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A B S T R A C T   

The scattering of sound by a thin spherical shell is considered using an analytic formulation 
involving spherical harmonics. The integral of the far field scattered intensity, termed the scat-
tered power, can then be expressed in a simple form. At low frequencies the scattered power can 
be minimised by an appropriate choice of material properties and shell thickness, which is 
illustrated for both a steel shell and for one in which the mass and stiffness of the shell are equal to 
those of the displaced fluid. Simulations of feedforward active control are then used to investigate 
the best possible performance in attenuating the scattered power, although this approach requires 
knowledge of the incident and scattered sound fields. Feedback control of the shell vibration 
using structural actuators and sensors is a more practical control strategy since it does not involve 
the need to separate the incident and scattered contributions. Direct velocity feedback control is 
considered using collocated and distributed actuators and sensors that spread the applied force 
and sensed velocity over spherical caps on the surface of the shell. This approach shows effective 
suppression of the structural shell modes that give rise to significant scattering at their resonant 
frequencies.   

1. Introduction 

The analysis of acoustic scattering is a classical problem in acoustics. Sound scattering is important in a number of applications, 
such as binaural sound reproduction, where the physical presence of the head plays an important role in the perceived sound [1], and 
in acoustic cloaking of objects [2,3] as in scenarios involving acoustic detection. The sound scattered from a body surrounded by a fluid 
can be calculated numerically, using finite elements or boundary elements for example, or analytically if the body has a simple shape, 
such as a sphere or cylinder [4,5]. 

More generally, Bobrovnitskii [6,7] introduced an impedance-based approach to the analysis of sound scattering from a body of 
arbitrary shape by assuming that the surface of the scattering body was divided into a large number of discrete elements, which are 
assumed to be small compared with a wavelength in the surrounding fluid. Assuming tonal excitation, the vectors of complex total 
pressures and total velocities at the positions of these discrete elements on the surface of the scattering body may be denoted as ̃pt and 
ṽt respectively, where ̃vt is measured normal and outward with respect to the surface and the tilde indicates that these quantities are 
evaluated at these discrete elements. Each of the vectors is made up of contributions from the sound field incident on the scattering 
body in the absence of the body, ̃pi and ̃vi,and from the scattered acoustic field, ̃ps and ̃vs, so that ̃ptcan be written as ̃pi plus ̃ps and ̃vt as 
ṽi plus ̃vs. Three input impedance matrices are then defined, which are the in-vacuo structural impedance matrix of the scattering body, 

Z̃B, the impedance matrix of the internal volume of the scattering body if filled with the surrounding fluid, Z̃I, and the outward 
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radiation impedance matrix on the surface of the scattering body into the surrounding fluid, Z̃R, so that 

p̃t = − Z̃B ṽt, (1)  

p̃i = − Z̃I ṽi, (2)  

p̃s = Z̃R ṽs. (3) 

Using simple manipulations of the defining Eqs. (1)-(3), the vector of scattered surface pressures, p̃s, can be expressed in terms of 
the vector of incident surface pressures, p̃i, as [6,7] 

p̃s = (ỸR + ỸB)
− 1
(ỸI − ỸB) p̃i, (4)  

where the admittance matrices ỸB, ỸR and ỸI are the inverses of the impedance matrices Z̃B, Z̃R and Z̃I, assuming that these matrices, 
and ỸI − ỸB, are non-singular. The scattered pressure is zero, as expected, if the admittance of the scattering body, ỸB, is equal to that 
of the fluid in the absence of the body, ỸI . The scattered pressure is also inversely dependant on the admittance of the shell when it is 
loaded by the fluid ỸR + ỸB. Under the conditions of linearity and reciprocity, these matrices are also symmetric, and when all the 
processes involved are passive, the real parts of the matrices are positive definite and so all of their associated impulse responses are 
causal. It is important to note that despite being formulated in terms of the in-vacuo structural response of the body, the loading of the 
fluid on the structure, as well as the sound scattering, are all accounted for in Eq. (4). Each of these impedance matrices is, in general, 
fully populated in this elemental formulation. 

The vector of scattered pressures is defined on the surface of the scattering body, but it is also important to be able to calculate this 
pressure at other points in the fluid, particularly in the far field. This can generally be achieved using a radiation model in the fluid, but 
the formulation takes a simple form if we consider only the integral of the mean square scattered pressure over some surface in the far 
field, which may be termed the scattered power. It should be noted that this quantity does not represent the actual sound power 
radiated by the scattering object, but it is a normalised form of the scattering cross section. 

If only the scattered field were present at the surface of the scattering object, the scattered power can be calculated from the surface 
pressure and surface velocity and in the elemental formulation would be equal to 

Ws =
ΔA
2

Re
[
p̃ H

s ṽs
]

(5) 

Where Re denotes the real part of the term in brackets, the superscript H denotes the Hermitian transpose and for the sake of 
simplicity all the elements are assumed to have the same area, ΔA . Using the definition of ỸR, the scattered power can also be written 
as 

Ws =
ΔA
2

p̃ H
s Re [ỸR] p̃s (6)  

which, using Eq. (4), can be calculated from only the incident field at the surface and the three impedance matrices defined in Eqs. (1)- 
(3). 

