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ABSTRACT

Accurate calculation of the phase lags of quasi-periodic oscillations (QPOs) will provide insight into their origin. In this paper,
we investigate the phase lag correction method that has been applied to calculate the intrinsic phase lags of the QPOs in
MAXI J1820+070. We find that the traditional additive model between broad-band noise (BBN) and QPOs in the time domain
is rejected, but the convolution model is accepted. By introducing a convolution mechanism in the time domain, the Fourier
cross-spectrum analysis shows that the phase lags between QPOs components in different energy bands will have a simple
linear relationship with the phase lags between the total signals, so that the intrinsic phase lags of the QPOs can be obtained
by linear correction. The power density spectrum (PDS) thus requires a multiplicative model to interpret the data. We briefly
discuss a physical scenario for interpreting the convolution. In this scenario, the corona acts as a low-pass filter, Green’s function
containing the noise is convolved with the QPOs to form the low-frequency part of the PDS, while the high-frequency part
requires an additive component. We use a multiplicative PDS model to fit the data observed by the Insight-Hard X-ray Modulation
Telescope (HXMT). The overall fitting results are similar compared to the traditional additive PDS model. Neither the width nor
the centroid frequency of the QPOs obtained from each of the two PDS models was significantly different, except for the rms of

the QPOs. Our work thus provides a new perspective on the coupling of noise and QPOs.
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1 INTRODUCTION

Decades of research on black hole binaries (BHBs) show that their
X-ray emission is variable on different time-scales, including the
low-frequency (mHz to 30 Hz) quasi-periodic oscillations (QPOs)
and the broad-band noise (BBN; Psaltis, Belloni & van der Klis
1999; Ingram, Done & Fragile 2009; Ingram & Done 2011; Motta
2016). The study of the timing signals can effectively diagnose the
geometric characteristics of the disc and the corona near the black
hole (Belloni & Hasinger 1990; Belloni, Psaltis & van der Klis
2002; Ingram 2016; Ingram & Motta 2019). The disc and the corona
near the black hole continuously radiate X-ray photons outward
due to various radiation mechanisms (thermal radiation, Compton
radiation, and so on). Photons with different energy arrive at the
observer at different times because they may come from different
radiation regions (Lin et al. 2000; Rapisarda et al. 2016), or undergo
different scattering processes (Cui 1999; Poutanen 2001), or have
very complex mechanisms that cause delays (Morgan, Remillard &
Greiner 1997; Wijnands, Homan & van der Klis 1999; Qu et al.
2010). Therefore, analysing the phase/time lags of photons between
different energy bands helps us better understand the geometric or ra-
diometric characteristics of X-ray BHBs. A common analysis method

* E-mail: zhangsn@ihep.ac.cn (SZ); songlm@ihep.ac.cn (LS);
zhoudk @ihep.ac.cn (DZ)

is based on Fourier cross-spectrum, which measures the frequency-
dependent phase lag spectrum (FDPLS) between the signals in two
different energy bands (van der Klis et al. 1987). This method allows
to study the phase lags of two signals as a function of Fourier
frequencies. Thus the phase lags between different components
of timing signals, which usually originate from different physical
processes (Narayan & Yi 1995; Done, Gierliiski & Kubota 2007;
Ingram & Done 2011), can be studied separately. For example, Zhang
et al. (2020) conducted a systematic study on the phase lag of the
type-C QPO and found that the phase lag behaviour of the subhar-
monic of the QPO is very similar to that of the QPO fundamental
component but the second harmonic of the QPO shows a quit different
phase lag behaviour. Uttley et al. (2011) investigated the phase lag
of the BBN components of GX 339 and found that the large lags can
be explained by viscous propagation of mass accretion fluctuations
in the disc.

The traditional way to obtain the phase lag of the QPO components
is to assume that the other components contribute weakly to the lag
in the QPO frequency range, and then directly treat the values in
the QPO frequency range as the phase lag of the QPO components
(e.g. Morgan et al. 1997; Wijnands et al. 1999; Kara et al. 2019;
Zhang et al. 2020). However, the coexistence of various components
makes it difficult to calculate any of the individual component. In
particular, when the BBN is sufficiently strong in the QPO frequency
range, there is no reason to ignore the effect of the BBN on the
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measured QPO phase lag. Despite attempts by some authors to
ameliorate this dilemma by fitting different components of the cross-
spectrum (e.g. Qu et al. 2004), there is no broad consensus on how
to obtain the intrinsic phase lag of the QPO in the presence of strong
BBN. Therefore, it is difficult to determine the intrinsic properties
(including phase lag) of the QPO in the presence of strong BBN.

In a recent work (Ma et al. 2021, hereafter Ma21) the authors
attempt to correct for the original phase lags, which gives a clear
physical picture using the corrected phase lags. Ma2l investigated
the behaviour of the QPO phase lags in MAXI J1820+070 using
Insight-Hard X-ray Modulation Telescope (HXMT) observations and
proposed a method to obtain the intrinsic phase lag of the QPO. In
their analysis of the phase lags, they find that by subtracting the phase
lags below the QPO frequency range they can obtain consistent QPO
phase lags as functions of photon energy for all observations and
can explain the lag behaviour through the precession of a compact
jet above the black hole. On the data they used, the power density
spectrum (PDS) shows that the BBN components are too strong
compared to the QPO component to ignore the contribution to the
phase lags in the QPO frequency range (see panel c of fig. 1 in
Ma21). If they do not correct the phase lags for the QPO, the phase
lags obtained from the original FDPLS will be affected by the BBN
and thus are not intrinsic phase lags of the QPO. Although Ma21
applied this method to obtain consistent results of the phase lags, the
rationale for doing so was not explained in detail, so the plausibility of
this correction method needs to be tested. On the data they analysed,
some of the observations obtained phase lags with little difference
before and after the correction, but some of the phase lags changed
significantly (even the sign is totally reversed) before and after
the correction. Therefore, we believe it is necessary to investigate
under what conditions the correction is effective and how the
QPO component is related to the BBN component. The motivation
of this paper is to explore the mechanism behind the correction
method used by Ma21 and to investigate the QPO properties in the
presence of strong BBN in conjunction with the results obtained
by Ma2l.

Since we want to obtain the properties of a certain component
(in our case, the QPO), and what we observe is some kind of
superposition of all components, we have to face the problem of how
these components contribute to the total signal. In this paper, when
we refer to the term signal, we are referring to the light curve or the
underlying time series. The total signal is defined as the time series
that we directly observe and the subsignals are the subcomponents
such as QPO and BBN that make up the total signal. Traditionally, it
is believed that the BBN and the QPO are additive in the time domain
and that they are incoherent at any frequency, which is why the PDS
is fitted by the sum of several Lorentzian functions. Ingram & van der
Klis (2013) proposed a possible relationship between QPO and BBN,
where the QPO component and the BBN component are multiplied
in the time domain. In this case, a convolution model is required
for the fitting of the PDS in the frequency domain. Another way in
which the QPO component and the BBN component are combined
into a total signal in the time domain is convolution, which is usually
caused by the response of the QPO signal in the region where the
BBN component is generated (a model similar to this mechanism
can be found in Cabanac et al. 2010). The calculation of the FDPLS
involves the Fourier orthogonal decomposition of the signal, so it can
be expected that if the subsignals form the total signal in different
ways, then the relationship between the FDPLS of the total signal
and the FDPLS of the subsignals must be different.

