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Abstract
2D lattices are widely popular in micro-architected metamaterial design as they are easy to
manufacture and provide lightweight multifunctional properties. The mechanical properties of
such lattice structures are predominantly an intrinsic geometric function of the microstructural
topology, which are generally referred to as passive metamaterials since there is no possibility to
alter the properties after manufacturing if the application requirement changes. A few studies
have been conducted recently to show that the active modulation of elastic properties is possible
in piezoelectric hybrid lattice structures, wherein the major drawback is that complicated
electrical circuits are required to be physically attached to the micro-beams. This paper
proposes a novel hybrid lattice structure by incorporating magnetostrictive patches that allow
contactless active modulation of Young’s modulus and Poisson’s ratio as per real-time demands.
We have presented closed-form expressions of the elastic properties based on a bottom-up
approach considering both axial and bending deformations at the unit cell level. The generic
expressions can be used for different configurations (both unimorph or bimorph) and unit cell
topologies under variable vertical or horizontal magnetic field intensity. The study reveals that
extreme on-demand contactless modulation including sign reversal of Young’s modulus and
Poisson’s ratio (such as auxetic behavior in a structurally non-auxetic configuration, or
vice-versa) is achievable by controlling the magnetic field remotely. Orders of difference in the
magnitude of Young’s modulus can be realized actively in the metamaterial, which necessarily
means that the same material can behave both like a soft polymer or a stiff metal depending on
the functional demands. The new class of active mechanical metamaterials proposed in this
article will bring about a wide variety of design and application paradigms in the field of
functional materials and structures.
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1. Introduction

The microstructural geometry of 2D lattices plays a vital role
in determining the mechanical properties of the entire struc-
ture, and such systems can be constructed by repeating a unit
cell periodically. Over the past few years, various shapes and
topologies (triangular, Kagome, hexagonal, N-Kagome, foam
structures, origami, star-shaped, chiral, square and other tailor-
made geometries) of such lattice structures have been stud-
ied to understand the variation in the effective mechanical
properties as the microstructure of the lattice changes (Lakes
1987, Grima et al 2000, Song et al 2008, Zhang et al 2008,
Schenk and Guest 2013, Bückmann et al 2014, Shan et al
2015, Li et al 2019, Bacigalupo and Gambarotta 2020, Wei
et al 2020, Huang et al 2021, Qi et al 2021, Xu et al 2021).
These artificially engineered metastructures (often referred to
as metamaterials) have a wide range of applications in the field
of vibration and wave propagation, multi-functional modula-
tion of static deformations, impact resistance, indentation, sta-
bility control and programmable shapemodulation (Fleck et al
2010, Mukhopadhyay et al 2019, Du et al 2021). In this paper,
we deal with the contactless active modulation of elastic prop-
erties that in turn influence such applications.

Young’s modulus and Poisson’s ratio of lattice structures
have gained significant attention from the scientific com-
munity since these properties play a central role in a range
of aforementioned mechanical applications. Recent studies
have concluded that few geometries exhibit positive, negat-
ive, and zero Poisson’s ratios, including extreme values and
mixed mode (Olympio and Gandhi 2010, Attard and Grima
2011, Gong et al 2015, Chen et al 2018, Huang et al 2018,
Wang 2019, Gaal et al 2020, Wang et al 2020). The main
drawback of such lattices is that the elastic properties are
a function of only geometric entities; hence upon manufac-
turing, it is not possible to change them, and due to this,
the application of such lattices is limited to passive applica-
tions only. Here, we provide a brief literature review of such
passive lattices. Closed-form analytical expressions for equi-
valent elastic moduli of 2D planer cellular materials have
been studied extensively as it is computationally efficient and
provides necessary physical insights (Abd El-Sayed et al 1979,
Zhang and Ashby 1992, Masters and Evans 1996, Gibson
and Ashby 1999, Malek and Gibson 2015, Mancusi et al
2017). Different methodologies have been adopted to determ-
ine the elastic properties, i.e. considering only the bending
deformation of the cell walls (Gibson and Ashby 1999, Singh
et al 2021) and considering both axial and bending deform-
ation of the cell walls (Adhikari et al 2020, Prajwal et al

2022, Singh et al 2022). Some of these works have also
accounted for shear deformation, which is more effective in
the case of thick-walled lattices with higher specific densit-
ies. For passive lattice structures, the elastic properties are
an intrinsic function of geometric properties and it is widely
known in hexagonal lattices that Poisson’s ratio (Evans 1991,
Harkati et al 2017, Srivastava and Bhattacharya 2020) is pos-
itive when the cell angle (refer to figure 1(b) for the defin-
ition of cell angle) is positive and negative when the cell
angle is negative (auxetic structure). Recent studies in the
area of passive lattice metamaterials include a novel concept
of anti-curvature (Ghuku and Mukhopadhyay 2022), chiral,
anti-chiral (Mousanezhad et al 2016) and various hierarchical
microstructures (Kagome honeycomb, Kagome honeycomb
triangular, Hierarchical re-entrant honeycomb, Double arrow
head) (Wang et al 2021, Dudek et al 2022, Xu et al 2022,
Zhan et al 2022, Zhang et al 2022), 3D lattices with multi-
directional auxeticity (Mukhopadhyay and Kundu 2022) and
multi-material microstructures (Mukhopadhyay et al 2020).

Unlike passive lattice metamaterials, as investigated in the
majority of the literature in this field, the effective elastic prop-
erties of active lattice materials can be modulated as a func-
tion of external stimuli. In such hybrid (piezoelectric) lattice
structures, the dependency of Young’s modulus (E1, E2) and
Poisson’s ratio (ν12, ν21) (Singh et al 2021, 2022) on voltage
have been obtained in the literature by using two methodo-
logies (considering only bending deformation, and consider-
ing both axial and bending deformations). It has been found
that Poisson’s ratios emerge to be a function of voltage only
when both axial and bending deformations are considered,
whereas Young’s modulus is voltage-dependent in both the
methodologies. In this context, Adhikari et al (2020) reported
the uncommon negative values of transverse and longitudinal
Young’s modulus under dynamic conditions. Recent literat-
ure of Singh et al (2021, 2022)shows that negative Young’s
modulus is achievable under static conditions in piezoelec-
tric lattices. However, the main drawback of the piezoelectric
hybrid lattice structures is that numerous complex electric cir-
cuital connections need to be established to observe the desired
effect. To overcome such lacuna, we propose simpler contact-
less multi-physical effects in lattice materials by applying a
magnetic field and exploiting the magnetostrictive constitutive
behavior of active materials.

The incorporation of magnetostrictive patches with pass-
ive substrate beams in lattice design can lead to extreme on-
demand modulation of effective elastic properties in a con-
tactless setup. Magnetostrictive materials, which we aim to
use as an intrinsic material in the hybrid lattices, belong to
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the class of smart materials that show dimensional changes
under the influence of a magnetic field and also depicts the
converse effect of change in magnetization under the influence
of externally applied stresses (Quandt and Seemann 1995,
Bhattacharya and Murty 1996, Body et al 1997, Si and Cho
2004, Ghosh and Gopalakrishnan 2005, Chopra and Sirohi
2013, Sheikholeslami et al 2017, Xu and Shang 2019, Amiri
et al 2020). Grima et al (2013) and Galea et al (2022) experi-
mentally demonstrated the variation in mechanical properties
by incorporating magnetic inserts/inclusions over the inclined
cell walls of the lattice structure. Montgomery et al (2021)
studied the modulation of attenuation band gap as externally
applied magnetic field varies. In the current paper, a gener-
alized unit cell-based formulation would be presented that
can be adopted for different unimorph or bimorph configura-
tions by including the effect of the axial and bending deform-
ations. The capability of contactless on-demand modulation
of Young’s moduli and Poisson’s ratios (including extreme
attributes like sign-reversal) will be numerically demonstrated
considering different microstructural configurations and the
intensity of the external magnetic field. Hereafter in this paper,
section 2 presents the modeling of the hybrid beam along
with the validation against the available literature; section 3
presents the derived expressions for Young’s modulus and
the Poisson’s ratio; section 4 of this paper provides critical
insights into the active modulation of Poisson’s ratios and
Young’s moduli; the concluding remarks have been presented
in section 6.