This paper initially discusses a modal approach to Bobrovnitskii’s theory of scattering, specifically for thin spherical shells. At low 
frequencies, when the size of the sphere is small compared with the acoustic wavelength in the surrounding fluid, the scattering is due 
to the rigid-body motion and the breathing mode of the shell and can be minimised by a suitable choice of shell thickness. If both the 
Young’s modulus and the thickness of the shell can be controlled, then both of these two contributions to the low-frequency scattering 
can be cancelled, since the stiffness and mass of the shell can then be made equal to that of the displaced fluid. At higher frequencies the 
scattering is dominated by the fluid-loaded flexible modes of the shell, particularly due to ovalling, in which case the term (ỸR + ỸB)in 
Eq. (4) can become very small, giving rise to strong scattering. It is the cancellation of the reactive parts of these two acoustic ad-
mittances that causes strong scattering from bubbles at their resonant frequency, for example. It is shown, using a feedforward control 
formulation, how it is possible to greatly supress the scattering from these flexible modes using a small number of force actuators acting 
on the surface of the shell. The advantages of using structural actuators to modify the structural response, rather than using acoustic 
actuators to supress the scattered sound field, have been discussed, for example, by Eggler et al. [8]. Such a feedforward approach 
assumes separate knowledge of the incident and scattered sound fields, however, which complicates the practical implementation. 
Feedback control of the total velocity on the surface of the shell using force actuators is then discussed, which does not require separate 
knowledge of the incident and scattered sound fields. It is shown that for feedback control to be most effective on thin shells, the force 
actuators and velocity sensors must be distributed over a finite area of the sphere, so that they preferentially couple into the lower 
order flexible modes that contribute most to the scattering. Using velocity feedback with collocated actuators and sensors it is shown 
that good control can be achieved of the scattering from these flexible modes of the shell and that the scattered power can be 
attenuated so that it is below that of a rigid sphere. Initial versions of this work have been presented at two conferences [9,10], with 
some preliminary control results for the steel shell only and without the theory and discussion in Sections 3 and 5. 
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2. A modal approach for spherical shells 

If instead of the vectors of total surface pressures and velocities being defined over a number of elements, they can be expressed in 
terms of some modal expansion, to give pt and vt for example, the scattering can be formulated using an entirely analogous definition of 
the matrices above, so that 

pt = − ZB vt, (7)  

pi = − ZI vi, (8)  

ps = ZR vs, (9)  

where the lack of a tilde denotes the modal quantity. The vector of scattered surface pressures, ps, in this case can again be expressed in 
terms of the vector of incident surface pressures, pi, as [6,7] 

ps = (YR + YB)
− 1
(YI − YB) pi = R pi. (10) 

Any one of the impedance matrices above could be diagonalised by choosing a modal expansion involving either the structural 
modes of the body, for ZB, the interior acoustic modes of the space, for ZI, or the radiation modes, for ZR. The eigenvectors of any of the 
three impedance matrices could thus potentially be used to define this modal expansion. However, for the particular case of scattering 
from a thin uniform empty spherical shell in an infinite fluid, an expansion in terms of spherical harmonics diagonalises all three 
impedance matrices [7]. Rayleigh [4] first described how the scattered sound field from a rigid sphere could be obtained by satisfying 
the boundary conditions on the surface of the sphere using a form of spherical harmonic decomposition of the incident and scattered 
fields. The formulation has been extended, for example, by Godin [11], Mao et al., [12], and Elliott et al. [13] for the case of scattering 
from a locally reacting sphere. 

The spherical harmonic expansions are truncated here to n = N terms, so that the complex pressure and velocity distributions on 
the surface of the sphere can be expressed as 

P(θ,φ) =
∑N

n=0

∑n

m=− n
p(n,m) Ym

n (θ,φ), (11)  

V(θ,φ) =
∑N

n=0

∑n

m=− n
v(n,m)Ym

n (θ,φ), (12)  

where Ym
n (θ,φ) is the complex spherical harmonic of index (n,m) and p(n,m) and v(n,m)denote the modal amplitudes of the surface 

pressure and velocity. In general the vectors of (N + 1)2 modal pressures and velocity amplitudes can then be defined as 

p = [p(0, 0), p(1, − 1), p(1, 0), p(1, 1)… p(N, − N)… p(N, 0)… p(N,N)]
T
, (13)  

v = [v(0, 0), v(1, − 1), v(1, 0), v(1, 1)… v(N, − N)… v(N, 0)… v(N,N)]
T
. (14) 

The scattered sound power for the spherical harmonic expansion can be written as 

Ws = 2πa2 Re
[
p H

s vs
]
= 2πa2 p H

s Re [YR] ps, (15)  

where a is the radius of the sphere. Assuming tonal excitation proportional to ejωt , the diagonal elements of the two acoustic impedance 
matrices, which are only dependant on the index n, can be written as [14] 

ZI(n) = jρc
jn(ka)
j′n(ka)

, (16)  

ZR(n) = − jρc
hn(ka)
h′

n(ka)
, (17)  

where ρ and c are the density and speed of sound in the surrounding fluid, jn(ka) and hn(ka) are the n-th order spherical Bessel function 
of the first kind and spherical Hankel function of the second kind and the prime superscript denotes derivation with respect to the 
nondimensional parameter, ka, where k is the acoustic wavenumber in the surrounding fluid. Since ka is equal to 2πfa /c, where f is the 
frequency and c is a constant, because the surrounding fluid is not dispersive, this parameter represents the normalised frequency. 

The in-vacuo modal impedance of a thin uniform empty spherical shell is also only dependant on n and is given by [5] 

ZB(n) = j
ρscp

Ω
h
a

(
Ω2 − Ω2

n1

)(
Ω2 − Ω2

n2

)

Ω2 −
(
1 + β2)(v + λn − 1)

, (18)  

where ρs is the density of the shell, c2
p = E/[ρs(1 − v2)] with E and v being the Young`s modulus and Poisson`s ratio of the shell, h is the 
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shell thickness, β2 is h2/(12a2), λn is n(n + 1), and Ω is ωa/cp with ω = kc, which can also be written as Ω = (c /cp)ka. The values of Ωn1 

and Ωn2 are the in-vacuo natural frequencies of vibration of the shell and are given by the solutions to the equation 

Ω4 −
[
1 + 3ν + λn − β2( 1 − v − λ2

n − vλn
)]

Ω2 + (λn − 2)
(
1 − v2)+ β2[λ3

n − 4λ2
n + λn

(
5 − v2) − 2

(
1 − v2)] = 0, (19)  

although there is only one real natural frequency for n = 0, corresponding to the breathing mode, and for the n = 1 mode one of the 
natural frequencies is zero, corresponding to the shell moving to and fro as a rigid body [15]. It is convenient to write the in-vacuo 
impedance of the shell normalized by the characteristic acoustic impedance of the fluid, ρc, as 