This paper is structured as follows. Section 2 analyses the relation-
ships between the FDPLS and the PDS of total signals and subsignals.
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An algorithm to generate two signals satisfied specific PDS and
FDPLS simultaneously is also proposed. Besides, one possible way
of coupling the QPO component and the BBN component in the time
domain is discussed. In Section 3, based on the results of Ma21’s
analysis of MAXI J1820+070 on phase lags, we argue that the QPO
component and the BBN component constitute the total signal by
convolution in the time domain. Using the data of MAXI J1820+4-070,
we fit the PDS in different energy bands using the multiplicative PDS
model and the traditional additive PDS model, and compare their
differences. In addition, we also performed some simulations to rule
out the possibility that the total signal appears to be the sum of the
subsignals in the time domain. Section 4 discusses and summarizes
the whole paper.

2 THEORY AND SIMULATION

2.1 Phase lag relationship

Suppose that the expressions of non-zero mean signals r(¢), r2(?),
q1(1), and g,(¢) at frequency f can be written as

ri(t) = Rysin (27 fot + ¢,) + 1
ra(t) = Ry sin (27 fot + ¢y,) + C1,y,
@) = Qi sin (27 fot + ¢,,) + ¢4y
¢(t) = Qasin (21 fot 4+ ¢g,) + ¢4,

(L
where ¢, , ¢,,, ¢, and ¢, are the mean values of the corresponding
signals; Ry, Ry, Q1, Q2 and ¢, 1), Py, Py, are the amplitudes
and the initial phases of the corresponding signals, respectively. The
frequency fj can take any non-negative value including 0. When 0 is
taken, it indicates that this is a constant signal. If the total signal is

the sum of the subsignals in the time domain (hereafter this kind of
total signal is called the additive signal), i.e.

si(t) = ri(t) + q1(0),
$2(t) = ra(t) + q2(1), )

then the phase difference (i.e. phase lag) between s(7) and s,(¢) can
be written as

Apaaa(s2, 515 fo)

= ¢, — by,

= Arg[R; cos(¢r,) + Q2 cos(¢y,), R sin(¢y,) + Q2 sin(y,)]
—Arg[R; cos(¢,,) + Q1 cos(gy,), Ry sin(¢,)) + Q1 sin(d,)].  (3)

Here we use Arg[a, b] to denote the argument of the complex a + ib,
where i is the imaginary unit. It can be seen from equation (3) that if
the total signal is the additive signal, the phase lag between the total
signals depends on the amplitude and initial phase of each subsignal.

If the total signal is convoluted by the subsignals (hereafter this
kind of total signal is called the convolved signal), then the phase
lag between the total signal and the phase lag between the subsignals
satisfy a linear relationship, the proof of which will be given below.
Still assume that the subsignals satisfy equation (1), but at this time
the total signals are equal to the convolution of the subsignals:

s1(t) = r1(t) ® g1 (1),
$2(1) = ra(1) @ qa(1), 4)

where the sign ® represents the convolution operation. The Fourier
transform of the convolution of two signals is equal to the multi-
plication of their respective Fourier transforms. We can obtain the
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cross-correlation function (CCF) of s(7) and s,(¢) in the frequency
domain:

CCF(f) = RiR: 0102 e*i[Ad)(Vle)+A¢(qz¢q|)]54(f — o) 5)
6472 ’

where A¢(ra, r1) = ¢, — ¢y and A@(q2, q1) = ¢y, — @y, are the

phase lag of the subsignals. The phase lag of the two total signals s,

and s, can be obtained by taking the argument of their CCF:

Adeon(s2, 515 fo) = Arg[CCF(f)] = Ag(ra, r1) + Ad(q2, q1).  (6)

That is to say, if the total signal is the convolved signal, the phase
lag of the total signals is equal to the sum of the phase lag of the
subsignals.

We also note that Rapisarda, Ingram & van der Klis (2014)
argued that the QPO component is multiplied together with the
broad component to form the observed signal. We now consider the
phase lag relationship between the total signal composed of single
frequency subsignals by multiplying them together (hereafter, this
kind of total signal is called the multiplicative signal). s;(7) and s,(7)
now are written as

s1(t) = ri(1) x q1(1)
= ¢ Ry sin@7fot + ) + ¢, Q1 5in20 for + y)

1
+5 R1Q1cosQm x 2fot + ¢y, + bg) + sy

$2(1) = (1) X q2(1)
= Cq, R, Sin(zﬂfot + ¢r2) + Cry QZ Sin(2¢f0t + (qu)

1
sk Q2co8(210 X 2 fot + ¢r, + ¢g,) + € @)

where ¢, and cy, are constants. Thus, the two total signals s,(¢) and
s2(#) contain two non-zero frequency components, one at fy and the
other at 2fy. We can see that the first two terms of s,(¢) and s,(7) are
in fact additive signals and thus the results on additive signals can be
used. Thus, the phase lags of them can be written as

Admu(s2, 515 fo) = Agaaa(sy, 515 fo),
Apmui(s2, 5152 fo) = AP(ra, r1) + Ad(qa, q1), (8)

where s} = ¢y, Ry sin27 for + ¢,) + ¢, Q1 8in(27 fot + ¢y,) and
8y = Cq, Ry sin@27 fot + ¢,) + ¢, Q2 sin27 fot + ¢,). This is very
interesting because the multiplicative signal seems to contain proper-
ties of both additive and convolved signals: on one hand the phase lag
at frequency fy follows the pattern of the additive signal and on the
other hand the phase lag at frequency 2f; follows the pattern of the
convolved signal. However, in general the mean value of the actual
signal is larger than its amplitude, so it is expected that the total
FDPLS of the multiplicative signal should be closer to the pattern of
the additive signal, as we will see in the simulation section.

For the general signals r,, g,, s, (n = 0, 1,...., N — 1), their
discrete-time Fourier series are

1 N-1
2k
o = N E Rk QIZﬂN",
k=0
N-1
1 oo k
qn = N § Qk elZT[Wny
k=0

1 N-1 ) .
=y D SeeTE ©)
k=0

where Ry, Oy, and S; are the discrete Fourier transforms of r,, ¢,,
and s,, respectively. Thus r,, g,, and s, can be treated as a super-
position of many trigonometric functions with different amplitude,
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different frequencies, and different initial phases. For the additive
and convolved signals discuss above, at the specified frequency,
these signals have the same properties as the corresponding single
frequency signals. So the phase lags of the additive signal follows
equation (3) at each frequency, and the phase lags of the convolved
signal follows equation (6) at each frequency. In summary, for
the additive/convolved signals, their FDPLS follow equation (3) or
equation (6) at each specific frequency, respectively. In this case,
each frequency corresponds to a set of parameters (amplitude and
initial phase) for calculating the phase lag. Unfortunately, it is clear
from equation (7) that additional frequency components appear in
the multiplicative signal that are not identical to the subsignals, so
the conclusion for the single-frequency signal cannot be generalized
to the general signal. Nevertheless, we can use simulation (see
Section 2.4) to explore the phase lag relationship between the
multiplicative signals.

