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A B S T R A C T

Effective elastic moduli of lattice-based materials are one of the most crucial parameters for the adoption
of such artificial microstructures in advanced mechanical and structural systems as per various application-
specific demands. In conventional naturally occurring materials, these elastic moduli remain invariant under
tensile and compressive normal modes or clock-wise and anti-clock-wise shear modes. Here we introduce
programmed domain discontinuities in the cell walls of the unit-cells of lattice metamaterials involving a
bi-level microstructural design to achieve non-invariant elastic moduli under tensile and compressive normal
modes or clock-wise and anti-clock-wise shear modes. More interestingly, such non-invariance can be realized
in the linear small deformation regime and the elastic moduli can be tailored to have higher or lower value
in any mode compared to the other depending on the placement and intensity of the discontinuities in a
programmable paradigm. We have derived an efficient analytical framework for the effective elastic moduli of
lattice materials taking into account the influence of domain discontinuity. The axial and shear deformations
at the beam level are considered along with bending deformation in the proposed analytical expressions.
The numerical results ascertain that the domain discontinuities, in conjunction with unit cell level geometric
parameters, can impact the effective elastic constants significantly under different modes of far-field stresses.
It is further revealed that the degree of auxeticity of such lattices can be programmed to have target values
(including non-invariance under different modes of deformation) as a function of the intensity and location
of domain discontinuity when axial and shear deformations are included at the beam level. Realization of
the unusual non-invariant elastic moduli of bi-level architected lattice materials would lead to a range of
technologically demanding niche applications where one mode of deformation requires more or less force
to deform compared to the opposite mode. Besides being able to perform as a load-bearing component, the
proposed metamaterial can be used as an integrated sensor for measuring the level of stress or strain in
structures.

. Introduction

Artificially engineered lattice-based materials, a class of mechanical metamaterials, exhibit mechanical properties which are not found in
onventional structural materials directly obtained from nature (Sinha and Mukhopadhyay, 2023). Their microstructural design can result in
nprecedented characteristics such as negative mass density, negative elastic moduli, auxeticity, ultra property characteristics like specific strength
nd stiffness, lightweight features, meta-fluid properties, tunable constitutive relations, active and programmable properties etc. Mukhopadhyay
t al. (2020a), Kolken and Zadpoor (2017), Mukhopadhyay et al. (2019), Fleck et al. (2010), Lai et al. (2011), Karlicic et al. (2021), Cummer et al.
2016), Singh et al. (2022) and Isanaka et al. (2022). They have attracted the scientific community due to their properties that span across different
anges catering to application-specific multi-functional demands of the modern industry.

Periodic structural forms and lattices are available in naturally occurring systems as well as engineered mechanical systems in plenty across the
ength scales (Ding et al., 2019; Mukhopadhyay and Adhikari, 2017; Gibson and Ashby, 1999). Sandwich structures exploit the lightweight property
long with high specific stiffness of honeycomb lattices as cores making them attractive for different mechanical and structural systems (Yongquiang
nd Zhiquiang, 2008; Mukhopadhyay and Adhikari, 2016b; Zenkert, 1995). Apart from being found across macro and micro scales, the lattice
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Fig. 1. Bi-level unit cell based approach for analyzing non-invariant lattices. (A) A typical regular honeycomb lattice with programmed domain discontinuity (zero-thickness
cuts partially across the depth). (B) Unit cells that can represent the entire honeycomb lattice. (i) Non-auxetic hexagonal unit cell. (ii) Auxetic hexagonal unit cell. (iii) Rectangular
unit cell. (iiv) Rhombic unit cell. (C–E) Structural derivatives of a hexagonal lattice that can be obtained by considering the geometric parameters appropriately. For example, the
re-entrant auxetic structure (with negative Poisson’s ratio), rectangular lattice structure and rhombic lattice structure can be obtained by considering 𝜃 as negative, 𝜃 as zero and
ℎ as zero, respectively. (F) Degrees of freedom of a single cell wall with cuts, considering it as a beam element. The lattice is formed from periodic repetition of these beams.
Here, a bottom-up methodology is adopted for analyzing the effective elastic moduli of lattice materials. We have taken into account the deformation mechanics of the beam-like
members at local-level in the analysis considering bending, axial and shear deformation in conjunction with the effect of the cuts introduced. Then we analyze a unit cell which is
made-up of beam-like members to derive the analytical formulations of the five in-plane elastic moduli. At this stage, we have considered the effect of geometry of the unit cells.
The elastic moduli thus derived following a unit cell based approach could subsequently be utilized in the design of different engineering structures.

structures are also available in nano-scale (Mukhopadhyay et al., 2017). Normally a unit cell (Gibson and Ashby, 1999) or representative volume
element (Omairey et al., 2019) based approach is adopted to evaluate the effective mechanical properties of such periodic structures. Based on
unit cell approach, anisotropy and elasticity tailoring in lattices made up of constituting members of multiple materials is presented in a recent
study (Mukhopadhyay et al., 2020b, 2023) that essentially stretches the design sphere when compared to uni-material lattices, where geometry of
microstructure is the most influential parameter. More lately, the Young’s moduli are found to be actively modulated by varying the voltage in peizo-
electric lattice materials (Singh et al., 2020). The irregularities in lattice materials due to manufacturing has been looked into by considering voronoi
honeycombs (Li et al., 2005; Zhu et al., 2001, 2006) and controlled random distortion of the periodic geometry (Mukhopadhyay and Adhikari,
2016a, 2017). The effect of intrinsic pre-existing stresses have been studied for honeycombs that can essentially be attributed to manufacturing
irregularities or additional design parameter for novel material innovation (Sinha and Mukhopadhyay, 2022). A study on the geometric non-linear
response of lattice materials to obtain their large-strain elastic response has been reported (ElNady et al., 2016). Exploiting the periodicity of lattice
structures, the effective elastic properties of 2D lattices have been computed using mechanics based codes (Karathanasopoulos et al., 2020). A large
volume of works in the field of architected materials include the evaluation of elastic properties using homogenized response of lattice materials (Dos
Reis and Ganghoffer, 2014; El Nady et al., 2017; Rahali et al., 2017; Dos Reis and Ganghoffer, 2012a,b; Karathanasopoulos et al., 2018). Some of the
other critical recent developments concerning elastic properties of honeycomb lattice metamaterials involve nonlinear anti-curvature lattices (Ghuku
and Mukhopadhyay, 2022; Prajwal et al., 2022; Ghuku and Mukhopadhyay, 2022), chiral, anti-chiral, hierarchical (Mousanezhad et al., 2016),
bi-level micro-topology architected lattices (Kundu et al., 2022) and 3D connected double loop (3DCDL) lattices (Mukhopadhyay and Kundu, 2022).

A careful review of the recent literature on honeycomb lattices reveals that several studies have been reported to modulate the effective elastic
properties primarily depending on the unit cell geometry. In this paper we focus on a relatively new approach of bi-level designs, wherein the
effective lattice-level properties are functions of unit cell geometry as well as beam-level architecture. Based on such bi-level design paradigm we
aim to propose novel metamaterials with non-invariant (i.e. not same) elastic moduli under different modes of deformation within the linear elastic
regime (refer to Fig. 1). In conventional materials, the elastic moduli under tension and compression modes or clockwise and anti-clockwise shear
modes are normally invariant (i.e. same) within the linear elastic regime. To modify this behavior, one straightforward architecture could be to
introduce discontinuities (zero-width or near-zero width cuts) as shown in Fig. 2(A, B). It can be realized that the stress required to deform such
structures under tension would be lesser than that under compression because of the fact that different cross-sectional areas participate in bearing
the applied load for the two different modes of deformation. If a metamaterial is designed based on this concept by adopting such architecture at the
microscale, it is possible to have non-invariant Young’s modulus under tension and compression. However, the tensile Young’s modulus will always
be lesser than that in the compressive mode for this particular architecture. In this paper, we exploit the idea of domain discontinuity (zero-width
or near-zero width cuts) to extend it further in the framework of lattice based bi-level architectures (refer to Fig. 1) to achieve non-invariant
effective elastic moduli under normal and shear modes (within the linear elastic regime), where any one of the modes (tension and compression
or clock-wise and anti-clockwise) can have higher or lower elastic moduli compared to the opposite mode. The extent of difference between the
2
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Fig. 2. A typical beam with domain discontinuity. (A) Behavior of a simple beam with cuts in compression. (B) Behavior of a simple beam with cuts in tension. (C) Beams
with three different boundary conditions. (i) Beam with one end clamped and no rotation allowed at the other. (ii) Beam with one end clamped and other free. (iii) Free body
diagram of the slant member of a hexagonal unit cell considered for derivation of elastic moduli (refer Fig. 3). (iv) Bending moment diagram of the slant member of unit cell,
denoting that it acts similar to two cantilever beams of lengths 𝑙∕2 joined at the center (note that bending moment is zero at the center).

two opposite modes (i.e. degree of non- invariance; expressed as a ratio later in this paper) and which of the modes provides higher elastic moduli
would depend on the placement of the discontinuities as well as the depth of the cuts. Besides investigating the effective Young’s moduli and shear
modulus, we also aim to investigate the non-invariance in in-plane Poisson’s ratios under tensile and compressive modes.

In the current work, we will first utilize the Euler–Bernoulli beam theory to derive the analytical formulations of the effective elastic moduli
for the lattice-based non-invariant metamaterials taking into account the bending deflections of the beam-like members. Then we will extend
the framework to account for the effect of axial deflection and shear deformation (Timoshenko beam theory) at the beam-level for a more
generalized and accurate analysis. In this article, we deal essentially with lattices of hexagonal shape (refer to Fig. 1(A)) with non-auxetic and
auxetic configurations along with their derivatives such as rhombic and rectangular lattices (refer to Fig. 1(B–E)). Note that hexagonal lattices
and their derivatives are chosen here as they are primarily bending dominated and the non-invariant properties with the flexibility of having
higher values in either tensile or compressive modes (and clockwise or anti-clockwise modes) are achievable, which may not necessarily be the
case in stretching dominated lattices. This article is, henceforth, structured as follows, Section 2: mechanics-based derivation of the formulations
of non-invariant elastic moduli of lattices with domain discontinuities, Section 3: numerical results taking into account different lattice geometries
and configurations, Section 4: conclusion and prospective impact of the current work.

2. Analytical derivation for effective elastic moduli of non-invariant lattice metamaterials

We have followed a bi-level bottom-up approach to calculate the elastic moduli based on the basic definitions by obtaining the stress and
corresponding strain components. Since the lattices are periodic structures, a unit cell can be analyzed with periodic boundary conditions to evaluate
the effective homogenized properties of the entire lattice. The global stress field is uniform in a periodic structure and it can be converted to point
loads at the joints of the unit cells locally based on the dimensions and periodicity of the unit cells. Further, since each of the unit cells consists
of a collection of beams, the total deformation and strain of the unit cell are derived based on the combined effect of these beam deformations.
However, the loading and boundary conditions of these beams need to be carefully imposed to conform the unit cell level periodicity and global
uniform stress field. In such unit cell based analyses, the implicit assumption is that there is a large number of cells (normally more than 21 × 21
cells, approximately) so that the boundary effects become negligible. While the unit cell level structural properties such as ℎ∕𝑙, 𝑡∕𝑙, 𝜃, 𝛼 define the
effective elastic moduli, for a particular geometry of the unit cell (i.e. a set of these values), the number of unit cells will not have any effect on
the homogenized effective elastic moduli beyond the converged number of cells as mentioned above.

Here, we would derive the five independent in-plane elastic constants of hexagonal honeycomb lattices with domain discontinuity (zero-width
or near-zero width cuts) by considering a unit cell with beam-like members as shown in Fig. 1(A, B(i) and F). For that purpose, we analyze the
local-level deformation behavior of the beam members as shown in Fig. 1(F), which are then used in the derivation of analytical formulations of
the elastic constants of the hexagonal lattice through a unit cell based approach. The effective elastic constants thus derived following a unit cell
framework is representative of overall mechanical characteristics of the lattice material (refer to Fig. 1(A)) that could subsequently be adopted for
further structural designing.

At the beam level, we define 𝐸, the Young’s modulus of the constituting beam-like members and at the global level, the in-plane elastic constants
(𝐸1, 𝐸2, 𝜈12, 𝜈21 and 𝐺12) are derived for the entire lattice. Thus the lattice-level effective elastic moduli are functions of both 𝐸 as well as the beam
and unit-cell level architectures. This allows us to have different elastic constants based on different geometric parameters (beam and unit cell
3
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Fig. 3. Mechanics of non-invariant honeycombs under different normal far-field stress conditions. Based on the placement of domain discontinuity, we propose two different
configurations here as shown in the two columns of subfigures (Configuration 1 in the left column and Configuration 2 in the right column). (A, C) Deformation behavior of
a honeycomb subjected to uniform compressive stress field 𝜎1 applied in the direction-1, for Configuration 1 and Configuration 2, respectively. (B, D) Bending deformation of
the slant member of the honeycomb subjected to compressive stress field 𝜎1, for Configuration 1 and Configuration 2, respectively. The longitudinal Young’s modulus 𝐸1 and the
Poisson’s ratio 𝜈12 are derived from this configuration. (E, G) Deformation behavior of a honeycomb subjected to uniform compressive stress field 𝜎2 applied in the direction-2,
for Configuration 1 and Configuration 2, respectively. (F, H) Bending deformation of a slant member of the honeycomb subjected to compressive stress field 𝜎2, for Configuration
1 and Configuration 2, respectively. The derivations of the transverse Young’s modulus 𝐸2 and the Poisson’s ratio 𝜈21 are carried out using this configuration. (I, K) Deformation
mechanics of a honeycomb under the uniform tensile stress field 𝜎1 applied in the direction-1, for Configuration 1 and Configuration 2, respectively. (J, L) Bending deformation
of a slant member of the honeycomb subjected to tensile stress field 𝜎1, for Configuration 1 and Configuration 2, respectively. (M, O) Deformation mechanics of a honeycomb
under the uniform tensile stress field 𝜎2 applied in the direction-2, for Configuration 1 and Configuration 2, respectively. (N, P) Bending deformation of a slant member of the
honeycomb subjected to tensile stress field 𝜎2, for Configuration 1 and Configuration 2, respectively. The open cuts are shown using red color and the closed ones using green
color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

level architectures), while keeping the intrinsic material unchanged. In this article, the focus is on beam-level architecture in the form of domain
discontinuity (zero-width or near-zero width cuts) that leads to the non-invariant elastic behavior. The global lattice-level non-invariant behavior
depends on the placement of cuts, based on which we propose two different configurations here.