2. Beam-level multi-physical deformation
mechanics

2.1. Modeling of hybrid magnetostrictive beam

Hybrid beams comprised of a passive substrate and sur-
face mounted magnetostrictive patch(es) with desired mag-
netostrictive constant (positive/negative as per the application
requirement) are adopted as the elementary component of the
active hybrid lattice, as shown in figure 1. The beams have
been assumed to be Euler Bernoulli beam with the considera-
tion of thin cell walls. The displacement of the hybrid beam in
x–z plane can be represented as

u(x,z, t) = u0(x, t)− zw0
,x(x, t) (1)

w(x, t) = w0(x, t) (2)

From equations (1) and (2) we can write the strains in x and z
directions as

ϵx =
∂u0(x, t)

∂x
− z

∂2w0(x, t)
∂x2

, ϵz = 0

(3)

The stress (Chopra and Sirohi 2013) in the substrate beam and
the magnetostrictive patch (top and bottom) can be given as

σs = Ysϵx (4)

σm = Ymϵx−YmdH (5)

Here, Ys and Ym are Young’s modulus of the substrate beam
andmagnetostrictive patch, respectively. The magnetostrictive
constant is d, and H is the applied magnetic field intensity.

The total potential energy of the hybrid beam can be given
as the sum of the potential energy of the substrate beam and
the magnetostrictive patch.

Uc =
1
2

(ˆ
Vs

σsϵxdVs+
ˆ
Vm

σmϵxdVm

)
(6)

Substituting the equations from equations (4) and (5) in
equation (6) we get

Uc =
1
2

(ˆ
Vs

Ysϵ
2
xdVs+

ˆ
Vm

(
Ymϵ

2
x −YmdHϵx

)
dVm

)
(7)

To derive a more general expression, total volume of the mag-
netostrictive patches can be written as the sum of top and bot-
tom layers i.e. Vm = Vmt + Vmb (here, b and t stand for top and
bottom magnetostrictive films respectively). Equation (7) can
be extended to equation (8) as

Uc =
1
2

ˆ L

0

(
Ys
(
As
(
u0,x
)2

+ Is
(
w0
,xx

)2 − 2Hsu
0
,xw

0
,xx

)
+Ymt

(
Amt

(
u0,x
)2

+ Imt

(
w0
,xx

)2 − 2Hmtu
0
,xw

0
,xx

)
+Ymb

(
Amb

(
u0,x
)2

+ Imb

(
w0
,xx

)2 − 2Hmbu
0
,xw

0
,xx

)
−Ymt

(
AmtdtHu

0
,x−HmtdtHw

0
,xx

)
−Ymb

(
AmbdbHu

0
,x−HmbdbHw

0
,xx

))
dx

(8)

Here, As,Hs, Is,Amt ,Hmt , Imt , Amb ,Hmb , Imb are given as (for any
point along the beam length)

(As,Hs, Is) =
¨

s

(
1,z,z2

)
dydz,

(Amt ,Hmt , Imt) =

¨

m

(
1,z,z2

)
dydz

(Amb ,Hmb , Imb) =

¨

m

(
1,z,z2

)
dydz

(9)

Magnetic Energy (Xu and Shang 2019) can be given as

Um =
Ws

2

ˆ L

0

ˆ Tmt

Ts
2

BHdzdx

=
Ws

2

ˆ L

0

ˆ Tmt

Ts
2

µH2dzdx

=
Ws

2

ˆ L

0
µ

(
Tmt −

Ts
2

)
H2dx

(10)
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Figure 1. Magnetostrictive lattice microstructures for contactless active modulation. (a) The representation of honeycomb lattice structure
in the X–Y (or 1–2) plane. (b), (d) Detailed view of the unit cell of a hybrid honeycomb lattice (unimorph and bimorph configurations).
(c), (e) The degrees of freedom (DOF) for the inclined cell wall (i.e. hybrid beam having unimorph and bimorph configurations) with
magnetostrictive patch attached. Here, different colors in the bimorph beam (blue and green) represent the magnetostrictive patches having
different material properties. Following a bottom-up framework, the stiffness matrix of the hybrid beam is used here to determine the
deformation behavior of the unit cell. To derive the analytical formulation of the hybrid beam, a local coordinate system (x, z) has been
taken, wherein the direction x is along the beam length. X, Y represent the global coordinate system. Here, q1, q2, q3 and q4, q5, q6 are the
DOF at node 1 and node 2 respectively, which relate to u1, w1, wx1 and u2, w2, wx2.

Taking the variational form of equations (8) and (10) we get

δUc =
1
2

ˆ L

0

(
Ys
(
2Asu

0
,xδu

0
,x+ 2Isw

0
,xxδw

0
,xx− 2Hsu

0
,xδw

0
,xx− 2Hsw

0
,xxδu

0
,x

)
+Ymt

(
2Amtu

0
,xδu

0
,x+ 2Imtw

0
,xxw

0
,xx− 2Hmtu

0
,xδw

0
,xx− 2Hmtw

0
,xxδu

0
,x

)
+Ymb

(
2Ambu

0
,xδu

0
,x+ 2Imbw

0
,xxw

0
,xx− 2Hmbu

0
,xδw

0
,xx− 2Hmbw

0
,xxδu

0
,x

)
−Ymt

(
AmtdtHδu

0
,x−HmtdtHδw

0
,xx

)
−Ymb

(
AmbdbHδu

0
,x−HmbdbHδw

0
,xx

))
dx

(11)

δUm = 0 (12)

A two node beam element having three degrees of freedom
(DOF) (i.e. axial, transverse and rotation) at each node has
been considered with a scaled length of 1.{

q
}t

=
{
u1 w1 wx1 u2 w2 wx2

}t
{
u0

w0

}
=

[
F1 0 0 F2 0 0
0 H1 H2 0 H3 H4

]{
q
}

u0 =
{
1 0

}[F1 0 0 F2 0 0
0 H1 H2 0 H3 H4

]{
q
}

w0 =
{
0 1

}[F1 0 0 F2 0 0
0 H1 H2 0 H3 H4

]{
q
}

u0 = {n1}[Aq]{q}= {B1}{q} (13)

w0 = {n2}[Aq]{q}= {B2}{q} (14)
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Taking variational of the above equations we get

δu0 = {B1}{δq}, δw0 = {B2}{δq} (15)

Differentiating the above equations we get

δu0,x = {B1},x{δq}, δw0
,xx = {B2},xx{δq} (16)

where,

{B1}= {n1}[Aq], {B2}= {n2}[Aq] (17)

Shape functions are given by

F1 = 1− ξ, F2 = ξ, H1 = 1− 3ξ2 + 2ξ3,

H2 = L
(
ξ− 2ξ2 + ξ3

)
H3 = 3ξ2 − 2ξ3,

H4 = L
(
−ξ2 + ξ3

) (18)

Using the equations (13)–(18) and recalling them in order to
solve further, we get

δUc = {δq}t
([

(YsAs+YmtAmt +YmbAmb) [M11]

+ (YsIs+YmtImt +YmbImb) [M22]

− (YsHs+YmtHmt +YmbHmb) [M21]