2.2 PDS relationship

Assuming s(¢) is the additive signal, i.e. s(f) = r(f) + q(7). Let
P(f), P.(f), and P,(f) be the PDS of the signals s(), r(t), and g(t),
respectively. Considering the Fourier transform is linear, one obtains

P(f) = |Fr + I
= |F(r)+ Fq)*
= P.(f) + P,(f) + F(r) Fq) + F(r)F(q)". (10)

The last two terms are actually the cross-spectrum of the signals r(f)
and ¢(7). If r(¢) and ¢(¢) are incoherent at all frequencies, then their
cross-spectrum will converge to zero after averaging many signal
realizations. Therefore the above equation is simplified to

(Ps()) = (P(f)) + (Pe(f)), an

where the ( ) sign indicates the average of many realizations of the
signals. This indicates that the PDS of the sum of two incoherent
signals is equal to the sum of their respective PDS.

Assuming s(?) is the convolved signal, i.e. s() = r(f) ® ¢(r). The
Fourier transform of the total signal s(7) is equal to the multiplication
of the Fourier transforms of the subsignals r(7), ¢(1), i.e.

F(s) = Fr)Fq),
(Ps()) = (P () Pe(f))- (12)

That s, the PDS of the convolved signal is equal to the multiplication
of the PDS of the corresponding subsignals. It can be easily
generalized thatif s(r) = r(f) ® q(¢) + p(?), and r(#) ® g(¢) is incoherent
with p(#), their PDS will satisfy

(P(f)) = (P(Y Py () + (Pp(f)). 13)

The PDS properties for convolved signals can be generalized to
multiplicative signals simply based on the symmetry of the Fourier
transform, i.e. the PDS of the multiplicative signal is the convolution
of the PDS of the subsignals.

2.3 An algorithm for simultaneously simulating signals with
specified PDS and FDPLS

In order to verify the correctness of the above theoretical analysis and
to facilitate the analysis below, some simulations need to be done.
An algorithm is thus needed to generate two signals with specified
PDS and specified FDPLS simultaneously. The algorithm steps are
as follows.
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Table 1. Timing properties of ri (), r2(¢), g1(f), and g2() (see Section 2.4 for their definition).

Bin size Mean rate Exposure
Signals (s) Ve w (counts s~ 1) (s) Fractional rms ~ PDS type FDPLS type
r1(t) 0.01 0 3 2000 2000 30 per cent BBN Constant
(1) 0.01 0 4 2000 2000 20 per cent BBN
q1(t) 0.01 1 0.1 2000 2000 15 per cent QPO Dip
qa(t) 0.01 1 0.2 2000 2000 10 per cent QPO

(1) Use Timmer & Koenig (1995, hereafter TK95) algorithm to
generate two signals s(f) and s (¢) that satisfy the specified PDS.
Because the phase given to the signal by TK95 algorithm is random,
the phase lag between these two signals is now on average zero.
Denote their Fourier transforms as S(f), S (f), respectively.

(2) Given the FDPLS ¢(f), then calculate CCF(f) according to the
following equation:

[SCOIS'(H{cos[@(f)] + isin[g( )1}
[SCOIS" (]
where i is the imaginary unit.

(3) The complex array CCF(f) obtained in step (2) is divided by
the complex conjugate of S(f) to obtain a new complex array. Then
performing inverse Fourier transform to it to obtain the signal s (7).
Expressed in mathematical notation, it is

CCF(f)}
S (f) 1

FA0

CCE(f) = { o

s"(t) = F! { (15)

The underlying PDS of s'(r) is the same as the PDS of s(7), but
the FDPLS between s'(f) and s(f) will satisfy the given FDPLS.
In summary, s(f) and s (f) satisfy both the given PDS and the
given FDPLS. In this paper, all PDS and FDPLS are extracted
using the X-ray astronomy PYTHON package STINGRAY(version 0.3;
Huppenkothen et al. 2019), and all PDS and FDPLS fitting are done
by XSPEC (version 12.11.1; Arnaud 1996) or LMFIT (version 1.0.2;
Newville et al. 2014).

2.4 Simulation

Four signals ry (1), r2(), g1 (), and g, () with time resolution of 0.01 s
are simulated according to the algorithm proposed in Section 2.3. The
PDS of all these signals is characterized by the Lorentzian function,
which takes the form
K(w/(2m)

(@[22 +(f = f)*
where K, w, and f. denote the normalization factor, the full width at
half-maximum (FWHM), and the centroid frequency, respectively.
The PDS of ri(#) and r,(f) is modelled by setting the centroid
frequency of the Lorentzian function to zero and taking a large w,
which simulates BBN, while ¢,(7) and ¢»(#) are modelled by taking
the appropriate non-zero centroid frequency and w, which simulates
QPO. In addition, the theoretical FDPLS ¢(¥) is also set. The FDPLS
between BBNs is set to be constant, while the FDPLS between QPOs
is set to have a dip-like feature near the centroid frequency (as seen
in MAXI J1820+070). That is,

L(f)= (16)

for BBN,

17
for QPO. an

0.5
o(f) = —0.5e(%.’o?2

The timing properties of these four signals are summarized in Table 1.
We then split each signal into multiple 20-s segments and calculated

the PDS of each segment with Leahy normalization (Leahy et al.
1983). The PDS is rebined by a logarithmic factor of 0.03 and we
finally obtain the averaged PDS with the frequency range of 0.05—
50.53 Hz. The FDPLS is obtained using cross-spectrum analysis.

The results of the simulated PDS and the FDPLS are shown in
panels (a) and (b) of Fig. 1, respectively. When the total signal is
assumed to be additive or multiplicative signal, the FDPLS between
the total signals is shown in panel (c) of Fig. 1. When the total signal
is assumed to be the convolved signal, the FDPLS between the total
signals is shown in panel (d) of Fig. 1. As stated in the theoretical
analysis section, the FDPLS of the multiplicative signal is very close
to the FDPLS of the additive signal (see the green data points and
the blue data points in panel c of Fig. 1). Because of the symmetry
of the Fourier transform to convolution and multiplication, the PDS
section will only compare the differences between convolved and
additive signals. In panels (b), (c), and (d) of Fig. 1, the data points are
obtained by simulation and the red dashed lines are obtained from our
theoretical calculation (the theoretical curve drawn in panel ¢ of Fig. 1
is for the additive signal, and we did not draw the theoretical curve
for the multiplicative signal because of the analytical difficulties).
The theoretical curve shown in panel (c) of Fig. 1 is calculated
by using the value of the simulated data (i.e. amplitude and initial
phase), and it appears to fluctuate around the data points, which
is due to the randomness deliberately introduced by the simulation
algorithm (see TK95 for detail). The difference between panels (c)
and (d) of Fig. 1 is mainly due to the different dependence of the
FDPLS on the different kinds of signals (additive, multiplicative,
and convolved signals) on each subsignal. The FDPLS between the
convolved signals depends only on the FDPLS between subsignals,
independent of the other properties of the subsignals. This is not the
case for the additive and multiplicative signals. So it can be seen from
panel (c) that the FDPLS depends on the relative power of subsignals,
while in panel (d) the FDPLS does not depend on the shape of the
PDS of the subsignals. In conclusion, the simulation results of the
FDPLS are consistent with the theoretical analysis. The results of the
PDS simulation are shown in Fig. 2.

