Appendix B. CalculatingΛ

In order to determine the late-order terms Vn in (3.6), we require the value of Λ, or the constant
associated with the prefactor. To accomplish this, we note that the series expression (3.2) fails to be
asymptotic when consecutive terms are of equal size in the limit ε → 0. From the late-order terms
(3.6), we see that this occurs if z2/4μ =O(ε2) in this limit. This suggests that a sensible rescaling
is given by z/2

√
μ = εẑ, which we apply to (1.2). We define a new variable governing the solution

behaviour in this region, V(z) = V̂(ẑ)/ε, giving the re-scaled equation

1
2

d2V̂
dẑ2 − 1√

μ
V̂

dV̂
dẑ

+ ẑ
dV̂
dẑ

+ V̂ = 0. (B 1)

To match with the late-order terms, we must determine the behaviour of the solution in this inner
region in the limit |ẑ| → ∞. We, therefore, pose the series

V̂(ẑ) ∼
∞∑

n=0

V̂n

ẑ2n+1 , as |z| → ∞. (B 2)

1Although these approximations are typically accurate even for values of |ξ | that are not particularly large.
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Figure 6. The approximate value ofΛ, denoted asΛapp, obtained using the value of V̂n over a range of n in the expression
(B 4). In each case,Λapp converges to a constant value as n grows. (a) Estimate of Re(Λ) after n iterations and (b) estimate of
Im(Λ) after n iterations.

Applying the series (B 2) to the differential equation (B 1) gives V̂0 being arbitrary, and

V̂n =
(

n − 1
2

)
V̂n−1 + 1√

μ

n−1∑
j=0

(
j + 1/2

n

)
V̂jV̂n−j−1, n ≥ 1. (B 3)

By rewriting the inner expansion (B 2) in terms of the outer variable z and comparing it with the
late-order term ansatz (3.6), we see that the matching condition is given by

Λ = lim
n→∞

V̂n(4μ)i/4μ

Γ (n + 1
2 − i

4μ
)
. (B 4)

To determine V̂0, we note that V̂n must grow factorially in n as n → ∞ in order for (B 4) to
converge. Assuming that n grows in this fashion, we see that for large n,

V̂n ∼
(

n − 1
2

+ V̂0√
μ

)
V̂n−1 as n → ∞. (B 5)

Comparing this to (B 4) gives the requirement that V̂0 = −i/4
√

μ, in order for the factorial growth
to be consistent between the inner limit of the outer expansion and the outer limit of the inner
expansions. We can now use (B 4) to determine numerical values of Λ by calculating V̂n for large
values of n, and testing to see the value to which the ratio converges. In figure 6, we illustrate this
approximation procedure for μ = 0.5, 1 and 2. In figure 3, we illustrate values of Λ over a range
of μ values, obtained by evaluating the ratio in (B 4) at n = 1000 in order to approximate Λ.
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