ζn(ka) = ZB(n)/ρc, (20)  

where ZB(n) in Eq. (18) is implicitly a function of ka. 
In this study we initially assume that the incident sound wave is propagating along the z axis, from z equals infinity, and so only 

excites the spherical harmonics for which m = 0. Similarly all secondary excitations of the shell will initially be assumed to be 
axisymmetric, so that the vectors defined in Eqs. (13) and (14) can be considerably simplified so that they contain only N +1 terms, for 
n = 0 to N. The diagonal elements of the admittance matrices in Eq. (10), which are the reciprocal of the impedancesin Eqs. (16), (17) 
and Eq. (18), can be written as YB(n), YR(n) and YI(n) . The scattered pressure for the n-th mode, ps(n), depends only on the n-th mode of 
the incident pressure, pi(n), and their ratio can be written 

ps(n)
pi(n)

=
YI(n) − YB(n)
YR(n) + YB(n)

= −
hn(ka)
jn(ka)

jn(ka) + jζn(ka)j′n(ka)
hn(ka) + jζn(ka)h′

n(ka)
. (21) 

For a plane incident wave the n,m-th mode of the incident pressure is given in the general case by [14] 

pi(n,m) = (j)n4πPi jn(ka)Ym
n (θi,φi) (22)  

where Pi is the complex amplitude of the incident pressure, the plane wave is incident from the direction θi,φi and the overbar denotes 
complex conjugation. In the particular case of axisymmetric excitation, then θi is either zero or π, and the expression is only finite for m 
= 0 so that Eq. (22) can just be written as pi(n). The acoustic power associated with the incident plane wave, Wi, can be defined to be 
the product of the incident intensity and the cross-sectional area of the sphere, so that 

Wi =
πa2

2ρc
|Pi|

2
. (23) 

Using Eqs. (21) and (22) in (15), the normalised scattered power of a spherical shell in response to an axisymmetric incident plane- 
wave can be written as, 

Πs =
Ws

Wi
=

4
(ka)2

∑N

n=0
(2n+ 1)

⃒
⃒As

n

⃒
⃒2, (24)  

where 

As
n =

jn(ka) + jζn(ka)j′n(ka)
hn(ka) + jζn(ka)h′

n(ka)
. (25) 

This equation is a generalisation of the result in [13] for a locally reacting sphere, in which the normalised modal impedance of the 
scattering shell now depends on both the modal index, n, and on the normalised frequency, ka. 

3. Minimising the low frequency scattering by shell design 

At very low frequencies, the modal coefficients in Eq. (25) can be calculated by taking the limit of ka ≪ 1 for the various terms 
[16]. For the n = 0 and n = 1 terms, this gives 

lim
ka≪1

As
0 = − j

(ka)3

3

(

1 −
3ρc2(1 − ν)

2E
a
h

)

, (26)  

lim
ka≪1

As
1 = j

(ka)3

3

⎛

⎜
⎝

3 h
a

ρs
ρ − 1

1 + 6 h
a

ρs
ρ

⎞

⎟
⎠. (27) 

It is possible to set the low frequency limit for As
0 to zero if the normalised shell thickness is given by 

h
a
=

3ρc2(1 − ν)
2E

, (28)  

which corresponds to the compressional stiffness of the shell being equal to that of the displaced fluid. It is also possible to set the low 
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frequency limit for As
1 to zero if the normalised thickness of the shell is given by 

h
a

=
ρ

3ρs
, (29)  

which corresponds to the condition that the mass of the shell is equal to that of the displaced fluid, i.e. the shell is neutrally buoyant. 
These conditions are similar to those discussed in [17,18] for a shell surrounded by a soft coating, and such an arrangement has been 
demonstrated to reduce the scattering from coated cylinders in practice [19]. 

The two conditions for the shell thickness, (28) and (29), are simultaneously satisfied if the properties of the shell satisfy the 
following condition 

2E
9(1 − ν)ρs

= c2. (30) 

More generally, the low frequency normalised scattered power can be obtained by just considering the first two terms in Eq. (24), 
which can be written using Eqs. (26) and (27), as 

lim
ka≪1

Πs =
4(ka)4

9

⎧
⎪⎪⎨

⎪⎪⎩

(

1 −
3ρc2(1 − ν)

2E
a
h

)2

+ 3

⎛

⎜
⎝

3 h
a

ρs
ρ − 1

1 + 6 h
a

ρs
ρ

⎞

⎟
⎠

2⎫
⎪⎪⎬

⎪⎪⎭

. (31) 

At low frequencies, the normalised scattered power for a rigid sphere that is fixed in space, lim
ka≪1

ΠsR , is given by 

lim
ka≪1

ΠsR =
7(ka)4

9
. (32) 

Where Lamb [20] showed that 4/9 of this is due to the sphere being incompressible, which Eq. (31) limits to if E is very large and h 
/a = ρ/(3ρs) and that 3/9 of this is due to it not being able to move as a rigid body, which this equation limits to if ρs is very large and h 
/a = 3ρc2(1 − ν)/(2E). The low frequency limit for the scattered power of a spherical shell, normalised by that of a rigid sphere is thus 

lim
ka≪1

[
Πs

ΠsR

]

=
4
7

⎧
⎪⎪⎨

⎪⎪⎩

(

1 −
3ρc2(1 − ν)

2E
a
h

)2

+ 3

⎛

⎜
⎝

3 h
a

ρs
ρ − 1

1 + 6 h
a

ρs
ρ

⎞

⎟
⎠

2⎫
⎪⎪⎬

⎪⎪⎭

, (33) 

