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Abstract: Postprandial macro- and microvascular blood flow and metabolic dysfunction manifest
with advancing age, so vascular transmuting interventions are desirable. In this randomised, single-
blind, placebo-controlled, crossover trial, we investigated the impact of the acute administration
of green tea extract (GTE; containing ~500 mg epigallocatechin-3-gallate) versus placebo (CON),
alongside an oral nutritional supplement (ONS), on muscle macro- and microvascular, cerebral
macrovascular (via ultrasound) and leg glucose/insulin metabolic responses (via arterialised/venous
blood samples) in twelve healthy older adults (42% male, 74 ± 1 y). GTE increased m. vastus
lateralis microvascular blood volume (MBV) at 180 and 240 min after ONS (baseline: 1.0 vs. 180 min:
1.11 ± 0.02 vs. 240 min: 1.08 ± 0.04, both p < 0.005), with MBV significantly higher than CON at
180 min (p < 0.05). Neither the ONS nor the GTE impacted m. tibialis anterior perfusion (p > 0.05).
Leg blood flow and vascular conductance increased, and vascular resistance decreased similarly in
both conditions (p < 0.05). Small non-significant increases in brachial artery flow-mediated dilation
were observed in the GTE only and middle cerebral artery blood flow did not change in response to
GTE or CON (p > 0.05). Glucose uptake increased with the GTE only (0 min: 0.03 ± 0.01 vs. 35 min:
0.11 ± 0.02 mmol/min/leg, p = 0.007); however, glucose area under the curve and insulin kinetics
were similar between conditions (p > 0.05). Acute GTE supplementation enhances MBV beyond the
effects of an oral mixed meal, but this improved perfusion does not translate to increased leg muscle
glucose uptake in healthy older adults.

Keywords: green tea extract; epigallocatechin-3-gallate; blood flow; glucose metabolism; skeletal muscle

1. Introduction

Increased vascular resistance [1] and endothelial dysfunction [2] are both hallmarks of
advancing age and are each central risk factors for cardiometabolic disease [3]. The ensuing
reductions in muscle perfusion (~20–30% in limb conduit artery blood flow compared to
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younger adults [4,5]) have also been posited to play a role in the aetiology of sarcopenia (i.e.,
age-related muscle mass and functional decline [6]), which increases the risk of frailty [7],
morbidity [8] and mortality [9] and thus represents a major global health problem. Indeed,
blunted muscle microvascular blood flow responses are observed in older adults follow-
ing anabolic stimuli (e.g., feeding) [10,11], and nutrient-induced increases in whole-limb
perfusion are attenuated with advancing age [5]. These diminished vascular responses
are hypothesised to contribute to age-related “anabolic resistance” to nutrition, via the
attenuated delivery and/or utility of nutrients (e.g., amino acids) and hormones (e.g., in-
sulin) to muscle [12], although it does not fully explain anabolic resistance, since enhancing
microvascular blood flow does not improve muscle anabolism [13]. Nonetheless, the ability
to preserve vascular function in lifelong exercisers [14] and improve vascular function
in novice exercisers [15] demonstrates that vascular dysfunction is a modifiable, rather
than inevitable, aspect of chronological ageing [11]. Therefore, determining nutraceutical
strategies for maintaining/potentiating vascular and metabolic responses in older adults
may have significant ramifications for reducing cardiovascular disease risk and could also
play a role in the maintenance of muscle health.

Epidemiological evidence has demonstrated robust correlations between green tea
consumption and protection against both cardiovascular and metabolic disease [16–18].
The benefits of green tea are largely attributed to the naturally occurring polyphenols,
particularly epigallocatechin-3-gallate (EGCg), which belongs to the catechin family and
accounts for ~33–50% of the green tea solid [3,19]. At the molecular level, EGCg stimu-
lates nitric oxide production in endothelial cells (similar to insulin [3]) primarily via the
activation of endothelial nitric oxide synthase, PI3-K and Akt, resulting in nitric oxide
(NO)-dependent vasodilation [3,20–22]. An array of pre-clinical data has directly shown
that green tea/EGCg can promote vasodilation, attenuate vascular inflammation, pre-
vent endothelial injury and ultimately enhance vascular function [22–24]. Compared to
pre-clinical models, the corresponding effects of green tea have been less studied in hu-
mans [25]. However, from the available evidence, it has been shown that green tea-based
supplements can improve endothelial dysfunction in smokers [26,27] and coronary artery
disease patients [28], and can increase post-exercise blood flow in young trained men [25].
Further, the acute administration of EGCg has been shown to modulate cerebral blood flow
in healthy humans [29], demonstrating the ability of green tea and/or its constituents to
elicit multi-organ vascular responses.

The aforementioned green tea-induced enhancements in vascular function are the basis
of the purported mechanisms underlying the subsequent improvements in insulin/glucose
homeostasis, evidenced in pre-clinical models [21,30]. Should these synergistic cardiometabolic
impacts of green tea be recapitulated in humans, they stand to significantly benefit health,
since insulin resistance manifests with advancing age and has been shown to contribute
to the development of sarcopenia [31]. Whilst there is a paucity of human data, a recent
meta-analysis concluded that chronic green tea consumption may reduce fasting blood
glucose levels [32], and acute supplement studies have shown green tea to improve glucose
tolerance and insulin sensitivity [33], albeit not consistently [34] (and accompanying muscle
perfusion measures were absent). Thus, whether green tea-induced improvements in
vascular responses favourably impact insulin and glucose metabolism in healthy older
adults remains to be elucidated.

Identifying efficacious nutraceuticals that impact brain, limb and skeletal muscle
perfusion may improve the suboptimal glucose handling observed in ostensibly healthy
older adults. Therefore, the aim of this study was to assess the impact of acute green tea
extract (GTE) supplementation on oral feeding-induced changes on: (i) macrovascular
(limb) blood flow, (ii) microvascular blood flow of the m. vastus lateralis and m. tibialis
anterior, (iii) endothelial function, (iv) cerebral blood flow, and (v) metabolic responses in
healthy older adults.
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2. Materials and Methods
2.1. Ethical Approval

All the study-associated risks and procedures were thoroughly explained to the
volunteers and their written consent was obtained prior to their participation. This study
was reviewed and approved by the University of Nottingham Faculty of Medicine and
Health Sciences Research Ethics Committee (2-1704), was conducted in accordance with
the Declaration of Helsinki, and was pre-registered at clinicaltrials.gov (NCT03213340).

2.2. Volunteers and Study Design

Healthy older adults (≥65 years) were recruited from the local community for this
randomised, single-blind, placebo-controlled, crossover trial. At the initial screening
session, the volunteers’ previous medical history was discussed with a clinician, which
included habitual dietary intake and known food allergies. Volunteers were considered
eligible for the study if they met the following inclusion criteria: (i) ≥65 years; (ii) body mass
index 18–30 kg/m2; (iii) free from active metabolic disease with a clinically normal blood
profile (liver and kidney function; complete blood count; HbA1c < 6%); (iv) blood pressure
< 160/100 mmHg; and (v) able to provide written informed consent. The exclusion criteria
were: inability to adhere to the study protocol; performing regular formal exercise (or any
other routine strenuous exercise) more than once a week; smoking; surgery within the
past 3 months; cerebrovascular disease or active cardiovascular, respiratory, inflammatory
bowel or renal disease; taking beta-adrenergic blocking agents; active malignancy or until
confirmed remission; clotting dysfunction; a history of deep vein thrombosis; significant
musculoskeletal or neurological disorders; a family history of early (<55 years) death from
cardiovascular disease; a known sensitivity to Sonovue™ contrast agent; a known allergy
or intolerance to any of the study ingredients; and/or regularly taking over-the-counter
supplements containing GTE. The volunteers also completed a short physical performance
battery and a handgrip strength assessment during this screening session (Table 1). Eligible
volunteers were enrolled in the study and were assigned subject numbers, which were
randomly assigned to either placebo (control, CON) or GTE for the first study visit. The
randomisation was performed using the simple online randomisation service ‘Sealed
Envelope’ (Sealed Envelope Ltd., London, UK). In line with previous work detecting
supplement-induced (and non-supplement-induced) changes in microvascular responses
to feeding in n = 10–12, a total of 12 volunteers were recruited for this study [35,36].

Table 1. Volunteer characteristics (mean ± SD).