− (YsHs+YmtHmt +YmbHmb) [M12]

]
{q}

− (YmtAmtdt+YmbAmbdb)H{M1}

+(YmtHmtdt+YmbHmbdb)H{M2}

)
(19)

where,

[M11] =

Lˆ

0

{B1,x}t{B1,x}dx, [M22] =

Lˆ

0

{B2,xx}t{B2,xx}dx,

[M12] =

Lˆ

0

{B1,x}t{B2,xx}dx, [M21] =

Lˆ

0

{B2,xx}t{B1,x}dx,

{M1}=
Lˆ

0

{B1,x}t

2
dx, {M2}=

Lˆ

0

{B2,xx}t

2
dx,

Using Hamilton’s principle and substituting the values from
equations (12) and (19) in the following equation

Π=

ˆ t2

t1

(Uc+Um)dt (20)

ˆ t2

t1

(δUc+ δUm)dt= 0. (21)

Substituting the expressions from equations (12) and (19) in
equation (21), the final form of equilibrium equation can be
written as

[K]{q}= {F} (22)

the values of [K] and {F} can be defined as

[K] =

[
(YsAs+YmtAmt +YmbAmb) [M11]

+ (YsIs+YmtImt +YmbImb) [M22]

− (YsHs+YmtHmt +YmbHmb) [M21]

− (YsHs+YmtHmt +YmbHmb) [M12]

] (23)

{F}= (YmtAmtdt+YmbAmbdb)H{M1}
− (YmtHmtdt+YmbHmbdb)H{M2}

(24)

Subsequently, displacements of a beam due to change in the
magnetic field intensity can be calculated by solving the fol-
lowing equation

{q}6×1 = [K]−1
6×6{F}6×1. (25)

The beams here (as a part of the lattice) have boundary con-
dition of one end fixed. Accordingly, considering node 1 as
fixed, we get that u1, w1 and wx1 are equal to zero. The expres-
sions of force vector {F} and stiffness matrix [K] are

{F}=



−Fmt −Fmb

0
Mmt +Mmb

Fmt +Fmb

0
−Mmt −Mmb


(26)

the expressions of Fmt , Fmb , Mmt and Mmb are given as

Fmt =
YmtAmtdtH

2
, Fmb =

YmbAmbdbH
2

,

Mmt =
YmtHmtdtH

2
, Mmb =

YmbHmbdbH
2

(27)

[
K
]
=


A 0 −B −A 0 B
0 12C 6CL 0 −12C 6CL
−B 6CL 4CL2 B −6CL 2CL2

−A 0 B A 0 −B
0 −12C −6CL 0 12C −6CL
B 6CL 2CL2 −B −6CL 4CL2

 (28)

the expressions of A, B and C are given as

A=
YsAs+YmtAmt +YmbAmb

L
, B=

YsHs+YmtHmt +YmbHmb

L

C=
YsIs+YmtImt +YmbImb

L3

(29)

the expressions of the dimensional constants like Amt , Amb , As,
Hmt , Hmb , Hs, Imt , Imb and Is are discussed in the following
subsection.
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Figure 2. Mechanics of element-level magnetostrictive hybrid beams. Unimorph and bimorph configurations, having single and double
magnetostrictive patches, respectively. The limits required to determine the constants for the unimorph and bimorph configurations have
been marked from the geometric center as shown in (b).

2.2. Determination of the beam constants

The constants used in the formulation provided in the preced-
ing subsection are determined here. The detailed view show-
ing the integration limits used to obtain the constants are taken
from the neutral axis, which has been assumed to be at the cen-
ter of the beam (refer to figure 2).

2.2.1. Substrate beam. Area of the beam is given as

As =

Wsˆ

0

Ts
2ˆ

− Ts
2

dydz=WsTs. (30)

First moment of area is given as

Hs =

Wsˆ

0

Ts
2ˆ

− Ts
2

zdydz=
Ws

2

((
Ts
2

)2

−
(
Ts
2

)2
)

= 0. (31)

Second moment of area is given as

Is =

Wsˆ

0

Ts
2ˆ

− Ts
2

z2dydz=
Ws

3

((
Ts
2

)3

−
(
−Ts

2

)3
)

=
WsT3

s

12
.

(32)

2.2.2. Magnetostrictive patch in unimorph configuration.
Area of magnetostrictive patch is given as

Amt =

Wmtˆ

0

Ts
2 +Tmtˆ
Ts
2

dydz=WmtTmt . (33)

First moment of area is given as

Hmt =

Wmtˆ

0

Ts
2 +Tmtˆ
Ts
2

zdydz=
Wmt

2
(TsTmt +T2

mt
). (34)

Second moment of area is given as

Imt =

Wmtˆ

0

Ts
2 +Tmtˆ
Ts
2

z2dydz=
Wmt

3

(
T3
mt
+

3
2
T2
mt
Ts+

3
4
TmtT

2
s

)
.

(35)

2.2.3. Magnetostrictive patch in bimorph configuration.
Areas for top and bottom magnetostrictive patches are
given as

Amt =

Wmtˆ

0

Ts
2 +Tmtˆ
Ts
2

dydz=WmtTmt ,

Amb =

Wmbˆ

0

− Ts
2ˆ

−Ts
2 −Tmb

dydz=WmbTmb

(36)

First moment of areas for top and bottom magnetostrictive
patches are given as

Hmt =

Wmtˆ

0

Ts
2 +Tmtˆ
Ts
2

zdydz=
Wmt

2

(
T2
mt
+TsTmt

)

Hmb =

Wmbˆ

0

− Ts
2ˆ

−Ts
2 −Tmb

zdydz=
−Wmb

2

(
T2
mb

+TsTmb

)
.

(37)
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Table 1. Details of the dimensions and material properties used to
validate the current analytical framework. Dimensions and material
properties (Ghosh and Gopalakrishnan 2005) of the substrate beam
and the magnetostrictive patches used to validate the response of the
multilayered hybrid beam with the existing literature.

Parameter Dimensions

Magnetostrictive patch length (m) 0.5
Magnetostrictive patch width (m) 0.05
Magnetostrictive patch thickness (m) 1.5× 10−4

Magnetostrictive constant d (mA−1) 15× 10−9

Young’s modulus of magnetostrictive patch
(Nm−2)

30× 109

Substrate beam length (m) 0.5
Substrate beam width (m) 0.05
Substrate beam thickness (m) 1.5× 10−4

Young’s modulus of substrate beam (Ys1 in
direction 1) (Nm−2)

181× 109

Young’s modulus of substrate beam (Ys2 in
direction 2) (Nm−2)

10.3× 109

Shear modulus of substrate beam (G12)
(Nm−2)

28× 109

Permeability in air (Hm−1) 400π× 10−9

Second moment of areas for top and bottom magnetostrictive
patches are given as

Imt =

Wmtˆ

0

Ts
2 +Tmtˆ
Ts
2

z2dydz=
Wmt

3

(
Tmt +

Ts
2

)3

− WmtT
3
s

24

Imb =

Wmbˆ

0

− Ts
2ˆ

−Ts
2 −Tmb

z2dydz=
Wmb

3

(
Tmb +

Ts
2

)3

− WmbT
3
s

24
.