This is plotted as a function of the shell thickness in Fig. 1 for a steel shell and for an “alloy” shell in water. The density of the alloy 
shell is assumed to be 10,000 kg/m3 and its Young’s modulus is chosen so that Eq. (30) is satisfied, assuming that the Poisson’s ratio is 
the same as that of steel, as listed in Table 1. The density of the alloy is thus slightly greater than steel and it is assumed that its Young’s 
modulus can be altered using a combination of materials and/or thermal treatment to reach the required value. The normalised 
scattered power in Fig. 1 goes to zero for the alloy shell when the thickness satisfies Eqs. (28) and (29), so that h /a is 1/30 in this case. 
This condition is not too sensitive however, since the scattered power only rises to be one tenth of that for the rigid sphere if the shell 
thickness changes from its optimum value by about 12% or if the speed of sound in the fluid changes by about 6%. The steel shell also 
has a minimum in the low frequency scattered power plotted in Fig. 1, when h/a is about 2.31%, although its scattered power is then 

Fig. 1. The low frequency limit of the scattered power, for a steel shell and for an alloy shell in water, normalised by the scattered power of a rigid 
sphere, as a function of the normalised shell thickness. 
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still finite, and about 0.23 times that scattered by a rigid sphere. 
Fig. 2 shows the normalised scattered power as a function of the normalised frequency ka resulting from a single incident plane 

wave in water for the steel and alloy shells, whose properties and thicknesses are given in Table 1. The limit in the modal summation, 
N, in Eq. (24) was taken to be 100 for these simulations up to ka = 100, although it was found that the scattered power did not change 
by more than 0.06 dB if N was doubled. It can be seen that at low frequencies, below about ka = 0.9, the scattered power from the alloy 
shell is significantly smaller than that from the steel shell. 

The first peak in the scattered power for both shells in Fig. 2 is due to an n = 2, ovalling [15], structural mode of the loaded shell, 
which occurs for a value of ka of about 1.0 for the alloy shell and about 1.4 for the steel shell. This peak in the scattered power for the 
alloy shell is sharper than that for the steel shell, since the damping of this mode due to sound radiation is considerably greater for the 
steel shell. This is illustrated in Fig. 3, which shows the real and imaginary parts of the normalised radiation impedance for the n = 2 
spherical harmonic in Eq. (17). The real part of this impedance, which will add damping to the response of the shell, is much smaller at 
ka = 1.0, corresponding to the resonance of the alloy shell, than it is at ka =1.4, corresponding to the resonance of the steel shell. The 
imaginary part of the radiation impedance adds mass loading to the shell and so lowers its resonance frequency compared to the 
in-vacuo resonance frequencies given by the solutions to Eq. (19) [5]. For example, the first natural frequency for the n = 2 mode of the 
alloy shell has a normalised frequency of about ka = 1.3 in vacuo, whereas this is reduced by fluid loading to be about ka = 1.0. Even if 
some material damping is added to the shells, by including a small imaginary component of 1% in the Young’s modulus, the first peak 
in the scattering for the alloy shell is still more lightly damped than that of the steel shell, as also shown in Fig. 2. This amount of 
material damping does, however, more effectively attenuate the very lightly damped resonances at about ka = 1.2 and 1.4 for the alloy 
shell, which are due to its fluid-loaded n = 3 and n = 4 structural modes. Most engineering structures will have a loss factor of at least 
1% and so this level of structural damping is retained in the following simulations. 

To reinforce the discussion above, Fig. 4 shows the contributions to the total scattered power from the first few structural modes of 
the two shells. Also shown, for comparison, is the power scattered by a rigid sphere that is fixed in space. The low frequency behaviour 
for the steel shell follows the same power law as the rigid sphere, being proportional to (ka)4, but is lower by a factor of about 0.23, as 
predicted in Fig. 1. The n = 0 and n = 1 contributions are much less for the alloy shell, as expected, which follows a power law of (ka)8 

at very low frequencies [16] and so is much reduced compared to the rigid sphere. Somewhat above the frequency of the n = 2 
structural resonance, the overall scattering from the steel shell is about double that of the rigid sphere, for ka from about 2 to 5, 
whereas that for the alloy shell is less than half that of a rigid sphere, for ka from about 1.5 to 3. For the steel shell, this is because there 

Table 1 
Material properties of the two shells, which are assumed to be immersed in water with a density of 1,000 kg/m3 and a speed of sound of 1,500 m 
/s.  

Shell E (GPa) ρS (kg/m3) ν h/a (%) 

Steel 195 7700 0.28 2.31 
Alloy 72.9 10,000 0.28 3.33  

Fig. 2. The normalised scattered power, as a function of normalised frequency, for the steel and the alloy shells, whose material properties and 
thicknesses are shown in Table 1, in water, both without any material damping and with 1% damping loss factor. 
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Fig. 3. The real and imaginary parts of the normalised acoustic radiation impedance for the n = 2 spherical harmonic.  

Fig. 4. Overall normalised scattered power from the steel, (upper) and alloy, (lower), shells and the individual components due to the n = 0, n = 1 
and n = 2 structural modes. Also shown is the normalised scattered power for a rigid sphere that is fixed in space. 
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are significant contributions from the n = 0, n = 1 and n = 2 structural modes in this frequency region. For the alloy shell, however, 
the contributions from the n = 0 and n = 1 structural modes are still small in this frequency region, giving a dip in the scattered power 
that is significantly below that of the rigid sphere. 

4. Active feedforward control of tonal incident fields 

If the incident field is tonal and of known frequency, a frequency-domain feedforward control formulation can be used to calculate 
the optimal performance of an array of secondary sources in minimising the scattered power, assuming knowledge of the incident and 
scattered fields [21]. A frequency domain approach allows evaluation of the best possible performance of an active system with a given 
number of secondary sources, without having to be concerned with the sensing of the reference or of the error signals, or with the 
implementation of a causal controller. It can thus be used as the first step in a hierarchical design approach for active control [22]. 

In the general case the shell is assumed to be controlled with L internal and outward-facing active point forces, with an individual 
magnitude of fl, positioned at (θl,φl), that generates a modal pressure acting on the shell of [5] 

Fig. 5. Optimal results of using active feedforward control with one or two internal point force actuators to minimise the scattering from the steel 
(upper) or alloy (lower) shell in water. Also shown are the results of feedforward control with spherical cap actuators, as used in Section 5. 