Parameter Volunteers (n = 12)

Gender (% males) 42%
Age (year) 74 ± 1

Height (cm) 168 ± 13
Weight (kg) 73.4 ± 13.1

BMI (kg/m2) 26.1 ± 2.5
Lean mass (kg) 45.7 ± 10.5

Resting heart rate (bpm) 62 ± 6
Resting systolic blood pressure (mmHg) 136 ± 11
Resting diastolic blood pressure (mmHg) 77 ± 8

Grip strength (kg) 27 ± 8
SPPB 9 ± 2

BMI, body mass index; SPPB, short physical performance battery.

For the enrolled volunteers, this study included two experimental study visits sep-
arated by a 10–15 day “wash-out” period (Figure 1). The volunteers were instructed to
refrain from taking medications that may impact blood flow on the day prior to and on
the day of each study visit (e.g., angiotensin-converting enzyme inhibitors, decongestants)
and from heavy exercise for 48 h prior to each study visit. On the day of testing, the
volunteers arrived at 0900h fasted from 2200h the night before (water ad libitum) and had
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their lean leg mass measured with dual X-ray absorptiometry (DXA; Luna Prodigy II; GE
Medical Systems, Little Chalfont, Buckinghamshire, UK) (study visit 1 only). Baseline
measures of leg blood flow (LBF) via Doppler ultrasound, microvascular blood flow (MBF)
via contrast-enhanced ultrasound (CEUS), endothelial function via flow-mediated dilation
(FMD), and middle cerebral artery blood flow velocity via transcranial doppler (TCD) were
then performed, and a baseline blood sample was taken. All the ultrasound measures
were taken using a Philips iU22 ultrasound machine (Philips Healthcare, Reigate, UK). The
volunteers were then provided with the study supplement (GTE or placebo) to consume
orally, with an oral nutritional supplement (ONS) consumed 60 min later. Thereafter,
Doppler, CEUS, FMD and TCD measures and blood samples were obtained periodically
over a 4 h period (Figure 1).

Figure 1. Schematic representation of the study protocol for experimental study visits 1 and 2.
Twelve healthy older adults were studied in a crossover design in a fasted state, and with and
without green tea extract in a fed state (via oral nutritional supplement). * indicates assessment
was carried out during study visit 1 only, ˆ indicates that the first blood draw occurred 15 min after
the oral nutritional supplement. A-V, arterio-venous; CEUS, contrast-enhanced ultrasound; DXA,
dual-energy X-ray absorptiometry; FMD, flow-mediated dilation; GTE, green tea extract; ONS, oral
nutritional supplement; TCD, transcranial doppler; US, ultrasound.

2.3. Study Supplements and ONS Feeding

The volunteers were randomly assigned to receive either the GTE or placebo sup-
plement in a crossover design. The placebo condition comprised four empty capsules
matched for appearance to the GTE. The GTE condition comprised four capsules, each
containing GTE (300 mg) that itself contained ~45% EGCg (~135 mg) in addition to other
catechins (Sunphenon, 90D, Taiyo, Japan), thus delivering a total of ~500 mg EGCg). The
500 mg EGCg dose was chosen as it is lower than doses (~800 mg EGCg) shown to be safe
and very well tolerated [37], but is slightly higher than doses (~300 mg EGCg) shown to
improve aspects of blood flow (e.g., FMD [28]) and glucose metabolism (e.g., fasting blood
glucose [38]). It was therefore postulated to be a safe and effective acute dose. Since caffeine
has been implicated in regulating vascular health [20], the GTE used was decaffeinated. In
order to investigate whether GTE can enhance vascular responses beyond those achieved
with mixed oral feeding, the volunteers consumed 118 mL of an ONS (Ensure Advance
(Vanilla), Abbott, Zwolle, NE) providing 175 kcal (7.5 g protein, 24 g carbohydrate and 6 g
fat) exactly 60 min after consuming the supplement.

2.4. Measurement of LBF Using Doppler Ultrasound

As previously described [39], LBF was measured by using a Doppler ultrasound (iU22
ultrasound scanner, Phillips Healthcare, Reigate, Surrey, UK). In brief, a 17–5 MHz linear
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probe was positioned over the left common femoral artery to facilitate the assessment of
LBF as vessel cross-sectional area x mean velocity, over six cardiac cycles. To enhance the
ultrasound signal, ultrasound gel was used and all the measurements were taken with
the volunteer supine with no visual or aural stimuli. A mean of three measurements was
made at every timepoint, dispersed across the study period. In accordance with other
studies [12,40], leg vascular conductance (LVC) was calculated as: LBF/mean arterial
pressure (which was calculated as: (2/3 diastolic blood pressure) + (1/3 systolic blood
pressure)) and leg vascular resistance (LVR) was calculated as: mean arterial pressure/LBF.

2.5. Measurement of MBF Using CEUS

CEUS, as previously described in detail [41], allows the measurement of changes in
MBF and its components: microvascular blood volume (MBV) and microvascular flow ve-
locity (MFV). In brief, an iU22 ultrasound scanner (Phillips Healthcare, Reigate, Surrey, UK)
was used to detect Sonovue™ microbubbles (Bracco, Milan, Italy) that were infused with an
antecubital fossa vein. One L9-3 MHz linear probe was positioned on the m. vastus lateralis
and another on the m. tibialis anterior to detect intravascular microbubble concentrations
in both muscles. The microbubbles were disrupted using intermittent high mechanical
index (MI) “flashes” with subsequent continuous low MI recordings measuring the rate of
microbubble reappearance after each flash. The Sonovue™ was first infused at 2 mL/min
for 1 min and then 1 mL/min for 3 min thereafter. At 2.5 min, 3× 30 s flash/replenishment
recordings were performed across the last 90 s of this protocol at each CEUS timepoint.
After each flash, a 0.48 s window was used to adjust for the non-contrast signal and for
the rapid filling of larger conduit (non-exchange) vessels. The acoustic intensity of the
insonated tissue in the post-flash period demonstrated a first order exponential association
function with a rate constant that was proportional to MFV and a plateau proportional
to MBV.

2.6. Measurement of Endothelial Function and Cerebral Blood Flow

FMD was used to assess endothelial function (right brachial artery) using standard
methodology, according to the International Brachial Artery Reactivity Task Force guide-
lines [42]. In brief, after a baseline measurement of the brachial artery diameter for 1 min
using a 17–5 MHz linear probe, arterial occlusion distal to the brachial artery was induced
using a blood pressure cuff (Hokanson, Bellevue, WA, USA) inflated to 200 mmHg for
5 min. The cuff was then deflated, and the dilation of the brachial artery assessed for
a further 5 min. Automated real-time arterial diameter measurements were generated
through the Quipu Cardiovascular Suite FMD Studio (Quipu, Tuscany, Italy). FMD could
not be recorded for two volunteers due to software failure (as such data is n = 10).

TCD ultrasonography was used to measure middle cerebral artery blood flow velocity
as an index of cerebrovascular function [43] using standard techniques [44,45]. In brief,
with all the measures performed by the same technician using a 5–1 MHz probe, the
transtemporal window was located to measure middle cerebral artery (MCA) blood flow
velocity (MFV). The depths of insonation were recorded so they could be duplicated during
each volunteer’s second study visit, with depths between 50–60mm. It was not possible to
locate the transtemporal window in four volunteers (as such data is n = 8).

2.7. Blood Glucose and Plasma Insulin

Glucose uptake/release was assessed using an arterio-venous (A-V) sampling ap-
proach. The blood glucose concentrations were measured (Glucose Analyser, YSI, Yellow
Springs, OH, USA) across the leg by sampling arterialised (obtained via the “hot-hand” tech-
nique [46,47]) and venous bloods (using the Fick Principle). Plasma insulin concentrations
were measured in venous blood using a high-sensitivity human insulin enzyme-linked
immunosorbent assay (DRG Instruments GmbH, Marburg, Germany), according to manu-
facturer’s instructions. The total insulin and glucose responses to feeding for each volunteer
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were calculated using the area under the insulin/glucose concentration/time curve above
baseline (with baseline equal to the concentration measured before supplement/feeding).

2.8. Statistical Analysis

Two-way repeated measures ANOVA with Sidak/Dunnett’s multiple comparison
analysis was used to determine time x supplement effects. To allow comparison between
conditions, the CEUS data was normalised to baseline. The area under the curve (AUC)
analysis was conducted on the blood glucose A-V balance and insulin data, with paired
t-tests used to determine the supplements’ effects. The data analysis was conducted using
GraphPad Prism version 8 (GraphPad Software, San Diego, CA, USA), with data accepted
as significant if p < 0.05. The data are presented as mean ± SEM.

