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1. Introduction

Time series data can often possess complex and dynamic characteristics. Most
commonly-encountered time series in practice are nonstationary – the mean
and autocovariance of the series vary over time. Modelling how these properties
change over time is crucial for making inference on the data. Nonstationary time
series arise in a variety of applications, for example in environmental sciences
[12], climatology [7], and financial time series [25]. In this article, we consider a
time series model of the form

Xt,T = μ

(
t

T

)
+ εt,T , 0 ≤ t < T, (1)

where μ : [0, 1] → R is a non-parametric deterministic trend function, and εt,T
is a locally stationary wavelet (LSW) process with E(εt,T ) = 0. This model
accounts for nonstationarity in both the first and second-order structure of the
time series: the time-varying mean function is encapsulated in the trend term,
while the time-varying second-order behaviour is described by the LSW process
term. A thorough explanation of Model (1), including necessary background on
LSW processes, is given in Section 2.

First and second-order estimation of a time series are most commonly con-
sidered separately, rather than jointly within the one common methodological
framework. However, there is an emerging literature where the mean function
is estimated as well as parameters responsible for second-order nonstationarity.
For example [28] consider time varying AR(p)-processes where the mean func-
tion and AR coefficients are estimated jointly within the same procedure. Other
methods, such as [6] which focuses on the semi-parametric setting, consider re-
sults where the mean function is time-varying and/or estimated. [13] test for
increases and decreases in trend in the presence of stationary time series errors,
while [9] consider the problem of prediction in locally stationary time series.

The problem of performing inference on the mean function in the presence
of nonstationary second-order structure is a highly challenging one. In [32], for
example, the authors describe a method using wavelet thresholding, however the
threshold used is data-driven and depends on the nonstationary second-order
structure, which is ultimately unknown. [31] employs kernel-based methods to
estimate a smooth non-parametric trend function in the presence of locally
stationary errors. [10] test for relevant changes in the mean of nonstationary
processes. Similarly, there is less attention in the literature on nonstationary
second-order estimation in the presence of a non-zero mean function.

In order to estimate a nonstationary second-order structure a zero-mean pro-
cess is often assumed. One of the most well-known methods for removing the
trend in a time series is differencing: see for example [3] and [27]. The time
series {Xt} can be, for example, first-differenced to obtain a new time series,
{∇Xt = Xt − Xt−1}. Differencing aims to remove a trend without the need
to estimate any parameters (whose estimation often includes an assumption of
stationary errors). In the time series literature, it is often the case that inference
is made on the properties of the differenced time series. In contrast, this article
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proposes a method to jointly estimate the time-varying trend and second-order
structure of the original time series, by employing the commonly-used strategy
of differencing a time series in order to remove the trend.

Our approach to this problem can be summarised as follows. By differencing
the time series to remove the trend, we can estimate the appropriate second-
order quantities of interest of the locally stationary wavelet part of Model (1).
This is achieved by considering the effect of differencing on the second-order
properties of the series in order to develop an appropriate estimation proce-
dure. Expanding upon the rigorous theory developed in [21], we obtain results
on the consistent estimation of the second-order structure using our modified
estimation strategy for the original time series. Using this estimate, we discuss a
wavelet thresholding technique to estimate the trend function μ(t/T ) in a prin-
cipled manner, by taking into account the time-varying second-order behaviour.
Our methodology thus enables the joint estimation of the first and second-order
structure of nonstationary time series. The applications demonstrate the added
utility that estimating the second order structure of the original time series
brings.

The rest of the article is organised as follows. In Section 2 we introduce the
time series model which we focus on in this article, describe key assumptions,
and discuss necessary background to LSW processes. In Section 3, we analyse
the effect that differencing has on the spectral structure of a time series, and
explain the intuition behind our methodology. Furthermore, we describe the
methodology for consistent estimation of the second-order structure in the pres-
ence of trend, and in Section 4 we use this estimate in order to estimate the
trend of the series. Simulation studies assessing the method’s performance are
given in Section 5. In Section 6, we apply our framework to a data example,
demonstrating the utility of the method, while concluding remarks are given in
Section 7. All proofs and additional simulation and data application results are
contained within the supplementary material.

2. Wavelets and model formulation

In this section we introduce the modelling paradigm that we will use, as well as
explaining the necessary background concepts.