S. Elliott et al.                                                                                                                                                                                                          



Journal of Sound and Vibration 568 (2024) 118056

9

pl(n,m) = −

[
ZB(n)

ZB(n) + ZR(n)

]
fl

a2Ym
n (θl,φl), (34)  

where the overbar again denotes complex conjugation. The scattered modal pressure after control with L secondary point-forces is thus 

psc(n,m) = ps(n,m) −

[
ZB(n)

ZB(n) + ZR(n)

]
∑L

l=1

fl

a2Ym
n (θl,φl), (35)  

which can be written in vector form as 

psc = ps − B p̃c, (36)  

where p̃c =
1
a2[ f1, f2, f3… fL]T is the vector of L normalised control forces, which has a tilde to denote that these are discrete rather 

than modal pressures. The matrix B is equal to ZB[ZB + ZR]
− 1 times the matrix S, for which in general the l-th column has elements of 

the form Ym
n (θl,φl), although in the axisymmetric case we only consider terms with m = 0 and so the matrix has dimensions N + 1 by L. 

The scattered power after control is given by a modified form of Eq. (15), 

Wsc = 2πa2 Re
{

p H
sc vsc

}
= 2πa2 p H

sc Re{YR}psc, (37)  

which is a quadratic function of p̃c. The scattered pressure can thus be minimised by the vector of control forces, as derived in 
Appendix A, given by 

p̃(opt)
c =

[
B HRe{YR}B

]− 1B HRe{YR}R pi, (38)  

where Eq. (10) has been used to relate ps to pi. 
Fig. 5 shows the results of minimising the scattered sound power of the steel and alloy shell described above, using either a single 

point secondary force, facing the incident wave, or two point secondary forces, facing towards and away from the incident wave. The 
frequency range has been enlarged compared to Fig. 2, for clarity. For the steel shell, significant control of the scattered sound power 
can be achieved at frequencies below about ka = 2, particularly at the resonant frequencies of the shell and with two secondary forces. 
At very low frequencies and with two secondary forces this is achieved by actively attenuating both the n = 0 and n = 1 structural 
modes, which correspond to compression of the shell and rigid body translation. This requires much larger magnitudes of secondary 
forces than those required to control the resonant structural modes at higher frequencies, however [16]. These results are in general 
agreement with those presented by Avital and Miloh [23] for the case of feedforward control with a single secondary force. For the 
alloy shell, only limited reductions are achieved at very low frequencies, since the contributions of the n = 0 and n = 1 structural 
modes to the scattered power have already been significantly reduced by passive design, as seen in Fig. 4. Feedforward control is very 
effective at reducing the scattered power due to the resonances of the higher order structural modes for the alloy shell, however. For 
completeness, Fig. 5 also shows the performance of the feedforward control system with two distributed force actuators, corresponding 
to spherical caps on the poles of the sphere, calculated using a modification of the S matrix described in the following Section. The 
results with the spherical cap actuators are very similar to those with the point force actuators in the feedforward case, since at any 
single frequency the shell response is dominated by only a few modes and so the control forces can be adjusted one frequency at a time 
to attenuate these modes, without the resulting excitation of the higher order modes causing undue additional sound radiation. 

Fig. 6. Feedback control using secondary force actuators driven by the measured velocities at discrete sensors on the surface of the body (a), and the 
block diagram of the equivalent modal feedback system (b). 
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5. Direct velocity feedback control 

The effect of active feedback control on scattering can be calculated by initially considering the consequences of feedback control 
on the in-vacuo response of the shell. Fig. 6(a) shows the general physical arrangement in which the signals from K discrete velocity 
sensors are fed to L internal force actuators via a feedback controller matrix, H. A block diagram showing the effect of such a controller 
on the modal velocity of the shell, in response to a general modal pressure excitation, is also shown in Fig. 6(b). 

In the absence of control, the vector of overall modal velocities on the shell, v, in response to a general vector of overall modal 
pressures, p, is given, using Eq. (7), by 

v = − YB p . (39) 

In the presence of active control with an array of internal forces, as in Section 4, the modal pressures acting on the shell are 
modified, although in this in-vacuo case there is no fluid loading and the matrix B in Eq. (36) reduces to S, so that 

v = − YB(p − S p̃c). (40) 

For the feedback arrangement shown in Fig. 6(a), the secondary forces are due to feedback from the velocities at the sensor po-
sitions, ṽc, which also has a tilde to denote discrete rather than modal velocities, via the feedback control matrix H, so that 

p̃c = H ṽc, (41)  

where 

ṽc = T v, (42)  

v being the vector of modal velocities, and T is a coupling matrix, of dimensions K by N + 1 in the axisymmetric case since we only 
consider terms with m = 0, although in the general case, from Eq. (12), it has elements of the form Ym

n (θk,φk). The vector of modal 
velocities can thus be written as, 

v = − YB( p − SHT v), (43)  

and so, 

v = − [I + YBSHT]− 1YBp . (44) 

The vector of modal pressures can thus be expressed as 

p = − ZB[I+YBSHT]v = − Z(cl)
B v, (45)  

where Z(cl)
B is the overall modal impedance for the shell with closed-loop feedback control, which can be written as 

Z(cl)
B = ZB + SHT . (46) 

Fig. 7. The modulus squared coupling coefficient, |T(n)|2, for a spherical cap actuator and sensor coupling into the structural modes of a spherical 
shell as a function of the order of the structural mode. This is plotted for various spherical cap angles, θ0, and also for a point force and point 
velocity sensor, dashed line. 
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Although the modal structural impedance matrix ZB is diagonal for a uniform spherical shell, the modifying impedance matrix due 

to feedback control, SHT, is not diagonal in general. Nevertheless, the fully-populated matrix [Z(cl)
B ]

− 1
can now be used instead of YB in 

Eq. (10) to calculate the vector of scattered modal pressures after feedback control in terms of the vector of incident modal pressures, 
and, hence, the scattered power after control can again be calculated using Eq. (15). 

