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ABSTRACT
Accurate calculation of the phase lags of quasi-periodic oscillations (QPOs) will provide insight into their origin. In this paper
we investigate the phase lag correction method which has been applied to calculate the intrinsic phase lags of the QPOs in
MAXI J1820+070. We find that the traditional additive model between BBN and QPOs in the time domain is rejected, but
the convolution model is accepted. By introducing a convolution mechanism in the time domain, the Fourier cross-spectrum
analysis shows that the phase lags between QPOs components in different energy bands will have a simple linear relationship
with the phase lags between the total signals, so that the intrinsic phase lags of the QPOs can be obtained by linear correction.
The power density spectrum (PDS) thus requires a multiplicative model to interpret the data. We briefly discuss a physical
scenario for interpreting the convolution. In this scenario, the corona acts as a low-pass filter, the Green’s function containing the
noise is convolved with the QPOs to form the low-frequency part of the PDS, while the high-frequency part requires an additive
component. We use a multiplicative PDS model to fit the data observed by Insight-HXMT. The overall fitting results are similar
compared to the traditional additive PDS model. Neither the width nor the centroid frequency of the QPOs obtained from each
of the two PDS models were significantly different, except for the r.m.s. of the QPOs. Our work thus provides a new perspective
on the coupling of noise and QPOs.
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1 INTRODUCTION

Decades of research on black hole binaries (BHBs) show that their
X-ray emission is variable on different time scales, including the low-
frequency (mHz to 30Hz) quasi-periodic oscillations (QPOs) and the
broad-band noise (BBN) (Psaltis et al. 1999; Ingram et al. 2009; In-
gram&Done 2011; Motta 2016). The study of the timing signals can
effectively diagnose the geometric characteristics of the disk and the
corona near the black hole (Belloni & Hasinger 1990; Belloni et al.
2002; Ingram 2016; Ingram &Motta 2019). The disk and the corona
near the black hole continuously radiate X-ray photons outward due
to various radiation mechanisms (thermal radiation, Compton Radi-
ation and so on). Photons with different energy arrive at the observer
at different times because they may come from different radiation
regions (Lin et al. 2000; Rapisarda et al. 2016), or undergo different
scattering processes (Cui 1999; Poutanen 2001), or have very com-
plex mechanisms that cause delays (Morgan et al. 1997; Wĳnands
et al. 1999; Qu et al. 2010). Therefore, analyzing the phase/time lags
of photons between different energy bands helps us better under-
stand the geometric or radiometric characteristics of X-ray BHBs. A
common analysis method is based on Fourier cross-spectrum, which
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measures the frequency-dependent phase lag spectrum (FDPLS) be-
tween the signals in two different energy bands (van der Klis et al.
1987). This method allows to study the phase lags of two signals as a
function of Fourier frequencies. Thus the phase lags between different
components of timing signals, which usually originate from different
physical processes (Narayan & Yi 1995; Done et al. 2007; Ingram
& Done 2011), can be studied separately. For example, Zhang et al.
(2020) conducted a systematic study on the phase lag of the type-C
QPO and found that the phase lag behaviour of the sub-harmonic of
the QPO is very similar to that of the QPO fundamental component
but the second harmonic of the QPO shows a quit different phase
lag behaviour. Uttley et al. (2011) investigated the phase lag of the
BBN components of GX-339 and found that the large lags can be
explained by viscous propagation of mass accretion fluctuations in
the disk.

The traditional way to obtain the phase lag of the QPO components
is to assume that the other components contribute weakly to the lag
in the QPO frequency range, and then directly treat the values in the
QPO frequency range as the phase lag of the QPO components (e.g.,
Morgan et al. 1997; Wĳnands et al. 1999; Kara et al. 2019; Zhang
et al. 2020). However, the coexistence of various components makes
it difficult to calculate any of the individual component. In particular,
when the BBN is sufficiently strong in the QPO frequency range,
there is no reason to ignore the effect of the BBN on the measured
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QPO phase lag. Despite attempts by some authors to ameliorate this
dilemma by fitting different components of the cross-spectrum (e.g.,
Qu et al. 2004), there is no broad consensus on how to obtain the
intrinsic phase lag of the QPO in the presence of strong BBN. There-
fore, it is difficult to determine the intrinsic properties (including
phase lag) of the QPO in the presence of strong BBN.
In a recent work (Ma et al. 2021, hereafter Ma21) the authors

attempt to correct for the original phase lags, which gives a clear
physical picture using the corrected phase lags. Ma21 investigated
the behavior of the QPO phase lags in MAXI J1820+070 using
Insight-HXMT observations and proposed a method to obtain the
intrinsic phase lag of the QPO. In their analysis of the phase lags,
they find that by subtracting the phase lags below the QPO frequency
range they can obtain consistent QPO phase lags as functions of
photon energy for all observations and can explain the lag behavior
through the precession of a compact jet above the black hole. On
the data they used, the PDS shows that the BBN components are too
strong compared to the QPO component to ignore the contribution
to the phase lags in the QPO frequency range (see panel c of figure
1 in Ma21). If they do not correct the phase lags for the QPO, the
phase lags obtained from the original FDPLS will be affected by the
BBN and thus are not intrinsic phase lags of the QPO. Although
Ma21 applied this method to obtain consistent results of the phase
lags, the rationale for doing so was not explained in detail, so the
plausibility of this correction method needs to be tested. On the data
they analyzed, some of the observations obtained phase lags with
little difference before and after the correction, but some of the phase
lags changed significantly (even the sign is totally reversed) before
and after the correction. Therefore, we believe it is necessary to in-
vestigate under what conditions the correction is effective and how
the QPO component is related to the BBN component. The motiva-
tion of this paper is to explore the mechanism behind the correction
method used by Ma21 and to investigate the QPO properties in the
presence of strong BBN in conjunction with the results obtained by
Ma21.
Since we want to obtain the properties of a certain component (in

our case, the QPO), and what we observe is some kind of superpo-
sition of all components, we have to face the problem of how these
components contribute to the total signal. In this paper, when we
refer to the term signal, we are referring to the light curve or the
underlying time series. The total signal is defined as the time series
that we directly observe and the sub-signals are the sub-components
such as QPO and BBN that make up the total signal. Traditionally,
it is believed that the BBN and the QPO are additive in the time
domain and that they are incoherent at any frequency, which is why
the PDS is fitted by the sum of several Lorentzian functions. Ingram
& van der Klis (2013) proposed a possible relationship between QPO
and BBN, where the QPO component and the BBN component are
multiplied in the time domain. In this case, a convolution model is
required for the fitting of the PDS in the frequency domain. Another
way in which the QPO component and the BBN component are com-
bined into a total signal in the time domain is convolution, which is
usually caused by the response of the QPO signal in the region where
the BBN component is generated (a model similar to this mechanism
can be found in Cabanac et al. 2010). The calculation of the FDPLS
involves the Fourier orthogonal decomposition of the signal, so it can
be expected that if the sub-signals form the total signal in different
ways, then the relationship between the FDPLS of the total signal
and the FDPLS of the sub-signals must be different.
This paper is structured as follows: Section 2 analyzes the rela-

tionships between the FDPLS as well as the PDS of total signals
and sub-signals. An algorithm to generate two signals satisfied spe-

cific PDS and FDPLS simultaneously is also proposed. Besides, one
possible way of coupling the QPO component and the BBN com-
ponent in the time domain is discussed. In Section 3, based on the
results of Ma21’s analysis of MAXI J1820+070 on phase lags, we
argue that the QPO component and the BBN component constitute
the total signal by convolution in the time domain. Using the data of
MAXI J1820+070, we fit the PDS in different energy bands using the
multiplicative PDS model and the traditional additive PDS model,
and compare their differences. In addition, we also performed some
simulations to rule out the possibility that the total signal appears to
be the sum of the sub-signals in the time domain. Section 4 discusses
and summarizes the whole paper.