As shown in Fig. 1(A), we place the cuts in two halves of the constituting beams in two opposite faces. The typical deformed shapes of the
honeycomb unit cells under different modes of normal and shear stresses are shown in Figs. 3 and 4, wherein it becomes evident that the cuts in
both halves of the beams will either open or close in the opposite modes of normal and shear deformations. This leads to a non-invariant behavior
under tension and compression, or clockwise and anti-clockwise shear. We propose two configurations of beam-level architecture: Figs. 3(A, E, I
and M) show Configuration 1 and Figs. 3(C, G, K and O) show the Configuration 2. Depending on whether the cuts open or close, the elastic moduli
under one mode will be lower or higher compared to the opposite mode, respectively. For example, Young’s modulus for direction 1 corresponding
to the Configuration 1 will have higher value in tensile mode compared to the compressive mode, while an opposite behavior would be realized
for the Configuration 2.
4
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Fig. 4. Mechanics of non-invariant honeycombs under different shear stress conditions. (A) Typical shapes of undeformed honeycomb lattice unit cells for evaluating in-plane
shear modulus. (B) Deformation behavior of a honeycomb subjected to the anti-clockwise shear stress field 𝜏. (C) Deformation behavior of a honeycomb subjected to clockwise
shear stress field 𝜏. (D) Forces and moments acting on the honeycomb members under the anti-clockwise shear stress field 𝜏. (E) Displacements and rotations of the honeycomb
members subjected to anti-clockwise shear stress field 𝜏. We would use this configuration to derive the shear modulus 𝐺−

12. Here the cuts of the members BD and BC open as they
are in tension, while those of the member AB close as they are in compression. (F) Forces and moments acting on the honeycomb members under clockwise shear stress field 𝜏.
(G) Displacements and rotations of the honeycomb members subjected to clockwise shear stress field 𝜏. We would use this configuration to derive the shear modulus 𝐺+

12. Here
the cuts of the members BD and BC close as they are in compression, while those of the member AB open as they are in tension. The open cuts are shown using red color and
the closed ones using green color. Note that this figures are used for deriving the shear moduli considering beam-level bending deformations. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

2.1. In-plane elastic properties of Configuration 1

2.1.1. In-plane elastic moduli considering only beam-level bending deformation

2.1.1.1. Longitudinal Young’s modulus 𝐸1. To obtain the analytical formulation of longitudinal Young’s modulus, we consider that the unit cell is
subjected to a uniform compressive stress 𝜎1 in the longitudinal direction. This stress gives rise to force 𝑃 at the ends of the constituting beam
member (refer to Fig. 3(A–B)). The force 𝑃 that acts on the joints of a member of the unit cell, in the direction of the applied stress, 𝜎1 is given as

𝑃 = 𝜎1𝑏(ℎ + 𝑙 sin 𝜃) (1)

Fig. 3(B) shows the deformed shape of the slant member of the unit cell, with 𝛿 depicting the transverse deformation of the inclined member. When
in compression due to the application of 𝜎1, the cuts that are on the convex side of the deformed member open up. Let the depth of cuts be 𝛼𝑡,
where 𝛼 (where 0 ≤ 𝛼 < 1) is a parameter defining intensity of the cuts and 𝑡 is the thickness of the cell walls. When the value of 𝛼 is 0, it means
that there is no cut and it acts like conventional beams. This is also the case of closing cuts under a certain mode of lattice-level deformation.
When the value of 𝛼 tends to 1, it corresponds to the case of a discontinuous beam, leading to lattices with zero elastic moduli (or in other words,
not a feasible microstructural configuration). Thus the value of 𝛼 needs to be less than 1. As the value of 𝛼 increases from 0 towards 1, the lattice
becomes softer and the elastic moduli reduce under the opening mode of beam deformations. In the present work, there is an implicit assumption
that the lattice does not fail due to material failure, buckling, or plasticity. We deal with the small deformation regime where the linear elasticity
theory is valid. However, under large deformation, there is a scope for defining the upper limit of 𝛼 based on beam-level failure criteria. In such
cases, beam length-wise programmed gradation in 𝛼 can further be introduced to enhance the failure strength. The consideration of failure strength
is beyond the scope of this paper and we keep it for future studies. In Eq. (1), 𝑏 represents the width of the rectangular beam cross-section. It is
5
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a dimension in the direction perpendicular to the 2D plane of the lattice. We get the corresponding second moment of inertia, 𝐼 =
𝑏[𝑡(1 − 𝛼)]3

12
hen the cuts open. However, we have 𝐼 = 𝑏𝑡3

12
, when the cuts close. For all the lattice-level analyses carried out in this paper under normal and

shear stresses can be performed by considering two different boundary conditions: (1) one end clamped and the other end rotationally restrained
(translation allowed) with transverse point load applied to the rotationally restrained end, (2) a cantilever beam with transverse point load applied
to the fixed end. The boundary conditions and deflection profile for the first case is shown in Fig. 2(C)(i) and that for a cantilever beam is shown in
Fig. 2(C)(ii). Noting that the bending moment at the midpoint of a slant beam is zero (refer to Fig. 2(C)(iii) and (iv)), we realize that the transverse
deflection of the end point for a full-length beam with the first boundary condition can also be found out by analyzing a half-length beam with
cantilever boundary condition. Thus, the deflection 𝛿 can be expressed as

𝛿 = 2 ×
𝑃 sin 𝜃 (𝑙∕2)3

3𝐸𝐼

=
( 𝑙
𝑡

)3 𝑃 sin 𝜃
𝑏𝐸 (1 − 𝛼)3

(2)

The moment 𝑀 (given by 𝑀 = 𝑃 𝑙 sin 𝜃∕2), shown in Fig. 3(B), has a much higher value than the couple 𝑀𝑡 (given by 𝑀𝑡 = 𝑃 cos 𝜃𝛼𝑡) arising due
the force 𝑃 , and thus we ignore the effect of the couple with the assumption 𝑀 ≫ 𝑀𝑡, which leads to

tan 𝜃 ≫ 2𝛼
( 𝑡
𝑙

)

(3)

The above relation is strictly valid for thin to moderately thick cell wall of honeycombs. Total deflection along 𝜎1 (i.e. direction -1) is 𝛿1 = 𝛿 sin 𝜃.
Strain along direction of 𝜎1 is, therefore, given as

𝜀1 =
𝛿1

𝑙 cos 𝜃

= 𝑃 𝑙2 sin2 𝜃
𝑏𝐸𝑡3 (1 − 𝛼)3 cos 𝜃

=
( 𝑙
𝑡

)3 𝜎1
(ℎ
𝑙
+ sin 𝜃

)

sin2 𝜃

𝐸 (1 − 𝛼)3 cos 𝜃

(4)

Now the Young’s modulus along direction-1, under the application of compressive stress 𝜎1 can be given by

𝐸𝐶
1 =

𝜎1
𝜀1

=
( 𝑡
𝑙

)3 𝐸 (1 − 𝛼)3 cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)

sin2 𝜃

(5)

Similarly, let us consider tensile stress 𝜎1 be applied to the unit cell for the derivation of longitudinal Young’s Modulus. The cuts get closed
in this case (unlike under the compressive far-field stress) as they now are in concave regions of the deformed member (refer Fig. 3(E–F)). The
derivation of 𝐸1 under application of uniform tensile stress is similar to as done above, except that in this case 𝛼 = 0. So the longitudinal Young’s
modulus under tensile stress 𝜎1, is given by

𝐸𝑇
1 =

( 𝑡
𝑙

)3 𝐸 cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)

sin2 𝜃
(6)

The ratio of longitudinal Young’s modulus under application of tensile stress to that under application of compressive stress is obtained by using
the expressions (6) and (5)

𝐸𝑇
1

𝐸𝐶
1

= 1
(1 − 𝛼)3

(7)

This ratio defines the degree of non-invariance of longitudinal Young’s moduli under tension and compression, which depends on 𝛼.

2.1.1.2. Poisson’s ratio 𝜈12. To obtain the Poisson’s ratio 𝜈12, we require the strain in transverse direction (i.e., direction-2), due to the compressive
stress 𝜎1, as shown in Fig. 3(A). From Eq. (2), we obtain the total deflection in transverse direction (𝛿2), which is given as

−𝛿2 = 𝛿 cos 𝜃

=
( 𝑙
𝑡

)3 𝑃 sin 𝜃 cos 𝜃
𝑏𝐸 (1 − 𝛼)3

(8)

Total strain in the transverse direction is given as

−𝜀2 =
𝛿2

ℎ + 𝑙 sin 𝜃

=
( 𝑙
𝑡

)3 𝑃 sin 𝜃 cos 𝜃
𝑏𝐸 (ℎ + 𝑙 sin 𝜃) (1 − 𝛼)3

(9)

From the Eqs. (4) and (9), the Poisson’s ratio 𝜈12 is expressed as

𝜈12 = −
𝜀2
𝜀1

= cos2 𝜃
(ℎ
𝑙
+ sin 𝜃

)

sin 𝜃
(10)

Since Eq. (10) is the ratio of strains in two directions, it is identical under either compressive or tensile stress (i.e. degree of non-invariance for 𝜈12
s 1).
6
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2.1.1.3. Transverse Young’s modulus 𝐸2. To obtain transverse Young’s modulus 𝐸2, we consider that a uniform far-field compressive stress 𝜎2 is
applied on the unit cell in direction-2. From the free-body diagram of the constituting beam members of the unit cell, we find that the applied
stress gives rise to a vertical force 𝑊 . The magnitude of 𝑊 is given by (refer to Fig. 3(C–D))

𝑊 = 𝜎2𝑏𝑙 cos 𝜃 (11)

When in compression due to the application of 𝜎2, the cuts fall on the concave side of the deformed member and thus close. Here, the second
moment of inertia is 𝐼 = 𝑏𝑡3

12
. The bending moment at the centre of the slant members is zero, i.e., it acts similar to two cantilever beams joined

at the centre. Thus, the deflection 𝛿 can be expressed as

𝛿 = 2 ×
𝑊 cos 𝜃 (𝑙∕2)3

3𝐸𝐼

=
( 𝑙
𝑡

)3 𝑊 cos 𝜃
𝑏𝐸

(12)

Total deflection along direction-2 is 𝛿2 = 𝛿 cos 𝜃. Note that the assumption as given in Eq. (3) holds here as well. Strain along direction of 𝜎2 is,
therefore, given as

𝜀2 =
𝛿2

ℎ + 𝑙 sin 𝜃

=
( 𝑙
𝑡

)3 𝑊 cos2 𝜃
𝑏𝐸 (ℎ + 𝑙 sin 𝜃)

=
( 𝑙
𝑡

)3 𝜎2 cos3 𝜃

𝐸
(ℎ
𝑙
+ sin 𝜃

)

(13)

Thus, the transverse Young’s modulus in direction-2, under compressive stress 𝜎2, is expressed as

𝐸𝐶
2 =

𝜎2
𝜀2

=
( 𝑡
𝑙

)3 𝐸
(ℎ
𝑙
+ sin 𝜃

)

cos3 𝜃
(14)

Similarly, let us consider far-field tensile stress 𝜎2 to be acting on the unit cell in the direction opposite to direction-2 for the derivation of
ransverse Young’s modulus. The cuts open up as they are now in convex regions of the deformed members. The derivation of 𝐸2 under application

f uniform tensile stress is similar to as done above, except that in this case 𝐼 =
𝑏[𝑡(1 − 𝛼)]3

12
, where 𝛼𝑡 is the depth of cuts. Fig. 3(G) shows a uniform

tensile stress 𝜎2 acting on the unit cell. If we consider a beam element of the unit cell, the stress gives rise to a vertical force 𝑊 , the magnitude of
which is expressed as (refer to Fig. 3(H))

𝑊 = 𝜎2𝑏𝑙 cos 𝜃 (15)

The bending moment at the centre of the member is zero. Thus, the deflection 𝛿 can be expressed as

𝛿 = 2 ×
𝑊 cos 𝜃 (𝑙∕2)3

3𝐸𝐼

=
( 𝑙
𝑡

)3 𝑊 cos 𝜃
𝑏𝐸 (1 − 𝛼)3

(16)

Total deflection along direction-2 is 𝛿2 = 𝛿 cos 𝜃. Strain along direction of 𝜎2 is, therefore, given as

𝜀2 =
𝛿2

ℎ + 𝑙 sin 𝜃

=
( 𝑙
𝑡

)3 𝑊 cos2 𝜃
𝑏𝐸 (ℎ + 𝑙 sin 𝜃) (1 − 𝛼)3

=
( 𝑙
𝑡

)3 𝜎2 cos3 𝜃

𝐸
(ℎ
𝑙
+ sin 𝜃

)

(1 − 𝛼)3

(17)

Therefore, the transverse Young’s modulus, under application of tensile stress, can be expressed in closed-form as

𝐸𝑇
2 =

( 𝑡
𝑙

)3 𝐸
(ℎ
𝑙
+ sin 𝜃

)

(1 − 𝛼)3

cos3 𝜃
(18)

The ratio of transverse Young’s modulus under application of tensile stress to that under application of compressive stress is obtained by using the
expressions (18) and (14)

𝐸𝑇
2

𝐸𝐶
2

= (1 − 𝛼)3 (19)

This ratio defines the degree of non-invariance of transverse Young’s moduli under tension and compression, which depends on 𝛼.