Several designs of feedback controller are possible. The simplest is decentralised local velocity feedback using collocated actuators 
and sensors, for which H is equal to γI, where γ is the gain of each local feedback loop. In this collocated case, the coupling matrix for 
the actuators, S, is equal to the Hermitian transpose of the coupling matrix for the sensors, TH, and the control system is uncondi-
tionally stable for positive values of γ . Unfortunately, this simple control strategy is not very successful with point force actuators and 
point velocity sensors, since this combination preferentially couples into and attenuates the higher order structural modes, rather than 
the lower order structural modes that need controlling. This is illustrated in Fig. 7, which shows, as a function of the mode order n, the 
squared magnitude of the n-th element of the coupling matrix, T in Eq. (42), for a single actuator/sensor pair, |T(n)|2, which is pro-
portional to the diagonal terms in the matrix SHT in this collocated case. For point force actuators and velocity sensors, the magnitude 
of these terms continues to grow with n, since in this case |T(n)|2 is given by |Y0

n (0, 0)|
2, which equals (2n + 1)/4π. 

This problem can be overcome if spatially distributed force actuators and velocity sensors are used, which couple less efficiently 
into the higher order modes. The output of a spherical cap sensor centred on θ = θk, φ = φk, for example, can be calculated by 
integrating the velocity of the shell over a finite polar angle of ± θ0, as discussed in Appendix B, for which the elements of the coupling 
matrix, T, in the general case of Eq. (42), then take the form 

T(n,m) =

[
Pn− 1(cos θ0) − Pn+1(cos θ0)

(2n + 1)(1 − cos θ0)

]

Ym
n ( θk, φk), (47)  

where Pn(cos θ0) is the n-th order Legendre polynomial and P− 1(cos θ0) = 1. The same additional term, in square brackets, also 
appears in the elements of the matrix, S, that describes the structural coupling of a spherical cap force actuator into the modal force on 
the shell, which is a similar problem to the analysis of the sound field from a circular piston in a spherical baffle [5,14]. Fig. 7 shows the 
magnitude of |T(n)|2 for this combination of spherical cap actuator and sensor, for various spherical cap angles, θ0 . In this case the 
coupling falls off as n increases, with a greater rate of fall-off as θ0 gets larger. For θ0 = π/100, the coupling is similar to a point 
actuator and sensor up to about n = 10, but for θ0 = π/10 the response starts to fall off after about n = 4, so that the diagonal terms in 
the matrix SHT now become smaller for larger values of n. This combination of actuator and sensor thus couple into the structural 
modes of the shell that scatter most effectively, rather than the much higher order modes that do not. Fig. 8 illustrates the physical 
arrangements for control with this form of distributed actuator and sensor, and for an arrangement with one or two such actuator and 
sensor pairs. 

The direct velocity feedback gain, γ, can be chosen to give a reasonable compromise between supressing the original lightly damped 
structural resonances and not exciting higher-order resonances by pinning the structure [24,25]. Fig. 9 shows the maximum value of 
the normalised scattered power for the two shells around the n = 2 resonance, as a function of the normalised feedback gain for both 
single and two channel decentralised direct velocity feedback controllers and for both the steel and alloy shells with spherical cap 
actuators and sensors. It can be seen that this response is minimised in all cases if the normalised feedback gain is set to a value of about 
0.2. 

Fig. 10 shows the effect of decentralised velocity feedback, using this value of normalised feedback gain, on the scattered power 
from the steel and the alloy shells with one or two spherical cap force actuators and collocated velocity sensors. In this case the more 
general matrix formulation for the scattered power given by Eq. (15) must be used, rather than the simplification in Eq. (24) used 
above, since the matrix YB is no longer diagonal. The feedback controller is able to attenuate the vibration of the n = 2 resonance in 

Fig. 8. Arrangements in which a spherical cap actuator is driven by the normalised secondary force, p̃c, and the output of a distributed velocity 
sensor is given by ṽc for use in a collocated feedback control, in the case of a single channel system, left, a two channel system, right, both with 
incident waves along the z axis. 
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both cases, and with two actuator/sensor pairs reduces the scattered power at this resonance frequency, by about 5 dB in the case of the 
steel shell and by about 13 dB in the case of the more lightly damped resonance in the alloy shell. The feedback also effectively 
supresses the peaks in the scattered power due to the resonances of the n = 3 structural mode. For the alloy shell the result is that the 
scattered power has been reduced below that generated by a rigid sphere at all frequencies below about ka = 6. 

A more selective approach to implementing the feedback controller is to make it modal [24], so that for the collocated case 

H = T Ω TH, (48)  

where T is the matrix of mode shapes at the transducer locations, and Ω is a diagonal matrix of modal velocity feedback gains. Eq. (48) 
can then be substituted into Eq. (46) to give an expression for the structural impedance of the shell under modal control. In the limiting 
case, where it is assumed that there are as many actuators and sensors as there are significantly excited modes, then T is a square matrix 
and assuming that the transducers are positioned so as to actuate and sense all of the modes then THT is a good approximation to the 
identity matrix. Perfect control of all the modes is then possible, in principle, since the closed-loop impedance of the shell could be set 
equal to the input impedance of the volume of the scattering body filled with fluid, ZI, so that the scattering would be completely 
suppressed [6,7]. Setting Eq. (46) equal to ZI in this case leads to a feedback controller having the form 

H = T (ZI − ZB) TH . (49) 

However, the performance of any feedback control system calculated in the frequency domain is dependant on the closed loop 
system being stable. Unfortunately, for the cases considered here, a feedback loop using the controller given by Eq. (49) was found to 
be unstable and so this frequency domain approach to calculating the modal controller is not helpful. 