3. Results
3.1. LBF, LVC and LVR

LBF significantly increased from baseline in both conditions early in the fed phase
(GTE: 0 min: 232.4 ± 18.2 vs. 55 min: 335.4 ± 15.6 mL/min, p = 0.001; CON: 0 min:
259.6 ± 21.2 vs. 85 min: 359.4 ± 36.2 mL/min, p = 0.002), and was elevated at 235 min in
both groups (GTE: 0 min: 232.4 ± 18.2 vs. 235 min: 331.1 ± 23.6 mL/min, p = 0.002; CON:
0 min: 259.6 ± 21.2 vs. 235 min: 342.1 ± 41.2 mL/min, p = 0.016) (Figure 2A). Interestingly,
following the ONS, LBF was significantly above baseline at all timepoints in the GTE
condition, but not for the CON condition, which displayed values that were no different to
baseline at 175 and 205 min (Figure 2A).

LVC increased at 55 min in the GTE condition (0 min: 2.51 ± 0.23 vs. 55 min:
3.76 ± 0.19 mL/min, p = 0.023) and at 85 min in the CON condition (0 min: 2.65 ± 0.22 vs.
85 min: 4.00 ± 0.34 mL/min, p = 0.003), with both conditions returning to basal values at
235 min (GTE: 0 min: 2.51 ± 0.23 vs. 235 min: 3.41 ± 0.35 mL/min, p = 0.125; CON: 0 min:
2.65 ± 0.22 vs. 235 min: 3.60 ± 0.45 mL/min, p = 0.111).

LVR decreased in both conditions, with the onset occurring at 55 min in the GTE
condition (0 min: 0.44 ± 0.05 vs. 55 min: 0.27 ± 0.01 mL/min, p < 0.0001), which preceded
the LVR decline in the CON condition, which occurred at 85 min (0 min: 0.41 ± 0.04 vs.
85 min: 0.27 ± 0.02 mL/min, p = 0.001). LVR remained depressed throughout all the
subsequent timepoints in the GTE condition, whereas LVR returned to baseline by 175 min
in the CON condition (0 min: 0.41 ± 0.04 vs. 175 min: 0.31 ± 0.02 mL/min, p = 0.06)
(Figure 2C). There were no significant differences between conditions at any timepoint for
LBF, LVC or LVR.

Figure 2. The impact of oral nutritional supplement feeding with/without green tea extract on leg blood flow (A), vascular
conductance (B) and vascular resistance (C) in healthy older adults. ˆ denotes significant difference from control baseline (p
< 0.05); * denotes significant difference from green tea extract baseline (p < 0.05).

3.2. MBV, MFV and MBF

In the m. vastus lateralis, the GTE condition elicited a significant increase from baseline
in MBV responses to the ONS, with this increase evident at 180 and 240 min post-meal
(baseline: 1.0 vs. 180 min: 1.11 ± 0.02 vs. 240 min: 1.08 ± 0.04, p = 0.002). In the CON
condition, MBV significantly increased from baseline at only 240 min post-meal (baseline:
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1.0 vs. 240 min: 1.07 ± 0.02, p = 0.013). MBV was significantly higher in the GTE condition
versus the CON condition at 180 min post-meal (GTE: 1.11 ± 0.02 vs. CON: 1.04 ± 0.02,
p = 0.014) (Figure 3A).

MFV in the m. vastus lateralis only increased in the CON condition at 180 min (baseline:
1.0 vs 180 min: 1.62 ± 0.24, p = 0.003); however, there was no significant difference between
the conditions at any timepoint (Figure 3B). Similarly, MBF only increased in the CON
condition at 180 min post-meal (baseline: 1.0 vs 180 min: 1.70 ± 0.27, p = 0.001) (Figure 3C).
This was largely driven by the observed increase in MFV (Figure 3B).

For the m. tibialis anterior, there was no significant change within or between conditions
at any timepoint for MBV, MFV or MBF (Figure 3D–F).

Figure 3. The impact of oral nutritional supplement feeding with/without green tea extract on microvascular blood volume
(A,D), microvascular flow velocity (B,E) and microvascular blood flow (C,F) in the m. vastus lateralis (A–C) and m. tibialis
anterior (D–F) of healthy older adults. ~ denotes a significant difference between groups (p < 0.05); ˆ denotes significant
difference from control baseline (p < 0.05); * denotes significant difference from green tea extract baseline (p < 0.05).

3.3. FMD and TCD

Although there was a numerical increase in FMD in the GTE condition at 100 and
160 min following the ONS (GTE: baseline: 5.36 ± 1.15 vs. 100 min: 6.83 ± 1.10 vs. 160 min:
6.12 ± 1.52, p > 0.05), which was potentially indicative of improved endothelial function, the
increases at neither timepoint were statistically significant, nor were there any significant
differences between the groups at any timepoint (Figure 4A). There was no significant effect
of the ONS with or without GTE on the TCD measurements at any timepoint, signifying
no change in cerebral blood flow (Figure 4B).

Figure 4. Effect of oral nutritional supplement feeding with/without green tea extract on (A) flow
mediated dilation (n = 10 per condition) and (B) transcranial blood flow (n = 8 per condition) in
healthy older adults.
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3.4. Blood Glucose and Plasma Insulin

Arterial and venous glucose both significantly increased in the early post-feeding
phase in both the GTE and CON conditions, returning to basal values by 155 min in
both conditions (Figure 5A,B). Interestingly, in the GTE condition, arterial glucose was
significantly reduced from baseline at 215 min and 245 min (Figure 5A) and venous glucose
was significantly reduced at 245 min (Figure 5B). No significant difference was observed
between the conditions at any timepoint, and arterial and venous AUC was no different
between the conditions (data not shown).

Figure 5. Changes in arterial glucose (A), venous glucose (B), glucose A-V balance (C), glucose
uptake (D), insulin (E) and insulin area under the curve (F) in healthy older adults with/without
green tea extract following oral nutritional supplement feeding. ˆ denotes significant difference from
control baseline (p < 0.05); * denotes significant difference from green tea extract baseline (p < 0.05).
AUC, area under the curve; A-V, arterio-venous.

Glucose A-V balance increased at 15 and 35 min in the GTE condition only (0 min:
0.13 ± 0.03 vs. 15 min: 0.35 ± 0.06 vs. 35 min: 0.40 ± 0.06 mmol, both p < 0.05); however,
there was no significant difference between the conditions for glucose A-V balance at
any timepoint (Figure 5C), or for glucose AUC (data not shown). Glucose uptake was
increased in the GTE condition at 35 min only (GTE: 0 min: 0.03 ± 0.01 vs. 35 min:
0.11 ± 0.02 mmol/min/leg, p = 0.007); however, there was no significant difference be-
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tween the conditions at any time point for glucose uptake (Figure 5D) or glucose uptake
AUC (data not shown).

As expected, plasma insulin significantly increased from baseline in both conditions
early post-feeding, returning to basal values by 155 min (Figure 5E). There was no sig-
nificant difference between the conditions at any timepoint for insulin or insulin AUC
(Figure 5E,F).

4. Discussion

We investigated whether acute GTE supplementation prior to oral mixed macronutri-
ent feeding would modify vascular and subsequent metabolic responses in healthy older
adults who have no known impairments in metabolic status. We found that acute GTE
increased micro- but not macro-, endothelial or cerebral vascular responses to ONS; how-
ever, enhanced microvascular perfusion did not translate into improved insulin/glucose
responses.