(38)

2.3. Validation of the proposed beam model

A cantilever beam is constructed by considering multiple lay-
ers of substrate material (as per the followed literature for val-
idation), and on the top and bottom surface, magnetostrictive
patches have been added. Note that we validate the beam-
level formulation for a more generalized case of multi-layered
substrates that will ensure the accuracy of isotropic single-
layer substrate considered throughout the paper otherwise. The
dimensions, ply angle and properties of the beam have been
mentioned in table 1. The number of coil turns per unit length
has been taken to be 20 000 turnsm−1, and the static actuation
has been analyzed at 1ADC actuation coil current. The deflec-
tions obtained from the proposed model have been compared
with the existing literature (Ghosh and Gopalakrishnan 2005),
wherein the current results are found to be in good agreement
as shown in table 2. As per descriptions in the followed liter-
ature for validation, the top magnetostrictive patch has been
used as an actuator, whereas the bottom patch acts as a sensor.
The values for Am and Hm in the force matrix have been taken
from the unimorph configuration as the bottom patch is not
contributing to the deformation of the hybrid beam.

Table 2. Beam-level validation of the current formulation with
existing literature. The comparison of the tip displacement of hybrid
beam obtained from the current formulation with existing literature.
Here, the subscript represents the number of the substrate and
magnetostrictive patches at the top\middle\bottom of the hybrid
beam. The ply angle of the substrate beam has been kept equal to 0◦

and 90◦. We have taken such multi-layered configurations as per
literature for the sake of validation.

Ply sequence Current formulation (mm) Literature (mm)

[m]/[0]10/[m] 2.44 2.44
[m]/[90]10/[m] 15.40 15.40
[m]2/[0]8/[m]2 6.97 6.97
[m]2/[90]8/[m]2 21.55 21.56
[m]3/[0]6/[m]3 14.38 14.39
[m]3/[90]6/[m]3 25.53 25.53
[m]4/[0]4/[m]4 23.41 23.41
[m]4/[90]4/[m]4 28.47 28.47

3. Derivation of lattice-level effective Young’s
moduli and Poisson’s ratios

This section presents a general derivation applicable for both
unimorph/bimorph cases under the influence of an external
magnetic field and remote stresses applied to the lattice in
the horizontal and vertical directions, respectively, as shown
in figure 3. The derived expressions accommodate the vari-
ation in effective elastic properties of the lattice materials due
to change in the external magnetic field. All the vertical cell
walls contribute to the total deformation by axial deforma-
tion only; there is no possibility of bending deformation of
the vertical cell walls in the symmetric unit cells as either
the loading is parallel or perpendicular to these vertical cell
walls. Moreover, to reduce the complexity of the problem the
magnetostrictive patches have been applied to the inclined cell
walls only. The displacement of the inclined cell walls has
been categorized into two parts, axial and transverse (bend-
ing), which occur due to the application of externally applied
magnetic field and mechanical stress. The axial and transverse
displacements under the applied magnetic field and mechan-
ical stress can be obtained with the help of stiffness matrix
given in equation (28) by superimposing the deflections due to
the forces from these two components, as shown in figure 5.
The magnetic field for the inclined cell walls has been categor-
ized into two parts: parallel to the inclined cell wall and per-
pendicular to the inclined cell wall. It should be noted that the
components of the magnetic field, parallel and perpendicular
to the unit cell, act in the opposite manner; i.e. if the magneto-
strictive coefficient (d) is positive, the parallel component will
try to extend the length of the cell wall whereas, the vertical
component will try to reduce the length of the cell wall and
vice versa. Hence, at a particular angle (45◦), there will be no
influence of the magnetic field on the deformation of the unit
cell.

Different configurations of the lattice structure shown in
figure 3 deform as a combined effect of deformation under
purely mechanical (Gibson and Ashby 1999) and purely mag-
netic loading (note that we consider only the elastic range of

7
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Figure 3. Configurations of honeycomb lattices under different magnetic fields. Unimorph/bimorph configurations under the application of
magnetic field in horizontal and vertical direction. Here, blue and green colors represent different magnetostrictive materials. The arrows
indicate the direction of the externally applied magnetic fields.

deformation here). The corresponding modes of deformations
under pure mechanical stresses and pure magnetic fields are
shown in figure 4. Note that the beam-level deformation curves
will be opposite under opposite directions of mechanical far-
field stress and magnetic field. Final shapes of the deformed
configurations under the combined effect of magnetic field and
mechanical stress can be obtained by adding the correspond-
ing ordinates of the beam-level deformed shapes based on the
intensity and directions of these two components.

3.1. Longitudinal Young’s modulus E1 and Poisson’s ratio ν12

The derivation for E1 and ν12 are based on the free body dia-
gram of the unit cell as shown in figure 5(a). For E1 , the
external stress is applied in direction X (or 1) and the effect-
ive deformation of the unit cell is also obtained in the direc-
tion X (or 1). The magnetostrictive patch provides the addi-
tional force and moment (highlighted by the golden color in
figure 5(a)) under the application of the magnetic field.

The moment, M is given as

M=
PLsinθ

2
. (39)

Axial and transverse displacements in general form under the
influence of externally applied stress shown in figure 5(a) can
be written as

δ
(i)
ALP =

PL2 cosθK(i)
55

L2K(i)
44K

(i)
55 − 12(K(i)

46 )
2

(40)

δ
(i)
TLP =

P
(
L2 sinθK(i)

55K
(i)
44+6LcosθK(i)

55K
(i)
46 − 12sinθ(K(i)

46 )
2
)

K(i)
55

(
K(i)

44K
(i)
55 L

2 − 12(K(i)
46 )

2
)

(41)
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Figure 4. Deformation of the lattice structure under combined loading. (a) and (b) show the deformation of the lattice structure when
subjected to only externally applied stress in direction 1 and direction 2 respectively Gibson and Ashby (1999). The lattice structure having
different configurations like unimorph\bimorph (with same\different magnetostrictive properties) will deform in a similar manner under
magnetic field, as shown in subfigure (c) and (d). However, under the application of the magnetic field the magnitude of the deformation
will vary, depending on various parameters like the direction and intensity of the externally applied magnetic field, properties of the
magnetostrictive patch(es) and configuration of the honeycomb lattices. The resultant deformation under the combined effect of mechanical
loading and magnetic field can be obtained by superimposing the displacements for the respective cases. Note that we have considered the
lattice configurations in such as way that the deformation behavior of the two slant members are structurally symmetric.

the above mentioned expressions can also be represented as
follows

δ
(i)
ALP =

σ1L(β+ sinθ)cosθR(i)
3

Y(i)s γ
(
R(i)
1 R(i)

3 − 3(R(i)
2 )2

) (42)

δ
(i)
TLP =

σ1L(β+ sinθ)
(
sinθR(i)

1 R(i)
3 −3γ cosθR(i)

3 R(i)
2 − 3 sinθ(R(i)

2 )2
)

γ3Y(i)s R
(i)
3

(
R(i)
1 R(i)

3 − 3(R(i)
2 )2

) (43)

here, t and b in the subscript represent the top and bottommag-
netostrictive patches and i stands for 1, 2 that denote the left
and the right cell wall of the unit cell. The expressions of P,
R1, R2 and R3 are given as

P= σ1L(β+ sinθ)Ws (44)

R(i)
1 = 1+κ

(i)
t α

(i)
t +κ

(i)
b α

(i)
b (45)

R(i)
2 = κ

(i)
t

(
(α

(i)
t )2 +α

(i)
t

)
−κ

(i)
b

(
(α

(i)
b )2 +α

(i)
b

)
(46)

R(i)
3 = 1+ 4κ(i)

t

(
(α

(i)
t )3 + 1.5(α(i)

t )2 + 0.75 α
(i)
t

)
+ 4 κ

(i)
b

(
(α

(i)
b )3 + 1.5(α(i)

b )2 + 0.75 α
(i)
b

) (47)

where κ(i)
t = Y(i)mt

Y(i)s
, κ(i)

b =
Y(i)mb
Y(i)s

, α(i)
t = T(i)mt

T(i)s
, α(i)

b =
T(i)mb
T(i)s

. Axial and

transverse displacements in general form under the influence
of externally applied magnetic field can be obtained from
figure 5(a) and can be written as

δ
(i)
AM =

(
F(i)
mt +F(i)

mb

)
L2K(i)

55−12
(
M(i)
mt +M(i)

mb

)
K(i)

46

K(i)
44K

(i)
55 L

2 − 12(K(i)
46 )

2
(48)
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Figure 5. Deformation of a unit cell under remote mechanical stresses and magnetic field. (a) Deformation of the unit cell under the
application of the externally applied stress (σ1) in X direction and applied magnetic field. The figure shows free-body diagram of the unit
cell along with inclined cell walls, which have been used to determine E1 and ν12. (b) Deformation of the unit cell under the application of
externally applied stress (σ2) in Y direction and applied magnetic field. The figure shows free-body diagram of the unit cell, which has been
used to determine E2 and ν21. Here, 1 and 2 represent the left and the right cell wall of the unit cell which can be made of the same or
different material. The red color and golden color represent forces generated due to externally applied stress and magnetic field respectively.