2.1.1.4. Poisson’s ratio 𝜈21. For deriving the Poisson’s ratio 𝜈21, we require the strain in longitudinal direction, resulting from the stress 𝜎2. The
magnitude of deformation in longitudinal direction under the stress 𝜎2 in transverse direction is given by (refer to Fig. 3(C–D))

𝛿1 = −𝛿 sin 𝜃

= −
( 𝑙)3 𝑊 sin 𝜃 cos 𝜃 (20)
7
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The strain in longitudinal direction is, thus, given as

𝜀1 =
𝛿1

𝑙 cos 𝜃
= − 𝑊 𝑙2 sin 𝜃

𝐸𝑏𝑡3 (1 − 𝛼)3
(21)

From the Eqs. (17) and (21), we obtain the Poisson’s ratio 𝜈21, which is given as

𝜈21 = −
𝜀1
𝜀2

=

(ℎ
𝑙
+ sin 𝜃

)

sin 𝜃

cos2 𝜃
(22)

Since Eq. (22) is the ratio of strains in two directions, it is similar for the unit cell under either compressive or tensile stress (i.e. degree of
non-invariance for 𝜈21 is 1).

2.1.1.5. Shear modulus 𝐺12. First we consider the case when far-field shear stress is applied in the anti-clockwise direction. To derive the shear
modulus 𝐺12, we will consider the member BD, which has the cuts on the right side, that is the convex side of the member (refer Fig. 4(A–B)). We
ave considered bending deformation of the cell walls and it can be noticed that mid-point of the vertical member, under the impact of far-field
hear stress, deforms only in direction-1. Thus, we consider the unit cell as shown in Fig. 4(D–E), where the length of the vertical member is ℎ∕2
nd that of the slant members is 𝑙. Between joints A and B, the relative movement is not there due to symmetry.

The shear strain resulting from bending is denoted by 𝛾. There are two components of this strain. First arises from the bending deflection of BD
hile the second arises due to its deflection caused from the joint rotation of B because of the bending of inclined members. When shear force 𝐹

under anti-clockwise far-field shear stress) acts on the member BD, the cuts open up. Along direction-1, the deformation of point D due to bending
ith respect to point B, considering a member of ℎ∕2 length, is expressed as

𝜂𝑑 =
𝐹 (ℎ∕2)3

3𝐸𝐼

= 𝐹ℎ3

2𝐸𝑏𝑡3 (1 − 𝛼)3

(23)

where 𝐹 is given as

𝐹 = 2𝜏𝑙𝑏 cos 𝜃 (24)

The point B is acted upon by a moment (refer to Fig. 4(D)), which is given as

𝑀 = 𝐹ℎ
2

(25)

At this point it may be noted that the moment and forces coming from the vertical member would not be equally distributed to the slant members
as their stiffness would be different. Under anti-clockwise far-field stress the cuts in member AB close, while that in member BC open. From the
analysis of the slant member AB, value of moment is given as

𝑀1 =
𝐹1𝑙
2

(26)

Here 𝐹1 is the transverse end forces at the two ends of the slant members. The slant member deforms as shown in Fig. 4(E). The cuts in AB come
under compression and thus close. The deflection of joint B with reference to joint A under the impact of moment 𝑀1 at B, can be expressed as

𝛿𝑟 =
𝐹1𝑙3

12𝐸𝐼
=
( 𝑙
𝑡

)3 𝐹1
𝑏𝐸

(27)

Using Eq. (26) and Eq. (27), we get

𝛿𝑟1 =
2𝑀1𝑙2

𝐸𝑏𝑡3
(28)

The rotation of the member AB is then given by

𝜑1 =
𝛿𝑟1
𝑙

=
2𝑀1𝑙
𝐸𝑏𝑡3

(29)

The rotation of the member BC, due to application of moment 𝑀2, is obtained in a similar way, except that the cuts open in this case as they come
under tension, i.e.,

𝜑2 =
2𝑀2𝑙

𝐸𝑏𝑡3 (1 − 𝛼)3
(30)

The rotation of the members AB, BC and BD will be same, i.e., 𝜑1 = 𝜑2 = 𝜑. This leads us to the relation between 𝑀1 and 𝑀2.

𝑀1 (1 − 𝛼)3 = 𝑀2 (31)

The sum of moments acting on AB and BC will be equal to that acting on BD, i.e., 𝑀1 +𝑀2 = 𝑀 , which gives the relation between 𝑀1, 𝑀2 and
𝑀 .

𝑀1 =
𝑀

1 + (1 − 𝛼)3
and 𝑀2 =

𝑀 (1 − 𝛼)3

1 + (1 − 𝛼)3
(32)

Using Eq. (25), the rotation of member BD about B, is then given by

𝜑 = 2𝑀𝑙
3
( 3)

= 𝐹 𝑙ℎ
3
( 3)

(33)
8
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Under the far-field shear stress 𝜏, along direction-1, the shear deformation due to bending can be given as

𝛿1𝐵 = 2
(

𝜑ℎ
2
+ 𝜂𝐷

)

= 𝐹ℎ2

𝐸𝑏𝑡3

(

𝑙
1 + (1 − 𝛼)3

+ ℎ
(1 − 𝛼)3

) (34)

The total shear strain is given by

𝛾 =
𝛿1𝐵

ℎ + 𝑙 sin 𝜃

= 𝐹ℎ2

𝐸𝑏 (ℎ + 𝑙 sin 𝜃) 𝑡3

(

𝑙
1 + (1 − 𝛼)3

+ ℎ
(1 − 𝛼)3

)

= 2𝜏ℎ2 cos 𝜃

𝐸
(ℎ
𝑙
+ sin 𝜃

)

𝑡3

(

𝑙
1 + (1 − 𝛼)3

+ ℎ
(1 − 𝛼)3

)

(35)

The shear modulus is, thus, expressed as

𝐺−
12 =

𝜏
𝛾

=
( 𝑡
𝑙

)3 𝐸
(ℎ
𝑙
+ sin 𝜃

)

2 cos 𝜃
(ℎ
𝑙

)2 ( 1
1 + (1 − 𝛼)3

+ ℎ
𝑙 (1 − 𝛼)3

)

(36)

The direction of shear stress is considered anti-clockwise in the above derivation (refer Fig. 4(B)) and thus we denote the Shear modulus with a
negative superscript.

Now, consider the case when the direction of the shear stress reverses (refer Fig. 4(C)). The derivation of shear modulus, 𝐺+
12 (considering

lockwise far-field shear stress (refer Fig. 4(C))), where the cuts in the vertical member BD as well as the inclined member BC close while those in
he slant member AB open (refer Fig. 4(F–G)). Thus the shear modulus is expressed as

𝐺+
12 =

( 𝑡
𝑙

)3 𝐸
(ℎ
𝑙
+ sin 𝜃

)

2 cos 𝜃
(ℎ
𝑙

)2 ( 1
1 + (1 − 𝛼)3

+ ℎ
𝑙

) (37)

It is interesting to observe that when the direction of shear stress is reversed, the shear modulus remains a function of the 𝛼, while when the
normal stresses are reversed, the Young’s Modulus in longitudinal and transverse direction become either independent of it or get dependent on
it, depending on the direction of stress applied. Subsequently, the degree of non-invariance for shear modulus can be defined as

𝐺+
12

𝐺−
12

=

(

1
1 + (1 − 𝛼)3

+ ℎ
𝑙 (1 − 𝛼)3

)

(

1
1 + (1 − 𝛼)3

+ ℎ
𝑙

) (38)

This above equation shows that the degree of non-invariance for shear moduli under clockwise and anti-clockwise far-field shear stresses depends
on 𝛼.

2.1.2. In-plane elastic moduli considering beam-level bending, axial and shear deformations
In this section, we derive the closed-form expressions of the five in-plane elastic moduli, namely, 𝐸1, 𝜈12, 𝐸2, 𝜈21, and 𝐺12 including the axial

nd shear deformation of the cell walls along with the effect of bending deformation that is considered in the preceding section. This is a further
eneralization of Section 2.1.1, the outcomes of which would show the importance of a more accurate analysis.

.1.2.1. Longitudinal Young’s modulus 𝐸1. From Eq. (2), we have the bending deflection, for unit cell under a far-field compressive stress along
irection-1,

𝛿 =
( 𝑙
𝑡

)3 𝑃 sin 𝜃
𝑏𝐸 (1 − 𝛼)3

(39)

The deflection of the member considering the shear effect (Dawe, 1984; Petyt, 1990; Adhikari et al., 2021) is given by

𝛿𝑠 =
( 𝑙
𝑡

)3 𝑃 sin 𝜃𝛷
𝑏𝐸 (1 − 𝛼)3

(40)

where 𝛷, which represents the shear effect, is given for full beam thickness 𝑡 as

𝛷 =
2 (1 + 𝜈)

𝑘

( 𝑡
𝑙

)2
(41)

In the present case, since the cuts open, the effective thickness of beam is 𝑡 (1 − 𝛼). Thus, here 𝛷 =
2 (1 + 𝜈)

𝑘

(

𝑡 (1 − 𝛼)
𝑙

)2
. where 𝑘 is the shear area

oefficient. For solid rectangular sections 𝑘 = 5∕6. Thus 𝛿𝑠 for far-field compressive stress in direction 1 is given by

𝛿𝑠 =
( 𝑙) 2𝑃 sin 𝜃 (1 + 𝜈) (42)
9
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The load 𝑃 has a component 𝑃 cos 𝜃 along the local longitudinal axis of the slant members, which results in axial deformation of the member. The
axial deflection is given by

𝛿𝑎 =
( 𝑙
𝑡

) 𝑃 cos 𝜃
𝐸𝑏 (1 − 𝛼)

(43)

Now, the total deflection along the direction of 𝜎1 is the sum of deflection due to bending, shear and axial effects, i.e.,

𝛿1 = 𝛿 sin 𝜃 + 𝛿𝑠 sin 𝜃 + 𝛿𝑎 cos 𝜃

=
( 𝑙
𝑡

) 𝑃 sin2 𝜃
𝐸𝑏 (1 − 𝛼)

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃

)

(44)

Then the total strain along direction-1 is given by

𝜀1 =
𝛿1

𝑙 cos 𝜃

=
𝜎1 (ℎ + 𝑙 sin 𝜃) sin2 𝜃

𝐸𝑡 (1 − 𝛼) cos 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃

) (45)

Thus the Young’s modulus for the application of compressive stress 𝜎1 is given by

𝐸𝐶
1 =

𝜎1
𝜀1

=
( 𝑡
𝑙

) 𝐸 (1 − 𝛼) cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)

sin2 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃

)

(46)

By a similar approach, the Young’s modulus under the application of a far-field tensile stress which causes the cuts to close is obtained by
utting 𝛼 = 0 in the above equation, i.e.,

𝐸𝑇
1 =

𝜎1
𝜀1

=
( 𝑡
𝑙

) 𝐸 cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)

sin2 𝜃
(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃
)

(47)

The ratio of longitudinal Young’s modulus under application of tensile stress to that under application of compressive stress, considering bending,
xial and shear deformation, is obtained by using the expressions (47) and (46)

𝐸𝑇
1

𝐸𝐶
1

=

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃

(1 − 𝛼)
(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃
)

(48)

his ratio defines the degree of non-invariance for longitudinal Young’s moduli under tension and compression, that depends on 𝛼.

.1.2.2. Poisson’s ratio 𝜈12. Using the Eq. (39), (42), and (43) for the expressions of the deformation, the total deflection in direction-2, due to the
ar-field compressive stress applied in the direction-1, is obtained as

−𝛿2 = 𝛿 cos 𝜃 + 𝛿𝑠 cos 𝜃 − 𝛿𝑎 sin 𝜃

=
( 𝑙
𝑡

) 𝑃 sin 𝜃 cos 𝜃
𝐸𝑏 (1 − 𝛼)

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

− 1

)

(49)

Total strain along direction-2 is given as

−𝜀2 =
𝛿2

ℎ + 𝑙 sin 𝜃

= 𝑃 sin 𝜃 cos 𝜃

𝐸𝑏𝑡 (1 − 𝛼)
(ℎ
𝑙
+ sin 𝜃

)

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

− 1

)

(50)

rom the Eqs. (45) and (50), the Poisson’s ratio 𝜈12 for compressive far-field stress can be obtained as

𝜈𝐶12 = −
𝜀2
𝜀1

=

cos2 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

− 1

)

(ℎ
𝑙
+ sin 𝜃

)

sin 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃

)

(51)

When tensile far-field stress is applied along direction-1, the cuts close and the Poisson’s ratio 𝜈12 is given by

𝜈𝑇12 =
cos2 𝜃

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

− 1
)

(ℎ + sin 𝜃
)

sin 𝜃
(

( 𝑙)2
+

2 (1 + 𝜈)
+ cot2 𝜃

) (52)
10
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Thus we see that under the effect of compressive stress, the Poisson’s ratio 𝜈12 is a function of 𝛼 while under tensile stress, it is independent of 𝛼.
The ratio of longitudinal Poisson’s ratio under application of tensile stress to that under application of compressive stress, considering bending,

xial and shear deformation, is obtained by using the expressions (52) and (51)

𝜈𝑇12
𝜈𝐶12

=

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

− 1
)

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃

)

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

− 1

)

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃
)

(53)

This ratio defines the degree of non-invariance of longitudinal Poisson’s ratio under tension and compression, which depends on 𝛼.