To our knowledge, this is the first study to assess the acute impact of GTE supple-
mentation on leg muscle perfusion in healthy older adults. Our primary finding was
that a high dose of GTE (containing ~500 mg of EGCg) can enhance the effect of a small
mixed macronutrient meal by increasing MBV in the m. vastus lateralis of older healthy
men and women. This demonstrates that the impact of GTE goes beyond the effects of the
feeding-related insulin response, having the ability to impact vasodilation of the muscle
capillaries therein increasing blood volume, and thus potentially the concentration of
nutrients, in the muscle tissue. Similar to other flavonoids (e.g., cocoa flavanols [48]), it
has been previously shown that green tea constituents can induce NO production in the
endothelial cells, leading to vasodilation [20–22], which is the likely mechanism underlying
the responses observed herein. Interestingly, increased MBV above that of the ONS was
only observed at a late postprandial timepoint (180 min), by which time net essential amino
acid uptake has normally returned to postabsorptive levels [49]. Therefore, it is likely
that this response reflects late capillary recruitment and so is not expected to impact upon
essential amino acid-driven increases in muscle protein synthesis, which abate ~2–3 h
post-feeding [50]. Indeed, some of our previous data support this notion, whereby we
found that early but not later postprandial capillary recruitment supports feeding-induced
protein accretion via the delivery of EAA to the muscle [49]. As such, the question that still
remains is, what are the physiological implications of enhanced ‘late’ vascular responses
following acute GTE? Considering enhanced microvascular flow still represents increased
nutrient, hormone and oxygen delivery to muscle (despite occurring after the “anabolic
window” [50]), it is reasonable to hypothesise that such acute responses may accrue and
develop into adaptations observed with chronic supplementation. For example, chronic
GTE supplementation has been shown to facilitate recovery from strenuous exercise [51],
improve endurance capacity via enhanced metabolic capacity and fatty acid utilisation [52]
and attenuate age and diet-related muscle decline (albeit in pre-clinical models) [53–55],
which may be related to enhanced MBV. Thus, like certain other plant flavonoids [35], we
expect that GTE has important effects aside from acute protein anabolism, in the form of
supporting physiological adaptations towards improving muscle health.

We also investigated MBF response in the m. tibialis anterior, a more oxidative and
capillary-dense muscle (~70% type I fibres [56]) compared to the m. vastus lateralis [57],
to see whether GTE is more beneficial in this muscle due to the potential for greater
capillary recruitment. However, we observed no effect of GTE or the ONS on MBV
in this muscle, suggesting that neither EGCg nor insulin impact the delivery of nutri-
ents/hormones/oxygen in the m. tibialis anterior. However, as this is, to our knowledge,
the first attempt to assess the effects of GTE in the m. tibialis anterior, we postulate that it is
plausible that the smaller muscle size and thus vascular network of the m. tibialis anterior
(compared to the m. vastus lateralis) renders potentially impactful changes smaller and
harder to detect, and so our findings require validation in larger cohort clinical trials.
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Despite enhancements in MBV, we observed no impact of GTE on other microvascular
components, namely MFV and MBF, in the m. vastus lateralis or in the m. tibialis anterior.
This, however, does not necessarily negate or lessen the efficacy of GTE for enhancing
microvascular perfusion, since MBV (as opposed to other microvascular components)
is confirmed to represent capillary perfusion [58,59]. It is also possible that longer-term
feeding studies are needed to elucidate the effects of GTE on MFV, since MFV is dependent
on the dilation of the resistance arterioles that are upstream of the terminal arterioles and
capillaries. Similarly, there was no impact of GTE on macrovascular blood flow, although
LBF, LVC and LVR were modulated by the ONS, suggesting that macrovascular-femoral
artery flow is primarily driven by the insulin response to nutrition. Supporting our data,
Ng et al. demonstrated that EGCg provision stimulated micro- but not macrovascular
blood flow in rodents, leading the authors of that work to suggest that the vascular actions
of EGCg (i.e., micro- vs. macrovascular) may be concentration-dependent [21]. As such,
dose-response supplementation studies are needed to determine the efficacy of GTE on
different aspects of human muscle blood flow.

Chronic supplementation studies have demonstrated that green tea and green tea cate-
chins improve endothelial function in various clinical populations [27,60], with acute green
tea supplementation also shown to clinically improve endothelial function [61]. Therefore,
we employed FMD to investigate the impact of acute GTE (in the context of a mixed ONS)
on endothelial function in our older adult cohort. Although we observed a numerical
increase in FMD in the GTE condition, particularly at 100 min post-feeding, this was not
significantly different, statistically, from the baseline or the control. Interestingly, Lorenz
et al. found that 200 mg EGCg provided as part of a green tea beverage improved FMD in
healthy men, but 200 mg EGCg provided as GTE or isolated EGCg did not [62]. The authors
suggest that the caffeine within green tea that may be responsible for eliciting changes
in FMD, as opposed to EGCg [20]. However, another study demonstrated the benefits of
green tea (containing caffeine) for FMD but failed to demonstrate any benefit of caffeine
alone [63]. The GTE used herein was purposefully decaffeinated to avoid the confounding
physiological effects of caffeine, and yet a numerical increase in FMD was still observed.
Considering EGCg has been shown to have dose-dependent effects on vasodilation in ro-
dents [21], it could be that larger acute doses of GTE may significantly enhance endothelial
function measured via FMD. Whilst we provided a larger dose of EGCg than is typically
present in a single cup of green tea (i.e., ~500 mg vs. ~50–100 mg EGCg [64]), it is possible
that more optimal GTE dosing strategies may be required to acutely enhance endothelial
function. It is also possible that the chronic use of GTE is required to benefit endothelial
function, since green tea containing 500 mg catechins was shown to enhance forearm
blood flow compared to lower doses of catechins (80 mg) following chronic use [27]. It is
also possible that our small number of volunteers precluded statistical significance, thus
requiring larger clinical trials to confirm/refute the acute effects of GTE on FMD.

With regard to cerebral blood flow, we found no effect of GTE or the ONS on the
TCD measurements, indicating that EGCg and/or insulin does not modulate cerebral
blood flow and thus the delivery of metabolic substrates to the brain, at least in ostensibly
healthy older adults. An increase in cerebral blood flow may be considered advantageous,
particularly within the current population of older adults who are at a greater risk of
cardiovascular and neurovascular disease, since cerebral blood flow is positively associated
with cognitive performance [65]. However, among the limited available evidence to date,
Wightman et al. found that an acute dose of 135 mg EGCg actually reduced cerebral
blood flow when measured via near-infrared spectroscopy [29]. They postulated that the
observed reduction may reflect a reduced requirement of blood flow due to improvements
in other aspects of brain function by unidentified features and/or another unmeasured
mechanism compensating for reduced cerebral blood flow [29]. It is clear that further
clinical trials are required to clarify the current lack of consensus regarding whether GTE
modulates cerebral blood flow.
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Finally, we determined whether GTE-induced increases in perfusion translated into
enhanced glucose metabolism/uptake, a valid area for investigation considering glucose
uptake is partially mediated by microvascular responses [66] and since chronic green tea
supplementation decreased fasting blood glucose levels in type 2 diabetics [38]. Despite
the presence of a GTE-induced increase in MBV, we did not observe any effects of GTE on
insulin/glucose kinetics. Whilst this may initially seem surprising, we assessed the acute
metabolic impacts of GTE in older healthy adults, whereas pre-existing supportive evidence
is largely derived from pre-clinical and/or chronic studies (e.g., [67,68]). It should also be
noted that leg A-V balance reflects all the tissues within the leg, whereas we only observed
an increase in m. vastus lateralis MBV. It is therefore possible that we did not detect metabolic
changes that may have occurred in individual muscles. Nonetheless, in line with our data,
others have shown that acute EGCg infusion stimulated microvascular perfusion without
altering whole-body or muscle glucose uptake, albeit in rodents [21]. Interestingly, the
chronic provision of green tea/EGCg increases glucose uptake and promotes GLUT4
translocation in rodents [67]. This is likely mediated via the PI3-K/Akt [69] and/or
AMPK [70] pathway, as demonstrated in cultured myotubes, and so EGCg is purported to
demonstrate insulin-mimetic effects (although direct evidence of insulin receptor activation
is lacking [71]), at least in the chronic context. Thus, chronic supplementation studies
are warranted to determine whether GTE can elicit vascular-mediated glucose handling
benefits in older healthy adults.

The potential limitations of this study warrant comment. First, the exact bioavail-
ability of the GTE is not known. The GTE was delivered as a powder in a capsule and
administered 60 min prior to the ONS to account for the previously reported absorption
kinetics, which demonstrated a peak in plasma catechins 60 min following the consump-
tion of encapsulated green tea [72]. Based on this, we speculated that the administration
of GTE 60 min before the ONS would allow the peak catechin levels to coincide with
the insulin response to the meal, thus maximising its impact on perfusion. Furthermore,
similar oral EGCg supplementation led to detectable increases in human plasma EGCg [73],
demonstrating bioavailability. Second, we acknowledge that by recruiting healthy older
adults only (i.e., no pre-existing disease/comorbidities), our study population may not
be truly representative of the older population, particularly considering the prevalence of
comorbidities and associated polypharmacy in older age [74].

