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A B S T R A C T 

Accurate calculation of the phase lags of quasi-periodic oscillations (QPOs) will provide insight into their origin. In this paper, 
we investigate the phase lag correction method that has been applied to calculate the intrinsic phase lags of the QPOs in 

MAXI J1820 + 070. We find that the traditional additive model between broad-band noise (BBN) and QPOs in the time domain 

is rejected, but the convolution model is accepted. By introducing a convolution mechanism in the time domain, the Fourier 
cross-spectrum analysis shows that the phase lags between QPOs components in different energy bands will have a simple 
linear relationship with the phase lags between the total signals, so that the intrinsic phase lags of the QPOs can be obtained 

by linear correction. The power density spectrum (PDS) thus requires a multiplicative model to interpret the data. We briefly 

discuss a physical scenario for interpreting the convolution. In this scenario, the corona acts as a low-pass filter, Green’s function 

containing the noise is convolved with the QPOs to form the low-frequency part of the PDS, while the high-frequency part 
requires an additive component. We use a multiplicative PDS model to fit the data observed by the Insight - Hard X-ray Modulation 

Telescope ( HXMT ). The o v erall fitting results are similar compared to the traditional additive PDS model. Neither the width nor 
the centroid frequency of the QPOs obtained from each of the two PDS models was significantly different, except for the rms of 
the QPOs. Our work thus provides a new perspective on the coupling of noise and QPOs. 

Key words: methods: analytical – methods: data analysis – X-rays: binaries. 
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 I N T RO D U C T I O N  

ecades of research on black hole binaries (BHBs) show that their
-ray emission is variable on different time-scales, including the

ow-frequency (mHz to 30 Hz) quasi-periodic oscillations (QPOs)
nd the broad-band noise (BBN; Psaltis, Belloni & van der Klis
999 ; Ingram, Done & Fragile 2009 ; Ingram & Done 2011 ; Motta
016 ). The study of the timing signals can ef fecti vely diagnose the
eometric characteristics of the disc and the corona near the black
ole (Belloni & Hasinger 1990 ; Belloni, Psaltis & van der Klis
002 ; Ingram 2016 ; Ingram & Motta 2019 ). The disc and the corona
ear the black hole continuously radiate X-ray photons outward
ue to various radiation mechanisms (thermal radiation, Compton
adiation, and so on). Photons with different energy arrive at the
bserver at different times because they may come from different
adiation regions (Lin et al. 2000 ; Rapisarda et al. 2016 ), or undergo
ifferent scattering processes (Cui 1999 ; Poutanen 2001 ), or have
 ery comple x mechanisms that cause delays (Morgan, Remillard &
reiner 1997 ; Wijnands, Homan & van der Klis 1999 ; Qu et al.
010 ). Therefore, analysing the phase/time lags of photons between
ifferent energy bands helps us better understand the geometric or ra-
iometric characteristics of X-ray BHBs. A common analysis method
 E-mail: zhangsn@ihep.ac.cn (SZ); songlm@ihep.ac.cn (LS); 
houdk@ihep.ac.cn (DZ) 
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s based on Fourier cross-spectrum, which measures the frequency-
ependent phase lag spectrum (FDPLS) between the signals in two
ifferent energy bands (van der Klis et al. 1987 ). This method allows
o study the phase lags of two signals as a function of Fourier
requencies. Thus the phase lags between different components
f timing signals, which usually originate from different physical
rocesses (Narayan & Yi 1995 ; Done, Gierli ́nski & Kubota 2007 ;
ngram & Done 2011 ), can be studied separately. For example, Zhang
t al. ( 2020 ) conducted a systematic study on the phase lag of the 
ype-C QPO and found that the phase lag behaviour of the subhar-
onic of the QPO is very similar to that of the QPO fundamental

omponent but the second harmonic of the QPO shows a quit different
hase lag behaviour. Uttley et al. ( 2011 ) investigated the phase lag
f the BBN components of GX 339 and found that the large lags can
e explained by viscous propagation of mass accretion fluctuations
n the disc. 

The traditional way to obtain the phase lag of the QPO components
s to assume that the other components contribute weakly to the lag
n the QPO frequency range, and then directly treat the values in
he QPO frequency range as the phase lag of the QPO components
e.g. Morgan et al. 1997 ; Wijnands et al. 1999 ; Kara et al. 2019 ;
hang et al. 2020 ). Ho we v er, the coe xistence of various components
akes it difficult to calculate any of the individual component. In

articular, when the BBN is sufficiently strong in the QPO frequency
ange, there is no reason to ignore the effect of the BBN on the
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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easured QPO phase lag. Despite attempts by some authors to 
meliorate this dilemma by fitting different components of the cross- 
pectrum (e.g. Qu et al. 2004 ), there is no broad consensus on how
o obtain the intrinsic phase lag of the QPO in the presence of strong
BN. Therefore, it is difficult to determine the intrinsic properties 

including phase lag) of the QPO in the presence of strong BBN. 
In a recent work (Ma et al. 2021 , hereafter Ma21 ) the authors

ttempt to correct for the original phase lags, which gives a clear
hysical picture using the corrected phase lags. Ma21 investigated 
he behaviour of the QPO phase lags in MAXI J1820 + 070 using
nsight -Hard X-ray Modulation Telescope ( HXMT ) observations and 
roposed a method to obtain the intrinsic phase lag of the QPO. In
heir analysis of the phase lags, they find that by subtracting the phase
ags below the QPO frequency range they can obtain consistent QPO 

hase lags as functions of photon energy for all observations and 
an explain the lag behaviour through the precession of a compact 
et abo v e the black hole. On the data they used, the power density
pectrum (PDS) shows that the BBN components are too strong 
ompared to the QPO component to ignore the contribution to the 
hase lags in the QPO frequency range (see panel c of fig. 1 in
a21 ). If they do not correct the phase lags for the QPO, the phase

ags obtained from the original FDPLS will be affected by the BBN
nd thus are not intrinsic phase lags of the QPO. Although Ma21
pplied this method to obtain consistent results of the phase lags, the
ationale for doing so was not explained in detail, so the plausibility of
his correction method needs to be tested. On the data they analysed,
ome of the observations obtained phase lags with little difference 
efore and after the correction, but some of the phase lags changed
ignificantly (even the sign is totally reversed) before and after 
he correction. Therefore, we believe it is necessary to investigate 
nder what conditions the correction is ef fecti ve and how the
PO component is related to the BBN component. The moti v ation
f this paper is to explore the mechanism behind the correction 
ethod used by Ma21 and to investigate the QPO properties in the

resence of strong BBN in conjunction with the results obtained 
y Ma21 . 
Since we want to obtain the properties of a certain component 

in our case, the QPO), and what we observe is some kind of
uperposition of all components, we have to face the problem of how
hese components contribute to the total signal. In this paper, when 
e refer to the term signal, we are referring to the light curve or the
nderlying time series. The total signal is defined as the time series
hat we directly observe and the subsignals are the subcomponents 
uch as QPO and BBN that make up the total signal. Traditionally, it
s believed that the BBN and the QPO are additive in the time domain
nd that they are incoherent at any frequency, which is why the PDS
s fitted by the sum of several Lorentzian functions. Ingram & van der
lis ( 2013 ) proposed a possible relationship between QPO and BBN,
here the QPO component and the BBN component are multiplied 

n the time domain. In this case, a convolution model is required
or the fitting of the PDS in the frequency domain. Another way in
hich the QPO component and the BBN component are combined 

nto a total signal in the time domain is convolution, which is usually
aused by the response of the QPO signal in the region where the
BN component is generated (a model similar to this mechanism 

an be found in Cabanac et al. 2010 ). The calculation of the FDPLS
nvolves the Fourier orthogonal decomposition of the signal, so it can 
e expected that if the subsignals form the total signal in different
ays, then the relationship between the FDPLS of the total signal 

nd the FDPLS of the subsignals must be different. 
This paper is structured as follows. Section 2 analyses the relation- 

hips between the FDPLS and the PDS of total signals and subsignals.
n algorithm to generate two signals satisfied specific PDS and 
DPLS simultaneously is also proposed. Besides, one possible way 
f coupling the QPO component and the BBN component in the time
omain is discussed. In Section 3 , based on the results of Ma21 ’s
nalysis of MAXI J1820 + 070 on phase lags, we argue that the QPO
omponent and the BBN component constitute the total signal by 
onvolution in the time domain. Using the data of MAXI J1820 + 070,
e fit the PDS in different energy bands using the multiplicative PDS
odel and the traditional additive PDS model, and compare their 

ifferences. In addition, we also performed some simulations to rule 
ut the possibility that the total signal appears to be the sum of the
ubsignals in the time domain. Section 4 discusses and summarizes 
he whole paper. 