2.1.2.3. Transverse Young’s modulus 𝐸2. The deflection due to bending under the application of compressive far-field stress 𝜎2 in direction-2 is
given as (refer to Eq. (12))

𝛿 =
( 𝑙
𝑡

)3 𝑊 cos 𝜃
𝑏𝐸

(54)

The defelection of the member considering the shear effect is given by

𝛿𝑠 =
( 𝑙
𝑡

)3 𝑊 cos 𝜃𝛷
𝑏𝐸

=
( 𝑙
𝑡

) 2𝑊 cos 𝜃 (1 + 𝜈)
𝑘𝑏𝐸

(55)

The load 𝑊 has a component 𝑊 sin 𝜃 along the longitudinal axis of the slant member, which results in axial deformation of the member. The axial
deflection is given by

𝛿𝑎 =
( 𝑙
𝑡

) 𝑊 sin 𝜃
𝐸𝑏

(56)

Along direction-2, total force on the vertical member is 2𝑊 . Therefore, the axial displacement of the vertical member of length ℎ is

𝛿𝑎𝑣 =
(ℎ
𝑡

) 2𝑊
𝐸𝑏

(57)

Now, the total defelection along the direction of 𝜎2 is the sum of deflection due to bending, shear and axial effects, i.e.,

𝛿2 = 𝛿 cos 𝜃 + 𝛿𝑠 cos 𝜃 + 𝛿𝑎 sin 𝜃 + 𝛿𝑎𝑣

=
( 𝑙
𝑡

) 𝑊 cos2 𝜃
𝐸𝑏

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(ℎ
𝑙

)

) (58)

Then the total strain along direction-2 is given by

𝜀2 =
𝛿2

ℎ + 𝑙 sin 𝜃

=
( 𝑙
𝑡

) 𝜎2 cos3 𝜃

𝐸
(ℎ
𝑙
+ sin 𝜃

)

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(ℎ
𝑙

)

) (59)

Thus the Young’s modulus along the application of compressive stress 𝜎2 is given by

𝐸𝐶
2 =

𝜎2
𝜀2

=
( 𝑡
𝑙

)
𝐸
(ℎ
𝑙
+ sin 𝜃

)

cos3 𝜃
(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(ℎ
𝑙

)

)

(60)

Similarly, if a uniform tensile far-field stress 𝜎2 is applied along direction-2 for calculation of transverse Young’s Modulus, the cuts in the unit
cell open up as they now come under tension. The deflection due to bending is given by (refer to Eq. (16))

𝛿 =
( 𝑙
𝑡

)3 𝑊 cos 𝜃
𝑏𝐸 (1 − 𝛼)3

(61)

The defelection of the member considering the shear effect is given by

𝛿𝑠 =
( 𝑙
𝑡

) 2𝑊 cos 𝜃
𝑘𝑏𝐸 (1 − 𝛼) (1 + 𝜈)

(62)

The load 𝑊 has a component 𝑊 sin 𝜃 along the longitudinal axis of the slant member, which results in axial deformation of the slant member. The
axial deflection is given by

𝛿𝑎 =
( 𝑙
𝑡

) 𝑊 sin 𝜃
𝐸𝑏 (1 − 𝛼)

(63)

The total force acting in the direction-2 on the vertical member is 2𝑊 . Under tensile stress, the cuts open; therefore, the axial displacement of the
ertical member of length ℎ is

𝛿𝑎𝑣 =
(

ℎ
𝑡 (1 − 𝛼)

)

2𝑊
𝐸𝑏

(64)

Now, the total defelection along the direction of 𝜎2 is the sum of deflection due to bending, shear and axial effects, i.e.,

𝛿2 = 𝛿 cos 𝜃 + 𝛿𝑠 cos 𝜃 + 𝛿𝑎 sin 𝜃 + 𝛿𝑎𝑣

=
( 𝑙) 𝑊 cos2 𝜃

(

(

𝑙
)2

+
2 (1 + 𝜈)

+ tan2 𝜃 + 2
2

(ℎ)
)

(65)
11
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Strain along direction of 𝜎2 is, therefore, given as

𝜀2 =
𝛿2

ℎ + 𝑙 sin 𝜃

= 𝑊 cos2 𝜃

𝐸𝑏
(ℎ
𝑙
+ sin 𝜃

)

𝑡 (1 − 𝛼)

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(ℎ
𝑙

)

)

=
( 𝑙
𝑡

) 𝜎2 cos3 𝜃

𝐸
(ℎ
𝑙
+ sin 𝜃

)

(1 − 𝛼)

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(ℎ
𝑙

)

)

(66)

Thus, the transverse Young’s modulus, under application of tensile far-field stress, can be expressed in closed-form as

𝐸𝑇
2 =

( 𝑡
𝑙

)
𝐸
(ℎ
𝑙
+ sin 𝜃

)

(1 − 𝛼)

cos3 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(ℎ
𝑙

)

) (67)

The ratio of transverse Young’s modulus under application of tensile stress to that under application of compressive stress, considering bending,
axial and shear deformation, is obtained by using the expressions (67) and (60)

𝐸𝑇
2

𝐸𝐶
2

=
(1 − 𝛼)

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(ℎ
𝑙

)

)

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(ℎ
𝑙

)

(68)

This ratio defines the degree of non-invariance of transverse Young’s moduli under tension and compression, which depends on 𝛼.

2.1.2.4. Poisson’s ratio 𝜈21. Using Eq. (54), (55), and (56) for the formulations of the deformation, the total deflection in longitudinal direction,
under the compressive far-field stress acting along direction-2, is obtained as

−𝛿1 = 𝛿 sin 𝜃 + 𝛿𝑠 sin 𝜃 − 𝛿𝑎 cos 𝜃

=
( 𝑙
𝑡

) 𝑊 sin 𝜃 cos 𝜃
𝐸𝑏

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

− 1
) (69)

In the transverse direction, the total strain is expressed as

−𝜀1 =
𝛿1

𝑙 cos 𝜃

= 𝑊 sin 𝜃
𝐸𝑏𝑡

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

− 1
) (70)

From Eq. (59) and Eq. (70), the Poisson’s ratio 𝜈12 can be expressed as

𝜈𝐶21 = −
𝜀1
𝜀2

=
sin 𝜃

(ℎ
𝑙
+ sin 𝜃

)

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

− 1
)

cos2 𝜃
(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(ℎ
𝑙

)

)

(71)

Following a similar approach as above, when far-field tensile stress is applied along direction-2, the cuts open and the Poisson’s ratio 𝜈21 is
iven by

𝜈𝑇21 =

sin 𝜃
(ℎ
𝑙
+ sin 𝜃

)

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

− 1

)

cos2 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(ℎ
𝑙

)

) (72)

Thus we see that under the effect of compressive stress, the Poisson’s ratio 𝜈21 is independent of 𝛼 while under tensile stress, it is a function of 𝛼.
The ratio of transverse Poisson’s ratio under application of tensile stress to that under application of compressive stress, considering bending,

xial and shear deformation, is obtained by using the expressions (72) and (71)

𝜈𝑇21
𝜈𝐶21

=

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

− 1

)

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(ℎ
𝑙

)

)

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

− 1
)

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(ℎ
𝑙

)

) (73)

This ratio defines the degree of non-invariance of transverse Poisson’s ratio under tension and compression, which depends on 𝛼.

2.1.2.5. Shear modulus 𝐺12. First we consider the case when far-field shear stress is applied in the anti-clockwise direction. To derive of the shear
odulus 𝐺12, we consider the shear strain arising from the bending deformations as well as that due to axial and shear deformations. The vertical

ell wall is considered to have length ℎ∕2 (noting that the bending moment at the mid-point is zero), while the slant cell walls have length 𝑙 and
12
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Fig. 5. Strain calculation of the shear modulus considering axial and shear deformation. (A) Forces acting on unit cell in shear. The deformation in the oblique members
is shown using dashed lines. (B) Equilibrium of unit cell in shear.

Fig. 6. Numerical Validation for a beam element with domain discontinuity. (A) Validation of the beam element by analyzing the percentage error between theoretical
results and finite element results considering bending deformation for different values of deflection. (B) Validation of the beam element by analyzing the percentage error between
theoretical results and finite element results considering both bending and shear deformations for different values of deflection. The dimensions of the beam used are, length
70 mm, width 5 mm and height 5 mm. The intrinsic material properties are taken as 𝐸 = 2 × 1011 and Poisson’s ratio 𝜈 = 0.3. Finite element analysis is carried out considering
different friction factors and load values.

inclination angle is 𝜃. Under anti-clockwise shear stress field, the cuts of the vertical member BD and the slant member BC open while that of AB
close. The force due to shear stress is 𝐹 along direction-1 and 𝑆 along direction-2 (refer to Fig. 5). The shear stress field produces forces 𝐹1 and
𝐹2 in the slant members. The forces 𝐹 and 𝑆 are given as

𝐹 = 2𝜏𝑏𝑙 cos 𝜃 (74a)

𝑆 = 𝜏𝑏 (ℎ + 𝑙 sin 𝜃) (74b)

The force produced in the vertical cell member is given as

𝐹𝑣 = 𝐹 = 2𝜏𝑏𝑙 cos 𝜃 (75)

The moment 𝑀 generated in the vertical member is given as

𝑀 = 𝐹ℎ
2

(76)

No axial force is produced in the vertical cell wall under the applied shear stress. This moment 𝑀 gets distributed in the two slant members. Note
that the moment 𝑀 does not get distributed equally on the two slant cell walls since the cuts in member AB close while that in member BC open.
The moment generated on slant member AB is denoted by 𝑀1 while that on the slant member BC is 𝑀2. The sum of the two moments is equal to
𝑀 , i.e., 𝑀 = 𝑀1 +𝑀2. The different moments in the two slant members due to closing and opening of cuts makes it an asymmetric problem. The
force 𝐹 gets distributed on both the slant members as 𝐹1 and 𝐹2 such that 𝐹 = 𝐹1 + 𝐹2. We use the compatibility condition that the joint rotation
of the vertical cell wall and that of the slant members will be equal, i.e., 𝜙 = 𝜙 = 𝜙 . Here 𝜙 and 𝜙 are the rotations of the slant members,
13
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Fig. 7. Non-invariant elastic moduli for hexagonal lattices considering only beam-level bending deformation. (A–C) Variation of non-dimensionalized Young’s modulus in
longitudinal direction, i.e., 𝐸1∕𝐸, with the ratio of depth of cut to total thickness of cell wall, 𝛼, for different values of 𝜃 and ℎ∕𝑙. (D–F) Variation of non-dimensionalized Young’s
modulus in transverse direction, i.e., 𝐸2∕𝐸, with the ratio of depth of cut to total thickness of cell wall, 𝛼, for different values of 𝜃 and ℎ∕𝑙. (G–I) Variation of non-dimensionalized
shear modulus, i.e., 𝐺12∕𝐸, with the ratio of depth of cut to total thickness of cell wall, 𝛼, for different values of 𝜃 and ℎ∕𝑙. Note that these elastic moduli are calculated considering
Configuration 1 of domain discontinuity.

which are given as

𝜙1 = tan−1
(

𝛿𝑦1∕𝑙
)

≈
(

𝛿𝑦1∕𝑙
)

and 𝜙2 = tan−1
(

𝛿𝑦2∕𝑙
)

≈
(

𝛿𝑦2∕𝑙
)

(77)

where 𝛿𝑦1 and 𝛿𝑦2 contains the bending and shear deformations of the slant members AB and BC, respectively, which are given as

𝛿𝑦1 =
2𝑀1

(

1 +
2 (1 + 𝜈)

𝑘

( 𝑡
𝑙

)2
)

𝑙2

𝐸𝑏𝑡3
(78a)

𝛿𝑦2 =

2𝑀2

(

1 +
2 (1 + 𝜈)

𝑘

(

𝑡 (1 − 𝛼)
𝑙

)2
)

𝑙2

𝐸𝑏𝑡3 (1 − 𝛼)3
(78b)

Note that the two slant beams are fixed at one end while the other is rotationally restrained. This boundary condition gives us the deformations
of AB and BC based on lattice-level deformation behavior. Using 𝜙1 = 𝜙2, we get the relation between 𝑀1 and 𝑀2 as

𝑀1

(

1 +
2 (1 + 𝜈) ( 𝑡)2

)

(1 − 𝛼)3 = 𝑀2

(

1 +
2 (1 + 𝜈)

(

𝑡 (1 − 𝛼)
)2

)

(79)
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Now, using 𝑀 = 𝑀1 +𝑀2, we obtain 𝑀1 and 𝑀2 in terms of 𝑀 .

𝑀 = 𝑀1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 +

(

1 +
2 (1 + 𝜈)

𝑘

( 𝑡
𝑙

)2
)

(1 − 𝛼)3

(

1 +
2 (1 + 𝜈)

𝑘

(

𝑡 (1 − 𝛼)
𝑙

)2
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 𝑀2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 +

(

1 +
2 (1 + 𝜈)

𝑘

(

𝑡 (1 − 𝛼)
𝑙

)2
)

(

1 +
2 (1 + 𝜈)

𝑘

( 𝑡
𝑙

)2
)

(1 − 𝛼)3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(80)

Since 𝜙 = 𝜙1 = 𝜙2, we have

𝜙 = 𝜙1 =
(

𝛿𝑦1∕𝑙
)

=
2𝑀1

(

1 +
2 (1 + 𝜈)

𝑘

( 𝑡
𝑙

)2
)

𝑙

𝐸𝑏𝑡3

=
2𝑀𝑙

(

1 +
2 (1 + 𝜈)

𝑘

( 𝑡
𝑙

)2
)

𝐸𝑏𝑡3

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 +

(

1 +
2 (1 + 𝜈)

𝑘

( 𝑡
𝑙

)2
)

(1 − 𝛼)3

(

1 +
2 (1 + 𝜈)

𝑘

(

𝑡 (1 − 𝛼)
𝑙

)2
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
𝐹ℎ𝑙

(

1 +
2 (1 + 𝜈)

𝑘

( 𝑡
𝑙

)2
)

𝐸𝑏𝑡3

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 +

(

1 +
2 (1 + 𝜈)

𝑘

( 𝑡
𝑙

)2
)

(1 − 𝛼)3

(

1 +
2 (1 + 𝜈)

𝑘

(

𝑡 (1 − 𝛼)
𝑙

)2
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(81)

Along direction-1, the deformation of point D due to bending and shear effects with respect to point B, considering a member of ℎ∕2 length, is
expressed as (considering the boundary conditions for a cantilever beam of length ℎ∕2 acted upon by a force 𝐹 at free end)

𝜂𝐷 =
12𝐹

(ℎ
2

)3

𝐸𝑏𝑡3 (1 − 𝛼)3

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +
2 (1 + 𝜈)

𝑘

(

2𝑡 (1 − 𝛼)
ℎ

)2

12 − 36

4 +
2 (1 + 𝜈)

𝑘

(

2𝑡 (1 − 𝛼)
ℎ

)2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(82)

Thus the shear strain 𝛾𝑣 due to beam-level bending and shear deformations is given as

𝛾𝑣 =
2
(

𝜙ℎ
2
+ 𝜂𝐷

)

ℎ + 𝑙 sin 𝜃
(83)

We have 𝐹1 and 𝐹2 acting on the two slant slant members AB and BC, respectively. These forces are related to the moments 𝑀1 and 𝑀2, which
is given as

𝑀1 =

(

𝑆 cos 𝜃 − 𝐹1 sin 𝜃
)

𝑙
2

and 𝑀2 =

(

𝑆 cos 𝜃 − 𝐹2 sin 𝜃
)

𝑙
2

(84)

The above equation when solved in conjunction with the condition that 𝐹 = 𝐹1 + 𝐹2, we obtain

𝐹1 =
𝐹
2

−

(

𝑀1 −𝑀2
)

𝑙 sin 𝜃
and 𝐹2 =

𝐹
2

+

(

𝑀1 −𝑀2
)

𝑙 sin 𝜃
(85)

The axial deformation of the slant member AB is given as

𝛿𝑥1 =

(

𝐹1 cos 𝜃 + 𝑆 sin 𝜃
)

𝑙
𝐸𝑏𝑡

=

(

𝐹 𝑙
2

−

(

𝑀1 −𝑀2
)

sin 𝜃

)

cos 𝜃 + 𝑆𝑙 sin 𝜃

𝐸𝑏𝑡

= 𝐹 cot 𝜃
2𝐸𝑏𝑡

⎛

⎜

⎜

⎜

⎜

⎜

ℎ + 𝑙 sin 𝜃 − 2ℎ

⎛

⎜

⎜

⎜

⎜

⎜

1 +

(

1 +
2 (1 + 𝜈)

𝑘

( 𝑡
𝑙

)2
)

(1 − 𝛼)3

(

1 +
2 (1 + 𝜈)

(

𝑡 (1 − 𝛼)
)2

)

⎞

⎟

⎟

⎟

⎟

⎟

−1
⎞

⎟

⎟

⎟

⎟

⎟

+ 𝑆𝑙 sin 𝜃
𝐸𝑏𝑡

(86)
15

⎝ ⎝

𝑘 𝑙
⎠ ⎠



Mechanics of Materials 184 (2023) 104691P. Sinha et al.