5. Conclusions

Acute GTE supplementation significantly increases microvascular perfusion, but does
not affect macrovascular perfusion, endothelial function or cerebral blood flow beyond the
effects of a mixed macronutrient meal in healthy older adults. However, enhanced MBV
did not impact insulin/glucose metabolism. Oral GTE is well tolerated and therefore offers
a safe and efficacious nutraceutical intervention for potentiating muscle perfusion, and
thus nutrient/hormone/oxygen delivery, in healthy older adults.

Author Contributions: S.L.P., R.R., B.E.P. and P.J.A. conceptualised the study; U.S.U.D., T.S.S. and
A.G. performed the studies and were responsible for sample collection; U.S.U.D. and T.S.S. performed
the laboratory analysis; S.L.P., C.S.D., B.E.P. and P.J.A. analyzed and visualised the data; C.S.D., B.E.P.
and P.J.A. drafted the manuscript. U.S.U.D., T.S.S., C.S.D., K.S., A.G., J.N.L., J.P.W., R.R., S.L.P., B.E.P.
and P.J.A. reviewed and edited the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was co-funded by Abbott Nutrition (US). This work was also supported by the
Medical Research Council (grant number MR/P021220/1) as part of the MRC-Versus Arthritis Centre
for Musculoskeletal Ageing Research awarded to the Universities of Nottingham and Birmingham,
and also by the NIHR Nottingham Biomedical Research Centre. CSD acknowledges support from
the Medical Research Council (grant number MR/T026014/1).



Nutrients 2021, 13, 3895 12 of 15

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the University of Nottingham Faculty of Medicine and
Health Sciences Research Ethics Committee (2-1704).

Informed Consent Statement: Informed consent was obtained from all the subjects involved in
the study.

Data Availability Statement: The data presented in this study are available on reasonable request
from the corresponding author.

Acknowledgments: The authors would like to thank the participants for dedicating their time to
completing this study.

Conflicts of Interest: S.L.P. and R.R. are employees of Abbott Nutrition.

References
1. Lawrenson, L.; Poole, J.G.; Kim, J.; Brown, C.; Patel, P.; Richardson, R.S. Vascular and metabolic response to isolated small muscle

mass exercise: Effect of age. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H1023–H1031. [CrossRef] [PubMed]
2. DeSouza, C.A.; Shapiro, L.F.; Clevenger, C.M.; Dinenno, F.A.; Monahan, K.D.; Tanaka, H.; Seals, D.R. Regular aerobic exercise

prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 2000, 102, 1351–1357.
[CrossRef] [PubMed]

3. Keske, M.A.; Ng, H.L.; Premilovac, D.; Rattigan, S.; Kim, J.A.; Munir, K.; Yang, P.; Quon, M.J. Vascular and metabolic actions of
the green tea polyphenol epigallocatechin gallate. Curr. Med. Chem. 2015, 22, 59–69. [CrossRef] [PubMed]

4. Donato, A.J.; Uberoi, A.; Wray, D.W.; Nishiyama, S.; Lawrenson, L.; Richardson, R.S. Differential effects of aging on limb blood
flow in humans. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H272–H278. [CrossRef] [PubMed]

5. Skilton, M.R.; Lai, N.T.; Griffiths, K.A.; Molyneaux, L.M.; Yue, D.K.; Sullivan, D.R.; Celermajer, D.S. Meal-related increases in
vascular reactivity are impaired in older and diabetic adults: Insights into roles of aging and insulin in vascular flow. Am. J.
Physiol. Heart Circ. Physiol. 2005, 288, H1404–H1410. [CrossRef]

6. Mitchell, W.K.; Williams, J.; Atherton, P.; Larvin, M.; Lund, J.; Narici, M. Sarcopenia, dynapenia, and the impact of advancing age
on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 2012, 3, 260. [CrossRef] [PubMed]

7. Luukinen, H.; Koski, K.; Laippala, P.; Kivela, S.L. Factors predicting fractures during falling impacts among home-dwelling older
adults. J. Am. Geriatr. Soc. 1997, 45, 1302–1309. [CrossRef]

8. Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.;
Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on
Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [CrossRef]

9. Laukkanen, P.; Heikkinen, E.; Kauppinen, M. Muscle strength and mobility as predictors of survival in 75–84-year-old people.
Age Ageing 1995, 24, 468–473. [CrossRef]

10. Dunford, E.C.; Au, J.S.; Devries, M.C.; Phillips, S.M.; MacDonald, M.J. Cardiovascular aging and the microcirculation of skeletal
muscle: Using contrast-enhanced ultrasound. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1194–H1199. [CrossRef]

11. Mitchell, W.K.; Phillips, B.E.; Williams, J.P.; Rankin, D.; Smith, K.; Lund, J.N.; Atherton, P.J. Development of a new Sonovue
contrast-enhanced ultrasound approach reveals temporal and age-related features of muscle microvascular responses to feeding.
Physiol. Rep. 2013, 1, e00119. [CrossRef]

12. Phillips, B.; Williams, J.; Atherton, P.; Smith, K.; Hildebrandt, W.; Rankin, D.; Greenhaff, P.; Macdonald, I.; Rennie, M.J. Resistance
exercise training improves age-related declines in leg vascular conductance and rejuvenates acute leg blood flow responses to
feeding and exercise. J. Appl. Physiol. 2012, 112, 347–353. [CrossRef] [PubMed]

13. Phillips, B.E.; Atherton, P.J.; Varadhan, K.; Wilkinson, D.J.; Limb, M.; Selby, A.L.; Rennie, M.J.; Smith, K.; Williams, J.P.
Pharmacological enhancement of leg and muscle microvascular blood flow does not augment anabolic responses in skeletal
muscle of young men under fed conditions. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E168–E176. [CrossRef]

14. Gioscia-Ryan, R.A.; Clayton, Z.S.; Zigler, M.C.; Richey, J.J.; Cuevas, L.M.; Rossman, M.J.; Battson, M.L.; Ziemba, B.P.; Hutton, D.A.;
VanDongen, N.S.; et al. Lifelong voluntary aerobic exercise prevents age-and Western diet- induced vascular dysfunction,
mitochondrial oxidative stress and inflammation in mice. J. Physiol. 2020, 599, 911–925. [CrossRef] [PubMed]

15. Seals, D.R.; Nagy, E.E.; Moreau, K.L. Aerobic exercise training and vascular function with ageing in healthy men and women. J.
Physiol. 2019, 597, 4901–4914. [CrossRef] [PubMed]

16. Pang, J.; Zhang, Z.; Zheng, T.; Yang, Y.J.; Li, N.; Bai, M.; Peng, Y.; Zhang, J.; Li, Q.; Zhang, B. Association of green tea consumption
with risk of coronary heart disease in Chinese population. Int. J. Cardiol. 2015, 179, 275–278. [CrossRef] [PubMed]

17. Babu, P.V.; Liu, D. Green tea catechins and cardiovascular health: An update. Curr. Med. Chem. 2008, 15, 1840–1850. [CrossRef]
18. Iso, H.; Date, C.; Wakai, K.; Fukui, M.; Tamakoshi, A.; Group, J.S. The relationship between green tea and total caffeine intake and

risk for self-reported type 2 diabetes among Japanese adults. Ann. Intern. Med. 2006, 144, 554–562. [CrossRef] [PubMed]
19. Lin, Y.S.; Tsai, Y.J.; Tsay, J.S.; Lin, J.K. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J. Agric. Food Chem.