2 THEORY AND SIMULATION

2.1 phase lag relationship

Suppose that the expressions of non-zero mean signals 𝑟1 (𝑡), 𝑟2 (𝑡),
𝑞1 (𝑡), 𝑞2 (𝑡) at frequency 𝑓0 can be written as:
𝑟1 (𝑡) = 𝑅1 sin(2𝜋 𝑓0𝑡 + 𝜙𝑟1 ) + 𝑐𝑟1 ,
𝑟2 (𝑡) = 𝑅2 sin(2𝜋 𝑓0𝑡 + 𝜙𝑟2 ) + 𝑐𝑟2 ,
𝑞1 (𝑡) = 𝑄1 sin(2𝜋 𝑓0𝑡 + 𝜙𝑞1 ) + 𝑐𝑞1 ,
𝑞2 (𝑡) = 𝑄2 sin(2𝜋 𝑓0𝑡 + 𝜙𝑞2 ) + 𝑐𝑞2 ,

(1)

where 𝑐𝑟1 , 𝑐𝑟2 , 𝑐𝑞1 and 𝑐𝑞2 are the mean values of the corresponding
signals; 𝑅1, 𝑅2, 𝑄1, 𝑄2 and 𝜙𝑟1 , 𝜙𝑟2 , 𝜙𝑞1 , 𝜙𝑞2 are the amplitudes
and the initial phases of the corresponding signals, respectively. The
frequency 𝑓0 can take any non-negative value including 0. When 0
is taken, it indicates that this is a constant signal. If the total signal is
the sum of the sub-signals in the time domain (hereafter this kind of
total signal is called the additive signal), i.e. :

𝑠1 (𝑡) = 𝑟1 (𝑡) + 𝑞1 (𝑡),
𝑠2 (𝑡) = 𝑟2 (𝑡) + 𝑞2 (𝑡),

(2)

then the phase difference (i.e. phase lag) between 𝑠1 (𝑡) and 𝑠2 (𝑡) can
be written as:
Δ𝜙add (𝑠2, 𝑠1; 𝑓0)
= 𝜙𝑠2 − 𝜙𝑠1
= Arg[𝑅2 cos(𝜙𝑟2 ) +𝑄2 cos(𝜙𝑞2 ), 𝑅2 sin(𝜙𝑟2 ) +𝑄2 sin(𝜙𝑞2 )]
− Arg[𝑅1 cos(𝜙𝑟1 ) +𝑄1 cos(𝜙𝑞1 ), 𝑅1 sin(𝜙𝑟1 ) +𝑄1 sin(𝜙𝑞1 )] .

(3)

Here we useArg [𝑎, 𝑏] to denote the argument of the complex 𝑎+ 𝑖𝑏,
where 𝑖 is the imaginary unit. It can be seen from equation (3) that if
the total signal is the additive signal, the phase lag between the total
signals depends on the amplitude and initial phase of each sub-signal.
If the total signal is convoluted by the sub-signals (hereafter this

kind of total signal is called the convolved signal), then the phase lag
between the total signal and the phase lag between the sub-signals
satisfies a linear relationship, the proof of which will be given below.
Still assume that the sub-signals satisfy equation (1), but at this time
the total signals are equal to the convolution of the sub-signals:

𝑠1 (𝑡) = 𝑟1 (𝑡) ⊗ 𝑞1 (𝑡),
𝑠2 (𝑡) = 𝑟2 (𝑡) ⊗ 𝑞2 (𝑡),

(4)

where the sign ⊗ represents the convolution operation. The Fourier
transform of the convolution of two signals is equal to the multi-
plication of their respective Fourier transforms. We can obtain the
cross-correlation function (CCF) of 𝑠1 (𝑡) and 𝑠2 (𝑡) in the frequency
domain:

CCF( 𝑓 ) = 𝑅1𝑅2𝑄1𝑄2
64𝜋2

𝑒−𝑖 [Δ𝜙 (𝑟2 ,𝑟1)+Δ𝜙 (𝑞2 ,𝑞1) ]𝛿4 ( 𝑓 − 𝑓0), (5)
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where Δ𝜙(𝑟2, 𝑟1) = 𝜙𝑟2 − 𝜙𝑟1 and Δ𝜙(𝑞2, 𝑞1) = 𝜙𝑞2 − 𝜙𝑞1 are the
phase lag of the sub-signals. The phase lag of the two total signals
𝑠1 and 𝑠2 can be obtained by taking the argument of their CCF:

Δ𝜙con (𝑠2, 𝑠1; 𝑓0) = Arg[CCF( 𝑓 )] = Δ𝜙(𝑟2, 𝑟1) + Δ𝜙(𝑞2, 𝑞1).
(6)

That is to say, if the total signal is the convolved signal, the phase
lag of the total signals is equal to the sum of the phase lag of the
sub-signals.
We also note that Rapisarda et al. (2014) argued that the QPO

component is multiplied together with the broad component to form
the observed signal. We now consider the phase lag relationship
between the total signal composed of single frequency sub-signals
by multiplying them together (hereafter, this kind of total signal is
called the multiplicative signal). 𝑠1 (𝑡) and 𝑠2 (𝑡) now are written as

𝑠1 (𝑡) = 𝑟1 (𝑡) × 𝑞1 (𝑡)
= 𝑐𝑞1𝑅1 sin(2𝜋 𝑓0𝑡 + 𝜙𝑟1 ) + 𝑐𝑟1𝑄1 sin(2𝜙 𝑓0𝑡 + 𝜙𝑞1 )

+ 1
2
𝑅1𝑄1 cos(2𝜋 × 2 𝑓0𝑡 + 𝜙𝑟1 + 𝜙𝑞1 ) + 𝑐𝑠1 ,

𝑠2 (𝑡) = 𝑟2 (𝑡) × 𝑞2 (𝑡)
= 𝑐𝑞2𝑅2 sin(2𝜋 𝑓0𝑡 + 𝜙𝑟2 ) + 𝑐𝑟2𝑄2 sin(2𝜙 𝑓0𝑡 + 𝜙𝑞2 )

+ 1
2
𝑅2𝑄2 cos(2𝜋 × 2 𝑓0𝑡 + 𝜙𝑟2 + 𝜙𝑞2 ) + 𝑐𝑠2 ,

(7)

where 𝑐𝑠1 and 𝑐𝑠2 are constants. Thus, the two total signals 𝑠1 (𝑡) and
𝑠2 (𝑡) contain two non-zero frequency components, one at 𝑓0 and the
other at 2 𝑓0. We can see that the first two terms of 𝑠1 (𝑡) and 𝑠2 (𝑡) are
in fact additive signals and thus the results on additive signals can be
used. Thus, the phase lags of them can be written as:

Δ𝜙mul (𝑠2, 𝑠1; 𝑓0) = Δ𝜙add (𝑠′2, 𝑠
′
1; 𝑓0),

Δ𝜙mul (𝑠2, 𝑠1; 2 𝑓0) = Δ𝜙(𝑟2, 𝑟1) + Δ𝜙(𝑞2, 𝑞1),
(8)

where 𝑠′1 = 𝑐𝑞1𝑅1 sin(2𝜋 𝑓0𝑡 + 𝜙𝑟1 ) + 𝑐𝑟1𝑄1 sin(2𝜋 𝑓0𝑡 + 𝜙𝑞1 ) and
𝑠′2 = 𝑐𝑞2𝑅2 sin(2𝜋 𝑓0𝑡 + 𝜙𝑟2 ) + 𝑐𝑟2𝑄2 sin(2𝜋 𝑓0𝑡 + 𝜙𝑞2 ). This is very
interesting because the multiplicative signal seems to contain prop-
erties of both additive and convolved signals: on one hand the phase
lag at frequency 𝑓0 follows the pattern of the additive signal and on
the other hand the phase lag at frequency 2 𝑓0 follows the pattern of
the convolved signal. However, in general the mean value of the ac-
tual signal is larger than its amplitude, so it is expected that the total
FDPLS of the multiplicative signal should be closer to the pattern of
the additive signal, as we will see in the simulation section.
For the general signals 𝑟𝑛, 𝑞𝑛, 𝑠𝑛 (𝑛 = 0, 1, ....𝑁−1), their discrete-

time Fourier series are

𝑟𝑛 =
1
𝑁

𝑁−1∑︁
𝑘=0

𝑅𝑘𝑒
𝑖2𝜋 𝑘

𝑁
𝑛,

𝑞𝑛 =
1
𝑁

𝑁−1∑︁
𝑘=0

𝑄𝑘𝑒
𝑖2𝜋 𝑘

𝑁
𝑛,

𝑠𝑛 =
1
𝑁

𝑁−1∑︁
𝑘=0

𝑆𝑘𝑒
𝑖2𝜋 𝑘

𝑁
𝑛,

(9)

where 𝑅𝑘 , 𝑄𝑘 , and 𝑆𝑘 are the discrete Fourier transforms of 𝑟𝑛,
𝑞𝑛, and 𝑠𝑛, respectively. Thus 𝑟𝑛, 𝑞𝑛, 𝑠𝑛 can be treated as a super-
position of many trigonometric functions with different amplitude,
different frequencies and different initial phases. For the additive and
convolved signals discuss above, at the specified frequency, these sig-
nals have the same properties as the corresponding single frequency
signals. So the phase lags of the additive signal follows equation