 T H E O RY  A N D  SI MULATI ON  

.1 Phase lag relationship 

uppose that the expressions of non-zero mean signals r 1 ( t ), r 2 ( t ),
 1 ( t ), and q 2 ( t ) at frequency f 0 can be written as 

r 1 ( t) = R 1 sin 
(
2 πf 0 t + φr 1 

) + c r 1 , 

r 2 ( t) = R 2 sin 
(
2 πf 0 t + φr 2 

) + c r 2 , 

 1 ( t) = Q 1 sin 
(
2 πf 0 t + φq 1 

) + c q 1 , 

 2 ( t) = Q 2 sin 
(
2 πf 0 t + φq 2 

) + c q 2 , 

(1) 

here c r 1 , c r 2 , c q 1 , and c q 2 are the mean values of the corresponding
ignals; R 1 , R 2 , Q 1 , Q 2 and φr 1 , φr 2 , φq 1 , φq 2 are the amplitudes
nd the initial phases of the corresponding signals, respectively. The 
requency f 0 can take any non-negative value including 0. When 0 is
aken, it indicates that this is a constant signal. If the total signal is
he sum of the subsignals in the time domain (hereafter this kind of
otal signal is called the additive signal), i.e. 

 1 ( t) = r 1 ( t) + q 1 ( t) , 

 2 ( t) = r 2 ( t) + q 2 ( t) , (2) 

hen the phase difference (i.e. phase lag) between s 1 ( t ) and s 2 ( t ) can
e written as 

�φadd ( s 2 , s 1 ; f 0 ) 

= φs 2 − φs 1 

= Arg [ R 2 cos ( φr 2 ) + Q 2 cos ( φq 2 ) , R 2 sin ( φr 2 ) + Q 2 sin ( φq 2 )] 

−Arg [ R 1 cos ( φr 1 ) + Q 1 cos ( φq 1 ) , R 1 sin ( φr 1 ) + Q 1 sin ( φq 1 )] . (3) 

ere we use Arg [ a, b] to denote the argument of the complex a + i b ,
here i is the imaginary unit. It can be seen from equation ( 3 ) that if

he total signal is the additive signal, the phase lag between the total
ignals depends on the amplitude and initial phase of each subsignal.

If the total signal is convoluted by the subsignals (hereafter this
ind of total signal is called the convolved signal), then the phase
ag between the total signal and the phase lag between the subsignals
atisfy a linear relationship, the proof of which will be given below.
till assume that the subsignals satisfy equation ( 1 ), but at this time

he total signals are equal to the convolution of the subsignals: 

 1 ( t) = r 1 ( t) ⊗ q 1 ( t) , 

 2 ( t) = r 2 ( t) ⊗ q 2 ( t) , (4) 

here the sign ⊗ represents the convolution operation. The Fourier 
ransform of the convolution of two signals is equal to the multi-
lication of their respective Fourier transforms. We can obtain the 
MNRAS 515, 1914–1926 (2022) 
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ross-correlation function (CCF) of s 1 ( t ) and s 2 ( t ) in the frequency
omain: 

CCF ( f ) = 

R 1 R 2 Q 1 Q 2 

64 π2 
e −i[ �φ( r 2 ,r 1 ) + �φ( q 2 ,q 1 )] δ4 ( f − f 0 ) , (5) 

here �φ( r 2 , r 1 ) = φr 2 − φr 1 and �φ( q 2 , q 1 ) = φq 2 − φq 1 are the
hase lag of the subsignals. The phase lag of the two total signals s 1 
nd s 2 can be obtained by taking the argument of their CCF: 

�φcon ( s 2 , s 1 ; f 0 ) = Arg [ CCF ( f )] = �φ( r 2 , r 1 ) + �φ( q 2 , q 1 ) . (6) 

hat is to say, if the total signal is the convolved signal, the phase
ag of the total signals is equal to the sum of the phase lag of the
ubsignals. 

We also note that Rapisarda, Ingram & van der Klis ( 2014 )
rgued that the QPO component is multiplied together with the
road component to form the observed signal. We now consider the
hase lag relationship between the total signal composed of single
requency subsignals by multiplying them together (hereafter, this
ind of total signal is called the multiplicative signal). s 1 ( t ) and s 2 ( t )
ow are written as 

 1 ( t) = r 1 ( t) × q 1 ( t) 

= c q 1 R 1 sin (2 πf 0 t + φr 1 ) + c r 1 Q 1 sin (2 φf 0 t + φq 1 ) 

+ 

1 

2 
R 1 Q 1 cos (2 π × 2 f 0 t + φr 1 + φq 1 ) + c s 1 , 

 2 ( t) = r 2 ( t) × q 2 ( t) 

= c q 2 R 2 sin (2 πf 0 t + φr 2 ) + c r 2 Q 2 sin (2 φf 0 t + φq 2 ) 

+ 

1 

2 
R 2 Q 2 cos (2 π × 2 f 0 t + φr 2 + φq 2 ) + c s 2 , (7) 

here c s 1 and c s 2 are constants. Thus, the two total signals s 1 ( t ) and
 2 ( t ) contain two non-zero frequency components, one at f 0 and the
ther at 2 f 0 . We can see that the first two terms of s 1 ( t ) and s 2 ( t ) are
n fact additive signals and thus the results on additive signals can be
sed. Thus, the phase lags of them can be written as 

�φmul ( s 2 , s 1 ; f 0 ) = �φadd ( s 
′ 
2 , s 

′ 
1 ; f 0 ) , 

�φmul ( s 2 , s 1 ; 2 f 0 ) = �φ( r 2 , r 1 ) + �φ( q 2 , q 1 ) , (8) 

here s ′ 1 = c q 1 R 1 sin (2 πf 0 t + φr 1 ) + c r 1 Q 1 sin (2 πf 0 t + φq 1 ) and
 

′ 
2 = c q 2 R 2 sin (2 πf 0 t + φr 2 ) + c r 2 Q 2 sin (2 πf 0 t + φq 2 ). This is very
nteresting because the multiplicative signal seems to contain proper-
ies of both additive and convolved signals: on one hand the phase lag
t frequency f 0 follows the pattern of the additive signal and on the
ther hand the phase lag at frequency 2 f 0 follows the pattern of the
onvolved signal. Ho we ver, in general the mean value of the actual
ignal is larger than its amplitude, so it is expected that the total
DPLS of the multiplicative signal should be closer to the pattern of

he additive signal, as we will see in the simulation section. 
For the general signals r n , q n , s n ( n = 0, 1,...., N − 1), their

iscrete-time Fourier series are 

r n = 

1 

N 

N−1 ∑ 

k= 0 

R k e 
i2 π k 

N 
n , 

 n = 

1 

N 

N−1 ∑ 

k= 0 

Q k e 
i2 π k 

N 
n , 

s n = 

1 

N 

N−1 ∑ 

k= 0 

S k e 
i2 π k 

N 
n , (9) 

here R k , Q k , and S k are the discrete Fourier transforms of r n , q n ,
nd s n , respectively. Thus r n , q n , and s n can be treated as a super-
osition of many trigonometric functions with different amplitude,
NRAS 515, 1914–1926 (2022) 
ifferent frequencies, and different initial phases. For the additive
nd convolved signals discuss abo v e, at the specified frequency,
hese signals have the same properties as the corresponding single
requency signals. So the phase lags of the additive signal follows
quation ( 3 ) at each frequency, and the phase lags of the convolved
ignal follows equation ( 6 ) at each frequency. In summary, for
he additiv e/convolv ed signals, their FDPLS follow equation ( 3 ) or
quation ( 6 ) at each specific frequenc y, respectiv ely. In this case,
ach frequency corresponds to a set of parameters (amplitude and
nitial phase) for calculating the phase lag. Unfortunately, it is clear
rom equation ( 7 ) that additional frequency components appear in
he multiplicative signal that are not identical to the subsignals, so
he conclusion for the single-frequency signal cannot be generalized
o the general signal. Nevertheless, we can use simulation (see
ection 2.4 ) to explore the phase lag relationship between the
ultiplicative signals. 