6. Non-axisymmetric excitation 

In all the simulations above the primary and secondary excitation of the shell has been axisymmetric along the z axis, in which case 
only the m = 0 terms need to be included in the modal expansions for the pressure and velocity in Eqs. (11) and (12). This limits the 
number of elements required in the vectors of modal pressures and velocities to be N+ 1, rather than the more general (N + 1)2, and so 
greatly speeds up the calculation of the results. For an incident wave that is not propagating along the z axis, however, the more general 
formulation must be used, with all of the m and n terms in the modal series. If this more general simulation is performed for incident 
waves from other directions, with no active control, the results for the normalised scattered power from the uniform spherical shell are 
the same as those in Fig. 2. This is to be expected, since the scattered sound field is then just rotated to align with the incident field, but 
the overall scattered sound power is unaffected. Similarly, if the angular positions of the two actuators and sensors in Fig. 8 are 
adjusted to coincide with a modified angle of the incident wave, the results are the same as in Fig. 10. These results are as one would 
expect but do provide a good test that the formulation with both the n and m terms in the spherical harmonic expansion is working, and 
indeed that the spherical harmonic representation of the dynamics of the spherical shell is valid. 

Of more interest is the case when using feedback control with actuators aligned along the z axis, but excited by a plane wave with 
the angles of incidence, θi and φi, which are different from zero. Fig. 11 shows the normalised scattered sound power with the two 
actuator/sensor arrangement used in Fig. 8 but for various different angles of incidence of the plane wave. The scales have been 
changed slightly compared with the figures above to make the results easier to see. In this case the matrix YB has 10,201 by 10,201 
elements, in Eq. (10) for the scattered pressure, and so the calculations take considerably longer than in the axisymmetric case, where 

Fig. 9. The peak value of the normalised scattered power around the n = 2 resonance for both the steel and the alloy shell as a function of the 
normalised feedback gain, for direct velocity feedback control systems using spherical cap force actuators and collocated velocity sensors, with θ0 =

π/10, and either one or two channel decentralised systems. 
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the dimensions of this matrix were only 101 by 101. It is clear from Fig. 10 that much less attenuation of the scattered power is 
achieved for the non-axisymmetric angles of incidence, reflecting the fact that the actuators aligned along the z axis are not able to 
effectively couple into the rotated structural mode shapes excited by the off-axis incident waves. In order to achieve levels of control 
that are less dependant on the angle of the incident wave it is necessary to use a larger number of actuators and sensors. 

If 12 actuator/sensor pairs are used, for example, and these are placed at the vertices of a regular icosahedron, this also gives very 
poor attenuation of the scattered power for off-axis incident waves, since there are then rows of actuators on the latitudes of two of the 
nodal lines for some of the structural modes. Better results were obtained with 12 actuator/sensor pairs when the distribution was 
made less regular by offsetting the azimuthal position of these two rows of the regular icosahedron by 5◦ away from the poles, for 
which the results are shown in Fig. 12. This gives reasonable control of the n = 2 structural mode even for off-axis excitation. It may be 
possible to optimise the position of the actuator/sensor pairs for a particular set of incident angles, although this would be very time- 
consuming because of the computational issues discussed above, and would also be specific to the chosen set of incident angles. It 
would probably be better to reformulate the problem for diffuse field excitation and then optimise the actuator positions based on that 
more general form of excitation, but such a study is beyond the remit of the current paper. 

Fig. 10. Normalised scattered sound power from the steel shell, upper, and alloy shell, lower, after active feedback control with one or two spherical 
cap actuators and collocated velocity sensors, with θ0 = π/10, and decentralised velocoity feedback with a normalised gain of 0.2. 
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7. Conclusions 

A modal formulation for acoustic scattering from a flexible body is reviewed. This general theory is shown to take a particularly 
simple form in the case of scattering from a thin uniform empty spherical shell surrounded by an infinite fluid, since the internal and 
external acoustic modes, and the structural modes, are then all spherical harmonics. Examples of scattering are calculated for spherical 
shells of different materials. It is shown that the scattering due to both the structural breathing mode and the rigid body translational 
mode, which dominate at low frequencies, can be suppressed for an alloy shell with a suitable choice of the shell’s material properties. 

This formulation is then used to calculate the effect of active feedforward or feedback control on the scattering, initially using point 
force actuators on the flexible spherical shell. For feedback control, in order to effectively couple into the lower order structural modes 
that dominate the scattering it is found to be necessary to spread the actuation force over a distributed area, and to similarly average 
the measured velocity to maintain the duality of the collocated actuator/sensor pair. The effect of both feedforward and feedback 
control in reducing the scattering is mainly due to the suppression of a few lightly damped structural resonances. This is particularly 
effective on the alloy shell, for which several of the structural modes are lightly damped and contribute significantly to the scattered 
sound power at their resonant frequency. Although only two actuator/sensor pairs, on opposite sides of the shell, perform well in 

Fig. 11. Normalised scattered sound power from the steel shell, upper, and alloy shell, lower, after active feedback control with two spherical cap 
actuators and collocated velocity sensors using decentralised velocity feedback for different angles, θi and φi, of the incident plane wave. The results 
for (θi, φi) = (0,0) are the same as in Fig. 10 and are reproduced for reference. Note that for clarity the scales are slightly different from those 
used above. 
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suppressing the scattering from incident waves along this axis, their performance is degraded for off-axis excitation. It is necessary to 
use a significantly larger number of actuator/sensor pairs to get reasonable control in this off-axis case, and the results are dependant 
on their orientation compared with the incident angle. 

Although the numerical simulations have been based on an empty spherical shell, the general theoretical formulation is applicable 
to scattering bodies of arbitrary shape. The modal formulation in Section 2 can be applied to other, less symmetric, scattering bodies 
although the model expansion will then not, in general, diagonalise all of the three impedance matrices, so that some of these will be 
fully populated and the modal scattered pressure will not have such a simple analytic formulation. The principles of minimising the low 
frequency scattering in Section 3 are also applicable to other elastic bodies if their compressional stiffness and mass are known. In 
addition it is a general observation that at higher frequencies the scattering will be most significant at the resonant frequencies of the 
fluid-loaded elastic body [5]. If these resonances can be effectively damped using feedback control with structural actuators and 
sensors, then this strategy also has generally applicability as a method of reducing such scattering. 
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Appendix A. Derivation of equation (38) 

By substituting Eq. (36) for psc into Eq. (37), the scattered power after control can be written as 

Wsc = 2πa2 [
pH

s − p̃H
c BH]Re{YR}[ps − B p̃c], (A1) 

Expressing this as 

Wsc = 2πa2 [
p̃H

c BHRe{YR}B p̃c − p̃H
c BHRe{YR}ps − pH

s Re{YR}B p̃c + pH
s Re{YR}ps

]
, (A2)  

it can be seen to be in the general Hermitian quadratic form of [2]. 