The PDS of r, () and g, (?) is shown in the left-hand panel of Fig. 2,
and the PDS of the additive and convolved signals is shown in the
middle and right-hand panels of Fig. 2, respectively. We can see that
the PDS of the additive signal is the sum of the PDS of the subsignals,
while the PDS of the convolved signal is the multiplication of the
PDS of the subsignals. The solid lines running through the data
points in the PDS are the best fit using the additive and multiplicative
Lorentzian models for the additive signal and the convolved signal,
respectively. Overall, the simulation results are in good agreement
with those of the theoretical analysis.

2.5 A possible mechanism for introducing a convolution
mechanism in the time domain

Assuming that the orbit of matter around a black hole is circular and
Keplerian. The equation can be derived based on the conservation of
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Figure 1. Simulation results of the FDPLS and PDS. Panel (a): PDS of signals r(f), r2 (%), q1(f), and ¢2(7). Panel (b): simulated FDPLS (blue dots) between
r1(t) and r2(¢) and simulated FDPLS (black dots) between g (¢) and g2 (f). Panel (c): simulated FDPLS (green dots) between r>(f) 4+ g2(¢) and r1(f) + g1 (¢) and
simulated FDPLS (blue dots) between ry(f) x g2(t) and r(f) x ra(z). Panel (d): simulated FDPLS between r2(f) ® ¢2(f) and r1(f) ® q1(¢). The red curves in
panels (b), (c), and (d) are theoretically calculated curves. Error bars correspond to 1o confidence intervals.
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Figure 2. PDS of simulation results. Left-hand panel: the cyan and blue data points are the PDS of the signals r|(¢) and g;(¢), respectively. The solid lines are
the best fit using Lorentzian model (considering the contribution of Poisson noise requires adding a constant to the Lorentzian model). Middle panel: the blue
points are the PDS of the sum of the signals r;(f) and ¢; (7). The red solid line is the best fit using two summed Lorentzian functions. Right-hand panel: the blue
points are the PDS of the convolution of the signals () and g (¢). The red solid line is the best fit using two multiplicative Lorentzian functions (considering
the contribution of Poisson noise requires adding a constant to each Lorentzian model). Error bars correspond to 1o confidence intervals.

mass and angular momentum (e.g. Ingram 2016), i.e. where / ! is the modified Bessel function and g(R, ¢) is called Green’s
function of the system. Under the condition that the system is linear,

0¥ 30
R? 7(1,2 R)|, (18) the surface density of any initial fluctuation g(7) at position R = Ry is
or R oR the convolution of that fluctuation with the Green function, i.e. X (R,

1) = q(t) ® g(R, 1) (Ingram 2016). Denoting the mass accretion rate

where ¥ = pH is the surface density of the corona or disc, and v is . o . A
as M(R, t), then the luminosity corresponding to such a accretion

the kinematic viscosity. Assuming that the surface density at r = 0 is

2(t=0,R) = 8(R — Ry) and v is a constant, we will get rate is L(R, 1) oc M(R, 1) o £(R, 1) o q(1) ® g(R, ’) If we check

g . the region R << Ry, then we will get g(R, 1) x tie” 12w . The PDS

e(R, 1) = RN\ I, RR o R[];;'f‘ (19) of such a damped exponential signal is a zero-centred Lorentzian
’ 127tvt \ Ry 6vt ’
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Figure 3. QPO phase lag correction of three typical Insight-HXMT observations (reproduced from the data in Ma21). Each row represents the results of one
observation. The FDPLS between 1-2.6 and 100-150 keV energy bands is shown in the left-hand panels. Middle panels are the original QPO energy-dependent
phase lags. Right-hand panels are the intrinsic QPO energy-dependent phase lags after correction. The intrinsic QPO phase lags are obtained by subtracting the
average of the phase lag of the BBN component (marked by the red dots in the left-hand panels) from the original QPO phase lag (the averaged value marked
by the cyan dots in left-hand panels). The red arrows indicate the high-energy band data that we will model in Fig. 6. Error bars correspond to 1o confidence

intervals.

function (Ingram 2016). By introducing two types of white noise,
one associated with Green’s function and the other superimposed
on the QPO signal, we assume that the observed signal is expressed
in the time domain as s(f) = g(t) ® wn; ® [q(f) + wn,]. We have
assumed that ¢(7) has the form of QPO. Considering that the white
noise and QPO signals are incoherent, a PDS of the combined signal
will have the form

PR, f) o< Ppi(R, [)P(R, )+ Pn(R, f),

where Pj,; denotes the first zero-centred Lorentzian function (i.e.
the BBN1 component), P, denotes the non-zero centred Lorentzian
function (i.e. the QPO component), and Py, denotes the second zero-
centred Lorentzian function (i.e. the BBN2 component). Note that
the former term of the above summation is due to the fluctuation
propagation in the form of QPO and the latter term is due to the
fluctuation propagation in the form of white noise, which dominates
different frequency ranges (we will see this in Section 3).

Furthermore, it is worth noting that the above result is valid only
when R << Ry and the assumptions about the white noise and
QPO fluctuations are satisfied. The total observed luminosity is the
integral of the differential luminosity over the entire corona after
considering the emissivity (Ingram & Done 2011), but the form is
very complicated. None the less, it is still worthwhile to start with
a simple model to explain the data. For this reason, when fitting the
PDS of the real data with the multiplicative PDS model in Section 3,
only a form similar to equation (20) will be considered.

(20)

3 THE FDPLS AND PDS OF MAXI J1820+070

MAXI J1820+070 was discovered by the Monitor of All-sky X-ray
Image (MAXI) during the outburst on 2018 March 11 (Kawamuro
etal.2018). It was confirmed to be a BHB (Torres et al. 2019). Insight-
HXMT is an X-ray astronomy satellite launched by China on June 15,

2017, and it has obtained a wealth of data (Zhang et al. 2020). Insight-
HXMT carried out observations 3 d after its discovery and obtained
rich data with total exposure time of over 2000 ks. Ma21 have carried
out a detailed temporal analysis of these data and, in particular,
detailed calculations of the phase lags in different energy bands.
Fig. 3 shows three typical observations from top to bottom, with a
clear dip-like feature appearing near the QPO frequency range (the
averaged value of this frequency range shown by the cyan dots denote
the original QPO phase lag). The phase lags of low-frequency BBN
component are marked with red dots, denoted as background phase
lag. The intrinsic phase lag of the QPO is obtained by subtracting the
average of the background phase lag from the original QPO phase
lag. After the correction, the absolute value of phase lag of the QPO
becomes larger as the energy increases in all three observations. For
the sake of clarity, the detailed correction steps used in Ma21 are
resummarized as follows.