.2 PDS relationship 

ssuming s ( t ) is the additive signal, i.e. s ( t ) = r ( t ) + q ( t ). Let
 s ( f ), P r ( f ), and P q ( f ) be the PDS of the signals s ( t ), r ( t ), and q ( t ),

espectively. Considering the Fourier transform is linear, one obtains 

 s ( f ) = | F ( r + q) | 2 
= | F ( r) + F ( q) | 2 
= P r ( f ) + P q ( f ) + F ( r) ∗F ( q) + F ( r) F ( q) ∗. (10) 

he last two terms are actually the cross-spectrum of the signals r ( t )
nd q ( t ). If r ( t ) and q ( t ) are incoherent at all frequencies, then their
ross-spectrum will converge to zero after averaging many signal
ealizations. Therefore the abo v e equation is simplified to 

 P s ( f ) 〉 = 〈 P r ( f ) 〉 + 〈 P q ( f ) 〉 , (11) 

here the 〈 〉 sign indicates the average of many realizations of the
ignals. This indicates that the PDS of the sum of two incoherent
ignals is equal to the sum of their respective PDS. 

Assuming s ( t ) is the convolved signal, i.e. s ( t ) = r ( t ) ⊗ q ( t ). The
ourier transform of the total signal s ( t ) is equal to the multiplication
f the Fourier transforms of the subsignals r ( t ), q ( t ), i.e. 

F ( s) = F ( r) F ( q) , 

〈 P s ( f ) 〉 = 〈 P r ( f ) 〉〈 P q ( f ) 〉 . (12) 

hat is, the PDS of the convolved signal is equal to the multiplication
f the PDS of the corresponding subsignals. It can be easily
eneralized that if s ( t ) = r ( t ) ⊗ q ( t ) + p ( t ), and r ( t ) ⊗ q ( t ) is incoherent
ith p ( t ), their PDS will satisfy 

 P s ( f ) 〉 = 〈 P r ( f ) 〉〈 P q ( f ) 〉 + 〈 P p ( f ) 〉 . (13) 

The PDS properties for convolved signals can be generalized to
ultiplicative signals simply based on the symmetry of the Fourier

ransform, i.e. the PDS of the multiplicative signal is the convolution
f the PDS of the subsignals. 

.3 An algorithm for simultaneously simulating signals with 

pecified PDS and FDPLS 

n order to verify the correctness of the abo v e theoretical analysis and
o facilitate the analysis below, some simulations need to be done.
n algorithm is thus needed to generate two signals with specified
DS and specified FDPLS simultaneously. The algorithm steps are
s follows. 
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Table 1. Timing properties of r 1 ( t ), r 2 ( t ), q 1 ( t ), and q 2 ( t ) (see Section 2.4 for their definition). 

Signals 
Bin size 

(s) νc ω 

Mean rate 
(counts s −1 ) 

Exposure 
(s) Fractional rms PDS type FDPLS type 

r 1 ( t ) 0.01 0 3 2000 2000 30 per cent BBN Constant 
r 2 ( t ) 0.01 0 4 2000 2000 20 per cent BBN 

q 1 ( t ) 0.01 1 0.1 2000 2000 15 per cent QPO Dip 
q 2 ( t ) 0.01 1 0.2 2000 2000 10 per cent QPO 
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(1) Use Timmer & Koenig ( 1995 , hereafter TK95 ) algorithm to
enerate two signals s ( t ) and s 

′ 
( t ) that satisfy the specified PDS.

ecause the phase given to the signal by TK95 algorithm is random,
he phase lag between these two signals is now on average zero.
enote their Fourier transforms as S ( f ), S 

′ 
( f ), respectively. 

(2) Given the FDPLS φ( f ), then calculate CCF( f ) according to the
ollowing equation: 

CF ( f ) = 

{| S ( f ) || S ′ ( f ) |{ cos [ φ( f )] + i sin [ φ( f )] } f �= 0 , 
| S ( f ) || S ′ ( f ) | f = 0 , 

(14) 

here i is the imaginary unit. 
(3) The complex array CCF( f ) obtained in step (2) is divided by

he complex conjugate of S ( f ) to obtain a new complex array. Then
erforming inverse Fourier transform to it to obtain the signal s 

′′ 
( t ).

xpressed in mathematical notation, it is 

 

′′ ( t) = F 

−1 

[
CCF ( f ) 

S ∗( f ) 

]
. (15) 

The underlying PDS of s 
′′ 
( t ) is the same as the PDS of s ( t ), but

he FDPLS between s 
′′ 
( t ) and s ( t ) will satisfy the given FDPLS.

n summary, s ( t ) and s 
′′ 
( t ) satisfy both the given PDS and the

iven FDPLS. In this paper, all PDS and FDPLS are extracted 
sing the X-ray astronomy PYTHON package STINGRAY (version 0.3; 
uppenkothen et al. 2019 ), and all PDS and FDPLS fitting are done
y XSPEC (version 12.11.1; Arnaud 1996 ) or LMFIT (version 1.0.2; 
ewville et al. 2014 ). 

.4 Simulation 

our signals r 1 ( t ), r 2 ( t ), q 1 ( t ), and q 2 ( t ) with time resolution of 0.01 s
re simulated according to the algorithm proposed in Section 2.3 . The
DS of all these signals is characterized by the Lorentzian function, 
hich takes the form 

 ( f ) = 

K( ω/ (2 π)) 

( ω/ 2) 2 + ( f − f c ) 2 
, (16) 

here K , ω, and f c denote the normalization factor, the full width at
alf-maximum (FWHM), and the centroid frequenc y, respectiv ely. 
he PDS of r 1 ( t ) and r 2 ( t ) is modelled by setting the centroid

requency of the Lorentzian function to zero and taking a large ω,
hich simulates BBN, while q 1 ( t ) and q 2 ( t ) are modelled by taking

he appropriate non-zero centroid frequency and ω, which simulates 
PO. In addition, the theoretical FDPLS φ( f ) is also set. The FDPLS
etween BBNs is set to be constant, while the FDPLS between QPOs
s set to have a dip-like feature near the centroid frequency (as seen
n MAXI J1820 + 070). That is, 