(3) at each frequency, and the phase lags of the convolved signal
follows equation (6) at each frequency. In summary, for the addi-
tive/convolved signals, their FDPLS follow equation (3) or (6) at
each specific frequency, respectively. In this case, each frequency
corresponds to a set of parameters (amplitude and initial phase) for
calculating the phase lag. Unfortunately, it is clear from equation (7)
that additional frequency components appear in the multiplicative
signal that are not identical to the sub-signals, so the conclusion for
the single-frequency signal cannot be generalized to the general sig-
nal. Nevertheless, we can use simulation (see sec 2.4) to explore the
phase lag relationship between the multiplicative signals.

2.2 PDS relationship

Assuming 𝑠(𝑡) is the additive signal, i.e. 𝑠(𝑡) = 𝑟 (𝑡) + 𝑞(𝑡). Let
𝑃s ( 𝑓 ), 𝑃r ( 𝑓 ) and 𝑃q ( 𝑓 ) be the PDS of the signals 𝑠(𝑡), 𝑟 (𝑡) and
𝑞(𝑡), respectively. Considering the Fourier transform is linear, one
obtains:

𝑃𝑠 ( 𝑓 ) = |F (𝑟 + 𝑞) |2

= |F (𝑟) + F (𝑞) |2

= 𝑃𝑟 ( 𝑓 ) + 𝑃𝑞 ( 𝑓 ) + F (𝑟)∗F (𝑞) + F (𝑟)F (𝑞)∗.
(10)

The last two terms are actually the cross-spectrum of the signals 𝑟 (𝑡)
and 𝑞(𝑡). If 𝑟 (𝑡) and 𝑞(𝑡) are incoherent at all frequencies, then their
cross-spectrum will converge to zero after averaging many signal
realizations. Therefore the above equation is simplified to

< 𝑃s ( 𝑓 ) >=< 𝑃𝑟 ( 𝑓 ) > + < 𝑃𝑞 ( 𝑓 ) >, (11)

where the <> sign indicates the average of many realizations of the
signals. This indicates that the PDS of the sum of two incoherent
signals is equal to the sum of their respective PDS.
Assuming 𝑠(𝑡) is the convolved signal, i.e. 𝑠(𝑡) = 𝑟 (𝑡) ⊗ 𝑞(𝑡). The

Fourier transform of the total signal 𝑠(𝑡) is equal to the multiplication
of the Fourier transforms of the sub-signals 𝑟 (𝑡), 𝑞(𝑡), i.e.

F (𝑠) = F (𝑟)F (𝑞),
< 𝑃𝑠 ( 𝑓 ) >=< 𝑃𝑟 ( 𝑓 ) >< 𝑃𝑞 ( 𝑓 ) > .

(12)

That is, the PDS of the convolved signal is equal to the multiplication
of the PDS of the corresponding sub-signals. It can be easily gener-
alized that if 𝑠(𝑡) = 𝑟 (𝑡) ⊗ 𝑞(𝑡) + 𝑝(𝑡), and 𝑟 (𝑡) ⊗ 𝑞(𝑡) is incoherent
with 𝑝(𝑡), their PDS will satisfy

< 𝑃s ( 𝑓 ) >=< 𝑃r ( 𝑓 ) >< 𝑃q ( 𝑓 ) > + < 𝑃p ( 𝑓 ) > . (13)

The PDS properties for convolved signals can be generalized to
multiplicative signals simply based on the symmetry of the Fourier
transform, that is, the PDS of the multiplicative signal is the convo-
lution of the PDS of the sub-signals.

2.3 An algorithm for simultaneously simulating signals with
specified PDS and FDPLS

In order to verify the correctness of the above theoretical analysis
as well as to facilitate the analysis below, some simulations need to
be done. An algorithm is thus needed to generate two signals with
specified PDS and specified FDPLS simultaneously. The algorithm
steps are as follows:

1) UseTimmer&Koenig (1995) (TK95 in the following) algorithm
to generate two signals 𝑠(𝑡) and 𝑠′(𝑡) that satisfy the specified
PDS. Because the phase given to the signal by TK95 algorithm
is random, the phase lag between these two signals is now on
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average zero. Denote their Fourier transforms as 𝑆( 𝑓 ), 𝑆′( 𝑓 ),
respectively.
2) Given the FDPLS 𝜙( 𝑓 ), then calculateCCF( 𝑓 ) according to the
following equation:

CCF( 𝑓 ) =
{
|𝑆( 𝑓 ) | |𝑆′( 𝑓 ) |{cos[𝜙( 𝑓 )] + 𝑖 sin[𝜙( 𝑓 )]} 𝑓 ≠ 0,
|𝑆( 𝑓 ) | |𝑆′( 𝑓 ) | 𝑓 = 0,

(14)

where 𝑖 is the imaginary unit.
3) The complex array CCF( 𝑓 ) obtained in step 2 is divided by the
complex conjugate of 𝑆( 𝑓 ) to obtain a new complex array. Then
performing inverse Fourier transform to it to obtain the signal
𝑠′′(𝑡). Expressed in mathematical notation, it is

𝑠′′(𝑡) = F−1 [CCF( 𝑓 )
𝑆∗ ( 𝑓 ) ] . (15)

The underlying PDS of 𝑠′′(𝑡) is the same as the PDS of 𝑠(𝑡), but
the FDPLS between 𝑠′′(𝑡) and 𝑠(𝑡) will satisfy the given FDPLS. In
summary, 𝑠(𝑡) and 𝑠′′(𝑡) satisfy both the given PDS and the given
FDPLS. In this paper, all PDS and FDPLS are extracted using the X-
ray astronomy python package stingray (Huppenkothen et al. 2019,
version 0.3), and all PDS and FDPLS fitting are done by XSPEC
(Arnaud 1996, version 12.11.1) or lmfit (Newville et al. 2014, version
1.0.2).

2.4 simulation

Four signals 𝑟1 (𝑡), 𝑟2 (𝑡), 𝑞1 (𝑡), and 𝑞2 (𝑡)with time resolution of 0.01
s are simulated according to the algorithm proposed in subsection
2.3. The PDS of all these signals are characterized by the Lorentzian
function, which takes the form of

𝐿( 𝑓 ) = 𝐾 (𝜔/(2𝜋))
(𝜔/2)2 + ( 𝑓 − 𝑓𝑐)2

, (16)

where 𝐾 , 𝜔 and 𝑓𝑐 denote the normalization factor, the full width
at half maximum (FWHM) and the centroid frequency, respectively.
The PDS of 𝑟1 (𝑡) and 𝑟2 (𝑡) are modeled by setting the centroid
frequency of the Lorentzian function to zero and taking a large 𝜔,
which simulates BBN, while 𝑞1 (𝑡) and 𝑞2 (𝑡) are modeled by taking
the appropriate non-zero centroid frequency and 𝜔, which simulates
QPO. In addition, the theoretical FDPLS 𝜙( 𝑓 ) is also set. The FDPLS
between BBNs is set to be constant, while the FDPLS between QPOs
is set to have a dip-like feature near the centroid frequency (as seen
in MAXI J1820+070). That is,

𝜙( 𝑓 ) =
0.5 for BBN,

−0.5𝑒
( 𝑓 −1)2
0.04 for QPO.