2003, 51, 1864–1873. [CrossRef]

http://doi.org/10.1152/ajpheart.00135.2003
http://www.ncbi.nlm.nih.gov/pubmed/12738622
http://doi.org/10.1161/01.CIR.102.12.1351
http://www.ncbi.nlm.nih.gov/pubmed/10993851
http://doi.org/10.2174/0929867321666141012174553
http://www.ncbi.nlm.nih.gov/pubmed/25312214
http://doi.org/10.1152/ajpheart.00405.2005
http://www.ncbi.nlm.nih.gov/pubmed/16183733
http://doi.org/10.1152/ajpheart.00484.2004
http://doi.org/10.3389/fphys.2012.00260
http://www.ncbi.nlm.nih.gov/pubmed/22934016
http://doi.org/10.1111/j.1532-5415.1997.tb02928.x
http://doi.org/10.1093/ageing/afq034
http://doi.org/10.1093/ageing/24.6.468
http://doi.org/10.1152/ajpheart.00737.2017
http://doi.org/10.1002/phy2.119
http://doi.org/10.1152/japplphysiol.01031.2011
http://www.ncbi.nlm.nih.gov/pubmed/21998269
http://doi.org/10.1152/ajpendo.00440.2013
http://doi.org/10.1113/JP280607
http://www.ncbi.nlm.nih.gov/pubmed/33103241
http://doi.org/10.1113/JP277764
http://www.ncbi.nlm.nih.gov/pubmed/31077372
http://doi.org/10.1016/j.ijcard.2014.11.093
http://www.ncbi.nlm.nih.gov/pubmed/25464464
http://doi.org/10.2174/092986708785132979
http://doi.org/10.7326/0003-4819-144-8-200604180-00005
http://www.ncbi.nlm.nih.gov/pubmed/16618952
http://doi.org/10.1021/jf021066b


Nutrients 2021, 13, 3895 13 of 15

20. Lorenz, M.; Urban, J.; Engelhardt, U.; Baumann, G.; Stangl, K.; Stangl, V. Green and black tea are equally potent stimuli of NO
production and vasodilation: New insights into tea ingredients involved. Basic Res. Cardiol. 2009, 104, 100–110. [CrossRef]
[PubMed]

21. Ng, H.L.H.; Premilovac, D.; Rattigan, S.; Richards, S.M.; Muniyappa, R.; Quon, M.J.; Keske, M.A. Acute vascular and metabolic
actions of the green tea polyphenol epigallocatechin 3-gallate in rat skeletal muscle. J. Nutr. Biochem. 2017, 40, 23–31. [CrossRef]

22. Kim, J.A.; Formoso, G.; Li, Y.; Potenza, M.A.; Marasciulo, F.L.; Montagnani, M.; Quon, M.J. Epigallocatechin gallate, a green tea
polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen
species and Fyn. J. Biol. Chem. 2007, 282, 13736–13745. [CrossRef]

23. Lorenz, M.; Wessler, S.; Follmann, E.; Michaelis, W.; Dusterhoft, T.; Baumann, G.; Stangl, K.; Stangl, V. A constituent of green tea,
epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent
protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. J. Biol. Chem. 2004, 279,
6190–6195. [CrossRef] [PubMed]

24. Potenza, M.A.; Marasciulo, F.L.; Tarquinio, M.; Tiravanti, E.; Colantuono, G.; Federici, A.; Kim, J.A.; Quon, M.J.; Montagnani, M.
EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against
myocardial I/R injury in SHR. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1378–E1387. [CrossRef] [PubMed]

25. Fox, C.D.; Garner, C.T.; Mumford, P.W.; Beck, D.T.; Roberts, M.D. Higher doses of a green tea-based supplement increase
post-exercise blood flow following an acute resistance exercise bout in recreationally resistance-trained college-aged men. J. Int.
Soc. Sports Nutr. 2020, 17, 27. [CrossRef]

26. Nagaya, N.; Yamamoto, H.; Uematsu, M.; Itoh, T.; Nakagawa, K.; Miyazawa, T.; Kangawa, K.; Miyatake, K. Green tea reverses
endothelial dysfunction in healthy smokers. Heart 2004, 90, 1485–1486. [CrossRef] [PubMed]

27. Oyama, J.; Maeda, T.; Kouzuma, K.; Ochiai, R.; Tokimitsu, I.; Higuchi, Y.; Sugano, M.; Makino, N. Green tea catechins improve
human forearm endothelial dysfunction and have antiatherosclerotic effects in smokers. Circ. J. 2010, 74, 578–588. [CrossRef]
[PubMed]

28. Widlansky, M.E.; Hamburg, N.M.; Anter, E.; Holbrook, M.; Kahn, D.F.; Elliott, J.G.; Keaney, J.F., Jr.; Vita, J.A. Acute EGCG
supplementation reverses endothelial dysfunction in patients with coronary artery disease. J. Am. Coll. Nutr. 2007, 26, 95–102.
[CrossRef] [PubMed]

29. Wightman, E.L.; Haskell, C.F.; Forster, J.S.; Veasey, R.C.; Kennedy, D.O. Epigallocatechin gallate, cerebral blood flow parameters,
cognitive performance and mood in healthy humans: A double-blind, placebo-controlled, crossover investigation. Hum.
Psychopharmacol. 2012, 27, 177–186. [CrossRef]

30. Jang, H.J.; Ridgeway, S.D.; Kim, J.A. Effects of the green tea polyphenol epigallocatechin-3-gallate on high-fat diet-induced insulin
resistance and endothelial dysfunction. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E1444–E1451. [CrossRef] [PubMed]

31. Cleasby, M.E.; Jamieson, P.M.; Atherton, P.J. Insulin resistance and sarcopenia: Mechanistic links between common co-morbidities.
J. Endocrinol. 2016, 229, R67–R81. [CrossRef]

32. Kondo, Y.; Goto, A.; Noma, H.; Iso, H.; Hayashi, K.; Noda, M. Effects of Coffee and Tea Consumption on Glucose Metabolism: A
Systematic Review and Network Meta-Analysis. Nutrients 2018, 11, 48. [CrossRef] [PubMed]

33. Venables, M.C.; Hulston, C.J.; Cox, H.R.; Jeukendrup, A.E. Green tea extract ingestion, fat oxidation, and glucose tolerance in
healthy humans. Am. J. Clin. Nutr. 2008, 87, 778–784. [CrossRef]

34. Josic, J.; Olsson, A.T.; Wickeberg, J.; Lindstedt, S.; Hlebowicz, J. Does green tea affect postprandial glucose, insulin and satiety in
healthy subjects: A randomized controlled trial. Nutr. J. 2010, 9, 63. [CrossRef] [PubMed]

35. Sian, T.S.; Din, U.S.U.; Deane, C.S.; Smith, K.; Gates, A.; Lund, J.N.; Williams, J.P.; Rueda, R.; Pereira, S.L.; Phillips, B.E.; et al.
Cocoa Flavanols Adjuvant to an Oral Nutritional Supplement Acutely Enhances Nutritive Flow in Skeletal Muscle without
Altering Leg Glucose Uptake Kinetics in Older Adults. Nutrients 2021, 13, 1646. [CrossRef] [PubMed]

36. Phillips, B.E.; Atherton, P.J.; Varadhan, K.; Limb, M.C.; Williams, J.P.; Smith, K. Acute cocoa flavanol supplementation improves
muscle macro- and microvascular but not anabolic responses to amino acids in older men. Appl. Physiol. Nutr. Metab. 2016, 41,
548–556. [CrossRef]

37. Ullmann, U.; Haller, J.; Decourt, J.D.; Girault, J.; Spitzer, V.; Weber, P. Plasma-kinetic characteristics of purified and isolated green
tea catechin epigallocatechin gallate (EGCG) after 10 days repeated dosing in healthy volunteers. Int. J. Vitam. Nutr. Res. 2004, 74,
269–278. [CrossRef]

38. Hadi, S.; Alipour, M.; Aghamohammadi, V.; Shahemi, S.; Ghafouri-Taleghani, F.; Pourjavidi, N.; Foroughi, M.; Chraqipoor, M.
Improvement in fasting blood sugar, anthropometric measurement and hs-CRP after consumption of epigallocatechin-3-gallate
(EGCG) in patients with type 2 diabetes mellitus. Nutr. Food Sci. 2019, 50, 348–359. [CrossRef]

39. Wilkinson, D.J.; Bukhari, S.S.I.; Phillips, B.E.; Limb, M.C.; Cegielski, J.; Brook, M.S.; Rankin, D.; Mitchell, W.K.; Kobayashi, H.;
Williams, J.P.; et al. Effects of leucine-enriched essential amino acid and whey protein bolus dosing upon skeletal muscle protein
synthesis at rest and after exercise in older women. Clin. Nutr. 2018, 37, 2011–2021. [CrossRef]