δ
(i)
TM = 6L

K(i)
46

(
F(i)
mt +F(i)

mb

)
−
(
M(i)
mt +M(i)

mb

)
K(i)

44

K(i)
44K

(i)
55 L

2 − 12(K(i)
46 )

2

 (49)

the above mentioned expressions can also be represented as
follows

δ
(i)
AM =

HLd(i)t
2

(
R(i)
3 R(i)

4 +3R(i)
2 R(i)

5

R(i)
1 R(i)

3 − 3(R(i)
2 )2

)
(50)

δ
(i)
TM =

3HLd(i)t
2 γ

(
−R(i)

1 R(i)
5 −R(i)

2 R(i)
4

R(i)
1 R(i)

3 − 3(R(i)
2 )2

)
(51)

R(i)
4 = (κ

(i)
t α

(i)
t +κ

(i)
b α

(i)
b λ(i)) (52)

R(i)
5 = κ

(i)
t

(
(α

(i)
t )2 +α

(i)
t

)
−κ

(i)
b λ(i)

(
(α

(i)
b )2 +α

(i)
b

)
(53)

where λ(i) =
dib
dit
. Total axial deflection under the combined

loading of externally applied stress and magnetic field can be

10
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given as the sum of axial displacement due to appliedmagnetic
field and externally applied stress.

δ
(i)
TA = δ

(i)
AM+ δ

(i)
ALP (54)

Similarly, total transverse deflection under the combined load-
ing of externally applied stress and magnetic field can be given
as the sum of transverse displacement due to applied magnetic
field and externally applied stress.

δ
(i)
TT = δ

(i)
TM+ δ

(i)
TLP (55)

Displacement in direction 1 can be given as

δ
(i)
1 = δ

(i)
TA cosθ+ δ

(i)
TT sinθ (56)

Similarly, displacement in direction 2 can be given as

− δ
(i)
2 = δ

(i)
TT cosθ− δ

(i)
TA sinθ (57)

Subsequently the strain components are calculated as

ϵ1 =
δ
(1)
1 + δ

(2)
1

2Lcosθ
(58)

− ϵ2 =
δ
(1)
2 + δ

(2)
2

2L(β+ sinθ)
(59)

Based on the definition of Young’s modulus and Poisson’s
ratio, using the expressions of applied mechanical stress and
strain components, we get the effective elastic properties as

E1 =
σ1

ϵ1
=

2σ1Lcosθ

δ
(1)
1 + δ

(2)
1

(60)

ν12 =
−ϵ2
ϵ1

=
cosθ

(
δ
(1)
2 + δ

(2)
2

)
(β+ sinθ)

(
δ
(1)
1 + δ

(2)
1

) (61)

The above mentioned formulation is generic; by using
equations (60) and (61), E1 and ν12 can be obtained for all
the cases mentioned in figure 3. The major difference in all
these cases is due to the variation in the parameters Am, Hm,
Im, d, Fm and Mm, which are different for different cases.
Here, the dimensions for all magnetostrictive patches have
been kept equal. However, the magneto-mechanical coupling
coefficient is different for each beam. For deriving the numer-
ical results later, the value of h

L i.e. β has been kept equal
to 2.5 and 4 whereas, the value of Ts

L i.e. γ has been kept
∼10−2. The derived expressions are applicable for both hori-
zontal and vertical magnetic fields. However, the effective val-
ues of H for each inclined unit cell under the influence of
horizontal field and vertical magnetic field areH(cosθ− sinθ)
andH(sinθ− cosθ) respectively (considering the components
along and perpendicular to the beam lengths).

3.2. Transverse Young’s modulus E2 and Poisson’s ratio ν21

Stress σ2 is applied in direction Y (or 2) to derive the trans-
verse Young’s modulus E2, as shown in figure 5(b). The effect-
ive deformation of the unit cell is due to the combined effect
of externally applied mechanical stress and magnetic field. It
should be noted that as the loading is parallel to the vertical
member, its axial deformation will contribute toward the over-
all displacement of the unit cell. Axial and transverse displace-
ments in general form under the influence of externally applied
mechanical stress in direction 2 can be given as

δ
(i)
ALW =

W(i)L2 sinθK(i)
55

L2K(i)
44K

(i)
55 − 12(K(i)

46 )
2

(62)

δAVLW =
2W

Kh44
(63)

δ
(i)
TLW =

W(i)
(
L2 cosθK(i)

55K
(i)
44 − 6LsinθK(i)

55K
(i)
46 − 12cosθK(i)

46

2)
K(i)

55

(
K(i)

44K
(i)
55 L

2 − 12K(i)
46

2)
(64)

the above mentioned expressions can also be written as

δ
(i)
ALW =

W(i) sinθR(i)
3

Y(i)s γWs

(
R(i)
1 R(i)

3 − 3(R(i)
2 )2

) (65)

δAVLW =
2 W

YsγR1Ws
(66)

here, the value of R1 is 1 as for the vertical member there is no
magnetostrictive patch, i.e. αb and αt are zero.

δ
(i)
TLW =

W(i)

Y(i)s γ3 W(i)
s R

(i)
3

×

(
cosθR(i)

1 R(i)
3 + 3γ sinθR(i)

2 R(i)
3 − 3 cosθ(R(i)

2 )2

R(i)
1 R(i)

3 − 3(R(i)
2 )2

)
(67)

Axial and transverse displacements in general form under the
influence of externally applied magnetic field can be given as

δ
(i)
AM =

(
F(i)
a1 +F(i)

a2

)
L2K(i)

55−12
(
M(i)

1 +M(i)
2

)
K(i)

46

K(i)
44K

(i)
55 L

2 − 12(K(i)
46 )

2
(68)

δ
(i)
TM = 6L


(
M(i)

1 +M(i)
2

)
K(i)

44−
(
F(i)
a1 +F(i)

a2

)
K(i)

46

K(i)
44K

(i)
55 L

2 − 12(K(i)
46 )

2

 (69)

the above mentioned expressions can also be written as

δ
(i)
AM =

HLd(i)t
2

(
R(i)
3 R(i)

4 +3R(i)
2 R(i)

5

R(i)
1 R(i)

3 − 3(R(i)
2 )2

)
(70)

δ
(i)
TM =

3HLd(i)t
2γ

(
R(i)
1 R(i)

5 +R(i)
2 R(i)

4

R(i)
1 R(i)

3 − 3(R(i)
2 )2

)
(71)
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Total axial deflection under the combined loading of extern-
ally applied stress and magnetic field can be given as the sum
of axial displacement due to applied magnetic field and extern-
ally applied stress

δ
(i)
TA = δ

(i)
AM+ δ

(i)
ALW. (72)

Total transverse deflection under the combined loading of
externally applied stress and magnetic field can be given as
the sum of transverse displacement due to applied magnetic
field and externally applied stress

δ
(i)
TT = δ

(i)
TM+ δ

(i)
TLW (73)

δ
(i)
2 = δ

(i)
TT cosθ+ δ

(i)
TA sinθ+ δAVLW (74)

− δ
(i)
1 = δ

(i)
TT sinθ− δ

(i)
TA cosθ. (75)

For all the cases the following deformation compatibility con-
dition must be satisfied

δ
(1)
2 = δ

(2)
2 (76)

where, 1, 2 stand for the left and right cell wall respectively.
Further, from equilibrium we get

W= 2σ2LWb cosθ =W1 +W2 (77)

here, W1 and W2 can be obtained by solving equations (76)
and (77).Moreover, the obtained expressions ofW1 andW2 are
different for different cases depending on the magnetostrictive
and substrate beam properties.