(17)

The timing properties of these four signals are summarized in table
1. We then split each signal into multiple 20-sec segments and cal-
culated the PDS of each segment with Leahy normalization (Leahy
et al. 1983). The PDS is rebined by a logarithmic factor of 0.03 and
we finally obtain the averaged PDS with the frequency range of 0.05-
50.53 Hz. The FDPLS is obtained using cross-spectrum analysis.
The results of the simulated PDS and the FDPLS are shown in

panel a and panel b of Fig 1, respectively. When the total signal is
assumed to be additive or multiplicative signal, the FDPLS between
the total signals is shown in panel c of Fig. 1. When the total signal
is assumed to be the convolved signal, the FDPLS between the total
signals is shown in panel d of Fig. 1. As stated in the theoretical
analysis section, the FDPLS of the multiplicative signal is very close

to the FDPLS of the additive signal (see the green data points and
the blue data points in panel c of Fig. 1). Due to the symmetry of the
Fourier transform to convolution and multiplication, the PDS section
will only compare the differences between convolved and additive
signals. In panels b, c, d of Fig. 1, the data points are obtained by
simulation and the red dashed lines are obtained from our theoret-
ical calculation (the theoretical curve drawn in panel c of Fig. 1 is
for the additive signal, and we did not draw the theoretical curve
for the multiplicative signal because of the analytical difficulties).
The theoretical curve shown in panel c of Fig. 1 is calculated by
using the value of the simulated data (i.e., amplitude, initial phase),
and it appears to fluctuate around the data points, which is due to
the randomness deliberately introduced by the simulation algorithm
(see TK95 for detail). The difference between panel c and panel d
of Fig. 1 is mainly due to the different dependence of the FDPLS
on the different kinds of signals (additive, multiplicative, convolved
signals) on each sub-signal. The FDPLS between the convolved sig-
nals depends only on the FDPLS between sub-signals, independent
of the other properties of the sub-signals. This is not the case for the
additive and multiplicative signals. So it can be seen from panel c
that the FDPLS depends on the relative power of sub-signals, while
in panel d the FDPLS does not depend on the shape of the PDS of
the sub-signals. In conclusion, the simulation results of the FDPLS
are consistent with the theoretical analysis. The results of the PDS
simulation results are shown in Fig. 2.
The PDSof 𝑟1 (𝑡) and 𝑞1 (𝑡) are shown in the left panel of Fig. 2, and

the PDS of the additive and convolved signals are shown in themiddle
and right panels of Fig. 2, respectively. We can see that the PDS of
the additive signal is the sum of the PDS of the sub-signals, while
the PDS of the convolved signal is the multiplication of the PDS of
the sub-signals. The solid lines running through the data points in the
PDS are the best-fit using the additive and multiplicative Lorentzian
models for the additive signal and the convolved signal, respectively.
Overall, the simulation results are in good agreement with those of
the theoretical analysis.

2.5 A possible mechanism for introducing a convolution
mechanism in the time domain

Assuming that the orbit of matter around a black hole is circular and
Keplerian. The equation can be derived based on the conservation of
mass and angular momentum (e.g. Ingram 2016), i.e.

𝜕Σ

𝜕𝑡
=
3
𝑅

𝜕

𝜕𝑅
[𝑅

1
2
𝜕

𝜕𝑅
(aΣ𝑅)], (18)

where Σ = 𝜌𝐻 is the surface density of the corona or disk, and a is
the kinematic viscosity. Assuming that the surface density at 𝑡 = 0 is
Σ(𝑡 = 0, 𝑅) = 𝛿(𝑅 − 𝑅0) and a is a constant, we will get

𝑔(𝑅, 𝑡) = 𝑚

12𝜋a𝑡
( 𝑅
𝑅0

)−
1
4 𝐼 1
4
( 𝑅𝑅0
6a𝑡

)𝑒−
𝑅20+𝑅

2

12a𝑡 , (19)

where 𝐼 1
4
is the modified Bessel function and 𝑔(𝑅, 𝑡) is called the

Green’s function of the system. Under the condition that the system
is linear, the surface density of any initial fluctuation 𝑞(𝑡) at position
𝑅 = 𝑅0 is the convolution of that fluctuation with the Green’s func-
tion, i.e., Σ(𝑅, 𝑡) = 𝑞(𝑡) ⊗ 𝑔(𝑅, 𝑡) (Ingram 2016). Denoting the mass
accretion rate as ¤𝑀 (𝑅, 𝑡), then the luminosity corresponding to such
a accretion rate is 𝐿 (𝑅, 𝑡) ∝ ¤𝑀 (𝑅, 𝑡) ∝ Σ(𝑅, 𝑡) ∝ 𝑞(𝑡) ⊗ 𝑔(𝑅, 𝑡). If

we check the region 𝑅 << 𝑅0, then we will get 𝑔(𝑅, 𝑡) ∝ 𝑡
5
4 𝑒−

𝑅20
12a𝑡 .

The PDS of such a damped exponential signal is a zero-centred
Lorentzian function (Ingram 2016). By introducing two types of
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Table 1. Timing properties of 𝑟1 (𝑡) , 𝑟2 (𝑡) , 𝑞1 (𝑡) , 𝑞2 (𝑡) (see section 2.4 for the definition of them).

signals bin size (s) a𝑐 𝜔 mean rate (cts/s) exposure (s) fractional r.m.s PDS type FDPLS type

𝑟1 (𝑡) 0.01 0 3 2000 2000 30% BBN constant
𝑟2 (𝑡) 0.01 0 4 2000 2000 20% BBN

𝑞1 (𝑡) 0.01 1 0.1 2000 2000 15% QPO dip
𝑞2 (𝑡) 0.01 1 0.2 2000 2000 10% QPO
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Figure 1. Simulation results of the FDPLS and PDS. Panel a: PDS of signals 𝑟1 (𝑡) , 𝑟2 (𝑡) , 𝑞1 (𝑡) , 𝑞2 (𝑡) . Panel b: simulated FDPLS (blue dots) between 𝑟1 (𝑡)
and 𝑟2 (𝑡) and simulated FDPLS (black dots) between 𝑞1 (𝑡) and 𝑞2 (𝑡) . Panel c: simulated FDPLS (green dots) between 𝑟2 (𝑡) + 𝑞2 (𝑡) and 𝑟1 (𝑡) + 𝑞1 (𝑡) and
simulated FDPLS (blue dots) between 𝑟2 (𝑡) × 𝑞2 (𝑡) and 𝑟1 (𝑡) × 𝑟2 (𝑡) . Panel d: simulated FDPLS between 𝑟2 (𝑡) ⊗ 𝑞2 (𝑡) and 𝑟1 (𝑡) ⊗ 𝑞1 (𝑡) . The red curves in
panels b, c, and d are theoretically calculated curves. Error bars correspond to 1𝜎 confidence intervals.

white noise, one associated with the Green’s function and the other
superimposed on the QPO signal, we assume that the observed signal
is expressed in the time domain as 𝑠(𝑡) = 𝑔(𝑡) ⊗𝑤𝑛1 ⊗ [𝑞(𝑡) +𝑤𝑛2].
We have assumed that q(t) has the form of QPO. Considering that the
white noise and QPO signals are incoherent, a PDS of the combined
signal will has the form

𝑃(𝑅, 𝑓 ) ∝ 𝑃𝑏1 (𝑅, 𝑓 )𝑃𝑞 (𝑅, 𝑓 ) + 𝑃𝑏2 (𝑅, 𝑓 ), (20)

where 𝑃𝑏1 denotes the first zero-centred Lorentzian function (i.e.,
the BBN1 component), 𝑃𝑞 denotes the non-zero centred Lorentzian
function (i.e., the QPO component) and 𝑃𝑏2 denotes the second zero-
centred Lorentzian function (i.e., the BBN2 component). Note that
the former term of the above summation is due to the fluctuation
propagation in the form of QPO and the latter term is due to the
fluctuation propagation in the form of white noise, which dominates
different frequency ranges (we will see this in section 3).
Furthermore, it is worth noting that the above result is valid only

when 𝑅 << 𝑅0 and the assumptions about the white noise and
QPO fluctuations are satisfied. The total observed luminosity is the
integral of the differential luminosity over the entire corona after

considering the emissivity (Ingram & Done 2011), but the form is
very complicated. Nonetheless, it is still worthwhile to start with a
simple model to explain the data. For this reason, when fitting the
PDS of the real data with the multiplicative PDS model in section 3,
only a form similar to equation (20) will be considered.