( f ) = 

{ 

0 . 5 for BBN , 

−0 . 5 e 
( f −1) 2 

0 . 04 for QPO . 
(17) 

he timing properties of these four signals are summarized in Table 1 .
e then split each signal into multiple 20-s segments and calculated 
he PDS of each segment with Leahy normalization (Leahy et al.
983 ). The PDS is rebined by a logarithmic factor of 0.03 and we
nally obtain the averaged PDS with the frequency range of 0.05–
0.53 Hz. The FDPLS is obtained using cross-spectrum analysis. 
The results of the simulated PDS and the FDPLS are shown in

anels (a) and (b) of Fig. 1 , respectively. When the total signal is
ssumed to be additive or multiplicative signal, the FDPLS between 
he total signals is shown in panel (c) of Fig. 1 . When the total signal
s assumed to be the convolved signal, the FDPLS between the total
ignals is shown in panel (d) of Fig. 1 . As stated in the theoretical
nalysis section, the FDPLS of the multiplicative signal is very close
o the FDPLS of the additive signal (see the green data points and
he blue data points in panel c of Fig. 1 ). Because of the symmetry
f the Fourier transform to convolution and multiplication, the PDS 

ection will only compare the differences between convolved and 
dditive signals. In panels (b), (c), and (d) of Fig. 1 , the data points are
btained by simulation and the red dashed lines are obtained from our
heoretical calculation (the theoretical curve drawn in panel c of Fig. 1
s for the additive signal, and we did not draw the theoretical curve
or the multiplicative signal because of the analytical difficulties). 
he theoretical curve shown in panel (c) of Fig. 1 is calculated
y using the value of the simulated data (i.e. amplitude and initial
hase), and it appears to fluctuate around the data points, which
s due to the randomness deliberately introduced by the simulation 
lgorithm (see TK95 for detail). The difference between panels (c) 
nd (d) of Fig. 1 is mainly due to the different dependence of the
DPLS on the different kinds of signals (additi ve, multiplicati ve,
nd convolved signals) on each subsignal. The FDPLS between the 
onvolved signals depends only on the FDPLS between subsignals, 
ndependent of the other properties of the subsignals. This is not the
ase for the additive and multiplicative signals. So it can be seen from
anel (c) that the FDPLS depends on the relative power of subsignals,
hile in panel (d) the FDPLS does not depend on the shape of the
DS of the subsignals. In conclusion, the simulation results of the
DPLS are consistent with the theoretical analysis. The results of the
DS simulation are shown in Fig. 2 . 
The PDS of r 1 ( t ) and q 1 ( t ) is shown in the left-hand panel of Fig. 2 ,

nd the PDS of the additive and convolved signals is shown in the
iddle and right-hand panels of Fig. 2 , respectively. We can see that

he PDS of the additive signal is the sum of the PDS of the subsignals,
hile the PDS of the convolved signal is the multiplication of the
DS of the subsignals. The solid lines running through the data
oints in the PDS are the best fit using the additive and multiplicative
orentzian models for the additive signal and the convolved signal, 

espectiv ely. Ov erall, the simulation results are in good agreement
ith those of the theoretical analysis. 

.5 A possible mechanism for introducing a convolution 

echanism in the time domain 

ssuming that the orbit of matter around a black hole is circular and
eplerian. The equation can be derived based on the conservation of
MNRAS 515, 1914–1926 (2022) 
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Figure 1. Simulation results of the FDPLS and PDS. Panel (a): PDS of signals r 1 ( t ), r 2 ( t ), q 1 ( t ), and q 2 ( t ). Panel (b): simulated FDPLS (blue dots) between 
r 1 ( t ) and r 2 ( t ) and simulated FDPLS (black dots) between q 1 ( t ) and q 2 ( t ). Panel (c): simulated FDPLS (green dots) between r 2 ( t ) + q 2 ( t ) and r 1 ( t ) + q 1 ( t ) and 
simulated FDPLS (blue dots) between r 2 ( t ) × q 2 ( t ) and r 1 ( t ) × r 2 ( t ). Panel (d): simulated FDPLS between r 2 ( t ) ⊗ q 2 ( t ) and r 1 ( t ) ⊗ q 1 ( t ). The red curves in 
panels (b), (c), and (d) are theoretically calculated curves. Error bars correspond to 1 σ confidence intervals. 

Figure 2. PDS of simulation results. Left-hand panel: the cyan and blue data points are the PDS of the signals r 1 ( t ) and q 1 ( t ), respectively. The solid lines are 
the best fit using Lorentzian model (considering the contribution of Poisson noise requires adding a constant to the Lorentzian model). Middle panel: the blue 
points are the PDS of the sum of the signals r 1 ( t ) and q 1 ( t ). The red solid line is the best fit using two summed Lorentzian functions. Right-hand panel: the blue 
points are the PDS of the convolution of the signals r 1 ( t ) and q 1 ( t ). The red solid line is the best fit using two multiplicative Lorentzian functions (considering 
the contribution of Poisson noise requires adding a constant to each Lorentzian model). Error bars correspond to 1 σ confidence intervals. 
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ass and angular momentum (e.g. Ingram 2016 ), i.e. 

∂ 	 

∂ t 
= 

3 

R 

∂ 

∂ R 

[
R 

1 
2 
∂ 

∂ R 

( ν	R) 

]
, (18) 

here 	 = ρH is the surface density of the corona or disc, and ν is
he kinematic viscosity. Assuming that the surface density at t = 0 is

( t = 0, R ) = δ( R − R 0 ) and ν is a constant, we will get 

 ( R , t) = 

m 

12 πνt 

(
R 

R 0 

)− 1 
4 

I 1 
4 

(
R R 0 

6 νt 

)
e −

R 2 0 + R 2 
12 νt , (19) 
NRAS 515, 1914–1926 (2022) 
here I 1 
4 

is the modified Bessel function and g ( R , t ) is called Green’s
unction of the system. Under the condition that the system is linear,
he surface density of any initial fluctuation q ( t ) at position R = R 0 is
he convolution of that fluctuation with the Green function, i.e. 	( R ,
 ) = q ( t ) ⊗ g ( R , t ) (Ingram 2016 ). Denoting the mass accretion rate
s Ṁ ( R, t), then the luminosity corresponding to such a accretion
ate is L ( R, t) ∝ Ṁ ( R, t) ∝ 	( R, t) ∝ q( t) ⊗ g ( R , t). If we check

he region R << R 0 , then we will get g ( R , t) ∝ t 
5 
4 e −

R 2 0 
12 νt . The PDS

f such a damped exponential signal is a zero-centred Lorentzian
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art/stac1789_f2.eps


Determination of QPO properties: a case study 1919 

Figure 3. QPO phase lag correction of three typical Insight - HXMT observations (reproduced from the data in Ma21 ). Each row represents the results of one 
observation. The FDPLS between 1–2.6 and 100–150 keV energy bands is shown in the left-hand panels. Middle panels are the original QPO energy-dependent 
phase lags. Right-hand panels are the intrinsic QPO energy-dependent phase lags after correction. The intrinsic QPO phase lags are obtained by subtracting the 
average of the phase lag of the BBN component (marked by the red dots in the left-hand panels) from the original QPO phase lag (the averaged value marked 
by the cyan dots in left-hand panels). The red arrows indicate the high-energy band data that we will model in Fig. 6 . Error bars correspond to 1 σ confidence 
intervals. 
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unction (Ingram 2016 ). By introducing two types of white noise, 
ne associated with Green’s function and the other superimposed 
n the QPO signal, we assume that the observed signal is expressed
n the time domain as s ( t ) = g ( t ) ⊗ wn 1 ⊗ [ q ( t ) + wn 2 ]. We have
ssumed that q ( t ) has the form of QPO. Considering that the white
oise and QPO signals are incoherent, a PDS of the combined signal
ill have the form 

 ( R, f ) ∝ P b1 ( R, f ) P q ( R, f ) + P b2 ( R, f ) , (20) 

here P b 1 denotes the first zero-centred Lorentzian function (i.e. 
he BBN1 component), P q denotes the non-zero centred Lorentzian 
unction (i.e. the QPO component), and P b 2 denotes the second zero- 
entred Lorentzian function (i.e. the BBN2 component). Note that 
he former term of the abo v e summation is due to the fluctuation
ropagation in the form of QPO and the latter term is due to the
uctuation propagation in the form of white noise, which dominates 
ifferent frequency ranges (we will see this in Section 3 ). 
Furthermore, it is worth noting that the abo v e result is valid only

hen R << R 0 and the assumptions about the white noise and
PO fluctuations are satisfied. The total observed luminosity is the 

ntegral of the differential luminosity o v er the entire corona after
onsidering the emissivity (Ingram & Done 2011 ), but the form is
ery complicated. None the less, it is still worthwhile to start with
 simple model to explain the data. For this reason, when fitting the
DS of the real data with the multiplicative PDS model in Section 3 ,
nly a form similar to equation ( 20 ) will be considered. 