Subsequently, the expressions of strain components can be
obtained as

ϵ2 =
δ
(1)
2 + δ

(2)
2

2L(β+ sinθ)
(78)

− ϵ1 =
δ
(1)
1 + δ

(2)
1

2Lcosθ
. (79)

Based on the definition of Young’s modulus and Poisson’s
ratio, using the expressions of global stress and strain com-
ponents, we get

E2 =
σ2

ϵ2
=

2σ2L(β+ sinθ)

δ
(1)
2 + δ

(2)
2

(80)

ν21 =
−ϵ1
ϵ2

=

(
δ
(1)
1 + δ

(2)
1

)
(β+ sinθ)

cosθ
(
δ
(1)
2 + δ

(2)
2

) . (81)

3.3. Remarks on unimorph and bimorph configurations

In this subsection, we present different possibilities for the
placement of magnetostrictive patches in symmetric unimorph
and bimorph configurations. It may be noted in this context
that we have avoided the possibility of having asymmetric con-
figurations here for the two slantmembers due to the additional
complexity in derivation.

3.3.1. Case 1: symmetric unimorph. In this case, we have
same material on the left and right cell wall of the unit cell.
The magnetostrictive patch is present on the top surface of
the substrate beam only. Hence, substituting the parameters
as α1

b = α2
b = 0, d1b = d2b = 0, α1

t = α2
t , κ

1
t = κ2

t , d
1
t = d2t and

Y(1)s = Y(2)s = Ys, we get displacement of both the cell walls
same i.e. δ(1)1 equals to δ

(2)
1 .

3.3.2. Case 2: symmetric bimorph with samemagnetostrictive
patches. In this case, we have the same material on the left
and right cell wall of the unit cell. However, the material with
samemagnetostrictive coefficient has been used on the top and
bottom surface of the substrate beam respectively, as shown in
figures 3(a) and (d). Here, the parameters have been kept as α1

t

= α2
t = α1

b = α2
b, κ

1
t = κ2

t = κ1
b = κ2

b, d
1
t = d2t , d

1
b = d2b and Y

(1)
s

= Y(2)s = Ys for both the cell walls (1 and 2), which make δ1
equals to δ2. This case is only valid when the value of λ(1), λ(2)

equals to 1 i.e. both top and bottom magnetostrictive patches
are having same properties for both the slant beams. In this
specific case, it can be observed that (when subjected to only
externally applied magnetic field), only axial deformation of
the slant members occurs.

3.3.3. Case 3: symmetric bimorph with different magneto-
strictive patches. In this case, we have different magneto-
strictive patches on the top and bottom of the substrate beam,
the same combination has been used over the left and right cell
wall of the unit cell as shown in figures 3(b) and (e). When the
lattice is subjected to combined loading of externally applied
stress and magnetic field both axial and transverse deforma-
tion of the cell wall will take place. Here, the parameters have
been kept as α1

t = α2
t = α1

b = α2
b, κ

1
t = κ2

t = κ1
b = κ2

b, d
1
t =

d2t , d
1
b = d2b and Y

(1)
s = Y(2)s = Ys which makes δ1 equals to δ2.

There can be three scenarios when the value of λ(1), λ(2) has
been kept (1) equal to −1 (special case), (2) any other negat-
ive value, or (3) any other positive value except 1. Here, the
negative value of λ(i) signifies that the top and bottom mag-
netostrictive patches are having magnetostrictive coefficients
of opposite sign, whereas for the positive λ(i) values both top
and bottom patches can either have negative magnetostrictive
coefficient or positive magnetostrictive coefficient. In the first
sub case (when subjected to only externally applied magnetic
field), the axial displacement will be zero and only transverse
displacement will occur; however, in the later cases both axial
and transverse displacement can be observed, when only mag-
netic field is applied.

3.4. Lattice-level validation of the current formulation

The formulation derived above has been validated with the
existing literature for different possible cases considering
passive lattice forms. The elementary beam level active
deformation physics is validated separately in section 2.3.
Such bi-level validation provides adequate confidence in the
proposed computational framework.
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3.4.1. Case 1: validation when axial deformation of the cell wall
is neglected . In this case, the cell walls have been assumed
to be axially rigid. Moreover, there is no magnetostrictive
patch on the substrate beam. In the derived expressions for the
E1, ν12, E2 and ν21 substituting the value of the parameters as
δ
(i)
ALP, δ

(i)
ALW, γs, α

(i)
b , α(i)

t , κ(i)
b , κ(i)

t , H, d(i)t equals to zero and

Y(i)s = Ys in equations (60) and (61), equations (80) and (81)we
get the following expressions given in equations (82) and (83),
equations (84) and (85). These expressions exactly match with
the formulae given by Gibson and Ashby (1999)

E1 =
Ysγ3 cosθ

(β+ sinθ)sin2 θ
(82)

ν12 =
cos2 θ

sinθ (β+ sinθ)
(83)

E2 =
Ysγ3 (β+ sinθ)

cos3 θ
. (84)

ν21 =
(β+ sinθ)sinθ

cos2 θ
. (85)

3.4.2. Case 2: validation when axial deformation of the cell
wall is considered. The expressions presented by Adhikari
et al (2021) for the effective elastic moduli has been derived
by considering both axial and bending deformations, but only
applicable to conventional passive lattices structures. To val-
idate the current expressions, we put the value of δ(i)AM, δ

(i)
TM (as

no magnetostrictive patch), K(i)
46 (as the structure is symmet-

ric) equals to zero and Y(i)s = Ys in equations (60) and (61),
equations (80) and (81) and the obtained expressions are given
below in equations (86)–(89).

E1 =
K55 cosθ

Ws (β+ sinθ)sin2 θ

(
1+ cot2 θ

K55

K44

) (86)

ν12 =

cos2 θ

(
1− K55

K44

)
sinθ (β+ sinθ)

(
1+ cot2 θ

K55

K44

) (87)

E2 =
K55 (β+ sinθ)

Ws cos3 θ

(
1+ 2 sec2 θ

K55

Kh44
+ tan2 θ

K55

K44

) (88)

ν21 =

(β+ sinθ)sinθ

(
1− K55

K44

)
cos2 θ

(
1+ 2sec2 θ

K55

Kh44
+ tan2 θ

K55

K44

) (89)

the above expressions exactly match with the formulae presen-
ted by Adhikari et al (2021), corroborating a lattice-level val-
idation of the proposed computational framework.