3 THE FDPLS AND PDS OF MAXI J1820+070

MAXI J1820+070 was discovered by the Monitor of All-sky X-ray
Image (MAXI) during the outburst on 11 March 2018 (Kawamuro
et al. 2018). It was confirmed to be a BHB (Torres et al. 2019).
Insight-HXMT carried out observations three days after its discov-
ery and obtained rich data with total exposure time of over 2000
ks. Ma21 has carried out a detailed temporal analysis of these data
and, in particular, detailed calculations of the phase lags in different
energy bands. Fig. 3 shows three typical observations from top to
bottom, with a clear dip-like feature appearing near the QPO fre-
quency range (the averaged value of this frequency range shown by
the cyan dots denotes the original QPO phase lag). The phase lags of
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Figure 2. PDS of simulation results. Left panel: the cyan and blue data points are the PDS of the signals 𝑟1 (𝑡) and 𝑞1 (𝑡) , respectively. The solid lines are the
best-fit using Lorentzian model (considering the contribution of Poisson noise requires adding a constant to the Lorentzian model). Middle panel: the blue points
are the PDS of the sum of the signals 𝑟1 (𝑡) and 𝑞1 (𝑡) . The red solid line is the best-fit using two summed Lorentzian functions. Right panel: the blue points
are the PDS of the convolution of the signals 𝑟1 (𝑡) and 𝑞1 (𝑡) . The red solid line is the best-fit using two multiplicative Lorentzian functions (considering the
contribution of Poisson noise requires adding a constant to each Lorentzian model). Error bars correspond to 1𝜎 confidence intervals.

Figure 3. QPO phase lag correction of three typical Insight-HXMT observations (reproduced from the data in Ma21). Each row represents the results of one
observation. The FDPLS between 1-2.6 keV and 100-150 keV energy bands are shown in the left panels. Middle panels are the original QPO energy-dependent
phase lags. Right panels are the intrinsic QPO energy-dependent phase lags after correction. The intrinsic QPO phase lags are obtained by subtracting the
average of the phase lag of the BBN component (marked by the red dots on the left panels) from the original QPO phase lag (the averaged value marked by the
cyan dots on left panels). The red arrows indicate the high energy band data that we will model in Fig. 6. Error bars correspond to 1𝜎 confidence intervals.

low-frequency BBN component are marked with red dots, denoted
as background phase lag. The intrinsic phase lag of the QPO is ob-
tained by subtracting the average of the background phase lag from
the original QPO phase lag. After the correction, the absolute value
of phase lag of the QPO becomes larger as the energy increases in
all three observations. For the sake of clarity, the detailed correction
steps used in Ma21 are re-summarized as follows:

1) Calculate the FDPLS and identify the ccentroid frequency 𝑓0
and the FWHM 𝜔 of the QPO according to the PDS.
2) The original phase lag of the QPO is defined as the average of
the phase lags in the frequency range 𝑓0 ± 𝜔/2.

3) The background phase lag is defined as the average of the phase
lags below the QPO frequency range.
4) The intrinsic phase lag of the QPO is then defined as the original
phase lag minus the background phase lag.

Such a correction actually implies two assumptions. The first as-
sumption is that the phase lags of the BBN component at the QPO
frequency range are the same as the phase lags below the QPO fre-
quency range, at least their averaged values must be approximately
equal. The second assumption is that the total phase lags (i.e., the
observed original phase lags) at the QPO frequency range are equal
to the sum of the BBN component phase lags and the QPO in-
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Figure 4. Several examples of the best-fit of the observed PDS data (ObsID P0114661078) in different energy bands with additive or multiplicative PDS models.
The PDS model used in the left panels is the additive PDS model (i.e., equation (21)). The PDS model used in the right panels is the multiplicative PDS model
(i.e., equation (22)). The contribution of Poisson noise in all PDS has been subtracted. Error bars correspond to 1𝜎 confidence intervals.

trinsic phase lags. The correction of the phase lags is valid only
when these two assumptions are satisfied simultaneously. The first
assumption can be considered to be approximately satisfied. This is
because the FDPLS obtained from MAXI J1820+070 shows that the
phase lag does not vary significantly with frequency below the QPO

frequency range. Thus it is reasonable to assume that at the QPO
frequency range, the phase lags of the BBN component are approx-
imately equal to the phase lags below the QPO frequency range. As
to whether the second assumption can be satisfied, we need to first
make an assumption about how the BBN component and the QPO
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Figure 5. The parameters of the QPO (fundamental and harmonic components) as functions of photon energy which are obtained with the traditional additive
and multiplicative PDS model, respectively. Error bars correspond to 1𝜎 confidence intervals.

component synthesize the observed signal. From the discussion of
section 2 we know that if the observed signal is considered to be
the sum of the BBN component and the QPO component (which is
the default assumption in most of the literatures), the second condi-
tion cannot be satisfied. The second condition can be satisfied only
when the observed signal is considered as a convolution of the BBN
component and the QPO component.
In the case that the observed signal is the convolved signal, the

PDS of the signal needs to be fitted by a multiplicative PDS model.
In section 2.5 we introduced a multiplicative PDS model, so we use
the multiplicative PDSmodel to fit the PDS in different energy bands
and make a comparison with the traditional additive PDS model. We
are not going to explore the multiplicative signal (i.e., the total signal
is the multiplication of the sub-signals in the time domain) further
because we are mainly concerned with the additive and convolved
signals. For the additive PDS model, the form is

𝑃add ( 𝑓 ) =
𝐾1 (𝜔1/(2𝜋))

(𝜔1/2)2 + ( 𝑓 − 𝑓𝑐1 )2
+ 𝐾2 (𝜔2/(2𝜋))
(𝜔2/2)2 + ( 𝑓 − 𝑓𝑐2 )2

+ 𝐾3 (𝜔3/(2𝜋))
(𝜔3/2)2 + ( 𝑓 − 𝑓𝑐3 )2

+ 𝐾4 (𝜔4/(2𝜋))
(𝜔4/2)2 + ( 𝑓 − 𝑓𝑐4 )2

+ 𝑐.

(21)

For the multiplicative PDS model, the form is

𝑃mul ( 𝑓 ) =
𝐾1 (𝜔1/(2𝜋))

(𝜔1/2)2 + ( 𝑓 − 𝑓𝑐1 )2
× [ 𝐾2 (𝜔2/(2𝜋))

(𝜔2/2)2 + ( 𝑓 − 𝑓𝑐2 )2

+ 𝐾3 (𝜔3/(2𝜋))
(𝜔3/2)2 + ( 𝑓 − 𝑓𝑐3 )2

] + 𝐾4 (𝜔4/(2𝜋))2

(𝜔4/2)2 + ( 𝑓 − 𝑓𝑐4 )2
+ 𝑐,

(22)

which is consistent with the multiplicative PDS model we discussed
in section 2.5. We use these two models to fit the PDS in different
energy bands in a representative Insight-HXMT observation (ObsID

P0114661078). The data reduction process in this paper is the same
as Ma21. We extract the light curves with the time resolution of
0.03125 s in each energy band (1-2.6 keV, 2.6-4.8 keV, 4.8-7.0 keV,
7-11 keV, 11-23 keV, 25-35 keV, 35-48 keV, 48-67 keV, 67-100 keV,
100-150 keV and 150-200 keV). We then split the light curves into
multiple 32-sec segments and calculate the PDS of each segmentwith
Miyamoto normalization (Miyamoto et al. 1991) for the convenience
of calculating fractional r.m.s later, and finally obtain the averaged
PDS with the frequency range of 1/32 to 16 Hz. After subtracting
the contribution of Poisson noise in the PDS, we fitted the PDS with
the additive andmultiplicative PDSmodels. Some fitting examples in
different energy bands are shown in Fig. 4. From top to bottom, Fig. 4
shows the PDS fitting results for the three energy bands. The left pan-
els are fitted using the traditional additive PDS model while the right
panels are fitted using the multiplicative PDS model. In the mul-
tiplicative PDS model, the low-frequency zero-centered Lorentzian
component is multiplied onto the QPO component instead of being
added, resulting in the left side of the QPO component being lifted
up in the right panels of Fig. 4. We can see that the total fitting
results are similar but the individual components have some differ-
ences. Basing on the best-fit, we calculate the centroid frequency, the
FWHM and the fractional r.m.s1 of the QPO and parameters of the
BBN on each energy band. And the results are listed in table 2, 3
and 4. As shown in Fig. 5, the centroid frequency and the FWHM
of the QPO as functions of photon energy calculated according to
the two models are similar, but the fractional r.m.s given by the two