 T H E  FDPLS  A N D  PDS  O F  M A X I  J 1 8 2 0  + 0 7 0  

AXI J1820 + 070 was disco v ered by the Monitor of All-sky X-ray
ma g e ( MAXI ) during the outburst on 2018 March 11 (Kawamuro
t al. 2018 ). It was confirmed to be a BHB (Torres et al. 2019 ). Insight-
XMT is an X-ray astronomy satellite launched by China on June 15,
017, and it has obtained a wealth of data (Zhang et al. 2020 ). Insight-
XMT carried out observations 3 d after its disco v ery and obtained

ich data with total exposure time of over 2000 ks. Ma21 have carried
ut a detailed temporal analysis of these data and, in particular,
etailed calculations of the phase lags in different energy bands. 
ig. 3 shows three typical observations from top to bottom, with a
lear dip-like feature appearing near the QPO frequency range (the 
veraged value of this frequency range shown by the cyan dots denote
he original QPO phase lag). The phase lags of low-frequency BBN
omponent are marked with red dots, denoted as background phase 
ag. The intrinsic phase lag of the QPO is obtained by subtracting the
verage of the background phase lag from the original QPO phase
ag. After the correction, the absolute value of phase lag of the QPO
ecomes larger as the energy increases in all three observations. For
he sake of clarity, the detailed correction steps used in Ma21 are
esummarized as follows. 

(1) Calculate the FDPLS and identify the centroid frequency f 0 
nd the FWHM ω of the QPO according to the PDS. 

(2) The original phase lag of the QPO is defined as the average of
he phase lags in the frequency range f 0 ± ω/2. 

(3) The background phase lag is defined as the average of the
hase lags below the QPO frequency range. 
(4) The intrinsic phase lag of the QPO is then defined as the

riginal phase lag minus the background phase lag. 

Such a correction actually implies two assumptions. The first 
ssumption is that the phase lags of the BBN component at the
PO frequency range are the same as the phase lags below the QPO

requency range, at least their averaged values must be approximately 
qual. The second assumption is that the total phase lags (i.e. the
bserved original phase lags) at the QPO frequency range are equal
o the sum of the BBN component phase lags and the QPO intrinsic
hase lags. The correction of the phase lags is valid only when these
MNRAS 515, 1914–1926 (2022) 
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1 The fractional rms is calculated in the same way as for Bu et al. ( 2015 ), 
but ignoring the background correction, since the correction coefficients are 
the same for both models and our aim is only to compare their differences. 
Neglecting the background correction leads to a lower fractional rms for the 
energy band with a lower signal-to-noise ratio (in this paper it is the higher 
energy band), but it does not change our conclusion. 
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wo assumptions are satisfied simultaneously. The first assumption
an be considered to be approximately satisfied. This is because the
DPLS obtained from MAXI J1820 + 070 shows that the phase lag
oes not vary significantly with frequency below the QPO frequency
ange. Thus it is reasonable to assume that at the QPO frequency
ange, the phase lags of the BBN component are approximately equal
o the phase lags below the QPO frequency range. As to whether
he second assumption can be satisfied, we need to first make an
ssumption about how the BBN component and the QPO component
ynthesize the observed signal. From the discussion of Section 2
e know that if the observed signal is considered to be the sum of

he BBN component and the QPO component (which is the default
ssumption in most of the literatures), the second condition cannot
e satisfied. The second condition can be satisfied only when the
bserved signal is considered as a convolution of the BBN component
nd the QPO component. 

In the case that the observed signal is the convolved signal, the
DS of the signal needs to be fitted by a multiplicative PDS model.
n Section 2.5 , we introduced a multiplicative PDS model, so we use
he multiplicative PDS model to fit the PDS in different energy bands
nd make a comparison with the traditional additive PDS model. We
re not going to explore the multiplicative signal (i.e. the total signal
s the multiplication of the subsignals in the time domain) further
ecause we are mainly concerned with the additive and convolved
ignals. For the additive PDS model, the form is 

 add ( f ) = 

K 1 ( ω 1 / ( 2 π) ) 

( ω 1 / 2 ) 
2 + 

(
f − f c 1 

)2 + 

K 2 ( ω 2 / ( 2 π) ) 

( ω 2 / 2 ) 
2 + 

(
f − f c 2 

)2 

+ 

K 3 ( ω 3 / ( 2 π) ) 

( ω 3 / 2 ) 
2 + 

(
f − f c 3 

)2 + 

K 4 ( ω 4 / ( 2 π) ) 

( ω 4 / 2 ) 
2 + 

(
f − f c 4 

)2 + c. 

(21) 

or the multiplicative PDS model, the form is 

 mul ( f ) = 

K 1 ( ω 1 / ( 2 π) ) 

( ω 1 / 2 ) 
2 + 

(
f − f c 1 

)2 ×
[

K 2 ( ω 2 / ( 2 π) ) 

( ω 2 / 2 ) 
2 + 

(
f − f c 2 

)2 

+ 

K 3 ( ω 3 / ( 2 π) ) 

( ω 3 / 2 ) 
2 + 

(
f − f c 3 

)2 

]
+ 

K 4 ( ω 4 / ( 2 π) ) 2 

( ω 4 / 2 ) 
2 + 

(
f − f c 4 

)2 + c

(22

hich is consistent with the multiplicative PDS model we discussed
n Section 2.5 . We use these two models to fit the PDS in different
nergy bands in a representative Insight - HXMT observation (ObsID:
0114661078). The data reduction process in this paper is the same
s Ma21 . We extract the light curves with the time resolution of
.03125 s in each energy band (1–2.6, 2.6–4.8, 4.8–7.0, 7–11, 11–
3, 25–35, 35–48, 48–67, 67–100, 100–150, and 150–200 keV). We
hen split the light curves into multiple 32-s segments and calculate
he PDS of each segment with Miyamoto normalization (Miyamoto
t al. 1991 ) for the convenience of calculating fractional rms later,
nd finally obtain the averaged PDS with the frequency range of 1/32
o 16 Hz. After subtracting the contribution of Poisson noise in the
DS, we fitted the PDS with the additive and multiplicative PDS
odels. Some fitting examples in different energy bands are shown

n Fig. 4 . From top to bottom, Fig. 4 shows the PDS fitting results
or the three energy bands. The left-hand panels are fitted using the
raditional additive PDS model, while the right-hand panels are fitted
sing the multiplicative PDS model. In the multiplicative PDS model,
he low-frequency zero-centred Lorentzian component is multiplied
n to the QPO component instead of being added, resulting in the
eft-hand side of the QPO component being lifted up in the right-hand
anels of Fig. 4 . We can see that the total fitting results are similar
NRAS 515, 1914–1926 (2022) 
ut the individual components have some differences. Basing on
he best fit, we calculate the centroid frequency, the FWHM, and the
ractional rms 1 of the QPO and parameters of the BBN on each energy
and. The results are listed in Tables 2 –4 . As shown in Fig. 5 , the
entroid frequency and the FWHM of the QPO as functions of photon
nergy calculated according to the two models are similar, but the
ractional rms given by the two models is significantly different. For
he fundamental component of QPO, the fractional rms of QPO given
y the traditional additive PDS model is about 2–3 times higher than
hat of the multiplicative PDS mode, but the trend is the same for both
esults. For the harmonic component of the QPO, the difference in the
ractional rms given by the two PDS models is not very significant. 