4. Results and discussion

The formulation presented in the preceding sections is gen-
eral, and it can be used for different configurations (unimorph
or bimorph) along with different system parameters such as
substrate material for the unit cell walls and properties of the
magnetostrictive patches. However, for presenting numerical
results here, the dimensions and the material property of the
substrate beams have been kept the same. The realization of
active variation in the effective elastic properties in a contact-
less manner has been reported here numerically for the first
instance, which can be achieved under the combined influ-
ence of the externally applied mechanical stress and the mag-
netic field (refer to figures 6–9 of the main paper and figures
1–8 of the supplementary material). Note in figures 6–9(a),
(b) and (d) that when we say that variation can be observed,
it means that as the magnetic field is changed (color gradient
changes; the change in the plots can be observed along the
vertical direction in the colour bars). When we say that sign
reversal is occurring, it means that at a specific combination
of magnetic field and cell angle, the curve shifts from the top
subplot (representing positive values) to the bottom subplot
(representing negative values). The condition at which the sign
reversal occurs can be obtained from equations (60) and (61),
equations (80) and (81) by substituting the value of numerator
or denominator ⩽0 (mutually exclusive) and then finding the
value of H

σ1
and H

σ2
for the respective cases. Different cases

of magnetostrictive configurations are investigated here under
vertical and horizontal magnetic fields, as discussed in the fol-
lowing paragraphs.

The variation in the Ē1 for unimorph, bimorph (with same
magnetostrictive patch) and bimorph (with different magneto-
strictive patch) can be observed from figures 6(a), (b) and (d)
(refer to case 1, case 2 and case 3 defined in section 3.3). In
the unimorph case, when only magnetic field is applied, both
axial and transverse displacements can be obtained whereas,
in bimorph case 1, the value of transverse displacement and in
case 2, the value of axial displacement under applied magnetic
field become zero. This variation in the bimorph case can be
obtained by keeping different values of λ (where, λ(i) = λ)
(here 1 and −1 for the individual cases). Figures 6(a) and (d)
show that for unimorph and the bimorph case 2, when the hori-
zontal magnetic field is applied, the sign reversal and variation
in Ē1 can be observed. However, in bimorph case 1, sign of Ē1

is positive for the entire range of the cell angle, while the vari-
ation with the magnetic field is observed as β and H

σ1
vary. On

the other hand, under the influence of the vertical magnetic
field, the sign reversal and variation are observed for all the
three cases for Ē1. It should be noted that in all the plots, the
lines merge at one point when the cell angle is 45◦. This is
due to the fact that at this particular cell angle, the value of the
vertical and the horizontal component of the applied magnetic
field is equal. Hence, there is no effect of the magnetic field
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Figure 6. Active modulation of Ē1. Variation in Ē1 with the change in magnetic field intensity to σ1 ratio
(

H
σ1

)(
Am
N

)
. The legends for the

unimorph and the bimorph configurations are same in all the plots i.e. the legends in subfigure (d) are applicable to the subfigures (a)
and (b). The red and blue color in the legend (subfigure (d)) represent the magnetic field intensity to stress ratio in horizontal and vertical
directions, respectively. The increase in the color gradient for the red and blue color signifies the increase in the magnetic field intensity to
stress ratio. In the contour plot (subfigure (c)), the first and second color bars represent positive and negative Young’s modulus, respectively.
Different values of β is shown for unimorph configurations (refer to subfigure (a)) and bimorph configurations (refer to subfigures (b) and
(d)). The upper and lower subplots in subfigures (a), (b) and (d) represent the positive and negative values of Young’s modulus respectively
as the cell angle changes. Sign reversal of Young’s modulus is clearly visible as the cell angle and the magnetic field to stress ratio are

varied. Contour plot subfigure (c) shows the variation in Ē1 as the cell angle and λ (where, λ(i) = λ) vary at a constant
(

H
σ1

)
ratio.

on the properties of the lattice structure. The contour plot in
figure 6(c) shows the variation in Ē1 as the λ and cell angle var-
ies when the value of H

σ1
is kept constant (8000, magnetic field

intensity in vertical direction). The value of λ helps in select-
ing the magnetostrictive patch with specific magnetostrictive
coefficient for the top and the bottom surfaces, respectively,
so as to obtain the desired set of properties. For a more com-
prehensive understanding, contour plots for different H

σ1
ratios

(horizontal and vertical) have been presented in the supple-
mentary material.

For the Poisson’s ratio ν12, in unimorph configuration, there
are some instances where the sign reversal can occur as H

σ1

ratio is varied, but the range of cell angle is small as shown in
figure 7(a). However, the variation in ν12 occurs as the value of
β is varied. For the bimorph case 1, the scenario is completely

different as the sign reversal and variation in Poisson’s ratio
can be observed for the entire range of the cell angle as the
H
σ1

ratio changes (refer to figure 7(b)). In the bimorph case 2,
no significant variation in ν12 can be observed as shown in
figure 7(d). Contour plot shown in figure 7(c) shows the vari-
ation in ν12 as the λ and cell angle vary when the value of H

σ1
is

kept constant (8000, magnetic field intensity in horizontal dir-
ection). Figure 7(c) shows that in order to have negative Pois-
son’s ratio when the cell angle is positive, the value of λ has
to be less than 1.05. In the supplementary material, additional
contour plots for different H

σ1
ratios (horizontal and vertical)

have been presented.
The variation and sign reversal in the Ē2 for unimorph and

bimorph configurations can be observed from figures 8(a), (b)
and (d) respectively. The variation and sign reversal in Ē2
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Figure 7. Active modulation of ν12. Variation in ν12 with the change in externally applied magnetic field intensity to σ1 ratio
(

H
σ1

)(
Am
N

)
.

The legends for the unimorph and the bimorph configurations are same in all the plots i.e. the legends in subfigure (d) are applicable to the
subfigures (a) and (b). The red and blue color in the legend (subfigure (d)) represent the magnetic field intensity to stress ratio in horizontal
and vertical directions, respectively. The increase in the color gradient for the red and blue color signifies the increase in the magnetic field
intensity to stress ratio. In the contour plot (subfigure (c)), the first and second color bars represent positive and negative Young’s
modulus, respectively. Different values of β is shown for unimorph (refer to subfigure (a)) and bimorph (refer to subfigures (b) and (d))
configurations. The upper and lower subplots in subfigures (a), (b) and (d) represent the positive and negative values of Poisson’s ratio
respectively with the change in the cell angle. Sign reversal is clearly visible as the cell angle and the magnetic field to stress ratio is varied.

Contour plot (subfigure (c)) shows the variation in ν12 as the cell angle and λ (where, λ(i) = λ) vary at a constant
(

H
σ1

)
ratio.

can be observed in all the cases; however, for the bimorph
case 1 under the influence of the vertical magnetic field, no
sign reversal for Ē2 has been observed. The contour plot in
figure 8(c) shows the variation in Ē2 as the λ and cell angle
vary when the value of H

σ2
is kept constant (8000, magnetic

field intensity in horizontal direction). In the supplementary
material, additional contour plots for different H

σ2
ratios (hori-

zontal and vertical) have been presented.
For ν21, no variation in unimorph and bimorph case 2 has

been observed as the H
σ2

ratio changes (refer to figures 9(a)
and (d)); however, the variation can be observed for different
β values. For the bimorph case 1, both sign reversal and vari-
ation in Poisson’s ratio can be observed under the influence

of both vertical and horizontal magnetic fields. The contour
plot presented in figure 9(c) shows the variation in ν21 as the
λ and cell angle varies when the value of H

σ2
is kept constant

(8000, magnetic field intensity in horizontal direction). In the
supplementary material, additional contour plots for different
H
σ2

ratios (horizontal and vertical) have been presented.
Figure 10 shows the graphical comparison (bar plot) for the

Young’s modulus (Ē1 and Ē2) and Poisson’s ratio (ν12 and ν21),
considering the bimorph case having same magnetostrictive
patches. In each plot, three different sets of six bars represent
three different cell angles (30◦, 60◦ and −30◦). The different
color in the six bars shows the variation in the direction of
the externally applied magnetic field to stress ratio, where the
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Figure 8. Active modulation of Ē2. Variation in Ē2 with the change in externally applied magnetic field intensity to σ2 ratio
(

H
σ2

)(
Am
N

)
.