(1) Calculate the FDPLS and identify the centroid frequency fy
and the FWHM o of the QPO according to the PDS.

(2) The original phase lag of the QPO is defined as the average of
the phase lags in the frequency range fy £+ w/2.

(3) The background phase lag is defined as the average of the
phase lags below the QPO frequency range.

(4) The intrinsic phase lag of the QPO is then defined as the
original phase lag minus the background phase lag.

Such a correction actually implies two assumptions. The first
assumption is that the phase lags of the BBN component at the
QPO frequency range are the same as the phase lags below the QPO
frequency range, at least their averaged values must be approximately
equal. The second assumption is that the total phase lags (i.e. the
observed original phase lags) at the QPO frequency range are equal
to the sum of the BBN component phase lags and the QPO intrinsic
phase lags. The correction of the phase lags is valid only when these
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two assumptions are satisfied simultaneously. The first assumption
can be considered to be approximately satisfied. This is because the
FDPLS obtained from MAXI J1820+070 shows that the phase lag
does not vary significantly with frequency below the QPO frequency
range. Thus it is reasonable to assume that at the QPO frequency
range, the phase lags of the BBN component are approximately equal
to the phase lags below the QPO frequency range. As to whether
the second assumption can be satisfied, we need to first make an
assumption about how the BBN component and the QPO component
synthesize the observed signal. From the discussion of Section 2
we know that if the observed signal is considered to be the sum of
the BBN component and the QPO component (which is the default
assumption in most of the literatures), the second condition cannot
be satisfied. The second condition can be satisfied only when the
observed signal is considered as a convolution of the BBN component
and the QPO component.

In the case that the observed signal is the convolved signal, the
PDS of the signal needs to be fitted by a multiplicative PDS model.
In Section 2.5, we introduced a multiplicative PDS model, so we use
the multiplicative PDS model to fit the PDS in different energy bands
and make a comparison with the traditional additive PDS model. We
are not going to explore the multiplicative signal (i.e. the total signal
is the multiplication of the subsignals in the time domain) further
because we are mainly concerned with the additive and convolved
signals. For the additive PDS model, the form is

Ky (w1/ (2m)) K> (w/ (270))
Pua (f) = 3 5 5 5
(@1/2° + (f = fo)” (@2/2 4+ (f = for)
K3 (w3/ (2m)) K4 (w4/ (270))
(@327 + (f = fu)? (@3/27 + (f = f)°
@21
For the multiplicative PDS model, the form is
P () = K12<w1/ (2m)) . [ K22<wz/ (2m) :
(wl/z) +(f_f61) (0)2/2) +(f_fc‘z)
K3 (w3/ (2m)) } Ky (w4/ (270))
(@3/27 + (f = )] (/2P + (f = £’
(22)

which is consistent with the multiplicative PDS model we discussed
in Section 2.5. We use these two models to fit the PDS in different
energy bands in a representative Insight-HXMT observation (ObsID:
P0114661078). The data reduction process in this paper is the same
as Ma2l. We extract the light curves with the time resolution of
0.03125 s in each energy band (1-2.6, 2.6-4.8, 4.8-7.0, 7-11, 11—
23,25-35, 3548, 48-67, 67-100, 100-150, and 150-200 keV). We
then split the light curves into multiple 32-s segments and calculate
the PDS of each segment with Miyamoto normalization (Miyamoto
et al. 1991) for the convenience of calculating fractional rms later,
and finally obtain the averaged PDS with the frequency range of 1/32
to 16 Hz. After subtracting the contribution of Poisson noise in the
PDS, we fitted the PDS with the additive and multiplicative PDS
models. Some fitting examples in different energy bands are shown
in Fig. 4. From top to bottom, Fig. 4 shows the PDS fitting results
for the three energy bands. The left-hand panels are fitted using the
traditional additive PDS model, while the right-hand panels are fitted
using the multiplicative PDS model. In the multiplicative PDS model,
the low-frequency zero-centred Lorentzian component is multiplied
on to the QPO component instead of being added, resulting in the
left-hand side of the QPO component being lifted up in the right-hand
panels of Fig. 4. We can see that the total fitting results are similar
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but the individual components have some differences. Basing on
the best fit, we calculate the centroid frequency, the FWHM, and the
fractional rms' of the QPO and parameters of the BBN on each energy
band. The results are listed in Tables 2—4. As shown in Fig. 5, the
centroid frequency and the FWHM of the QPO as functions of photon
energy calculated according to the two models are similar, but the
fractional rms given by the two models is significantly different. For
the fundamental component of QPO, the fractional rms of QPO given
by the traditional additive PDS model is about 23 times higher than
that of the multiplicative PDS mode, but the trend is the same for both
results. For the harmonic component of the QPO, the difference in the
fractional rms given by the two PDS models is not very significant.

In addition, we would like to know how the phase lags should look
like in MAX1J1820+070 for additive and convolved signals, so some
simulations are done. We use the same data (ObsID: PO114661078)
used above as an example to show how effective this correction
is. From panels (h) and (i) of Fig. 3 we can see that the QPO
phase lags between the high- and low-energy bands before and after
correction are completely flipped. We focus on two energy bands of
these signals: the reference energy band (1-2.6 keV) and the high-
energy band (100-150 keV). The phase lag between the reference
energy band and the high-energy band is indicated by the red arrows
in panels (h) and (i) of Fig. 3. After the data reduction in the same
way as Ma21, we extract two light curves in reference energy band
(denote as s;) and high-energy band (denote as sp,). The mean count
rate of s; and sy, is 285 and 127 counts s~!, respectively, and both
of the effective exposure times are 8 ks. The FDPLS and PDS of s
and sy, are first fitted to obtain the best models, and after that the best
models are used for simulations. For the FDPLS between s; and sy,
the model takes the form

Az el—(/—uz)z/%zz] +¢,(23)

Al el=(=n0?/20%1
14/ 27 0y 2T

lag(f) =

o
where the first and second terms represent the dip-like phase lags
of the QPO components (including fundamental and harmonic
frequencies) and the last term represents the phase lags of the non-
QPO components (BBN components). For the PDS of s, and sy, a
constant term and the sum of four Lorentzian functions are used to
fit the data, i.e. the PDS model is the same as equation (21). We
find that the above PDS model does not require the high-frequency
zero-centred Lorentzian component for s, when fitting the PDS of
sn. Moreover, in fitting the PDS of s, we found that the harmonic
frequency component of QPO is not well constrained due to the
low signal-to-noise ratio of the data. We thus fix the parameters of
the QPO harmonic frequency component, which does not affect the
goodness of fit, but is useful for our subsequent simulation of the
QPO components. The fitting results are shown in Fig. 6 and the
best-fitting parameters of the above models are listed in Table 5. It is
worth pointing out that we are using an additive PDS model to fit the
PDS here, which is correct for additive signal, but not for convolved
signal, which should use a multiplicative PDS model. However, we
note that the FDPLS relationship of the convolved signal depends
only on the FDPLS of the subsignals and is independent of the PDS
of the subsignals, so the PDS model we use here has no effect on the
FDPLS calculation of the convolved signal.