In addition, we would like to kno w ho w the phase lags should look
ike in MAXI J1820 + 070 for additive and convolved signals, so some
imulations are done. We use the same data (ObsID: P0114661078)
sed abo v e as an e xample to sho w ho w ef fecti ve this correction
s. From panels (h) and (i) of Fig. 3 we can see that the QPO
hase lags between the high- and low-energy bands before and after
orrection are completely flipped. We focus on two energy bands of
hese signals: the reference energy band (1–2.6 keV) and the high-
nergy band (100–150 keV). The phase lag between the reference
nergy band and the high-energy band is indicated by the red arrows
n panels (h) and (i) of Fig. 3 . After the data reduction in the same
ay as Ma21 , we extract two light curves in reference energy band

denote as s l ) and high-energy band (denote as s h ). The mean count
ate of s l and s h is 285 and 127 counts s −1 , respectively, and both
f the ef fecti v e e xposure times are 8 ks. The FDPLS and PDS of s l 
nd s h are first fitted to obtain the best models, and after that the best
odels are used for simulations. For the FDPLS between s l and s h ,

he model takes the form 

ag ( f ) = 

A 1 

σ1 

√ 

2 π
e [ −( f −μ1 ) 2 / 2 σ1 

2 ] + 

A 2 

σ2 

√ 

2 π
e [ −( f −μ2 ) 2 / 2 σ2 

2 ] + c, (23) 

here the first and second terms represent the dip-like phase lags
f the QPO components (including fundamental and harmonic
requencies) and the last term represents the phase lags of the non-
PO components (BBN components). For the PDS of s l and s h , a

onstant term and the sum of four Lorentzian functions are used to
t the data, i.e. the PDS model is the same as equation ( 21 ). We
nd that the abo v e PDS model does not require the high-frequency
ero-centred Lorentzian component for s h when fitting the PDS of
 h . Moreo v er, in fitting the PDS of s h we found that the harmonic
requency component of QPO is not well constrained due to the
ow signal-to-noise ratio of the data. We thus fix the parameters of
he QPO harmonic frequency component, which does not affect the
oodness of fit, but is useful for our subsequent simulation of the
PO components. The fitting results are shown in Fig. 6 and the
est-fitting parameters of the abo v e models are listed in Table 5 . It is
orth pointing out that we are using an additive PDS model to fit the
DS here, which is correct for additive signal, but not for convolved
ignal, which should use a multiplicative PDS model. However, we
ote that the FDPLS relationship of the convolved signal depends
nly on the FDPLS of the subsignals and is independent of the PDS
f the subsignals, so the PDS model we use here has no effect on the
DPLS calculation of the convolved signal. 



Determination of QPO properties: a case study 1921 

Figure 4. Sev eral e xamples of the best fit of the observed PDS data (ObsID: P0114661078) in different energy bands with additi ve or multiplicati ve PDS models. 
The PDS model used in the left-hand panels is the additive PDS model (i.e. equation 21 ). The PDS model used in the right-hand panels is the multiplicative 
PDS model (i.e. equation 22 ). The contribution of Poisson noise in all PDS has been subtracted. Error bars correspond to 1 σ confidence intervals. 
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We then simulate four subsignals based on the best FDPLS and 
DS models obtained abo v e. The PDS of the QPO component

s modelled using the sum of the non-zero-centred Lorentzian 
omponents and the PDS of the BBN component is modelled using
he sum of the zero-centred Lorentzian components. We first simulate 
our signals using TK95 algorithm, noted as s lq , s lnq , s hq , and s hnq ,
hich stand for the QPO component and the BBN component in

he reference energy band, and the QPO component and the BBN
omponent in the high-energy band, respectively. After that, we use 
he algorithm proposed in Section 2.3 to make the FDPLS of s lq and
MNRAS 515, 1914–1926 (2022) 
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Table 2. Best-fitting results for the fundamental frequency component of the QPO obtained using additive and multiplicative PDS models 
(i.e. equations 21 and 22 ), respectively. 

QPO frequency (Hz) QPO FWHM (Hz) 

Energy band (keV) Additive PDS model Multiplicative PDS model Additive PDS model Multiplicative PDS model 
1.0–2.6 0.44 ± 0.01 0.45 ± 0.01 0.13 ± 0.04 0.14 ± 0.03 
2.6–4.8 0.43 ± 0.01 0.45 ± 0.01 0.14 ± 0.03 0.14 ± 0.03 
4.8–7.0 0.43 ± 0.01 0.45 ± 0.01 0.13 ± 0.05 0.12 ± 0.04 
7.0–11.0 0.43 ± 0.01 0.45 ± 0.01 0.11 ± 0.06 0.11 ± 0.05 
11.0–23.0 0.43 ± 0.01 0.44 ± 0.01 0.12 ± 0.03 0.10 ± 0.03 
25.0–35.0 0.42 ± 0.01 0.43 ± 0.01 0.11 ± 0.03 0.09 ± 0.02 
35.0–48.0 0.43 ± 0.01 0.44 ± 0.01 0.10 ± 0.03 0.08 ± 0.02 
48.0–67.0 0.43 ± 0.01 0.44 ± 0.01 0.10 ± 0.03 0.08 ± 0.02 
67.0–100.0 0.43 ± 0.01 0.44 ± 0.01 0.11 ± 0.03 0.10 ± 0.02 
100.0–150.0 0.42 ± 0.01 0.43 ± 0.01 0.06 ± 0.03 0.09 ± 0.03 
150.0–200.0 0.44 ± 0.03 0.45 ± 0.03 0.10 ± 0.13 0.08 ± 0.11 

QPO rms per cent a Reduced χ2 

Energy band (keV) Additive PDS model Multiplicative PDS model Additive PDS model Multiplicative PDS model 

1.0–2.6 9.14 ± 0.31 3.83 ± 0.10 0.48 0.71 
2.6–4.8 10.26 ± 0.31 4.15 ± 0.07 0.74 0.88 
4.8–7.0 8.99 ± 0.40 3.36 ± 0.09 0.61 0.69 
7.0–11.0 7.59 ± 0.56 3.06 ± 0.13 0.66 0.66 
11.0–23.0 7.86 ± 0.20 2.59 ± 0.05 0.48 0.57 
25.0–35.0 5.65 ± 0.11 1.72 ± 0.02 1.02 1.55 
35.0–48.0 5.54 ± 0.13 1.72 ± 0.03 0.89 1.14 
48.0–67.0 4.75 ± 0.09 1.44 ± 0.02 0.59 0.71 
67.0–100.0 5.24 ± 0.13 1.64 ± 0.02 0.45 0.58 
100.0–150.0 3.88 ± 0.14 1.88 ± 0.04 0.43 0.44 
150.0–200.0 2.05 ± 0.12 0.76 ± 0.06 0.44 0.41 

a No background correction is applied to the rms because we are only interested in the difference between the results of fitting using the 
additive PDS model and the multiplicative PDS model, and the correction factors are the same for both models. 

Table 3. The same as Table 2 , but for the harmonic frequency component of the QPO. 

QPO frequency (Hz) QPO FWHM (Hz) 

Energy band (keV) Additive PDS model Multiplicative PDS model Additive PDS model Multiplicative PDS model 
1.0–2.6 0.90 ± 0.02 0.98 ± 0.02 0.37 ± 0.08 0.54 ± 0.09 
2.6–4.8 0.90 ± 0.02 0.94 ± 0.02 0.34 ± 0.09 0.33 ± 0.08 
4.8–7.0 0.91 ± 0.02 0.94 ± 0.02 0.26 ± 0.09 0.24 ± 0.10 
7.0–11.0 0.91 ± 0.06 0.98 ± 0.06 0.47 ± 0.21 0.47 ± 0.18 
11.0–23.0 0.88 ± 0.02 0.89 ± 0.02 0.10 ± 0.10 0.12 ± 0.12 
25.0–35.0 0.91 ± 0.03 0.96 ± 0.03 0.42 ± 0.12 0.35 ± 0.11 
35.0–48.0 0.85 ± 0.09 0.85 ± 0.23 0.42 ± 0.34 0.41 ± 0.34 
48.0–67.0 0.93 ± 0.04 0.97 ± 0.02 0.75 ± 0.09 0.36 ± 0.08 
67.0–100.0 0.91 ± 0.02 0.95 ± 0.02 0.31 ± 0.07 0.25 ± 0.06 
100.0–150.0 0.94 ± 0.03 1.01 ± 0.03 0.45 ± 0.14 0.39 ± 0.13 
150.0–200.0 1.01 ± 0.04 1.12 ± 0.04 0.39 ± 0.14 0.65 ± 0.12 

QPO rms per cent 

Energy band (keV) Additive PDS model Multiplicative PDS model 

1.0–2.6 9.55 ± 1.22 10.04 ± 0.58 
2.6–4.8 9.47 ± 1.28 7.76 ± 0.79 
4.8–7.0 8.57 ± 1.65 6.63 ± 1.30 
7.0–11.0 9.29 ± 1.89 7.57 ± 0.98 
11.0–23.0 4.53 ± 1.19 3.35 ± 2.41 
25.0–35.0 8.76 ± 1.44 5.93 ± 0.92 
35.0–48.0 5.55 ± 2.10 6.16 ± 5.68 
48.0–67.0 9.42 ± 0.69 4.51 ± 0.55 
67.0–100.0 6.37 ± 0.88 4.04 ± 0.77 
100.0–150.0 5.59 ± 1.07 3.54 ± 0.71 
150.0–200.0 4.43 ± 0.71 4.77 ± 0.35 
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Table 4. The same as Table 2 , but for the BBN components. 