1 The fractional r.m.s is calculated in the same way as for Bu et al. (2015),
but ignoring the background correction, since the correction coefficients are
the same for both models and our aim is only to compare their differences.
Neglecting the background correction leads to a lower fractional r.m.s for the
energy band with a lower signal-to-noise ratio (in this paper it is the higher
energy band), but it does not change our conclusion.
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Figure 6.Modeling results for the FDPLS between signals 𝑠l and 𝑠h and their
respective PDS (see section 3 for the definitions of 𝑠l and 𝑠h). In panels a and
b, the solid lines are the best-fit using the models proposed in section 3 and
the best-fit parameters are listed in table 2. The yellow bands running through
the two panels are the QPO FWHM frequency ranges (including fundamental
and harmonic frequencies). Error bars correspond to 1𝜎 confidence intervals.

models are significantly different. For the fundamental component
of QPO, the fractional r.m.s of QPO given by the traditional additive
PDSmodel is about 2 ∼ 3 times higher than that of the multiplicative
PDS mode, but the trend is the same for both results. For the har-
monic component of the QPO, the difference in the fractional r.m.s
given by the two PDS models is not very significant.
In addition, we would like to know how the phase lags should

look like in MAXI J1820 for additive and convolved signals, so some
simulations are done. We use the same data (ObsID P0114661078)
used above as an example to show how effective this correction is.
From panel h and panel i of Fig. 3 we can see that the QPO phase lags
between the high and low energy bands before and after correction are
completely flipped. We focus on two energy bands of these signals:
the reference energy band (1-2.6 keV) and the high energy band (100-
150 keV). The phase lag between the reference energy band and the
high energy band is indicated by the red arrows in panel h and panel
i of Fig. 3. After the data reduction in the same way as Ma21, we
extract two light curves in reference energy band (denote as 𝑠l) and
high energy band (denote as 𝑠h). The mean count rate of 𝑠l and 𝑠h are
285 counts/s and 127 counts/s, respectively, and both of the effective
exposure time are 8 ks. The FDPLS and PDS of 𝑠l and 𝑠h are first
fitted to obtain the best models, and after that, the best models are
used for simulations. For the FDPLS between 𝑠l and 𝑠h, the model
takes the form

lag( 𝑓 ) = 𝐴1

𝜎1
√
2𝜋
𝑒 [−( 𝑓 −`1)

2/2𝜎12 ] + 𝐴2

𝜎2
√
2𝜋
𝑒 [−( 𝑓 −`2)

2/2𝜎22 ] + 𝑐,

(23)

where the first and second terms represent the dip-like phase lags
of the QPO components (including fundamental and harmonic fre-
quencies) and the last term represent the phase lags of the non-QPO

components (BBN components). For the PDS of 𝑠l and 𝑠h, a constant
term and the sum of four Lorentzian functions are used to fit the data,
i.e., the PDS model is the same as equation (21). We find that the
above PDS model does not require the high-frequency zero-centred
Lorentzian component for 𝑠h when fitting the PDS of 𝑠h. Moreover,
in fitting the PDS of 𝑠h we found that the harmonic frequency com-
ponent of QPO is not well constrained due to the low signal-to-noise
ratio of the data. We thus fix the parameters of the QPO harmonic
frequency component, which does not affect the goodness of fit, but
is useful for our subsequent simulation of the QPO components. The
fitting results are shown in Fig. 6 and the best-fit parameters of the
above models are listed in table 6. It is worth pointing out that we
are using an additive PDS model to fit the PDS here, which is cor-
rect for additive signal, but not for convolved signal, which should
use a multiplicative PDS model. However, we note that the FDPLS
relationship of the convolved signal depends only on the FDPLS of
the sub-signals and is independent of the PDS of the sub-signals, so
the PDS model we use here has no effect on the FDPLS calculation
of the convolved signal.
We then simulate four sub-signals based on the best FDPLS and

PDS models obtained above. The PDS of the QPO component is
modeled using the sum of the non-zero centred Lorentzian compo-
nents and the PDS of the BBN component is modeled using the sum
of the zero-centred Lorentzian components. We first simulate four
signals using TK95 algorithm, noted as 𝑠lq, 𝑠lnq, 𝑠hq, 𝑠hnq, which
stand for the QPO component and the BBN component in the refer-
ence energy band, and the QPO component and the BBN component
in the high energy band, respectively. After that, we use the algorithm
proposed in section 2.3 to make the FDPLS of 𝑠lq and 𝑠hq satisfy the
Gaussian components of the best-fit model and make the FDPLS of
𝑠lnq and 𝑠hnq satisfy the constant component of the best-fit model.
The timing properties of these four signal are listed in table 5. Note
that in calculating the FDPLS we split the signal into QPO and non-
QPO components, which in effect assumes that the contribution of
the additive component of equation (20) to the overall FDPLS can
be neglected, i.e. the destruction of this additive component to the
additivity of the phase lag between the convolution components can
be neglected, as we will explain in detail in the subsequent discussion
section. The PDS of 𝑠lq, 𝑠lnq, 𝑠hq, 𝑠hnq are shown in top panel of
Fig. 7. The FDPLS between 𝑠lq and 𝑠hq are two dips, and the FDPLS
between 𝑠lnq and 𝑠hnq are constant, which are shown in the middle
panel of Fig. 7.
Then, 𝑠lq and 𝑠lnq are added/convolved to get the addi-

tive/convolved signal. 𝑠hq and 𝑠hnq are added/convolved to get
the other additive/convolved signal. The FDPLS of the addi-
tive/convolved signals is shown by the cyan/red dotted lines in the
lower panel of Fig. 7. The gray dots in the figure are the observed
data. As can be seen from Fig. 7, the simulated results for the addi-
tive signal are very different from those given by the data. But the
simulated results for the convolved signal match the data perfectly.
This simulation result indicates that the observed data can distinguish
between convolved and additive signals for FDPLS.

4 DISCUSSION AND SUMMARY

In this paper, we investigate the mechanism behind the phase lag
correction that was successfully applied for the first time by Ma21
for MAXI J1820+070, where the strong BBN and the QPO coexist.
After correcting the phase lag of the QPO, the absolute value of
QPO phase lag increases monotonically with photon energy in all
observations. Ma21 explained the phase lag behavior of the QPO
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Table 2. Best-fit results for the fundamental frequency component of the QPO obtained using additive and multiplicative PDS models (i.e. equations (21) and
(22)), respectively.