40. Dinenno, F.A.; Jones, P.P.; Seals, D.R.; Tanaka, H. Limb blood flow and vascular conductance are reduced with age in healthy
humans: Relation to elevations in sympathetic nerve activity and declines in oxygen demand. Circulation 1999, 100, 164–170.
[CrossRef] [PubMed]

http://doi.org/10.1007/s00395-008-0759-3
http://www.ncbi.nlm.nih.gov/pubmed/19101751
http://doi.org/10.1016/j.jnutbio.2016.10.005
http://doi.org/10.1074/jbc.M609725200
http://doi.org/10.1074/jbc.M309114200
http://www.ncbi.nlm.nih.gov/pubmed/14645258
http://doi.org/10.1152/ajpendo.00698.2006
http://www.ncbi.nlm.nih.gov/pubmed/17227956
http://doi.org/10.1186/s12970-020-00358-5
http://doi.org/10.1136/hrt.2003.026740
http://www.ncbi.nlm.nih.gov/pubmed/15547040
http://doi.org/10.1253/circj.CJ-09-0692
http://www.ncbi.nlm.nih.gov/pubmed/20134098
http://doi.org/10.1080/07315724.2007.10719590
http://www.ncbi.nlm.nih.gov/pubmed/17536120
http://doi.org/10.1002/hup.1263
http://doi.org/10.1152/ajpendo.00434.2013
http://www.ncbi.nlm.nih.gov/pubmed/24148349
http://doi.org/10.1530/JOE-15-0533
http://doi.org/10.3390/nu11010048
http://www.ncbi.nlm.nih.gov/pubmed/30591664
http://doi.org/10.1093/ajcn/87.3.778
http://doi.org/10.1186/1475-2891-9-63
http://www.ncbi.nlm.nih.gov/pubmed/21118565
http://doi.org/10.3390/nu13051646
http://www.ncbi.nlm.nih.gov/pubmed/34068170
http://doi.org/10.1139/apnm-2015-0543
http://doi.org/10.1024/0300-9831.74.4.269
http://doi.org/10.1108/NFS-04-2019-0126
http://doi.org/10.1016/j.clnu.2017.09.008
http://doi.org/10.1161/01.CIR.100.2.164
http://www.ncbi.nlm.nih.gov/pubmed/10402446


Nutrients 2021, 13, 3895 14 of 15

41. Sjoberg, K.A.; Rattigan, S.; Hiscock, N.; Richter, E.A.; Kiens, B. A new method to study changes in microvascular blood volume
in muscle and adipose tissue: Real-time imaging in humans and rat. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H450–H458.
[CrossRef]

42. Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.;
Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated
vasodilation of the brachial artery: A report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 2002,
39, 257–265. [CrossRef]

43. Purkayastha, S.; Sorond, F. Transcranial Doppler ultrasound: Technique and application. Semin. Neurol. 2012, 32, 411–420.
[CrossRef] [PubMed]

44. Sorond, F.A.; Lipsitz, L.A.; Hollenberg, N.K.; Fisher, N.D. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly
humans. Neuropsychiatr. Dis. Treat. 2008, 4, 433–440. [PubMed]

45. Sorond, F.A.; Schnyer, D.M.; Serrador, J.M.; Milberg, W.P.; Lipsitz, L.A. Cerebral blood flow regulation during cognitive tasks:
Effects of healthy aging. Cortex 2008, 44, 179–184. [CrossRef]

46. Englund, E.K.; Rodgers, Z.B.; Langham, M.C.; Mohler, E.R., 3rd; Floyd, T.F.; Wehrli, F.W. Simultaneous measurement of macro-
and microvascular blood flow and oxygen saturation for quantification of muscle oxygen consumption. Magn. Reson. Med. 2018,
79, 846–855. [CrossRef] [PubMed]

47. Abumrad, N.N.; Rabin, D.; Diamond, M.P.; Lacy, W.W. Use of a heated superficial hand vein as an alternative site for the
measurement of amino acid concentrations and for the study of glucose and alanine kinetics in man. Metabolism 1981, 30, 936–940.
[CrossRef]

48. Heiss, C.; Schroeter, H.; Balzer, J.; Kleinbongard, P.; Matern, S.; Sies, H.; Kelm, M. Endothelial function, nitric oxide, and cocoa
flavanols. J. Cardiovasc. Pharm. 2006, 47 (Suppl. 2), S128–S135. [CrossRef] [PubMed]

49. Mitchell, W.K.; Phillips, B.E.; Wilkinson, D.J.; Williams, J.P.; Rankin, D.; Lund, J.N.; Smith, K.; Atherton, P.J. Supplementing
essential amino acids with the nitric oxide precursor, l-arginine, enhances skeletal muscle perfusion without impacting anabolism
in older men. Clin. Nutr. 2017, 36, 1573–1579. [CrossRef] [PubMed]

50. Atherton, P.J.; Etheridge, T.; Watt, P.W.; Wilkinson, D.; Selby, A.; Rankin, D.; Smith, K.; Rennie, M.J. Muscle full effect after oral
protein: Time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am. J.
Clin. Nutr. 2010, 92, 1080–1088. [CrossRef]

51. Da Silva, W.; Machado, A.S.; Souza, M.A.; Mello-Carpes, P.B.; Carpes, F.P. Effect of green tea extract supplementation on
exercise-induced delayed onset muscle soreness and muscular damage. Physiol. Behav. 2018, 194, 77–82. [CrossRef]

52. Murase, T.; Haramizu, S.; Shimotoyodome, A.; Tokimitsu, I.; Hase, T. Green tea extract improves running endurance in mice by
stimulating lipid utilization during exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R1550–R1556. [CrossRef]
[PubMed]

53. Chang, Y.C.; Liu, H.W.; Chan, Y.C.; Hu, S.H.; Liu, M.Y.; Chang, S.J. The green tea polyphenol epigallocatechin-3-gallate attenuates
age-associated muscle loss via regulation of miR-486-5p and myostatin. Arch. Biochem. Biophys. 2020, 692, 108511. [CrossRef]
[PubMed]

54. Onishi, S.; Ishino, M.; Kitazawa, H.; Yoto, A.; Shimba, Y.; Mochizuki, Y.; Unno, K.; Meguro, S.; Tokimitsu, I.; Miura, S. Green tea
extracts ameliorate high-fat diet-induced muscle atrophy in senescence-accelerated mouse prone-8 mice. PLoS ONE 2018, 13,
e0195753. [CrossRef]

55. Meador, B.M.; Mirza, K.A.; Tian, M.; Skelding, M.B.; Reaves, L.A.; Edens, N.K.; Tisdale, M.J.; Pereira, S.L. The Green Tea
Polyphenol Epigallocatechin-3-Gallate (EGCg) Attenuates Skeletal Muscle Atrophy in a Rat Model of Sarcopenia. J. Frailty Aging
2015, 4, 209–215. [CrossRef] [PubMed]

56. Porter, M.M.; Stuart, S.; Boij, M.; Lexell, J. Capillary supply of the tibialis anterior muscle in young, healthy, and moderately active
men and women. J. Appl. Physiol. 2002, 92, 1451–1457. [CrossRef] [PubMed]

57. Jakobsson, F.; Borg, K.; Edstrom, L. Fibre-type composition, structure and cytoskeletal protein location of fibres in anterior tibial
muscle. Comparison between young adults and physically active aged humans. Acta Neuropathol. 1990, 80, 459–468. [CrossRef]

58. Rattigan, S.; Clark, M.G.; Barrett, E.J. Hemodynamic actions of insulin in rat skeletal muscle: Evidence for capillary recruitment.
Diabetes 1997, 46, 1381–1388. [CrossRef]

59. Vincent, M.A.; Barrett, E.J.; Lindner, J.R.; Clark, M.G.; Rattigan, S. Inhibiting NOS blocks microvascular recruitment and blunts
muscle glucose uptake in response to insulin. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E123–E129. [CrossRef] [PubMed]

60. Ras, R.T.; Zock, P.L.; Draijer, R. Tea consumption enhances endothelial-dependent vasodilation; a meta-analysis. PLoS ONE 2011,
6, e16974. [CrossRef] [PubMed]

61. Jochmann, N.; Lorenz, M.; Krosigk, A.; Martus, P.; Bohm, V.; Baumann, G.; Stangl, K.; Stangl, V. The efficacy of black tea in
ameliorating endothelial function is equivalent to that of green tea. Br. J. Nutr. 2008, 99, 863–868. [CrossRef] [PubMed]