IThe fractional rms is calculated in the same way as for Bu et al. (2015),
but ignoring the background correction, since the correction coefficients are
the same for both models and our aim is only to compare their differences.
Neglecting the background correction leads to a lower fractional rms for the
energy band with a lower signal-to-noise ratio (in this paper it is the higher
energy band), but it does not change our conclusion.
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Figure 4. Several examples of the best fit of the observed PDS data (ObsID: P0114661078) in different energy bands with additive or multiplicative PDS models.
The PDS model used in the left-hand panels is the additive PDS model (i.e. equation 21). The PDS model used in the right-hand panels is the multiplicative
PDS model (i.e. equation 22). The contribution of Poisson noise in all PDS has been subtracted. Error bars correspond to 1o confidence intervals.

We then simulate four subsignals based on the best FDPLS and
PDS models obtained above. The PDS of the QPO component
is modelled using the sum of the non-zero-centred Lorentzian
components and the PDS of the BBN component is modelled using
the sum of the zero-centred Lorentzian components. We first simulate

four signals using TK95 algorithm, noted as siq, Sing> Shq> and Shng,
which stand for the QPO component and the BBN component in
the reference energy band, and the QPO component and the BBN
component in the high-energy band, respectively. After that, we use
the algorithm proposed in Section 2.3 to make the FDPLS of 54 and
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Table 2. Best-fitting results for the fundamental frequency component of the QPO obtained using additive and multiplicative PDS models
(i.e. equations 21 and 22), respectively.

QPO frequency (Hz) QPO FWHM (Hz)
Energy band (keV) Additive PDS model Multiplicative PDS model Additive PDS model Multiplicative PDS model
1.0-2.6 0.44 £+ 0.01 0.45 £ 0.01 0.13 £0.04 0.14 +0.03
2.6-4.8 0.43 £ 0.01 0.45 £ 0.01 0.14 £ 0.03 0.14 £ 0.03
4.8-7.0 0.43 £+ 0.01 0.45 £ 0.01 0.13 £0.05 0.12 £ 0.04
7.0-11.0 0.43 +0.01 0.45 £ 0.01 0.11 £ 0.06 0.11 +£0.05
11.0-23.0 0.43 £ 0.01 0.44 £ 0.01 0.12 +£0.03 0.10 +0.03
25.0-35.0 0.42 £ 0.01 0.43 +£0.01 0.11 +£0.03 0.09 + 0.02
35.0-48.0 0.43 +0.01 0.44 £+ 0.01 0.10 + 0.03 0.08 + 0.02
48.0-67.0 0.43 +£0.01 0.44 £ 0.01 0.10 £ 0.03 0.08 + 0.02
67.0-100.0 0.43 +0.01 0.44 £ 0.01 0.11 £0.03 0.10 £ 0.02
100.0-150.0 0.42 £ 0.01 0.43 +£0.01 0.06 + 0.03 0.09 +0.03
150.0-200.0 0.44 +0.03 0.45 +0.03 0.10+0.13 0.08 £ 0.11
QPO rms per cent? Reduced x?2

Energy band (keV) Additive PDS model Multiplicative PDS model Additive PDS model Multiplicative PDS model
1.0-2.6 9.14 £ 0.31 3.83£0.10 0.48 0.71
2.6-4.8 10.26 £ 0.31 4.15 +£0.07 0.74 0.88
4.8-7.0 8.99 £ 0.40 3.36 + 0.09 0.61 0.69
7.0-11.0 7.59 +£0.56 3.06 £ 0.13 0.66 0.66
11.0-23.0 7.86 +0.20 2.59 £+ 0.05 0.48 0.57
25.0-35.0 5.65+0.11 1.72 £ 0.02 1.02 1.55
35.0-48.0 5.54 +0.13 1.72 £0.03 0.89 1.14
48.0-67.0 4.75 £ 0.09 1.44 £ 0.02 0.59 0.71
67.0-100.0 524 +£0.13 1.64 £0.02 0.45 0.58
100.0-150.0 3.88 +£0.14 1.88 £ 0.04 043 0.44
150.0-200.0 2.05+0.12 0.76 £ 0.06 0.44 0.41

“No background correction is applied to the rms because we are only interested in the difference between the results of fitting using the
additive PDS model and the multiplicative PDS model, and the correction factors are the same for both models.

Table 3. The same as Table 2, but for the harmonic frequency component of the QPO.

QPO frequency (Hz) QPO FWHM (Hz)
Energy band (keV) Additive PDS model Multiplicative PDS model Additive PDS model Multiplicative PDS model
1.0-2.6 0.90 + 0.02 0.98 + 0.02 0.37 £ 0.08 0.54 + 0.09
2.6-4.8 0.90 £ 0.02 0.94 £ 0.02 0.34 £ 0.09 0.33 £0.08
4.8-7.0 0.91 +0.02 0.94 +0.02 0.26 + 0.09 0.24 +0.10
7.0-11.0 0.91 £ 0.06 0.98 £ 0.06 0.47 £0.21 047 £0.18
11.0-23.0 0.88 +0.02 0.89 +0.02 0.10 +0.10 0.12+£0.12
25.0-35.0 091 £0.03 0.96 £ 0.03 042 £0.12 0.35 £ 0.11
35.0-48.0 0.85 + 0.09 0.85+0.23 0.42 +0.34 0.41 +0.34
48.0-67.0 0.93 £0.04 0.97 £0.02 0.75 £ 0.09 0.36 £ 0.08
67.0-100.0 0.91 +0.02 0.95 +0.02 0.31 £ 0.07 0.25 +0.06
100.0-150.0 0.94 £0.03 1.01 £0.03 045 £0.14 0.39 £0.13
150.0-200.0 1.01 +0.04 1.12 +£0.04 0.39+0.14 0.65 +0.12

QPO rms per cent

Energy band (keV) Additive PDS model Multiplicative PDS model
1.0-2.6 9.55+1.22 10.04 4 0.58
2.6-4.8 947 £1.28 7.76 £0.79
4.8-7.0 8.57 £ 1.65 6.63 + 1.30
7.0-11.0 9.29 £ 1.89 7.57 £0.98
11.0-23.0 453+ 1.19 3.35+2.41
25.0-35.0 8.76 £ 1.44 593+£0.92
35.0-48.0 5.55 +2.10 6.16 + 5.68
48.0-67.0 9.42 £ 0.69 451 £0.55
67.0-100.0 6.37 +0.88 4.04 +£0.77
100.0-150.0 559 £ 1.07 354 £0.71
150.0-200.0 443 +0.71 477 +0.35
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Table 4. The same as Table 2, but for the BBN components.