T
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Similarly, the axial deformation of the slant member BC is given as

𝛿𝑥2 =

(

𝐹2 cos 𝜃 + 𝑆 sin 𝜃
)

𝑙
𝐸𝑏𝑡 (1 − 𝛼)

=

(

𝐹 𝑙
2

+

(

𝑀1 −𝑀2
)

sin 𝜃

)

cos 𝜃 + 𝑆𝑙 sin 𝜃

𝐸𝑏𝑡 (1 − 𝛼)

= 𝐹 cot 𝜃
2𝐸𝑏𝑡 (1 − 𝛼)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑙 sin 𝜃 − ℎ + 2ℎ

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 +

(

1 +
2 (1 + 𝜈)

𝑘

( 𝑡
𝑙

)2
)

(1 − 𝛼)3

(

1 +
2 (1 + 𝜈)

𝑘

(

𝑡 (1 − 𝛼)
𝑙

)2
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−1
⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ 𝑆𝑙 sin 𝜃
𝐸𝑏𝑡 (1 − 𝛼)

(87)

he shear strain 𝛾𝑠 due to beam-level axial deformation is given as

𝛾𝑠 =
𝛿𝑥1 sin 𝜃 + 𝛿𝑥2 sin 𝜃

𝑙 cos 𝜃
+

𝛿𝑥1 cos 𝜃 + 𝛿𝑥2 cos 𝜃
ℎ + 𝑙 sin 𝜃

(88)

The total shear strain 𝛾𝑡 is therefore given by

𝛾𝑡 = 𝛾𝑣 + 𝛾𝑠 =
2
(

𝜙ℎ
2
+ 𝜂𝐷

)

+ 𝛿𝑥1 cos 𝜃 + 𝛿𝑥2 cos 𝜃

ℎ + 𝑙 sin 𝜃
+

𝛿𝑥1 sin 𝜃 + 𝛿𝑥2 sin 𝜃
𝑙 cos 𝜃

=
2𝜏

(ℎ
𝑙

)2
cos 𝜃

(

1 +
2 (1 + 𝜈)

𝑘

( 𝑡
𝑙

)2
)

𝐸
( 𝑡
𝑙

)3 (ℎ
𝑙
+ sin 𝜃

)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 +

(

1 +
2 (1 + 𝜈)

𝑘

( 𝑡
𝑙

)2
)

(1 − 𝛼)3

(

1 +
2 (1 + 𝜈)

𝑘

(

𝑡 (1 − 𝛼)
𝑙

)2
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+
6𝜏

(ℎ
𝑙

)3
cos 𝜃

𝐸
(

𝑡 (1 − 𝛼)
𝑙

)3
(ℎ
𝑙
+ sin 𝜃

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +
2 (1 + 𝜈)

𝑘

(

2𝑡 (1 − 𝛼)
ℎ

)2

12 − 36

4 +
2 (1 + 𝜈)

𝑘

(

2𝑡 (1 − 𝛼)
ℎ

)2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ 𝜏 cos 𝜃

𝐸
( 𝑡
𝑙

)

⎛

⎜

⎜

⎜

⎝

1 + cos 𝜃 cot 𝜃
(ℎ
𝑙
+ sin 𝜃
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he shear modulus under anti-clockwise shear stress is given by
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Fig. 8. Effect of beam-level shear and axial deformation on longitudinal Young’s modulus. (A–D) Variation of ratio of Young’s modulus, considering bending, axial and shear
deformations (denoted by B, A and S, respectively, in figure) to the Young’s modulus, considering only bending deformation with the ratio of depth of cut to total thickness of
cell wall, 𝛼, for different auxetic and non-auxetic configurations. The figures in inset show the variation of non-dimensionalized Young’s modulus to 𝛼, considering only bending
deformation, for the unit cell subjected to compressive as well as tensile stresses. Note that the main plot here is intended to show the effect of beam-level axial and shear
deformations with respect to only bending deformation. The inset plots give the variation trend of the Young’s modulus with 𝛼. In each of the subplots, the Young’s modulus is
presented for compressive and tensile modes of far-field stresses considering the Configuration 1 of domain discontinuity.

where 𝑔𝑡, 𝑔ℎ, 𝜙𝑙 and 𝜙ℎ are non-dimensional parameters defined as

𝑔𝑡 =
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(91d)

Similarly, when the direction of shear stress is reversed, the cuts of members BC and BD come under compression and thus close, while that of
AB open. The shear modulus under clockwise shear stress is then given by
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Fig. 9. Effect of beam-level shear and axial deformation on transverse Young’s modulus. (A–D) Variation of ratio of Young’s modulus, considering bending, axial and shear
deformations (denoted by B, A and S, respectively, in figure) to the Young’s modulus, considering only bending deformation with the ratio of depth of cut to total thickness of
cell wall, 𝛼, for different auxetic and non-auxetic configurations. The figures in inset show the variation of non-dimensionalized Young’s modulus to 𝛼, considering only bending
deformation, for the unit cell subjected to compressive as well as tensile stresses. Note that the main plot here is intended to show the effect of beam-level axial and shear
deformations with respect to only bending deformation. The inset plots give the variation trend of the Young’s modulus with 𝛼. In each of the subplots, the Young’s modulus is
presented for compressive and tensile modes of far-field stresses considering the Configuration 1 of domain discontinuity.

The ratio of shear modulus under application of clockwise shear stress to that under application of anticlockwise shear stress is obtained by
using the expressions (90) and (92)
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This ratio defines the degree of non-invariance of shear moduli under clockwise and anticlockwise shear stress, which depends on 𝛼.

.2. In-plane elastic properties of Configuration 2

Here we will consider the cases when the position of cuts interchange, i.e., those on convex curvature of deformed unit cell member are now
onsidered on the concave side and vice-versa. We first discuss here some of the general trends that become evident from the expressions of
lastic moduli presented in this paper. When only beam-level bending deformation is considered, the expressions for all the elastic moduli for
onfiguration 2 interchange for compressive and tensile stresses or clockwise and anti-clockwise shear stresses with respect to the Configuration
. However, when beam-level bending axial and shear deformations are considered, such interchange may or may not hold good, depending on
he elastic property under consideration.

In this paragraph, we discuss the elastic moduli when combined effect of beam-level bending, axial and shear deformations are considered. It
an be observed that in such configuration, the longitudinal Young’s modulus 𝐸1 and Poisson’s ratio 𝜈12 under compression will be same as those
nder tension in Configuration 1 which are discussed in the following subsections. Similarly these elastic properties (𝐸1 and 𝜈12) under tension will

be same as those under compression in Configuration 1. An interesting point to note here is that it does not go with transverse Young’s modulus 𝐸2
nd Poisson’s ratio 𝜈21. Their expressions under tension and compression will change in different configurations due to the effect of 𝛼. This effect is
bserved in the final expressions of 𝐸2 and 𝜈21, which are different under compression in Configuration 1 and under tension in Configuration 2 and
ice-versa. For the case of shear modulus, the expression of anticlockwise shear modulus 𝐺−

12 in Configuration 1 will be similar to the clockwise
hear modulus 𝐺+

12 in Configuration 2 and vice-versa. This is because in Configuration 1, the cuts of the vertical member BD and slant member BC
pen up under anticlockwise shear stress while that of slant member AB close. While in Configuration 2, the similar conditions are observed under
lockwise shear stress. Thus we can deduce that the changes in the expressions of the elastic moduli under different configurations are due to the
ffect of 𝛼.

In the following subsections, we have presented the closed-form expressions of the five elastic moduli under tensile and compressive far-field
tresses considering the Configuration 2. For each case, we have shown the expressions considering only beam-level bending deformation and
ompound effects of bending, axial and shear deformations, separately.

.2.1. Longitudinal Young’s modulus 𝐸1
Under compressive stress, the cuts close while they open under tensile stress. Thus the closed-form expressions of the longitudinal Young’s

odulus 𝐸1, under different stress conditions for Configuration 2 considering only beam-level bending deformation, are given as

𝐸𝐶
1 =

( 𝑡
𝑙

)3 𝐸 cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)

sin2 𝜃
(94)

𝐸𝑇
1 =

( 𝑡
𝑙

)3 𝐸 (1 − 𝛼)3 cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)

sin2 𝜃
(95)

The ratio of longitudinal Young’s modulus under application of tensile stress to that under application of compressive stress is obtained by using
the expressions (95) and (94)

𝐸𝑇
1

𝐸𝐶
1

= (1 − 𝛼)3 (96)

This ratio defines the degree of non-invariance of longitudinal Young’s moduli under tension and compression, which depends on 𝛼.
The Young’s Modulus along the application of compressive stress 𝜎1, considering bending, axial and shear deformations, is given by

𝐸𝐶
1 =

𝜎1
𝜀1

=
( 𝑡
𝑙

) 𝐸 cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)

sin2 𝜃
(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃
)

(97)

By a similar approach, the Young’s modulus under the application of a uniform tensile stress, considering bending, axial and shear deformations,
which causes the cuts to open is obtained by substituting thickness 𝑡 by 𝑡 (1 − 𝛼) (where 𝛼 gives the invariance effect) in the above equation, i.e.,

𝐸𝑇
1 =

𝜎1
𝜀1

=
( 𝑡
𝑙

) 𝐸 (1 − 𝛼) cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)

sin2 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃

)

(98)

The ratio of longitudinal Young’s modulus under application of tensile stress to that under application of compressive stress, considering bending,
axial and shear deformation, is obtained by using the expressions (98) and (97)

𝐸𝑇
1

𝐸𝐶
1

=
(1 − 𝛼)

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃
)

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃
(99)

his ratio defines the degree of non-invariance of longitudinal Young’s moduli under tension and compression, which depends on 𝛼.
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2.2.2. Poisson’s ratio 𝜈12
The Poisson’s ratio 𝜈12 under only beam-level bending deformation is given as

𝜈12 =
cos2 𝜃

(ℎ
𝑙
+ sin 𝜃

)

sin 𝜃
(100)

Since Eq. (100) is the ratio of strains in two directions, it is identical under either compressive or tensile stress (i.e. degree of non-invariance for
𝜈12 is 1).

Considering bending, axial and shear deformations, the Poisson’s ratio 𝜈12 under compressive far-field stress is given as

𝜈𝐶12 =
cos2 𝜃

(

( 𝑙
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2 (1 + 𝜈)
𝑘

− 1
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( 𝑙
𝑡

)2
+
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𝑘

+ cot2 𝜃
) (101)

When tensile far-field stress is applied along direction-1, the cuts open and the Poisson’s ratio 𝜈12, considering bending, axial and shear deformations,
is obtained by replacing 𝑡 with 𝑡 (1 − 𝛼) in the equation for 𝜈𝐶12 above

𝜈𝑇12 =

cos2 𝜃
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𝑘

+ cot2 𝜃

) (102)

Thus we see that under the effect of tensile stress, the Poisson’s ratio 𝜈12 is a function of 𝛼 while under compressive stress, it is independent of
𝛼. The ratio of longitudinal Poisson’s ratio under application of tensile stress to that under application of compressive stress, considering bending,
axial and shear deformation, is obtained by using the expressions (102) and (101)

𝜈𝑇12
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) (103)

This ratio defines the degree of non-invariance of longitudinal Poisson’s ratio under tension and compression, which depends on 𝛼.

2.2.3. Transverse Young’s modulus 𝐸2
Under compressive stress, the cuts open while they close under tensile stress. Thus the closed-form expressions of the transverse Young’s modulus

𝐸2, under different stress conditions considering only beam-level bending deformation, are given as

𝐸𝐶
2 =

( 𝑡
𝑙

)3 𝐸
(ℎ
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+ sin 𝜃
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(104)

𝐸𝑇
2 =

( 𝑡
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)3 𝐸
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𝑙
+ sin 𝜃

)

cos3 𝜃
(105)

The ratio of transverse Young’s modulus under application of tensile stress to that under application of compressive stress is obtained by using the
expressions (105) and (104)

𝐸𝑇
2

𝐸𝐶
2

= 1
(1 − 𝛼)3

(106)

This ratio defines the degree of non-invariance of transverse Young’s moduli under tension and compression, which depends on 𝛼.
The Young’s modulus along the application of compressive stress 𝜎2, considering bending, axial and shear deformations is given by

𝐸𝐶
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𝑙

)
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𝑙
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)
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cos2 𝜃
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𝑙

)

) (107)

Under the application of tensile stress, the Young’s modulus considering bending, axial and shear deformations is given by

𝐸𝑇
2 =

( 𝑡
𝑙

)
𝐸
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𝑙
+ sin 𝜃
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𝑘

+ tan2 𝜃 + 2
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(

ℎ
𝑙 (1 − 𝛼)

)) (108)

The ratio of transverse Young’s modulus under application of tensile stress to that under application of compressive stress, considering bending,
axial and shear deformation, is obtained by using the expressions (108) and (107)
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𝑘
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𝑙

)

)

(109)

This ratio defines the degree of non-invariance of transverse Young’s moduli under tension and compression, which depends on 𝛼.
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T

2.2.4. Poisson’s ratio 𝜈21
The Poisson’s ratio 𝜈21 considering only beam-level bending deformation is given as

𝜈21 =

(ℎ
𝑙
+ sin 𝜃

)

sin 𝜃

cos2 𝜃
(110)

Since Eq. (110) is the ratio of strains in two directions, it is identical under either compressive or tensile stress (i.e. degree of non-invariance for
𝜈21 is 1).