62. Lorenz, M.; Rauhut, F.; Hofer, C.; Gwosc, S.; Muller, E.; Praeger, D.; Zimmermann, B.F.; Wernecke, K.D.; Baumann, G.; Stangl, K.;
et al. Tea-induced improvement of endothelial function in humans: No role for epigallocatechin gallate (EGCG). Sci. Rep. 2017, 7,
2279. [CrossRef] [PubMed]

63. Alexopoulos, N.; Vlachopoulos, C.; Aznaouridis, K.; Baou, K.; Vasiliadou, C.; Pietri, P.; Xaplanteris, P.; Stefanadi, E.; Stefanadis, C.
The acute effect of green tea consumption on endothelial function in healthy individuals. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15,
300–305. [CrossRef] [PubMed]

http://doi.org/10.1152/ajpheart.01174.2010
http://doi.org/10.1016/S0735-1097(01)01746-6
http://doi.org/10.1055/s-0032-1331812
http://www.ncbi.nlm.nih.gov/pubmed/23361485
http://www.ncbi.nlm.nih.gov/pubmed/18728792
http://doi.org/10.1016/j.cortex.2006.01.003
http://doi.org/10.1002/mrm.26744
http://www.ncbi.nlm.nih.gov/pubmed/28497497
http://doi.org/10.1016/0026-0495(81)90074-3
http://doi.org/10.1097/00005344-200606001-00007
http://www.ncbi.nlm.nih.gov/pubmed/16794450
http://doi.org/10.1016/j.clnu.2016.09.031
http://www.ncbi.nlm.nih.gov/pubmed/27746000
http://doi.org/10.3945/ajcn.2010.29819
http://doi.org/10.1016/j.physbeh.2018.05.006
http://doi.org/10.1152/ajpregu.00752.2005
http://www.ncbi.nlm.nih.gov/pubmed/16410398
http://doi.org/10.1016/j.abb.2020.108511
http://www.ncbi.nlm.nih.gov/pubmed/32710883
http://doi.org/10.1371/journal.pone.0195753
http://doi.org/10.14283/jfa.2015.58
http://www.ncbi.nlm.nih.gov/pubmed/27031020
http://doi.org/10.1152/japplphysiol.00744.2001
http://www.ncbi.nlm.nih.gov/pubmed/11896009
http://doi.org/10.1007/BF00294604
http://doi.org/10.2337/diab.46.9.1381
http://doi.org/10.1152/ajpendo.00021.2003
http://www.ncbi.nlm.nih.gov/pubmed/12791603
http://doi.org/10.1371/journal.pone.0016974
http://www.ncbi.nlm.nih.gov/pubmed/21394199
http://doi.org/10.1017/S0007114507838992
http://www.ncbi.nlm.nih.gov/pubmed/17916273
http://doi.org/10.1038/s41598-017-02384-x
http://www.ncbi.nlm.nih.gov/pubmed/28536463
http://doi.org/10.1097/HJR.0b013e3282f4832f
http://www.ncbi.nlm.nih.gov/pubmed/18525384


Nutrients 2021, 13, 3895 15 of 15

64. Jowko, E. Green Tea Catechins and Sport Performance. In Antioxidants in Sport Nutrition; Lamprecht, M., Ed.; Taylor & Francis
Group, LLC: Boca Raton, FL, USA, 2015.

65. Birdsill, A.C.; Carlsson, C.M.; Willette, A.A.; Okonkwo, O.C.; Johnson, S.C.; Xu, G.; Oh, J.M.; Gallagher, C.L.; Koscik, R.L.;
Jonaitis, E.M.; et al. Low cerebral blood flow is associated with lower memory function in metabolic syndrome. Obesity 2013, 21,
1313–1320. [CrossRef] [PubMed]

66. Vincent, M.A.; Clerk, L.H.; Lindner, J.R.; Klibanov, A.L.; Clark, M.G.; Rattigan, S.; Barrett, E.J. Microvascular recruitment is an
early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes 2004, 53, 1418–1423. [CrossRef]

67. Wu, L.Y.; Juan, C.C.; Hwang, L.S.; Hsu, Y.P.; Ho, P.H.; Ho, L.T. Green tea supplementation ameliorates insulin resistance and
increases glucose transporter IV content in a fructose-fed rat model. Eur. J. Nutr. 2004, 43, 116–124. [CrossRef] [PubMed]

68. Wu, L.Y.; Juan, C.C.; Ho, L.T.; Hsu, Y.P.; Hwang, L.S. Effect of green tea supplementation on insulin sensitivity in Sprague-Dawley
rats. J. Agric. Food Chem. 2004, 52, 643–648. [CrossRef] [PubMed]

69. Jung, K.H.; Choi, H.S.; Kim, D.H.; Han, M.Y.; Chang, U.J.; Yim, S.V.; Song, B.C.; Kim, C.H.; Kang, S.A. Epigallocatechin gallate
stimulates glucose uptake through the phosphatidylinositol 3-kinase-mediated pathway in L6 rat skeletal muscle cells. J. Med.
Food 2008, 11, 429–434. [CrossRef]

70. Zhang, Z.F.; Li, Q.; Liang, J.; Dai, X.Q.; Ding, Y.; Wang, J.B.; Li, Y. Epigallocatechin-3-O-gallate (EGCG) protects the insulin
sensitivity in rat L6 muscle cells exposed to dexamethasone condition. Phytomedicine 2010, 17, 14–18. [CrossRef]

71. Ueda, M.; Nishiumi, S.; Nagayasu, H.; Fukuda, I.; Yoshida, K.; Ashida, H. Epigallocatechin gallate promotes GLUT4 translocation
in skeletal muscle. Biochem. Biophys. Res. Commun. 2008, 377, 286–290. [CrossRef] [PubMed]

72. Narumi, K.; Sonoda, J.; Shiotani, K.; Shigeru, M.; Shibata, M.; Kawachi, A.; Tomishige, E.; Sato, K.; Motoya, T. Simultaneous
detection of green tea catechins and gallic acid in human serum after ingestion of green tea tablets using ion-pair high-performance
liquid chromatography with electrochemical detection. J. Chromatogr. B Anal. Technol. Biomed Life Sci. 2014, 945–946, 147–153.
[CrossRef] [PubMed]

73. Nakagawa, K.; Okuda, S.; Miyazawa, T. Dose-dependent incorporation of tea catechins, (-)-epigallocatechin-3-gallate and
(-)-epigallocatechin, into human plasma. Biosci. Biotechnol. Biochem. 1997, 61, 1981–1985. [CrossRef] [PubMed]

74. Morin, L.; Johnell, K.; Laroche, M.L.; Fastbom, J.; Wastesson, J.W. The epidemiology of polypharmacy in older adults: Register-
based prospective cohort study. Clin. Epidemiol. 2018, 10, 289–298. [CrossRef] [PubMed]

http://doi.org/10.1002/oby.20170
http://www.ncbi.nlm.nih.gov/pubmed/23687103
http://doi.org/10.2337/diabetes.53.6.1418
http://doi.org/10.1007/s00394-004-0450-x
http://www.ncbi.nlm.nih.gov/pubmed/15083319
http://doi.org/10.1021/jf030365d
http://www.ncbi.nlm.nih.gov/pubmed/14759162
http://doi.org/10.1089/jmf.2007.0107
http://doi.org/10.1016/j.phymed.2009.09.007
http://doi.org/10.1016/j.bbrc.2008.09.128
http://www.ncbi.nlm.nih.gov/pubmed/18845128
http://doi.org/10.1016/j.jchromb.2013.11.007
http://www.ncbi.nlm.nih.gov/pubmed/24342507
http://doi.org/10.1271/bbb.61.1981
http://www.ncbi.nlm.nih.gov/pubmed/9438978
http://doi.org/10.2147/CLEP.S153458
http://www.ncbi.nlm.nih.gov/pubmed/29559811

	Introduction 
	Materials and Methods 
	Ethical Approval 
	Volunteers and Study Design 
	Study Supplements and ONS Feeding 
	Measurement of LBF Using Doppler Ultrasound 
	Measurement of MBF Using CEUS 
	Measurement of Endothelial Function and Cerebral Blood Flow 
	Blood Glucose and Plasma Insulin 
	Statistical Analysis 

	Results 
	LBF, LVC and LVR 
	MBV, MFV and MBF 
	FMD and TCD 
	Blood Glucose and Plasma Insulin 

	Discussion 
	Conclusions 
	References