BBN1 FWHM (Hz)

BBN2 FWHM (Hz)

Energy band (keV)

Additive PDS model Multiplicative PDS model Additive PDS model Multiplicative PDS model

1.0-2.6 0.48 £ 0.08 0.27 £ 0.04 3.17£0.51 3.01£0.35
2.6-4.8 0.62 £0.19 0.28 £0.04 3.89£0.76 3.02 £0.44
4.8-7.0 0.87 £ 0.47 0.30 & 0.06 3.70 £ 1.61 2.54 £ 0.61
7.0-11.0 0.54 £0.24 0.32£0.09 10.27 £9.14 5.56 £3.56
11.0-23.0 092 4+1.92 0.42 4+ 0.38 2.56 & 1.59 2254044
25.0-35.0 0.69 £0.35 0.38 £0.07 4.70 £ 1.89 3.26 £0.95
35.0-48.0 0.58 4 0.80 6.24 £ 15.27 2.06 £ 2.09
48.0-67.0 0.65 £0.20 0.41 £0.05 10.83 £2.89 277 £0.52
67.0-100.0 0.69 & 0.54 0.43 £ 0.09 2.74 £ 0.82 2.44 £ 0.35
100.0-150.0 0.71 £ 0.45 0.50 £0.08 376 £1.71 3.10 £0.87
150.0-200.0 1.86 & 0.18 0.61 £ 0.08 18.88 4 12.81 6.55 +2.43
BBNI1 rms per cent BBN2 rms per cent
Energy band (keV) Additive PDS model Multiplicative PDS model Additive PDS model Multiplicative PDS model
1.0-2.6 16.32 £+ 1.30 20.12 £ 1.18 22.07 £ 0.67
2.6-4.8 14.36 +2.21 20.56 £ 1.19 2323 £0.73
4.8-7.0 14.40 £5.28 18.60 £ 3.27 2231 £1.29
7.0-11.0 11.55 £2.11 15.69 £ 5.61 15.50 £2.27
11.0-23.0 21.02 £ 0.75 19.22 £ 7.50 20.85 £ 1.03
25.0-35.0 9.87 £2.65 14.66 £ 1.34 16.88 £0.92
35.048.0 11.34 £ 1.83 7.87 +3.83 11.38 £4.97
48.0-67.0 8.01 £ 1.10 10.53 £0.93 13.04 £0.59
67.0-100.0 6.19 & 4.02 13.18 £ 1.96 14.56 £ 0.56
100.0-150.0 533 £221 9.17 £1.30 10.51 £ 0.66
150.0-200.0 10.49 £ 0.56 11.46 £4.92 9.34 £ 0.77
04s:QPO fundamental component 4 additive model QPO harmonic component <+ additive model
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Figure 5. The parameters of the QPO (fundamental and harmonic components) as functions of photon energy that are obtained with the traditional additive
and multiplicative PDS model, respectively. Error bars correspond to 1o confidence intervals.

spq satisfy the Gaussian components of the best-fitting model and
make the FDPLS of si,q and synq satisfy the constant component of
the best-fitting model. The timing properties of these four signals are
listed in Table 6. Note that in calculating the FDPLS we split the

signal into QPO and non-QPO components, which in effect assumes
that the contribution of the additive component of equation (20) to the
overall FDPLS can be neglected, i.e. the destruction of this additive
component to the additivity of the phase lag between the convolution
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Table 5. PDS and FDPLS fitting results for s; and sp,.

s1 PDS model sp PDS model FDPLS model
Parameter name Value Parameter name Value Parameter name Value
K 0.007 £ 0.002 K 0.001 +£ 0.000 Al —0.109 + 0.015
Jel 0.442 £ 0.008 fet 0.430 £ 0.010 I 0.405 £ 0.011
W] 0.119 £0.033 w1 0.090 +£ 0.030 o1 0.062 £ 0.008
K> 0.009 £ 0.002 K> 0.001 £ 0.000 Ar —0.204 £ 0.041
fe2 0.900 £ 0.020 fe 0.860 (frozen) na 0.776 £+ 0.037
w2 0.370 £ 0.083 w2 0.200 (frozen) 02 0.185 £ 0.024
K3 0.027 £ 0.004 K3 0.006 (frozen) c 1.102 £ 0.040
fe3 0.000 (frozen) fe3 0.000 (frozen) .
w3 0.477 £ 0.080 3 2.061 £ 0.425
K4 0.040 £ 0.005 c 0.016 £ 0.000
fea 0.000 (frozen)
w4 3.175 £ 0.512
c 0.007 £ 0.000
Table 6. Timing properties of siq, Sing, Shq» and spnq (see Section 3 for their definition).
Mean rate
Signals  Bin size (s) (counts s~ 1) Exposure (s)  Fractional rms PDS type FDPLS type
Sig 0.03125 142.5 8000 27.00 per cent QPO Dip
Shq 0.03125 63.5 8000 9.43 per cent QPO
Slng 0.03125 142.5 8000 51.00 per cent Non-QPO Constant
Shng 0.03125 63.5 8000 15.70 per cent Non-QPO
a B I components can be neglected, as we will explain in detail in the
2ol I best fit subsequent discussion section. The PDS of siq, Sing, Shq, and Shnq 18
{ |[FDPLS data shown in top panel of Fig. 7. The FDPLS between siq and s are two
o) 1sh ‘|I I 114 [ dips, and the FDPLS between si,q and synq are constant, which are
g shown in the middle panel of Fig. 7.
o | Then, s, and s,y are added/convolved to get the addi-
o 1.0 . .
P tive/convolved signal. syq and su,q are added/convolved to get
2 sl the other additive/convolved signal. The FDPLS of the addi-
S tive/convolved signals is shown by the cyan/red dotted lines in the
ool lower panel of Fig. 7. The grey dots in the figure are the observed
data. As can be seen from Fig. 7, the simulated results for the
o5 additive signal are very different from those given by the data. But the
1071 tb —— best fit simulated results for the convolved signal match the data perfectly.
This simulation result indicates that the observed data can distinguish
> t  PDS(s) data between convolved and additive signals for FDPLS.
° t PDS (sy) data
§
.g 4 DISCUSSION AND SUMMARY
g In this paper, we investigate the mechanism behind the phase lag
= correction that was successfully applied for the first time by Ma21
8_ for MAXI J1820+4-070, where the strong BBN and the QPO coexist.
107y After correcting the phase lag of the QPO, the absolute value of
. . QPO phase lag increases monotonically with photon energy in all

1071 160 10!
frequency (Hz)

Figure 6. Modelling results for the FDPLS between signals s; and s, and
their respective PDS (see Section 3 for the definitions of s and sy,). In panels
(a) and (b), the solid lines are the best fit using the models proposed in
Section 3 and the best-fitting parameters are listed in Table 2. The yellow
bands running through the two panels are the QPO FWHM frequency ranges
(including fundamental and harmonic frequencies). Error bars correspond to
1o confidence intervals.