Considering bending, axial and shear deformations, the Poisson’s ratio 𝜈21 under compressive stress is given as

𝜈𝐶21 =

sin 𝜃
(ℎ
𝑙
+ sin 𝜃

)

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

− 1

)

cos2 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(

ℎ (1 − 𝛼)
𝑙

)

) (111)

When tensile stress is applied, the cuts open and the Poisson’s ratio 𝜈21, considering bending, axial and shear deformations, is given by

𝜈𝑇21 =
sin 𝜃

(ℎ
𝑙
+ sin 𝜃

)

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

− 1
)

cos2 𝜃
(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(

ℎ
𝑙 (1 − 𝛼)

)) (112)

Thus we see that under the effect of both compressive as well as tensile stress, the Poisson’s ratio 𝜈21 is a function of 𝛼. The ratio of transverse
Poisson’s ratio under application of tensile stress to that under application of compressive stress, considering bending, axial and shear deformation,
is obtained by using the expressions (112) and (111)

𝜈𝑇21
𝜈𝐶21

=

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

− 1
)

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(

ℎ (1 − 𝛼)
𝑙

)

)

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

− 1

)

(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ tan2 𝜃 + 2
cos2 𝜃

(

ℎ
𝑙 (1 − 𝛼)

))

(113)

This ratio defines the degree of non-invariance of transverse Poisson’s ratio under tension and compression, which depends on 𝛼.

2.2.5. Shear modulus 𝐺12
For configuration 2, the cuts in the vertical member BD as well as the inclined member BC close while those in the slant member AB open.

hus the shear modulus (under anticlockwise stress) considering only beam-level bending deformation is given by

𝐺−
12 =

( 𝑡
𝑙

)3 𝐸
(ℎ
𝑙
+ sin 𝜃

)

2 cos 𝜃
(ℎ
𝑙

)2 ( 1
1 + (1 − 𝛼)3

+ ℎ
𝑙

) (114)

Now, we consider the case when the direction of the shear stress reverses (under clockwise stress). The cuts then fall on the convex side of the
deformed member BD and thus open up. The quantification of shear modulus, 𝐺+

12, is similar to as done above, except that in this case, the cuts in
the vertical member BD as well as the inclined member BC open while those in the slant member AB close. Thus the shear modulus is given by

𝐺+
12 =

( 𝑡
𝑙

)3 𝐸
(ℎ
𝑙
+ sin 𝜃

)

2 cos 𝜃
(ℎ
𝑙

)2 ( 1
1 + (1 − 𝛼)3

+ ℎ
𝑙 (1 − 𝛼)3

) (115)

The ratio of shear modulus under application of clockwise shear stress to that under application of anticlockwise shear stress is obtained by using
the expressions (115) and (114)

𝐺+
12

𝐺−
12

=

(

1
1 + (1 − 𝛼)3

+ ℎ
𝑙

)

(

1
1 + (1 − 𝛼)3

+ ℎ
𝑙 (1 − 𝛼)3

) (116)

This ratio defines the degree of non-invariance of shear moduli under clockwise and anticlockwise shear stress, which depends on 𝛼.
The shear modulus, considering beam-level bending, axial and shear deformations, under anti-clockwise shear stress, is given by

𝐺−
12 =

𝐸𝑔𝑡

2 cos 𝜃

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

(

𝑔2ℎ
(

1 +𝛷𝑙 (1 − 𝛼)2
)

𝑔2𝑡 (1 − 𝛼)3
(

𝑔ℎ + sin 𝜃
)
+ 𝑔ℎ

(

1 + cos 𝜃 cot 𝜃
(

𝑔ℎ + sin 𝜃
)

)

(

𝛼
(𝛼 − 1)

)

)

1
(

1 +
1 +𝛷𝑙 (1 − 𝛼)2
(

1 +𝛷𝑙
)

(1 − 𝛼)3

)

+
3𝑔3ℎ

𝑔2𝑡
(

𝑔ℎ + sin 𝜃
)

⎛

⎜

⎜

⎜

⎝

1 +𝛷ℎ

12 − 36
4 +𝛷ℎ

⎞

⎟

⎟

⎟

⎠

+ sin 𝜃
2

( 2 − 𝛼
1 − 𝛼

)

+
( 1
2
tan2 𝜃

(

𝑔ℎ + sin 𝜃
)

( 2 − 𝛼
1 − 𝛼

))

+1
(

1 + cos 𝜃 cot 𝜃
( )

)

(

𝑔ℎ
( 𝛼 )

+ sin 𝜃
(2 − 𝛼 ))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

(117)
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2

e
(

Similarly, when the direction of shear stress is reversed, the cuts BC and BD, as they come under tension open, while that of AB close. The shear
modulus, considering beam-level bending, axial and shear deformations, under clockwise shear stress, is then given by

𝐺+
12 =

𝐸𝑔𝑡

2 cos 𝜃

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

𝑔2ℎ
(

1 +𝛷𝑙
)

𝑔2𝑡
(

𝑔ℎ + sin 𝜃
) + 𝑔ℎ

(

1 + cos 𝜃 cot 𝜃
(

𝑔ℎ + sin 𝜃
)

)

(

𝛼
(1 − 𝛼)

)

)

1
(

1 +

(

1 +𝛷𝑙
)

(1 − 𝛼)3

1 +𝛷𝑙 (1 − 𝛼)2

)

+
3𝑔3ℎ

𝑔2𝑡 (1 − 𝛼)3
(

𝑔ℎ + sin 𝜃
)

⎛

⎜

⎜

⎜

⎜

⎝

1 +𝛷ℎ (1 − 𝛼)2

12 − 36
4 +𝛷ℎ (1 − 𝛼)2

⎞

⎟

⎟

⎟

⎟

⎠

+ sin 𝜃
2

( 2 − 𝛼
1 − 𝛼

)

+
(

tan2 𝜃
(

𝑔ℎ + sin 𝜃
))

+1
2

(

1 + cos 𝜃 cot 𝜃
(

𝑔ℎ + sin 𝜃
)

)

(

𝑔ℎ

(

𝛼
(𝛼 − 1)

)

+ sin 𝜃
(2 − 𝛼
1 − 𝛼

)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(118)

The ratio of Shear modulus under application of clockwise shear stress to that under application of anticlockwise shear stress is obtained by using
the expressions (118) and (117)

𝐺+
12

𝐺−
12

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

𝑔2ℎ
(

1 +𝛷𝑙 (1 − 𝛼)2
)

𝑔2𝑡 (1 − 𝛼)3
(

𝑔ℎ + sin 𝜃
)
+ 𝑔ℎ

(

1 + cos 𝜃 cot 𝜃
(

𝑔ℎ + sin 𝜃
)

)

(

𝛼
(𝛼 − 1)

)

)

1
(

1 +
1 +𝛷𝑙 (1 − 𝛼)2
(

1 +𝛷𝑙
)

(1 − 𝛼)3

)

+
3𝑔3ℎ

𝑔2𝑡
(

𝑔ℎ + sin 𝜃
)

⎛

⎜

⎜

⎜

⎝

1 +𝛷ℎ

12 − 36
4 +𝛷ℎ

⎞

⎟

⎟

⎟

⎠

+ sin 𝜃
2

( 2 − 𝛼
1 − 𝛼

)

+
( 1
2
tan2 𝜃

(

𝑔ℎ + sin 𝜃
)

( 2 − 𝛼
1 − 𝛼

))

+1
2

(

1 + cos 𝜃 cot 𝜃
(

𝑔ℎ + sin 𝜃
)

)

(

𝑔ℎ
( 𝛼
𝛼 − 1

)

+ sin 𝜃
( 2 − 𝛼
1 − 𝛼

))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

𝑔2ℎ
(

1 +𝛷𝑙
)

𝑔2𝑡
(

𝑔ℎ + sin 𝜃
) + 𝑔ℎ

(

1 + cos 𝜃 cot 𝜃
(

𝑔ℎ + sin 𝜃
)

)

(

𝛼
(1 − 𝛼)

)

)

1
(

1 +

(

1 +𝛷𝑙
)

(1 − 𝛼)3

1 +𝛷𝑙 (1 − 𝛼)2

)

+
3𝑔3ℎ

𝑔2𝑡 (1 − 𝛼)3
(

𝑔ℎ + sin 𝜃
)

⎛

⎜

⎜

⎜

⎜

⎝

1 +𝛷ℎ (1 − 𝛼)2

12 − 36
4 +𝛷ℎ (1 − 𝛼)2

⎞

⎟

⎟

⎟

⎟

⎠

+ sin 𝜃
2

( 2 − 𝛼
1 − 𝛼

)

+
(

tan2 𝜃
(

𝑔ℎ + sin 𝜃
))

+1
2

(

1 + cos 𝜃 cot 𝜃
(

𝑔ℎ + sin 𝜃
)

)

(

𝑔ℎ

(

𝛼
(𝛼 − 1)

)

+ sin 𝜃
( 2 − 𝛼
1 − 𝛼

)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(119)

This ratio defines the degree of non-invariance of shear moduli under clockwise and anticlockwise shear stress, which depends on 𝛼.

.3. Critical remarks

.3.1. Remark 1: Elastic moduli considering bending and axial deformations
For thin cell walls that are axially non-rigid, the axial deformation needs to be accounted for in addition to the bending deformation. Thus the

xpression of the elastic moduli are obtained by neglecting beam-level shear deformation components of Equations (46), (47), (51), (52), (60),
67), (71), (72), (90) and (92) for configuration 1.

𝐸𝐶
1 =

( 𝑡
𝑙

) 𝐸 (1 − 𝛼) cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)

sin2 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+ cot2 𝜃

)

(120)

𝐸𝑇
1 =

( 𝑡
𝑙

) 𝐸 cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)

sin2 𝜃
(

( 𝑙
𝑡

)2
+ cot2 𝜃

)

(121)

𝜈𝐶12 =

cos2 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
− 1

)

(ℎ
𝑙
+ sin 𝜃

)

sin 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+ cot2 𝜃

) (122)

𝜈𝑇12 =
cos2 𝜃

(

( 𝑙
𝑡

)2
− 1

)

(ℎ
𝑙
+ sin 𝜃

)

sin 𝜃
(

( 𝑙
𝑡

)2
+ cot2 𝜃

) (123)

𝐸𝐶
2 =

( 𝑡
𝑙

)
𝐸
(ℎ
𝑙
+ sin 𝜃

)

cos3 𝜃
(

( 𝑙)2
+ tan2 𝜃 + 2 (ℎ)

) (124)
22
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𝐸𝑇
2 =

( 𝑡
𝑙

)
𝐸
(ℎ
𝑙
+ sin 𝜃

)

(1 − 𝛼)

cos3 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+ tan2 𝜃 + 2

cos2 𝜃

(ℎ
𝑙

)

) (125)

𝜈𝐶21 =
sin 𝜃

(ℎ
𝑙
+ sin 𝜃

)

(

( 𝑙
𝑡

)2
− 1

)

cos2 𝜃
(

( 𝑙
𝑡

)2
+ tan2 𝜃 + 2

cos2 𝜃

(ℎ
𝑙

)

) (126)

𝜈𝑇21 =

sin 𝜃
(ℎ
𝑙
+ sin 𝜃

)

(

(

𝑙
𝑡 (1 − 𝛼)

)2
− 1

)

cos2 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+ tan2 𝜃 + 2

cos2 𝜃

(ℎ
𝑙

)

) (127)

𝐺−
12 =

𝐸𝑔𝑡

2 cos 𝜃

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

𝑔2ℎ
𝑔2𝑡

(

𝑔ℎ + sin 𝜃
) + 𝑔ℎ

(

1 + cos 𝜃 cot 𝜃
(

𝑔ℎ + sin 𝜃
)

)

( 𝛼
1 − 𝛼

)

)

1
(

1 + (1 − 𝛼)3
)

+
𝑔3ℎ

𝑔2𝑡 (1 − 𝛼)3
(

𝑔ℎ + sin 𝜃
)
+ sin 𝜃

2

( 2 − 𝛼
1 − 𝛼

)

+
(

tan2 𝜃
(

𝑔ℎ + sin 𝜃
))

+1
2

(

1 + cos 𝜃 cot 𝜃
(

𝑔ℎ + sin 𝜃
)

)

(

𝑔ℎ
( 𝛼
𝛼 − 1

)

+ sin 𝜃
( 2 − 𝛼
1 − 𝛼

))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(128)

𝐺+
12 =

𝐸𝑔𝑡

2 cos 𝜃

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

𝑔2ℎ
𝑔2𝑡 (1 − 𝛼)3

(

𝑔ℎ + sin 𝜃
)
+ 𝑔ℎ

(

1 + cos 𝜃 cot 𝜃
(

𝑔ℎ + sin 𝜃
)

)

( 𝛼
𝛼 − 1

)

)

1
(

1 + 1
(1 − 𝛼)3

)

+
𝑔3ℎ

𝑔2𝑡
(

𝑔ℎ + sin 𝜃
) + sin 𝜃

2

( 2 − 𝛼
1 − 𝛼

)

+
( 1
2
tan2 𝜃

(

𝑔ℎ + sin 𝜃
)

(2 − 𝛼
1 − 𝛼

))

+1
2

(

1 + cos 𝜃 cot 𝜃
(

𝑔ℎ + sin 𝜃
)

)

(

𝑔ℎ
( 𝛼
1 − 𝛼

)

+ sin 𝜃
( 2 − 𝛼
1 − 𝛼

))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(129)

Note that the expressions corresponding to the Configuration 2 are presented in the supplementary section 1.1.