BBN1 FWHM (Hz) BBN2 FWHM (Hz) 

Energy band (keV) Additive PDS model Multiplicative PDS model Additive PDS model Multiplicative PDS model 
1.0–2.6 0.48 ± 0.08 0.27 ± 0.04 3.17 ± 0.51 3.01 ± 0.35 
2.6–4.8 0.62 ± 0.19 0.28 ± 0.04 3.89 ± 0.76 3.02 ± 0.44 
4.8–7.0 0.87 ± 0.47 0.30 ± 0.06 3.70 ± 1.61 2.54 ± 0.61 
7.0–11.0 0.54 ± 0.24 0.32 ± 0.09 10.27 ± 9.14 5.56 ± 3.56 
11.0–23.0 0.92 ± 1.92 0.42 ± 0.38 2.56 ± 1.59 2.25 ± 0.44 
25.0–35.0 0.69 ± 0.35 0.38 ± 0.07 4.70 ± 1.89 3.26 ± 0.95 
35.0–48.0 0.58 ± 0.80 ··· 6.24 ± 15.27 2.06 ± 2.09 
48.0–67.0 0.65 ± 0.20 0.41 ± 0.05 10.83 ± 2.89 2.77 ± 0.52 
67.0–100.0 0.69 ± 0.54 0.43 ± 0.09 2.74 ± 0.82 2.44 ± 0.35 
100.0–150.0 0.71 ± 0.45 0.50 ± 0.08 3.76 ± 1.71 3.10 ± 0.87 
150.0–200.0 1.86 ± 0.18 0.61 ± 0.08 18.88 ± 12.81 6.55 ± 2.43 

BBN1 rms per cent BBN2 rms per cent 

Energy band (keV) Additive PDS model Multiplicative PDS model Additive PDS model Multiplicative PDS model 

1.0–2.6 16.32 ± 1.30 ··· 20.12 ± 1.18 22.07 ± 0.67 
2.6–4.8 14.36 ± 2.21 ··· 20.56 ± 1.19 23.23 ± 0.73 
4.8–7.0 14.40 ± 5.28 ··· 18.60 ± 3.27 22.31 ± 1.29 
7.0–11.0 11.55 ± 2.11 ··· 15.69 ± 5.61 15.50 ± 2.27 
11.0–23.0 21.02 ± 0.75 ··· 19.22 ± 7.50 20.85 ± 1.03 
25.0–35.0 9.87 ± 2.65 ··· 14.66 ± 1.34 16.88 ± 0.92 
35.0–48.0 11.34 ± 1.83 ··· 7.87 ± 3.83 11.38 ± 4.97 
48.0–67.0 8.01 ± 1.10 ··· 10.53 ± 0.93 13.04 ± 0.59 
67.0–100.0 6.19 ± 4.02 ··· 13.18 ± 1.96 14.56 ± 0.56 
100.0–150.0 5.33 ± 2.21 ··· 9.17 ± 1.30 10.51 ± 0.66 
150.0–200.0 10.49 ± 0.56 ··· 11.46 ± 4.92 9.34 ± 0.77 

Figure 5. The parameters of the QPO (fundamental and harmonic components) as functions of photon energy that are obtained with the traditional additive 
and multiplicative PDS model, respectively. Error bars correspond to 1 σ confidence intervals. 

s
m  

t
l  

s
t  

o  

c  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/2/1914/6631558 by Southam
pton O

ceanography C
entre N

ational O
ceanographic Library user on 24 O

ctober 2023
 hq satisfy the Gaussian components of the best-fitting model and 
ake the FDPLS of s lnq and s hnq satisfy the constant component of

he best-fitting model. The timing properties of these four signals are 
isted in Table 6 . Note that in calculating the FDPLS we split the
ignal into QPO and non-QPO components, which in effect assumes 
hat the contribution of the additive component of equation ( 20 ) to the
 v erall FDPLS can be neglected, i.e. the destruction of this additive
omponent to the additivity of the phase lag between the convolution
MNRAS 515, 1914–1926 (2022) 
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Table 5. PDS and FDPLS fitting results for s l and s h . 

s l PDS model s h PDS model FDPLS model 
Parameter name Value Parameter name Value Parameter name Value 

K 1 0.007 ± 0.002 K 1 0.001 ± 0.000 A 1 −0.109 ± 0.015 
f c 1 0.442 ± 0.008 f c 1 0.430 ± 0.010 μ1 0.405 ± 0.011 
ω 1 0.119 ± 0.033 ω 1 0.090 ± 0.030 σ 1 0.062 ± 0.008 
K 2 0.009 ± 0.002 K 2 0.001 ± 0.000 A 2 −0.204 ± 0.041 
f c 2 0.900 ± 0.020 f c 2 0.860 (frozen) μ2 0.776 ± 0.037 
ω 2 0.370 ± 0.083 ω 2 0.200 (frozen) σ 2 0.185 ± 0.024 
K 3 0.027 ± 0.004 K 3 0.006 (frozen) c 1.102 ± 0.040 
f c 3 0.000 (frozen) f c 3 0.000 (frozen) ··· ···
ω 3 0.477 ± 0.080 ω 3 2.061 ± 0.425 ··· ···
K 4 0.040 ± 0.005 c 0.016 ± 0.000 ··· ···
f c 4 0.000 (frozen) ··· ··· ··· ···
ω 4 3.175 ± 0.512 ··· ··· ··· ···
c 0.007 ± 0.000 ··· ··· ··· ···

Table 6. Timing properties of s lq , s lnq , s hq , and s hnq (see Section 3 for their definition). 

Signals Bin size (s) 
Mean rate 

(counts s −1 ) Exposure (s) Fractional rms PDS type FDPLS type 

s lq 0.03125 142.5 8000 27.00 per cent QPO Dip 
s h q 0.03125 63.5 8000 9.43 per cent QPO 

s lnq 0.03125 142.5 8000 51.00 per cent Non-QPO Constant 
s h nq 0.03125 63.5 8000 15.70 per cent Non-QPO 

Figure 6. Modelling results for the FDPLS between signals s l and s h and 
their respective PDS (see Section 3 for the definitions of s l and s h ). In panels 
(a) and (b), the solid lines are the best fit using the models proposed in 
Section 3 and the best-fitting parameters are listed in Table 2 . The yellow 

bands running through the two panels are the QPO FWHM frequency ranges 
(including fundamental and harmonic frequencies). Error bars correspond to 
1 σ confidence intervals. 
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omponents can be neglected, as we will explain in detail in the
ubsequent discussion section. The PDS of s lq , s lnq , s hq , and s hnq is
hown in top panel of Fig. 7 . The FDPLS between s lq and s hq are two
ips, and the FDPLS between s lnq and s hnq are constant, which are
hown in the middle panel of Fig. 7 . 