QPO frequency (Hz) QPO FWHM (Hz)

energy band (keV) additive PDS model multiplicative PDS model additive PDS model multiplicative PDS model

1.0-2.6 0.44 ± 0.01 0.45 ± 0.01 0.13 ± 0.04 0.14 ± 0.03
2.6-4.8 0.43 ± 0.01 0.45 ± 0.01 0.14 ± 0.03 0.14 ± 0.03
4.8-7.0 0.43 ± 0.01 0.45 ± 0.01 0.13 ± 0.05 0.12 ± 0.04
7.0-11.0 0.43 ± 0.01 0.45 ± 0.01 0.11 ± 0.06 0.11 ± 0.05
11.0-23.0 0.43 ± 0.01 0.44 ± 0.01 0.12 ± 0.03 0.10 ± 0.03
25.0-35.0 0.42 ± 0.01 0.43 ± 0.01 0.11 ± 0.03 0.09 ± 0.02
35.0-48.0 0.43 ± 0.01 0.44 ± 0.01 0.10 ± 0.03 0.08 ± 0.02
48.0-67.0 0.43 ± 0.01 0.44 ± 0.01 0.10 ± 0.03 0.08 ± 0.02
67.0-100.0 0.43 ± 0.01 0.44 ± 0.01 0.11 ± 0.03 0.10 ± 0.02
100.0-150.0 0.42 ± 0.01 0.43 ± 0.01 0.06 ± 0.03 0.09 ± 0.03
150.0-200.0 0.44 ± 0.03 0.45 ± 0.03 0.10 ± 0.13 0.08 ± 0.11

QPO r.m.s %* reduced 𝜒2

energy band (keV) additive PDS model multiplicative PDS model additive PDS model multiplicative PDS model

1.0-2.6 9.14 ± 0.31 3.83 ± 0.10 0.48 0.71
2.6-4.8 10.26 ± 0.31 4.15 ± 0.07 0.74 0.88
4.8-7.0 8.99 ± 0.40 3.36 ± 0.09 0.61 0.69
7.0-11.0 7.59 ± 0.56 3.06 ± 0.13 0.66 0.66
11.0-23.0 7.86 ± 0.20 2.59 ± 0.05 0.48 0.57
25.0-35.0 5.65 ± 0.11 1.72 ± 0.02 1.02 1.55
35.0-48.0 5.54 ± 0.13 1.72 ± 0.03 0.89 1.14
48.0-67.0 4.75 ± 0.09 1.44 ± 0.02 0.59 0.71
67.0-100.0 5.24 ± 0.13 1.64 ± 0.02 0.45 0.58
100.0-150.0 3.88 ± 0.14 1.88 ± 0.04 0.43 0.44
150.0-200.0 2.05 ± 0.12 0.76 ± 0.06 0.44 0.41

* No background correction is applied to the r.m.s because we are only interested in the difference between the results of fitting
using the additive PDS model and the multiplicative PDS model, and the correction factors are the same for both models.

by employing a compact jet with precession. In this scenario, the
high-energy photons come from the part of the jet closer to the black
hole, and the precession of the compact jet causes the QPO phe-
nomenon and allows the high-energy photons to reach the observer
first, resulting in a soft lag. Because the phase lag behavior can have
a large impact on physical conclusions, it is necessary to investigate
the rationality of this correction method. Since we want to obtain
the intrinsic properties of the QPO, and what we observe is some
kind of superposition of the QPO and the BBN components, we have
to face the question of how these components constitute the total
signal. We found that the correction method is effective only when
the sub-signals are synthesized into the total signal by convolution.
If the total signal is the convolved signal, the intrinsic phase lags
of the QPO can be obtained by subtracting the phase lags of the
BBN component from the original phase lags of the total signal, as
successfully implemented in Ma21.
If the observed total signals are convolved signals, the correspond-

ing PDS cannot be fitted simply by summing a series of Lorentzian
functions (conventions in most of the literatures) but require a multi-
plicative PDSmodel. We then try to introduce the convolution mech-
anism by assuming the propagation of the QPO waves in the corona
(may be due to the magneto-acoustic wave propagating within the
corona, e.g. Cabanac et al. 2010). The fluctuation propagation in the
form of Dirac delta function resulting in the Green’s function. Any
form of timing fluctuation will be the convolution of that fluctuation
and the Green’s function (Ingram 2016). We assume that the Green’s
function is first convolved with the white noise and then convolved
with the QPO signal to form the low-frequency part of the observed

signal, while the high-frequency part is the result of the convolution
of the Green’s function with the two white noise components. If the
Green’s function and the QPO signal are convoluted in the time do-
main, the total PDS will be the multiplication of their respective PDS
according to the convolution theorem. Based on this, we introduce a
multiplicative PDS model to fit the observed PDS in a representative
Insight-HXMT observation in 11 different energy bands. For com-
parison, we also fitted the same data using the traditional additive
PDS model. Overall, both additive and multiplicative PDS models
fit the observed data well, but the individual components have some
differences. The two models give little difference in the centroid fre-
quency as well as in the FWHM of the QPO . For the fundamental
frequency component of the QPO, the fraction of r.m.s of the QPO
given by the traditional additive PDS model is about 2 ∼ 3 higher
than that of the multiplicative PDS model, but the trend is the same
for both results. For the harmonic frequency component of QPO, the
fractional rms given by the two models are not significantly different.
For the traditional additive PDS model, the low-frequency zero-

centred Lorentzian component can be considered as the variability
due to the propagation of the white noise fluctuation in the outer re-
gion of the corona (Ingram&Done 2011), and the narrow Lorentzian
components stand for the fundamental and harmonic components of
the QPO, and the high frequency zero-centred Lorentzian component
is responsible for the variability due to the propagation of the white
noise fluctuation in the inner region of the corona (Ingram & Done
2011). All these terms are simply added together, which means that
there is no coherence between them.
For the multiplicative PDS model, we find that the low frequency
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Table 3. The same as table 2 but for the harmonic frequency component of the QPO.

QPO frequency(Hz) QPO FWHM(Hz)

energy band (keV) additive PDS model multiplicative PDS model additive PDS model multiplicative PDS model

1.0-2.6 0.90 ± 0.02 0.98 ± 0.02 0.37 ± 0.08 0.54 ± 0.09
2.6-4.8 0.90 ± 0.02 0.94 ± 0.02 0.34 ± 0.09 0.33 ± 0.08
4.8-7.0 0.91 ± 0.02 0.94 ± 0.02 0.26 ± 0.09 0.24 ± 0.10
7.0-11.0 0.91 ± 0.06 0.98 ± 0.06 0.47 ± 0.21 0.47 ± 0.18
11.0-23.0 0.88 ± 0.02 0.89 ± 0.02 0.10 ± 0.10 0.12 ± 0.12
25.0-35.0 0.91 ± 0.03 0.96 ± 0.03 0.42 ± 0.12 0.35 ± 0.11
35.0-48.0 0.85 ± 0.09 0.85 ± 0.23 0.42 ± 0.34 0.41 ± 0.34
48.0-67.0 0.93 ± 0.04 0.97 ± 0.02 0.75 ± 0.09 0.36 ± 0.08
67.0-100.0 0.91 ± 0.02 0.95 ± 0.02 0.31 ± 0.07 0.25 ± 0.06
100.0-150.0 0.94 ± 0.03 1.01 ± 0.03 0.45 ± 0.14 0.39 ± 0.13
150.0-200.0 1.01 ± 0.04 1.12 ± 0.04 0.39 ± 0.14 0.65 ± 0.12

QPO r.m.s %

energy band (keV) additive PDS model multiplicative PDS model

1.0-2.6 9.55 ± 1.22 10.04 ± 0.58
2.6-4.8 9.47 ± 1.28 7.76 ± 0.79
4.8-7.0 8.57 ± 1.65 6.63 ± 1.30
7.0-11.0 9.29 ± 1.89 7.57 ± 0.98
11.0-23.0 4.53 ± 1.19 3.35 ± 2.41
25.0-35.0 8.76 ± 1.44 5.93 ± 0.92
35.0-48.0 5.55 ± 2.10 6.16 ± 5.68
48.0-67.0 9.42 ± 0.69 4.51 ± 0.55
67.0-100.0 6.37 ± 0.88 4.04 ± 0.77
100.0-150.0 5.59 ± 1.07 3.54 ± 0.71
150.0-200.0 4.43 ± 0.71 4.77 ± 0.35

Table 4. The same as table 2 but for the BBN components.