2.3.2. Remark 2: Elastic moduli considering bending and shear deformations
For thick cell walls that are axially rigid, the beam-level shear deformation needs to be accounted for in addition to the bending deformation.

Thus the expression of the elastic moduli are obtained by considering axial deformation components of Equations (46), (47), (51), (52), (60),
(67), (71), (72), (90) and (92) for configuration 1 to vanish.

𝐸𝐶
1 =

( 𝑡
𝑙

) 𝐸 (1 − 𝛼) cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)

sin2 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

)

(130)

𝐸𝑇
1 =

( 𝑡
𝑙

) 𝐸 cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)

sin2 𝜃
(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

)

(131)

𝜈𝐶12 =
cos2 𝜃

(ℎ
𝑙
+ sin 𝜃

)

sin 𝜃
(132)

𝜈𝑇12 =
cos2 𝜃

(ℎ
𝑙
+ sin 𝜃

)

sin 𝜃
(133)

𝐸𝐶
2 =

( 𝑡
𝑙

)
𝐸
(ℎ
𝑙
+ sin 𝜃

)

cos3 𝜃
(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

) (134)

𝐸𝑇
2 =

( 𝑡
𝑙

)
𝐸
(ℎ
𝑙
+ sin 𝜃

)

(1 − 𝛼)

cos3 𝜃

(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

) (135)

𝜈𝐶21 =
sin 𝜃

(ℎ
𝑙
+ sin 𝜃

)

cos2 𝜃
(136)

𝜈𝑇 =
sin 𝜃

(ℎ
𝑙
+ sin 𝜃

)

(137)
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𝐺−
12 =

𝐸𝑔𝑡
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⎜
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(138)

𝐺+
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⎟

⎟
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⎟

⎟

⎠
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Note here that the Poisson’s ratios (𝜈12 and 𝜈21) are equal for both compressive and tensile mode of stresses. The expressions corresponding to the
Configuration 2 are presented in the supplementary section 1.2.

2.3.3. Remark 3: Applicability to differently shaped lattices
The five elastic constants derived for hexagonal honeycomb lattices with cuts can be applied to other lattices with different shapes, as shown

in Fig. 1(C–E). Such shapes of the lattices result from the appropriate change in the geometry of the hexagonal lattices (i.e. slight modifications
need to be introduced in the expressions (46), (47), (51), (52), (60), (67), (71), (72), (90) and (92)).

Consider the re-entrant auxetic lattices for instance (refer to Fig. 1(B(ii) and C)). The effective elastic constants of such lattices can be easily
obtained by changing 𝜃 to −𝜃 in the equations (46), (47), (51), (52), (60), (67), (71), (72), (90) and (92). This derivation is quite
straightforward; thus, here the final expressions for lattices with negative Poisson’s ratio is not shown. However, we have presented the numerical
results for auxetic configurations in this article later.

Following a similar approach, elastic constants of rectangular lattices (as shown in Fig. 1(B(iii) and D)) can be obtained by taking limit 𝜃 → 0.

𝐸𝐶
1 = lim

𝜃→0

( 𝑡
𝑙

) 𝐸 (1 − 𝛼) cos 𝜃
(ℎ
𝑙
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)
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(

(

𝑙
𝑡 (1 − 𝛼)

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃

) =
𝐸𝑡 (1 − 𝛼)

ℎ (140)

𝐸𝑇
1 = lim

𝜃→0

( 𝑡
𝑙

) 𝐸 cos 𝜃
(ℎ
𝑙
+ sin 𝜃

)
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(

( 𝑙
𝑡

)2
+

2 (1 + 𝜈)
𝑘

+ cot2 𝜃
) = 𝐸𝑡

ℎ (141)

𝜈𝐶12 = lim
𝜃→0

cos2 𝜃

(

(

𝑙
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)2
+

2 (1 + 𝜈)
𝑘

− 1

)

(ℎ
𝑙
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)

sin 𝜃

(

(

𝑙
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+
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𝑘
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) = 0 (142)

𝜈𝑇12 = lim
𝜃→0
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(

( 𝑙
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)
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( 𝑙
𝑡
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+
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𝑘
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) = 0 (143)

𝐸𝐶
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(144)

𝐸𝑇
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( 𝑡
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(ℎ
𝑙
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(ℎ
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(ℎ
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𝑙
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(145)
24

𝑡 (1 − 𝛼) 𝑘 𝑙



Mechanics of Materials 184 (2023) 104691P. Sinha et al.

s
t
l

T

𝜈𝐶21 = lim
𝜃→0

sin 𝜃
(ℎ
𝑙
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( 𝑙
𝑡
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2 (1 + 𝜈)
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(ℎ
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) = 0 (146)

𝜈𝑇21 = lim
𝜃→0
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(ℎ
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𝑙

)

) = 0 (147)

In case of deriving the shear modulus of rectangular lattices, some physical facts become evident. For rectangular lattices, there will be no shear
train due to beam-level axial deformation as the axial forces on the slant members act along one line causing compression in one and tension in
he other. The shear strain at the unit cell level arises from the beam-level bending and shear deformations. Thus for shear modulus of rectangular
attices, we have (from Equations (81) and (82))

𝜙 = lim
𝜃→0

𝐹ℎ𝑙
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⎜
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⎟

⎟

⎟

⎠
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(ℎ
2

)3

𝐸𝑏𝑡3 (1 − 𝛼)3
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⎜
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⎜
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⎟
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⎟

⎠
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⎜

⎜
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Total shear strain for a rectangular lattice is thus give as

𝛾𝑡 =
2
(

𝜙ℎ
2
+ 𝜂𝐷
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he shear modulus (under anti-clockwise shear stress) is given as

𝐺−
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⎜
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Fig. 10. Effect of beam-level shear and axial deformation on in-plane shear modulus. (A–D) Variation of ratio of shear modulus, considering bending, axial and shear
deformations (denoted by B, A and S, respectively, in figure) to the shear modulus, considering only bending deformation with the ratio of depth of cut to total thickness of
cell wall, 𝛼, for different auxetic and non-auxetic configurations. The figures in inset show the variation of non-dimensionalized shear modulus to 𝛼, considering only bending
deformation, for the unit cell subjected to clockwise and anti-clockwise shear stresses. Note that the main plot here is intended to show the effect of beam-level axial and shear
deformations with respect to only bending deformation. The inset plots give the variation trend of the shear modulus with 𝛼. In each of the subplots, the shear modulus is presented
for clockwise and anti-clockwise modes of far-field shear stresses considering the Configuration 1 of domain discontinuity.

Similarly, the shear modulus of rectangular lattice on application of clockwise shear stress is given as
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)
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⎜
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If we instead take limit ℎ → 0, the elastic constants of rhombic lattices (refer to Fig. 1(B(iv) and E)) can be obtained as

𝐸𝐶
1 = lim

ℎ→0
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(
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Fig. 11. Non-invariant in-plane Poisson’s ratios considering beam-level bending, axial and shear deformations. (A–D) Variation of Poisson’s ratio 𝜈12, considering bending,
axial and shear deformations, with the ratio of depth of cut to total thickness of cell wall, 𝛼, for different auxetic and non-auxetic configurations. (E–H) Variation of Poisson’s
ratio 𝜈21, considering bending, axial and shear deformations, with the ratio of depth of cut to total thickness of cell wall, 𝛼, for different auxetic and non-auxetic configurations.
In each of the subplots, the Poisson’s ratios are presented for compressive and tensile modes of far-field stresses considering the Configuration 1 of domain discontinuity.
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Note that the expressions given above for differently shape lattices correspond to Configuration 1. The expressions for Configuration 2 are presented
in the supplementary section 1.3.

3. Results and discussion

In this section, numerical results are presented in order to characterize the effect of introducing cuts (i.e. domain discontinuities) in lattice
structures using the analytical expressions derived in the preceding section. It may be noted that the lattice-level effective elastic properties
essentially depend on the beam-level deformation behavior. Thus, it is necessary to validate the expression of deflection of a beam with cuts
introduced, under the boundary conditions for a cantilever beam with no rotation allowed at the free end (refer to Fig. 6(C)(i)). To do this validation,
a cantilever beam is considered with the aforementioned boundary conditions and the results are compared for transverse deflection obtained based
on beam-level theoretical derivation and finite element simulations using commercial codes (Anon, 2021). In the finite element simulation, we have
modeled a 3D single solid block of length 𝑙 = 5 mm, width 𝑏 = 2.5 mm, and thickness 𝑡 = 1 mm. Linear pattern tool is used to create 70 elements
with no clearance between the patterns. The rest volume is extruded to obtain a total volume of 70 mm × 5 mm × 5 mm. The contact surfaces
of the cuts are made frictional with varying frictional coefficients which will result in a difference in force needed to produce the same deflection
in case of closing of cuts. In the case of opening as there will be no or minimal contact between cut surfaces, it may vary with negligible values.
One end of the surface of the beam has been given a fixed support and the other end is given a remote displacement of 6 mm and rotations of the
surfaces are restricted. Fig. 6 shows that increasing the friction coefficient results in a better match between theory and finite element analysis.
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Fig. 12. Comparison of non-invariant in-plane Young’s and shear moduli for Configuration 1 and 2 of hexagonal lattices considering beam-level bending, axial and
shear deformations. (A–C) Variation of non-dimensionalized Young’s modulus in longitudinal direction, i.e., 𝐸1∕𝐸 with the ratio of depth of cut to total thickness of cell wall, 𝛼,
for different auxetic and non-auxetic combinations, for both Configuration 1 and Configuration 2. (D–F) Variation of non-dimensionalized Young’s modulus in transverse direction,
i.e., 𝐸2∕𝐸 with the ratio of depth of cut to total thickness of cell wall, 𝛼, for different auxetic and non-auxetic combinations, for both Configuration 1 and Configuration 2. (G–I)
Variation of non-dimensionalized shear modulus, i.e., 𝐺12∕𝐸 with the ratio of depth of cut to total thickness of cell wall, 𝛼, for different auxetic and non-auxetic combinations,
for both Configuration 1 and Configuration 2. Note that the figure is plotted considering the geometric parameter ℎ∕𝑙 = 1.5.

Fig. 13. Comparison of non-invariant in-plane Poisson’s ratios for Configuration 1 and 2 of hexagonal lattices considering beam-level bending, axial and shear
deformations. (A–C) Variation of Poisson’s ratio 𝜈12, considering bending, axial and shear deformations, with the ratio of depth of cut to total thickness of cell wall, 𝛼, for
different auxetic and non-auxetic configurations, for both Configuration 1 and Configuration 2. (D–F) Variation of Poisson’s ratio 𝜈21, considering bending, axial and shear
deformations, with the ratio of depth of cut to total thickness of cell wall, 𝛼, for different auxetic and non-auxetic configurations, for both Configuration 1 and Configuration 2.
Note that the figure is plotted considering the geometric parameter ℎ∕𝑙 = 1.5.

This is partly, due to the fact that the analytical model considers the beam as being solid when the cuts are closed. However, this is not strictly the
case if the cuts can slide relative to each other (if the contact is frictionless the shear transfer here would be zero). Therefore only the non-cut part
is carrying shear (in the frictionless case) even if the cuts are closed. Adding friction brings finite element results closer to the solid assumption
of the analysis. Fig. 6(A) depicts that the results from the two analyses match for different values of friction factors, corroborating the validity
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Fig. 14. Non-invariant elastic properties for rectangular lattices considering beam-level bending, axial and shear deformations. (A–C) Variation of non-dimensionalized
Young’s modulus in longitudinal direction, i.e., 𝐸1∕𝐸 with the ratio of depth of cut to total thickness of cell wall, 𝛼, at different values of ℎ∕𝑎, for 𝑡∕𝑙 = 0.1, 0.01, 0.001, considering
bending, axial and shear deformations. (D–F) Variation of non-dimensionalized Young’s modulus in transverse direction, i.e., 𝐸2∕𝐸 with the ratio of depth of cut to total thickness
of cell wall, 𝛼, at different values of ℎ∕𝑎, for 𝑡∕𝑙 = 0.1, 0.01, 0.001, considering bending, axial and shear deformations. (G–I) Variation of non-dimensionalized shear modulus,
i.e., 𝐺12∕𝐸 with the ratio of depth of cut to total thickness of cell wall, 𝛼, at different values of ℎ∕𝑎, for 𝑡∕𝑙 = 0.1, 0.01, 0.001, considering bending, axial and shear deformations.
The Poisson’s ratios come out to be zero for rectangular lattices, irrespective of the value of 𝛼. In each of the subplots, the elastic properties are presented for two opposite modes
of far-field stresses considering the Configuration 1 of domain discontinuity.

of the analytical expression of deflection of a beam with cuts. Similar comparison is performed considering both bending and shear deformation
in the theoretical expression (refer to Fig. 6(B)), where we find the results match more closely, since the finite element analysis factors in shear
effect. This shows our beam-level theoretical model with cuts are adequately accurate for using them in the further lattice-level models. Here we
note that since the expressions of lattice-level effective elastic moduli exactly converge to the closed-form expressions of established Gibson and
Ashby (1999) when 𝛼 = 0, it gives an exact analytical validation of the lattice level framework. This establishes the unit call based homogenization
framework, which uses beam level deformations to evaluate lattice-level effective properties, is accurate with respect to available literature. Thus,
having adequate confidence in both the beam-level and lattice-level behavior, we further analyze the non-invariance in effective elastic properties
of the proposed lattice materials with domain discontinuity (i.e. the introduced cuts).