Then, s lq and s lnq are added/convolved to get the addi-
iv e/convolv ed signal. s hq and s hnq are added/convolved to get
he other additiv e/convolv ed signal. The FDPLS of the addi-
iv e/convolv ed signals is shown by the cyan/red dotted lines in the
ower panel of Fig. 7 . The grey dots in the figure are the observed
ata. As can be seen from Fig. 7 , the simulated results for the
dditive signal are very different from those given by the data. But the
imulated results for the convolved signal match the data perfectly.
his simulation result indicates that the observed data can distinguish
etween convolved and additive signals for FDPLS. 

 DI SCUSSI ON  A N D  SUMMARY  

n this paper, we investigate the mechanism behind the phase lag
orrection that was successfully applied for the first time by Ma21
or MAXI J1820 + 070, where the strong BBN and the QPO coexist.
fter correcting the phase lag of the QPO, the absolute value of
PO phase lag increases monotonically with photon energy in all
bservations. Ma21 explained the phase lag behaviour of the QPO by
mploying a compact jet with precession. In this scenario, the high-
nergy photons come from the part of the jet closer to the black hole,
nd the precession of the compact jet causes the QPO phenomenon
nd allows the high-energy photons to reach the observer first,
esulting in a soft lag. Because the phase lag behaviour can have
 large impact on physical conclusions, it is necessary to investigate
he rationality of this correction method. Since we want to obtain
he intrinsic properties of the QPO, and what we observe is some
ind of superposition of the QPO and the BBN components, we have
o face the question of how these components constitute the total

art/stac1789_f6.eps


Determination of QPO properties: a case study 1925 

Figure 7. Simulation results based on the data modelling shown in Fig. 6 . 
Upper panel: the simulated PDS of the signals s lq , s lnq , s hq , and s hnq . 
Middle panel: the simulated FDPLS (blue dots) of s lq and s hq and the 
simulated FDPLS (green dots) of s lnq and s hnq . Bottom panel: the calculated 
FDPLS of the total signal when the total signal is an/a additiv e/convolv ed 
signal (cyan/red data points). The grey dots are the observed FDPLS. The 
yellow bands running through panels are the QPO FWHM frequency ranges 
(including fundamental and harmonic frequencies). Error bars correspond to 
1 σ confidence intervals. 
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ignal. We found that the correction method is ef fecti ve only when
he subsignals are synthesized into the total signal by convolution. 
f the total signal is the convolved signal, the intrinsic phase lags
f the QPO can be obtained by subtracting the phase lags of the
BN component from the original phase lags of the total signal, as

uccessfully implemented in Ma21 . 
If the observed total signals are convolved signals, the corre- 

ponding PDS cannot be fitted simply by summing a series of
orentzian functions (conventions in most of the literatures) but 

equire a multiplicative PDS model. We then try to introduce the 
onvolution mechanism by assuming the propagation of the QPO 

aves in the corona (may be due to the magnetoacoustic wave 
ropagating within the corona; e.g. Cabanac et al. 2010 ). The 
uctuation propagation in the form of Dirac delta function resulting 

n Green’s function. Any form of timing fluctuation will be the 
onvolution of that fluctuation and Green’s function (Ingram 2016 ). 
e assume that Green’s function is first convolved with the white 

oise and then convolved with the QPO signal to form the low-
requency part of the observed signal, while the high-frequency 
art is the result of the convolution of Green’s function with the
wo white noise components. If Green’s function and the QPO 

ignal are convoluted in the time domain, the total PDS will be the
ultiplication of their respective PDS according to the convolution 

heorem. Based on this, we introduce a multiplicative PDS model to
t the observed PDS in a representati ve Insight - HXMT observ ation

n 11 different energy bands. For comparison, we also fitted the same
ata using the traditional additive PDS model. Overall, both additive 
nd multiplicative PDS models fit the observed data well, but the
ndividual components have some differences. The two models give 
ittle difference in the centroid frequency and in the FWHM of the
PO. For the fundamental frequency component of the QPO, the 

raction of rms of the QPO given by the traditional additive PDS
odel is about 2–3 higher than that of the multiplicative PDS model,

ut the trend is the same for both results. For the harmonic frequency
omponent of QPO, the fractional rms given by the two models is
ot significantly different. 
For the traditional additive PDS model, the low-frequency zero- 

entred Lorentzian component can be considered as the variability 
ue to the propagation of the white noise fluctuation in the outer
egion of the corona (Ingram & Done 2011 ), the narrow Lorentzian
omponents stand for the fundamental and harmonic components of 
he QPO, and the high-frequency zero-centred Lorentzian component 
s responsible for the variability due to the propagation of the white
oise fluctuation in the inner region of the corona (Ingram & Done
011 ). All these terms are simply added together, which means that
here is no coherence between them. 

For the multiplicative PDS model, we find that the low-frequency 
omponent of the PDS can be fitted by multiplying the fundamental
nd harmonic components of the QPO with a zero-centred Lorentzian 
unction, in addition to an additional additive component to produce 
he high-frequency part of the PDS. The additive Lorentzian compo- 
ent plays the same as the role in the additive PDS model. Therefore,
or our multiplicative model, the high-frequency part does not need to
e convolved to the QPO signal, but is simply added together. This
dditive component appearing in the PDS model looks to destroy 
he additivity of the phase lag brought about by the time domain
onvolution. We ignored the contribution of this additive component 
n our previous phase lag calculations. We make a simulation to
nvestigate the effect of this additional additive component on the 
otal FDPLS. Because of the dependence of the FDPLS of additive
ignals on the PDS of the individual components, we need to know
he PDS parameters of each component. Specifically, we first obtain 
he PDS parameters for each component based on the results of the
t of the multiplicative PDS model (shown in the right-hand panels
f Fig. 4 ), and then simulate four signals based on the mean of these
arameters in two energy bands: x 1 (the convolved signal of energy
and 1), y 1 (the additional additive signal of energy band 1), x 2 (the
onvolved signal of energy band 2), and y 2 (the additional additive
ignal of energy band 2). The PDS of these four signals is shown in
he upper panel of Fig. 8 . We then set the FDPLS model of x 1 and

 2 to φ( f ) = −0 . 5 e −
( f −0 . 4) 2 

0 . 1 2 − 0 . 3 e −
( f −0 . 8) 2 

0 . 15 2 + 1 and set the FDPLS
odel of y 1 and y 2 to 1. Finally, we calculate the FDPLS of x 1 and x 2 

nd the FDPLS of x 1 + y 1 and x 2 + y 2 , respectively. By comparing
hese two FDPLS, the effect of the additional additive component on
he total FDPLS can be known. As can be seen from the lower panel
f Fig. 8 , the additional additive component has almost no effect on
he total FDPLS, except for a slight dilution of the phase lag of the
armonic component. It is therefore reasonable to ignore the effect of
he additional additive component on the FDPLS of the convolution 
omponents in our previous analysis. 
MNRAS 515, 1914–1926 (2022) 
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igure 8. The effect of an additional additive component on the total FDPLS.
pper panel: PDS of simulated signals. Lower panel: FDPLS with or without

n additional additive component. 

Traditionally, it is mostly assumed that the observed components
re additive in the time domain, and it has also been suggested that it
ight be more reasonable to multiply these components in the time

omain based on the fluctuation propagation model (e.g. Ingram &
an der Klis 2013 ). However, neither of these two models can explain
he phase lag correction in Ma21 . In order to explain the correction
f phase lags in Ma21 , we propose a convolution model instead of
he additive and multiplicative models in the time domain, which is
upported by comparison between simulations and data on both PDS
nd FDPLS. This suggests that the convolution model can explain the
ehaviour of the phase lag observed in MAXI J1820 + 070, in which
ase the phase lag correction method applied in Ma21 is correct. 

Finally, it is worth pointing out that our current convolution model
till has limitations. For examples, it is not yet possible to explain
he energy dependence of the phase lag using the convolution model,
nd the relationship of individual components to specific physical
rocesses needs further de velopment. Ho we ver, it is certain that at
east part of the time domain signal is filtered by the system before
t reaches the observer (e.g. both the accretion disc and corona/jet
lay the role of low-pass filters to some extent), and these response
rocesses are necessarily accompanied by time domain convolution
perations. 
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