MNRAS 515, 1914-1926 (2022)

observations. Ma21 explained the phase lag behaviour of the QPO by
employing a compact jet with precession. In this scenario, the high-
energy photons come from the part of the jet closer to the black hole,
and the precession of the compact jet causes the QPO phenomenon
and allows the high-energy photons to reach the observer first,
resulting in a soft lag. Because the phase lag behaviour can have
a large impact on physical conclusions, it is necessary to investigate
the rationality of this correction method. Since we want to obtain
the intrinsic properties of the QPO, and what we observe is some
kind of superposition of the QPO and the BBN components, we have
to face the question of how these components constitute the total
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Figure 7. Simulation results based on the data modelling shown in Fig. 6.
Upper panel: the simulated PDS of the signals siq, Sing, Shq,» and Shnq-
Middle panel: the simulated FDPLS (blue dots) of siq and spq and the
simulated FDPLS (green dots) of Sing and spnq. Bottom panel: the calculated
FDPLS of the total signal when the total signal is an/a additive/convolved
signal (cyan/red data points). The grey dots are the observed FDPLS. The
yellow bands running through panels are the QPO FWHM frequency ranges
(including fundamental and harmonic frequencies). Error bars correspond to
1o confidence intervals.

signal. We found that the correction method is effective only when
the subsignals are synthesized into the total signal by convolution.
If the total signal is the convolved signal, the intrinsic phase lags
of the QPO can be obtained by subtracting the phase lags of the
BBN component from the original phase lags of the total signal, as
successfully implemented in Ma21.

If the observed total signals are convolved signals, the corre-
sponding PDS cannot be fitted simply by summing a series of
Lorentzian functions (conventions in most of the literatures) but
require a multiplicative PDS model. We then try to introduce the
convolution mechanism by assuming the propagation of the QPO
waves in the corona (may be due to the magnetoacoustic wave
propagating within the corona; e.g. Cabanac et al. 2010). The
fluctuation propagation in the form of Dirac delta function resulting
in Green’s function. Any form of timing fluctuation will be the
convolution of that fluctuation and Green’s function (Ingram 2016).
We assume that Green’s function is first convolved with the white
noise and then convolved with the QPO signal to form the low-
frequency part of the observed signal, while the high-frequency

1925

part is the result of the convolution of Green’s function with the
two white noise components. If Green’s function and the QPO
signal are convoluted in the time domain, the total PDS will be the
multiplication of their respective PDS according to the convolution
theorem. Based on this, we introduce a multiplicative PDS model to
fit the observed PDS in a representative Insight-HXMT observation
in 11 different energy bands. For comparison, we also fitted the same
data using the traditional additive PDS model. Overall, both additive
and multiplicative PDS models fit the observed data well, but the
individual components have some differences. The two models give
little difference in the centroid frequency and in the FWHM of the
QPO. For the fundamental frequency component of the QPO, the
fraction of rms of the QPO given by the traditional additive PDS
model is about 2-3 higher than that of the multiplicative PDS model,
but the trend is the same for both results. For the harmonic frequency
component of QPO, the fractional rms given by the two models is
not significantly different.

For the traditional additive PDS model, the low-frequency zero-
centred Lorentzian component can be considered as the variability
due to the propagation of the white noise fluctuation in the outer
region of the corona (Ingram & Done 2011), the narrow Lorentzian
components stand for the fundamental and harmonic components of
the QPO, and the high-frequency zero-centred Lorentzian component
is responsible for the variability due to the propagation of the white
noise fluctuation in the inner region of the corona (Ingram & Done
2011). All these terms are simply added together, which means that
there is no coherence between them.

For the multiplicative PDS model, we find that the low-frequency
component of the PDS can be fitted by multiplying the fundamental
and harmonic components of the QPO with a zero-centred Lorentzian
function, in addition to an additional additive component to produce
the high-frequency part of the PDS. The additive Lorentzian compo-
nent plays the same as the role in the additive PDS model. Therefore,
for our multiplicative model, the high-frequency part does not need to
be convolved to the QPO signal, but is simply added together. This
additive component appearing in the PDS model looks to destroy
the additivity of the phase lag brought about by the time domain
convolution. We ignored the contribution of this additive component
in our previous phase lag calculations. We make a simulation to
investigate the effect of this additional additive component on the
total FDPLS. Because of the dependence of the FDPLS of additive
signals on the PDS of the individual components, we need to know
the PDS parameters of each component. Specifically, we first obtain
the PDS parameters for each component based on the results of the
fit of the multiplicative PDS model (shown in the right-hand panels
of Fig. 4), and then simulate four signals based on the mean of these
parameters in two energy bands: x; (the convolved signal of energy
band 1), y; (the additional additive signal of energy band 1), x, (the
convolved signal of energy band 2), and y, (the additional additive
signal of energy band 2). The PDS of these four signals is shown in
the upper panel of Fig. 8. We then set the FDPLS model of x; and

_U-0? _ 08

xptop(f)=—-05e 02 —03e 0152 41 and set the FDPLS
model of y; and y; to 1. Finally, we calculate the FDPLS of x; and x,
and the FDPLS of x; + y, and x, + y, respectively. By comparing
these two FDPLS, the effect of the additional additive component on
the total FDPLS can be known. As can be seen from the lower panel
of Fig. 8, the additional additive component has almost no effect on
the total FDPLS, except for a slight dilution of the phase lag of the
harmonic component. It is therefore reasonable to ignore the effect of
the additional additive component on the FDPLS of the convolution
components in our previous analysis.
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Figure 8. The effect of an additional additive component on the total FDPLS.
Upper panel: PDS of simulated signals. Lower panel: FDPLS with or without
an additional additive component.

Traditionally, it is mostly assumed that the observed components
are additive in the time domain, and it has also been suggested that it
might be more reasonable to multiply these components in the time
domain based on the fluctuation propagation model (e.g. Ingram &
van der Klis 2013). However, neither of these two models can explain
the phase lag correction in Ma21. In order to explain the correction
of phase lags in Ma21, we propose a convolution model instead of
the additive and multiplicative models in the time domain, which is
supported by comparison between simulations and data on both PDS
and FDPLS. This suggests that the convolution model can explain the
behaviour of the phase lag observed in MAXI J18204-070, in which
case the phase lag correction method applied in Ma21 is correct.

Finally, it is worth pointing out that our current convolution model
still has limitations. For examples, it is not yet possible to explain
the energy dependence of the phase lag using the convolution model,
and the relationship of individual components to specific physical
processes needs further development. However, it is certain that at
least part of the time domain signal is filtered by the system before
it reaches the observer (e.g. both the accretion disc and corona/jet
play the role of low-pass filters to some extent), and these response
processes are necessarily accompanied by time domain convolution
operations.
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