The legends for the unimorph and the bimorph configurations are same in all the plots i.e. the legends in subfigure (d) are applicable to the
subfigures (a) and (b). The red and blue color in the legend (subfigure (d)) represent the magnetic field intensity to stress ratio in horizontal
and vertical directions, respectively. The increase in the color gradient for the red and blue color signifies the increase in the magnetic field
intensity to stress ratio. In the contour plot (subfigure (c)), the first and second color bars represent positive and negative Young’s modulus,
respectively. Different values of β is shown for unimorph (refer to subfigure (a)) and bimorph configurations (refer to subfigures (b) and (d)).
The upper and lower subplots in subfigures (a), (b) and (d) represent the positive and negative values of Young’s modulus respectively with
the change in the cell angle. Sign reversal of Young’s modulus is clearly visible as the cell angle and the magnetic field to stress ratio is

varied. Contour plot (subfigure (c)) shows the variation in Ē2 as the cell angle and λ (where, λ(i) = λ) vary at a constant
(

H
σ2

)
ratio.

red and blue colors stand for horizontal and vertical direction
respectively. The change in the magnitude of the externally
applied magnetic field to stress ratio is shown by the variation
in the gradient of the red and blue color. Figure 10 provides a
clear quantitate perspective of the active modulation of elastic
properties for different cell angles.

5. Summary

A computational framework to understand the active mod-
ulation of Young’s modulus and Poisson’s ratio in a con-
tactless manner has been reported in this article. Conditions
under which the variation and sign reversal can take place
have been discussed through numerical results. The analytical

derivation and numerical results provide necessary physical
insights and background for potential applications in various
futuristic multi-functional structural systems and devices. The
major outcomes and observations of the current investigation
are summarized below.

• The current framework allows active on-demand modula-
tion of the Elastic properties and Poisson’s ratio in a con-
tactless manner. Such controlled variation has been realized
by changing the magnetic field intensity to stress ratio H

σi
.

• The current formulation has been presented in a gen-
eral form, and all sorts of possible parameters (unimorph,
bimorph, identical magnetostrictive patches and dissimilar
magnetostrictive patches) can be varied, which provides
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Figure 9. Active modulation of ν21. Variation in ν21 with the change in externally applied magnetic field intensity to σ2 ratio
(

H
σ2

)(
Am
N

)
.

The legends for the unimorph and the bimorph configurations are same in all the plots i.e. the legends in subfigure (d) are applicable to the
subfigures (a) and (b). The red and blue color in the legend (subfigure (d)) represent the magnetic field intensity to stress ratio in horizontal
and vertical directions, respectively. The increase in the color gradient for the red and blue color signifies the increase in the magnetic field
intensity to stress ratio. In the contour plot (subfigure (c)), the first and second color bars represent positive and negative Young’s modulus,
respectively. Different values of β is shown for unimorph (refer to subfigure (a)) and bimorph (refer to subfigures (b) and (d))
configurations. The upper and lower subplots in subfigures (a), (b) and (d) represent the positive and negative values of Poisson’s ratio
respectively with the change in the cell angle. Sign reversal is clearly visible as the cell angle and the magnetic field to stress ratio is varied.

Contour plot (subfigure (c)) shows the variation in ν21 as the cell angle and λ (where, λ(i) = λ) vary at a constant
(

H
σ2

)
ratio.

flexibility in designing active lattice structures as per the
requirement of the application.

• Besides achieving an on-demand control over the elastic
properties it is possible to have extreme properties like
negative effective Young’s modulus, or auxetic behavior in
structurally non-auxetic lattices and vice-versa.

• The variation and sign reversal in Ē1 and Ē2 with the change
in magnetic field intensity to stress ratio has been obtained
for all the cases. However, in the bimorph case 1, the sign

reversal is not observed in two scenarios: Ē1 under hori-
zontal magnetic field and Ē2 under vertical magnetic field.

• The variation in ν12 and ν21 is possible only in the bimorph
case 1 under both horizontal and vertical magnetic fields.
However, for ν12 in unimorph configuration, there exist
some instances where sign reversal is possible, but the range
is relatively small. Except these, there is no other scenario
where the sign reversal or variation in Poisson’s ratio is
possible.
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Figure 10. Quantitative comparison of elastic properties. The variation in the elastic properties (Ē1, Ē2, ν12 and ν21) as the direction and
magnitude of the magnetic field intensity to stress ratio is varied. The red and blue color in the legends represent the magnetic field intensity
to stress ratio in horizontal and vertical direction, respectively. The increase in the color gradient for the red and blue color signifies the
increase in the magnetic field intensity to stress ratio. The values have been plotted for the bimorph case having same magnetostrictive
patches (case 2) (λ(1) = λ(2) = 1) and β= 2.5.

6. Conclusions and perspective

This article proposes a new class of magnetostrictive hybrid
lattice metamaterial constructed using a passive substrate
beam and active magnetostrictive patches. A contactless on-
demand modulation of effective Young’s modulus and Pois-
son’s ratio can be achieved in such materials as a function
of an external magnetic field. The hybrid design space in
the proposed lattices includes conventional unit cell level
microstructural geometry and the intrinsic material properties
(passive parameters) along with the intensity and direction of
the external magnetic field (active parameters). A bottom-up
approach has been followed here to derive efficient analytical
expressions of the effective elastic properties considering both
axial and bending deformations. The proposed formulation is
quite generic as it has been derived to consider different mater-
ials for the substrate beam and various configurations of the
magnetostrictive patches along with unit cell level geomet-
ries. The obtained expressions hold good for unimorph and
bimorph (with same and different magnetostrictive patches)
configurations along with the horizontal and vertical direc-
tions of the magnetic field. A two-step validation approach

involving active beam-level deformation physics and unit cell
level tessellations has been presented to garner adequate con-
fidence in the developed computational framework.

The mechanical properties of conventional passive lattice
materials are predominantly an intrinsic geometric function of
the microstructural topology, wherein there is no possibility
to alter the properties after manufacturing if the application
requirement changes. The incorporation of magnetostrictive
patches in the current proposition allows active modulation
of elastic properties as per real-time demands. Further, the
elastic properties can be controlled in a contactless manner
through external magnetic fields, wherein it is not necessary
to have any complex non-structural elements (such as circuits)
within the metamaterial microstructure. The numerical results
reveal that a wide range of active on-demand variations can
be achieved in the Young’s moduli and Poisson’s ratios as a
function of the applied magnetic field including extreme cases
such as sign reversal (with negative effective Young’s mod-
ulus and auxetic behavior in structurally non-auxetic lattices
or vice-versa). For bimorph lattice structure having cell angle
of 30◦, in terms of absolute magnitude active variation of ≈6
times and ≈3 times have been observed in the longitudinal
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and transverse Young’s modulus respectively. For the ν12 and
ν21 a variation of about ≈15 times have been observed, which
necessarily means that the same material can behave both like
a soft polymer or a stiff metal depending on the functional
demands. The developed computational framework is directly
adaptable to rectangular and rhombic lattices (by consider-
ing the cell angle and length of the vertical member as zero,
respectively) and it can further be extended to other 2D and
3D lattices by considering appropriate unit cells. The proposed
hybrid honeycomb lattice metamaterial can find a wide range
of applications, such as actuator, active vibration control, pro-
grammed wave guiding by modulating the internal structure
of the lattice, controlling energy harvesting, multi-directional
stiffness control, energy absorption, soft robotics and shape
morphing.
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