Wsc = 2πa2 [
p̃H

c A p̃c + p̃H
c b+ bHp̃c + c

]
, (A3)  

where 

A = BHRe{YR}B, (A4)  

b = − BHRe{YR}ps, (A5)  

c = pH
s Re{YR}ps, (A6) 

Provided that the matrix A can be inverted, the general Hermitian quadratic form (A3) has a unique global minimum when p̃c is 
equal to p̃(opt)

c = − A− 1b, which in this case is given by 

p̃(opt)
c =

[
BHRe{YR}B

]− 1BHRe{YR}ps. (A7) 

Using Eq. (10) then ps can be expressed as R pi which leads to Eq. (38). 

Appendix B. Coupling of spherical harmonics in a spherical cap 

The purpose of this Appendix is to analyse the way in which the output of the spherical cap sensor is related to the spherical 
harmonic components of the surface velocity distribution on the shell, and hence derive Eq. (47). This is done by initially considering 
the axisymmetric case illustrated in Fig. 8, and then generalising the result for the case in which the sensor is centred on an arbitrary 
angle. 

In general, the output of the distributed sensor, ṽc can be written as 

ṽc =

∫π

0

∫2π

0

W(θ,φ) V(θ,φ) sinθ dθ dφ (B1)  

where V(θ,φ) is the distribution of the complex velocity on the surface of the shell and W(θ,φ) is a spatial window function. The spatial 
window function can be expressed in terms of its spherical harmonic expansion, as was the surface velocity in Eq. (12), as 

W(θ,φ) =
∑∞

n=0

∑n

m=− n
w(n,m) Ym

n (θ,φ) . (B2) 

If the spatial window function is entirely real, this expansion is also equal to its conjugate, indicated again by an overbar. The 
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output of the sensor can then be written as 

ṽc =
∑∞

n=0

∑n

m=− n

∑∞

n′=0

∑n′

m′=− n′

w(n′,m′) v(n,m)

∫π

0

∫2π

0

Ym
n (θ,φ) Ym′

n′ (θ,φ) sinθdθdφ, (B3)  

and using the orthonormal properties of the spherical harmonics, this is equal to 

ṽc =
∑∞

n=0

∑n

m=− n
w(n,m)v(n,m). (B4) 

In the axisymmetric case the spherical cap sensor that measures the spatially averaged velocity is centred on θ = 0. The spatial 
window function in the interval θ = [0, θ0] is equal to 1/2π(1 − cosθ0), where the normalisation factor 2π(1 − cosθ0) is the solid angle 
subtended by the spherical cap, and the spatial window is zero otherwise. The spherical harmonic components of the window function 
can be calculated in general as 

w(n,m) =

∫π

0

∫2π

0

W(θ,φ)Ym
n (θ,φ) sinθ dθdφ (B5)  

where 

Ym
n (θ,φ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(2n + 1)(n − m)!

4π(n + m)!

√

Pn(cosθ)e− jmφ. (B6) 

So that in the axisymmetric case, where w(n,m) is equal to w0(n,m), say, this is given by 

w0(n,m) =
1

2π(1 − cosθ0)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2n + 1

4π

√ ∫θ0

0

Pn(cosθ)sinθdθ
∫2π

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(n − m)!

(n + m)!

√

e− jmφdφ. (B7) 

The integral over φ is equal to 2π if m = 0, but it is otherwise zero, and evaluating the integral of the Legendre polynomial [14], the 
spherical harmonic component in this axisymmetric case can be written as 

w0(n, 0) =
Pn− 1(cosθ0) − Pn+1(cosθ0)

(2n + 1)(1 − cosθ0)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2n + 1

4π

√

. (B8) 

This can be generalised to the case in which the sensor is centred on the angle φkand θk by first writing the spatial window in the 
axisymmetric case above as 

W0(θ,φ) =
∑∞

n=0
w0(n, 0) Y0

n (θ,φ) =
∑∞

n=0
w0(n, 0)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2n + 1

4π

√

Pn(cosθ). (B9) 

If the sensor is now rotated to be centred on an angle of θk and φk, the spatial window function becomes 

W(θ,φ) =
∑∞

n=0
w0(n,m)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2n + 1

4π

√

Pn(cosΨ) , (B10)  

where Ψ is the angle between the evaluation point (θ,φ) and the centre of the sensor (θk,φk). Using the spherical harmonic summation 
formula [26], 

∑n

m=− n
Ym

n (θ,φ) Ym
n (θk,φk) =

2n + 1
4π Pn(cosΨ). (B11) 

W(θ,φ) can then be written as 

W(θ,φ) =
∑∞

n=0
w0(n,m)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4π

2n + 1

√
∑n

m=− n
Ym

n (θ,φ) Ym
n (θk,φk), (B12)  

which is in the form of Eq. (B2) with 

w(n,m) = w0(n,m)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4π

2n + 1

√

Ym
n (θk,φk) (B13) 

And using (B8) for w0(n,m)
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w(n,m) =

[
Pn− 1(cosθ0) − Pn+1(cosθ0)

(2n + 1)(1 − cosθ0)

]

Ym
n (θk,φk) (B14) 

The output of a single sensor can be written using Eq. (42) as 

ṽc =
∑∞

n=0

∑n

m=− n
T(n,m) v(n,m) (B15) 

Comparing this with Eq. (B4), it is seen that T(n,m) is equal to w(n,m), so that Eq. (47) is given by 

T(n,m) =

[
Pn− 1(cosθ0) − Pn+1(cosθ0)

(2n + 1)(1 − cosθ0)

]

Ym
n (θk,φk). (B16) 

In the limit where θ0 becomes very small, the term in square brackets tends to unity, so this result is consistent with that used above 
for a point velocity sensor. 
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