BBN1 FWHM (Hz) BBN2 FWHM (Hz)

energy band (keV) additive PDS model multiplicative PDS model additive PDS model multiplicative PDS model

1.0-2.6 0.48 ± 0.08 0.27 ± 0.04 3.17 ± 0.51 3.01 ± 0.35
2.6-4.8 0.62 ± 0.19 0.28 ± 0.04 3.89 ± 0.76 3.02 ± 0.44
4.8-7.0 0.87 ± 0.47 0.30 ± 0.06 3.70 ± 1.61 2.54 ± 0.61
7.0-11.0 0.54 ± 0.24 0.32 ± 0.09 10.27 ± 9.14 5.56 ± 3.56
11.0-23.0 0.92 ± 1.92 0.42 ± 0.38 2.56 ± 1.59 2.25 ± 0.44
25.0-35.0 0.69 ± 0.35 0.38 ± 0.07 4.70 ± 1.89 3.26 ± 0.95
35.0-48.0 0.58 ± 0.80 · · · 6.24 ± 15.27 2.06 ± 2.09
48.0-67.0 0.65 ± 0.20 0.41 ± 0.05 10.83 ± 2.89 2.77 ± 0.52
67.0-100.0 0.69 ± 0.54 0.43 ± 0.09 2.74 ± 0.82 2.44 ± 0.35
100.0-150.0 0.71 ± 0.45 0.50 ± 0.08 3.76 ± 1.71 3.10 ± 0.87
150.0-200.0 1.86 ± 0.18 0.61 ± 0.08 18.88 ± 12.81 6.55 ± 2.43

BBN1 r.m.s % BBN2 r.m.s %

energy band (keV) additive PDS model multiplicative PDS model additive PDS model multiplicative PDS model

1.0-2.6 16.32 ± 1.30 · · · 20.12 ± 1.18 22.07 ± 0.67
2.6-4.8 14.36 ± 2.21 · · · 20.56 ± 1.19 23.23 ± 0.73
4.8-7.0 14.40 ± 5.28 · · · 18.60 ± 3.27 22.31 ± 1.29
7.0-11.0 11.55 ± 2.11 · · · 15.69 ± 5.61 15.50 ± 2.27
11.0-23.0 21.02 ± 0.75 · · · 19.22 ± 7.50 20.85 ± 1.03
25.0-35.0 9.87 ± 2.65 · · · 14.66 ± 1.34 16.88 ± 0.92
35.0-48.0 11.34 ± 1.83 · · · 7.87 ± 3.83 11.38 ± 4.97
48.0-67.0 8.01 ± 1.10 · · · 10.53 ± 0.93 13.04 ± 0.59
67.0-100.0 6.19 ± 4.02 · · · 13.18 ± 1.96 14.56 ± 0.56
100.0-150.0 5.33 ± 2.21 · · · 9.17 ± 1.30 10.51 ± 0.66
150.0-200.0 10.49 ± 0.56 · · · 11.46 ± 4.92 9.34 ± 0.77
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Table 5. Timing properties of 𝑠lq,𝑠lnq,𝑠hq and 𝑠hnq (see section 3 for the definition of them).

signals bin size (s) mean rate (cts/s) exposure (s) fractional r.m.s PDS type FDPLS type

𝑠lq 0.03125 142.5 8000 27.00% QPO dip
𝑠hq 0.03125 63.5 8000 9.43% QPO

𝑠lnq 0.03125 142.5 8000 51.00% Non-QPO constant
𝑠hnq 0.03125 63.5 8000 15.70% Non-QPO

Table 6. PDS and FDPLS fitting results for 𝑠l and 𝑠h.

𝑠l PDS model 𝑠h PDS model FDPLS model

parameter name value parameter name value parameter name value

𝐾1 0.007 ± 0.002 𝐾1 0.001 ± 0.000 𝐴1 −0.109 ± 0.015
𝑓𝑐1 0.442 ± 0.008 𝑓𝑐1 0.430 ± 0.010 `1 0.405 ± 0.011
𝜔1 0.119 ± 0.033 𝜔1 0.090 ± 0.030 𝜎1 0.062 ± 0.008
𝐾2 0.009 ± 0.002 𝐾2 0.001 ± 0.000 𝐴2 −0.204 ± 0.041
𝑓𝑐2 0.900 ± 0.020 𝑓𝑐2 0.860 (frozen) `2 0.776 ± 0.037
𝜔2 0.370 ± 0.083 𝜔2 0.200 (frozen) 𝜎2 0.185 ± 0.024
𝐾3 0.027 ± 0.004 𝐾3 0.006 (frozen) c 1.102 ± 0.040
𝑓𝑐3 0.000 (frozen) 𝑓𝑐3 0.000 (frozen) · · · · · ·
𝜔3 0.477 ± 0.080 𝜔3 2.061 ± 0.425 · · · · · ·
𝐾4 0.040 ± 0.005 c 0.016 ± 0.000 · · · · · ·
𝑓𝑐4 0.000 (frozen) · · · · · · · · · · · ·
𝜔4 3.175 ± 0.512 · · · · · · · · · · · ·
c 0.007 ± 0.000 · · · · · · · · · · · ·

component of the PDS can be fitted by multiplying the fundamental
and harmonic components of theQPOwith a zero-centredLorentzian
function, in addition to an additional additive component to produce
the high frequency part of the PDS. The additive Lorentzian compo-
nent plays the same as the role in the additive PDS model. Therefore,
for our multiplicative model, the high-frequency part does not need
to be convolved to the QPO signal, but is simply added together. This
additive component appearing in the PDS model looks to destroy
the additivity of the phase lag brought about by the time domain
convolution. We ignored the contribution of this additive component
in our previous phase lag calculations. We make a simulation to in-
vestigate the effect of this additional additive component on the total
FDPLS. Due to the dependence of the FDPLS of additive signals on
the PDS of the individual components, we need to know the PDS
parameters of each component. Specifically, we first obtain the PDS
parameters for each component based on the results of the fit of the
multiplicative PDS model (shown in the right panels of Fig. 4), and
then simulate four signals based on the mean of these parameters in
two energy bands: 𝑥1 (the convolved signal of energy band 1), 𝑦1
(the additional additive signal of energy band 1), 𝑥2 (the convolved
signal of energy band 2) and 𝑦2 (the additional additive signal of
energy band 2). The PDS of these four signals are shown in the up-
per panel of Fig. 8. We then set the FDPLS model of 𝑥1 and 𝑥2 to

𝜙( 𝑓 ) = −0.5𝑒−
( 𝑓 −0.4)2
0.12 − 0.3𝑒−

( 𝑓 −0.8)2
0.152 + 1 and set the FDPLS model

of 𝑦1 and 𝑦2 to 1. Finally we calculate the FDPLS of 𝑥1 and 𝑥2 and
the FDPLS of 𝑥1 + 𝑦1 and 𝑥2 + 𝑦2, respectively. By comparing these
two FDPLS, the effect of the additional additive component on the
total FDPLS can be known. As can be seen from the lower panel
of Fig. 8, the additional additive component has almost no effect on
the total FDPLS, except for a slight dilution of the phase lag of the
harmonic component. It is therefore reasonable to ignore the effect of
the additional additive component on the FDPLS of the convolution
components in our previous analysis.
Traditionally, it is mostly assumed that the observed components

are additive in the time domain, and it has also been suggested that it
might be more reasonable to multiply these components in the time
domain based on the fluctuation propagation model (e.g. Ingram
& van der Klis (2013)). However, neither of these two models can
explain the phase lag correction in Ma21. In order to explain the
correction of phase lags in Ma21, we propose a convolution model
instead of the additive and multiplicative models in the time domain,
which is supported by comparison between simulations and data on
both PDS and FDPLS. This suggests that the convolution model can
explain the behaviour of the phase lag observed inMAXI J1820+070,
in which case the phase lag correction method applied in Ma21 is
correct.
Finally, it is worth pointing out that our current convolution model

still has limitations. For examples, it is not yet possible to explain
the energy dependence of the phase lag using the convolution model,
and the relationship of individual components to specific physical
processes needs further development. However, it is certain that at
least part of the time domain signal is filtered by the system before
it reaches the observer (e.g. both the accretion disk and corona/jet
play the role of low-pass filters to some extent), and these response
processes are necessarily accompanied by time domain convolution
operations.
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Figure 7. Simulation results based on the data modeling shown in Fig. 6.
Upper panel: the simulated PDS of the signals 𝑠lq,𝑠lnq,𝑠hq and 𝑠hnq. Middle
panel: the simulated FDPLS (blue dots) of 𝑠lq and 𝑠hq and the simulated
FDPLS (green dots) of 𝑠lnq and 𝑠hnq. Bottom panel: the calculated FDPLS
of the total signal when the total signal is an/a additive/convolved signal
(cyan/red data points). The gray dots are the observed FDPLS. The yellow
bands running through panels are the QPO FWHM frequency ranges (includ-
ing fundamental and harmonic frequencies). Error bars correspond to 1𝜎
confidence intervals.
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