Now we present the results for only bending deformation case and then for the combined case of bending, axial and shear deformation
systematically. Note that the Figs. 7 to 16 are corresponding to the case of Configuration 1 for placement of domain discontinuity. The trend
of non-invariance would be opposite for the Configuration 2, as discussed in Section 2.2. Fig. 7 presents the variation in effective elastic moduli of
hexagonal honeycomb lattices with the ratio of the depth of cut to the total thickness of cell wall 𝛼, with applied tensile and compressive modes
of far-field normal stresses (𝜎1 and 𝜎2) along with clockwise and anticlockwise modes of far-field shear stresses (𝜏). Here we have considered the
beam-level bending deformation only. We have considered different configurations of cell wall inclination angle 𝜃 with different values of the ℎ∕𝑙
ratio. It is important to mention here that the results are non-dimensionalized considering 𝐸1∕𝐸, 𝐸2∕𝐸 and 𝐺12∕𝐸 for the elastic moduli (𝛼 is
already a non-dimensional quantity). The Young’s modulus of the beam members making up the lattice is denoted by 𝐸. The Poisson’s ratios 𝜈12
and 𝜈21 are independent of 𝛼 when we consider only the beam-level bending deformation, as evident from Eqs. (10) and (22) (thus the results of
Poisson’s ratios are not presented for this case). We can notice from the figures that for every combination of ℎ∕𝑙 ratio and inclination angle 𝜃,
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Fig. 15. Non-invariant elastic properties for rhombic lattices considering beam-level bending, axial and shear deformations. (A–C) Variation of non-dimensionalized Young’s
modulus in longitudinal direction, i.e., 𝐸1∕𝐸 with the ratio of depth of cut to total thickness of cell wall, 𝛼, at different values of 𝜃, for 𝑡∕𝑙 = 0.1, 0.01, 0.001, considering bending,
axial and shear deformations. (D–F) Variation of non-dimensionalized Young’s modulus in transverse direction, i.e., 𝐸2∕𝐸 with the ratio of depth of cut to total thickness of cell
wall, 𝛼, at different values of 𝜃, for 𝑡∕𝑙 = 0.1, 0.01, 0.001, considering bending, axial and shear deformations. (G–I) Variation of non-dimensionalized shear modulus, i.e., 𝐺12∕𝐸
with the ratio of depth of cut to total thickness of cell wall, 𝛼, at different values of 𝜃, for 𝑡∕𝑙 = 0.1, 0.01, 0.001, considering bending, axial and shear deformations. In each of the
subplots, the elastic properties are presented for two opposite modes of far-field stresses considering the Configuration 1 of domain discontinuity.

with an increase in the value of 𝛼, the elastic moduli decrease in the mode when the cuts open. This is because when the direction of the deflection
is such that the cuts are being closed, stress due to bending moment is generated in the entire cross-section of the beam, while when the cuts are
opened almost no stress is generated in those parts of the cross-section. The elastic moduli, 𝐸1 and 𝐸2 become independent of 𝛼, when the cuts
close and thus have constant values, irrespective of the value of 𝛼 (these cases are demonstrated by dashed lines in the figure corresponding to 𝐸1
and 𝐸2), while the shear modulus, 𝐺12 is dependent on 𝛼 for both clockwise and anticlockwise mode of shear stress (𝜏). This shows that unlike
in conventional materials, we can have varying elastic moduli depending on the state of stress (tension and compression modes of normal stress
or clockwise or anti-clockwise modes of shear stress), where the degree of non-invariance can be programmed based on the value of 𝛼 for a given
microstructural configuration.

Figs. 8–11 show the variation in elastic moduli of hexagonal lattices with 𝛼, considering beam-level bending, axial and shear deformations.
The applied tensile and compressive mode of normal stresses (𝜎1 and 𝜎2) and the clockwise and anticlockwise modes of shear stresses (𝜏) are
investigated for different unit cell geometry. Different values of 𝑡∕𝑙 ratio (presenting a non-dimensional measure for the thickness of cell walls)
are analyzed along with the variation of cell angle 𝜃, considering ℎ∕𝑙 = 1.5. Note that the results for 𝐸1, 𝐸2 and 𝐺12 are presented here as the
ratio of the elastic moduli obtained by considering bending, axial and shear deformations and the elastic moduli obtained by considering only
the bending deformation. The plots in inset of Figs. 8–10 show the variation of the elastic moduli considering bending deformation with 𝛼. Thus
the multiplication of the ratio of elastic modulus value presented in the main plots with the bar chart value of elastic modulus presented in the
insets can lead to the actual values of elastic modulus considering bending, axial and shear deformations. We notice from the figures that for every
combination of 𝑡∕𝑙 and 𝜃 with an increase in the value of 𝛼, the elastic moduli increase. This increase is more evident for cases with a higher 𝑡∕𝑙
ratio. As discussed in the preceding paragraph, here also the elastic moduli, 𝐸1 and 𝐸2 become independent of 𝛼, when the cuts close and thus
have constant values, irrespective of the value of 𝛼 (these cases are demonstrated by dashed lines in the figure corresponding to 𝐸1 and 𝐸2), while
the shear modulus, 𝐺12 is dependent on 𝛼 for both clockwise and anticlockwise mode of shear stress (𝜏). As the ratio 𝑡∕𝑙 increases the difference in
elastic moduli values in tension and compression becomes more evident. In context of the results presented in Figs. 8–10 it may be noted that we
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Fig. 16. Non-invariant in-plane Poisson’s ratios for rhombic lattices considering beam-level bending, axial and shear deformations. (A–C) Variation of Poisson’s ratio,
𝜈12 with the ratio of depth of cut to total thickness of cell wall, 𝛼, at different values of 𝜃, for 𝑡∕𝑙 = 0.1, 0.01, 0.001, considering bending, axial and shear deformations. (D–F)
Variation of Poisson’s ratio, 𝜈21 with the ratio of depth of cut to total thickness of cell wall, 𝛼, at different values of 𝜃, for 𝑡∕𝑙 = 0.1, 0.01, 0.001, considering bending, axial and
shear deformations. The figures in inset show the variation of the ratio of Poisson’s ratio, 𝜈𝑖𝑗 at different values of 𝛼 to 𝜈𝑖𝑗 at 𝛼 = 0 (𝑖, 𝑗 = 1, 2), at different values of 𝜃. In each of
the subplots, the elastic properties are presented for two opposite modes of far-field stresses considering the Configuration 1 of domain discontinuity.

have focused on the non-invariant behavior of the elastic moduli and the impact of considering beam-level bending, shear and axial deformations
compared to only the beam-level bending deformation (presented here in terms of the ratios). The actual trend of variations with respect to 𝛼
would be similar to that of the case considering only beam-level bending deformation, as shown in the inset plots.

Results for the Poisson’s ratios 𝜈12 and 𝜈21 are presented considering bending, axial and shear deformations in Fig. 11. Here with an increase
in 𝛼, the Poisson’s ratios increase for positive cell angle 𝜃 values while they decrease for auxetic configurations. Thus the effect of 𝛼 on the degree
of auxeticity is evident here (unlike the case of only considering the beam-level bending deformation), wherein the degree of non-invariance can
further be programmed based on the extent of domain discontinuity 𝛼.

So far we have concentrated on Configuration 1 of the proposed lattices, wherein the non-invariance in different elastic moduli with programmed
domain discontinuity become apparent. Figs. 12–13 show the comparison between elastic moduli of hexagonal lattices for the two configurations
(1 & 2), with 𝛼, considering beam-level bending, axial and shear deformations. The results show that the longitudinal Young’s modulus 𝐸1 and
Poisson’s ratio 𝜈12 under compressive stress in Configuration 1 is similar to that under tensile stress in Configuration 2 while 𝐸1 and Poisson’s ratio
𝜈12 under tensile stress in Configuration 1 is similar to that under compressive stress in Configuration 2. The transverse Young’s modulus 𝐸2 and
Poisson’s ratio 𝜈21 in Configuration 1 are different to those in Configuration 2, whether under tension or compression due to the effect of change
in the position of cuts in the two configurations. For the shear modulus 𝐺12, the one under anticlockwise shear stress in Configuration 1 is similar
to that under clockwise shear stress in Configuration 2 (and vice-versa).

Form the comparative results of Configuration 1 and 2, we note that the trend of non-invariance would be opposite under tension and
compression modes of normal stresses or clockwise and anti-clockwise modes of shear stresses. For Configuration 1, we notice that for the only
bending case, the expressions of the five in plane elastic properties under tensile and compressive stress are exactly opposite to that in Configuration
2. We observe that for Configuration 1, in only bending case 𝐸𝐶

1 ≤ 𝐸𝑇
1 , depending on 𝛼. Similarly we get, 𝐸𝐶

2 ≥ 𝐸𝑇
2 and 𝐺−

12 ≤ 𝐺+
12 based on the

effect of depth of cuts 𝛼, when only bending effect is taken into account. The Poisson’s ratios 𝜈12 and 𝜈21 are similar under either compressive or
tensile stress in both Configuration 1 and Configuration 2. Since in Configuration 2 for only bending case, the elastic moduli are exactly opposite
to those in Configuration 1 under tensile and compressive stress and clockwise and anticlockwise shear stress, we have 𝐸𝐶

1 ≥ 𝐸𝑇
1 , 𝐸𝐶

2 ≤ 𝐸𝑇
2 and

𝐺−
12 ≥ 𝐺+

12. For the Configuration 1, considering bending, axial and shear effect, we observe that 𝐸𝐶
1 ≤ 𝐸𝑇

1 , 𝐸𝐶
2 ≥ 𝐸𝑇

2 and 𝐺−
12 ≤ 𝐺+

12. Also, we get
𝜈𝐶12 ≥ 𝜈𝑇12, 𝜈

𝐶
21 ≤ 𝜈𝑇21 in non-auxetic cases and 𝜈𝐶12 ≤ 𝜈𝑇12, 𝜈

𝐶
21 ≥ 𝜈𝑇21 in auxetic cases for Configuration 1. Similarly for the Configuration 2, considering

bending, axial and shear effect, we observe that 𝐸𝐶
1 ≥ 𝐸𝑇

1 , 𝐸𝐶
2 ≤ 𝐸𝑇

2 and 𝐺−
12 ≥ 𝐺+

12. Also, we get 𝜈𝐶12 ≤ 𝜈𝑇12, 𝜈
𝐶
21 ≥ 𝜈𝑇21 in non-auxetic cases and

𝜈𝐶12 ≥ 𝜈𝑇12, 𝜈
𝐶
21 ≤ 𝜈𝑇21 in auxetic cases for Configuration 2. Thus based on the placement of domain discontinuity, the tensile or compressive mode

and clockwise or anticlockwise mode can have higher or lower values as per functional demands.
In this section, so far the main focus has been on the effective elastic moduli of hexagonal honeycomb lattices with non-auxetic as well as

auxetic configurations (depending on the value of cell angle 𝜃). Now the numerical investigation is extended to two other lattice forms taking into
account the bending, axial and shear deformations, as proposed in Section 2.3.3 (refer to Fig. 1(C–E)). Fig. 14 shows the variation of different elastic
moduli (refer Eqs. (140)–(152)) with 𝛼 for different configurations of geometry in rectangular lattices. It is interesting to notice that for rectangular
lattices, the Poisson’s ratios become zero as given in Eqs. (142), (143), (146) and (147). For such rectangular lattices, the Young’s moduli depend
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significantly on 𝛼, for the case when cuts open and are independent of it when cuts are closed, while the shear modulus is dependent on 𝛼, for
oth clockwise and anticlockwise shear stress. Fig. 15 presents the effect of 𝛼 on the effective elastic constants of rhombic cellular lattices (refer to
qs. (153)–(162)) with different geometric configurations, considering the bending, axial and shear deformations. There is a trend of behavioral
imilarity in the two Young’s moduli when compared with regular hexagonal honeycomb lattices, while the shear modulus can be seen to have
ame value for both clockwise and anticlockwise shear stress as evident from Eqs. (161) and (162). Fig. 16 presents the effect of 𝛼 on the two
oisson’s ratios of rhombic lattices considering the beam-level bending, axial and shear deformations. The inset figures in these plots show the
ariation of Poisson’s ratio depending on 𝛼 to the same Poisson’s ratio when 𝛼 = 0. These inset figures pronounce the different values of Poisson’s
atio in compressive and tensile states, which otherwise seem to be the same in the original plots. We also find that for both rectangular and
hombic lattices, as the ratio 𝑡∕𝑙 increases, the elastic moduli increase.

. Conclusions and perspective

We have proposed non-invariant lattice metamaterials through a bi-level unit cell-based framework, wherein the effective elastic moduli and
oisson’s ratios can be programmed to be different in tensile and compressive normal modes or clockwise and anti-clockwise shear modes. Such
ehavior is not available in naturally occurring materials where the elastic moduli are normally invariant in the complementary modes of small
eformation. The non-invariance is achieved here through introduction of domain discontinuity within the constituting beam elements. More
nterestingly, such non-invariance can be realized in the linear small deformation regime and the elastic moduli can be tailored to have higher
r lower value in any mode compared to the other depending on the placement (two different configurations are proposed) and intensity of the
iscontinuities in a programmable paradigm.

We have derived an efficient analytical framework for the non-invariant effective elastic moduli of lattice materials taking into account the
nfluence of domain discontinuity. First, we have presented the derivation considering only beam-level bending deformations, followed by a more
eneric framework involving the axial and shear deformations. The proposed analytical framework is validated extensively at the beam-level
onsidering domain discontinuity and at the lattice level. The numerical results ascertain that the domain discontinuities, in conjunction with unit
ell level geometric parameters, can impact the effective elastic constants significantly under different modes of far-field stresses. The degree of
on-invariance is dependent on the severity of the introduced discontinuities, defined as a non-dimensional measure of the depth of zero-thickness
or near-zero thickness) cuts. It is further revealed that the degree of auxeticity of such lattices can be programmed to have target values (including
on-invariance under different modes of deformation) as a function of the intensity and location of domain discontinuity when axial and shear
eformations are included at the beam level.

Realization of the unusual non-invariant elastic moduli of bi-level architected lattice materials would lead to a range of technologically
emanding niche applications where one mode of deformation requires more or less force to deform compared to the opposite mode. Besides
eing able to perform as a load-bearing component, the proposed metamaterial can be used as an integrated sensor for measuring the level of
tress or strain in the structure. For example, under tensile far field stress, there would be more penetration of an external flux (such as luminous
lux) through the metamaterial, wherein by analyzing the intensity of residual flux, the level of stress and strain can be measured in conjunction
ith the proposed analytical formulae.

In this work, we have concentrated primarily on hexagonal honeycomb lattices (auxetic and non-auxetic configurations) and their derivatives
uch as rectangular and rhombic forms. Such bending-dominated lattice forms are widely available in naturally occurring as well as engineered
aterials and structures. The proposed idea of achieving non-invariance on the basis of introducing domain discontinuity can be extended to other

orms of lattices as well by adopting appropriate unit cells.
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