In the LSW framework, wavelets act as building blocks, analogous to the
Fourier exponentials in the classical Cramér representation for stationary pro-
cesses. Briefly, wavelets are oscillatory basis functions which provide efficient
(sparse) multiscale representations of signals. Wavelets are useful in estimating
time-varying quantities, especially nonstationary characteristics, due to these
attractive properties. For an overview of wavelet techniques, see for example
[17] or [30]. For a function f ∈ L2(R), we have the expression

f(x) =
∑
k∈Z

cJφJ,k(x) +
∑
j≤J

∑
k∈Z

dj,kψj,k(x),

where the wavelet ψj,k(x) = 2−j/2ψ(2−jx−k) is a dilated and translated version
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of a (mother) wavelet ψ(x) and similarly for the father wavelet φ(x). The coef-
ficients dj,k at location k and scale j represent the oscillatory behaviour of the
signal f at a particular frequency, whereas the coefficients cj,k give information
about the mean behaviour of the signal at different scales j.

Next, we define the discrete wavelets that make up the building blocks of the
LSW model. Let ψ be a compactly supported wavelet, for example any within
the Daubechies family [8]. Denote by {hk, gk} the low- /high- pass filter pair
associated with ψ. The pair {hk, gk} filter a signal into low and high frequency
components respectively and form a pair of quadrature mirror filters: the fre-
quency response of {hk} is the mirror image, about the value π/2, of {gk}.
Letting Nh be the number of non-zero values of {hk}, the filters are related by
the equation gk = (−1)khNh−k [17, Equation (2.52)].

Define Lj = (2−j − 1)(Nh − 1) + 1. The discrete wavelets at a given scale
j ∈ Z−, as discussed in [21], are defined as the vectors ψj = (ψj,0, . . . , ψj,Lj−1),
where

ψ−1,n =
∑
k

gn−2kδ0k = gn, n = 0, . . . , L−1 − 1, (2)

ψj−1,n =
∑
k

hn−2kψj,k, n = 0, . . . , Lj − 1, (3)

where δ0k is the Kronecker delta. The discrete father wavelet is defined similarly
using the associated low-pass filter {hk}. The simplest example of a wavelet basis
is the Haar wavelet, which is given by

ψH
j,k = 2−j/2

I
(
0 ≤ k ≤ 2−j−1 − 1

)
− 2−j/2

I
(
2−j−1 ≤ k ≤ 2−j − 1

)
,

where j = {−1,−2,−3, . . .} and k ∈ Z.

2.1. Model definition

Below, we define the Trend Locally Stationary Wavelet (T-LSW) model, which
is composed of a deterministic Lipschitz continuous trend component and a
locally stationary wavelet component. Our T-LSW model, developing on the
theory of locally stationary wavelet processes of [21], allows for simultaneous
inference on the time-varying mean and autocovariance of a time series.
Definition 2.1. A trend locally stationary wavelet (T-LSW) process {Xt,T }, t =
0, . . . , T − 1, and T = 2J ≥ 1 for J ∈ N is a doubly-indexed stochastic process
with the following representation in the mean-square sense:

Xt,T = μ

(
t

T

)
+

−1∑
j=−∞

∑
k∈Z

wj,k;Tψj,k−tξj,k, (4)

where {ξj,k} is a random, uncorrelated, zero-mean orthonormal increment se-
quence, {wj,k;T } is a set of amplitudes, and {ψj,k}j,k is a set of discrete non-
decimated wavelets defined using the discrete wavelets given in Equations (2)
and (3). The quantities in representation (4) possess the following properties:



4402 E. T. McGonigle et al.

1. The function μ : [0, 1] ∈ R is Lipschitz continuous with constant K > 0,
i.e ∣∣∣∣μ( t

T

)
− μ

( s

T

)∣∣∣∣ ≤ K

T
, ∀ s, t ∈ [0, T ].

2. There exists, for each j ≤ −1, a Lipschitz continuous function Wj(z) for
z ∈ (0, 1) which satisfies the following properties:

−1∑
j=−∞

|Wj(z)|2 < ∞ uniformly in z ∈ (0, 1);

the Lipschitz constants Lj associated to Wj are uniformly bounded in j

and satisfy
∑−1

j=−∞ 2−jLj < ∞. There exists a sequence of constants Cj

such that for each T

sup
k

∣∣∣∣wj,k;T −Wj

(
k

T

)∣∣∣∣ ≤ Cj

T
,

where for each j ≤ −1 the supremum is over k = 0, . . . , T − 1, and where
the sequence {Cj} satisfies

∑−1
j=−∞ Cj < ∞.

The model imposes the same assumptions on the LSW component as in
[21], allowing for locally stationary second-order structure. Equation (4) uses
discrete non-decimated wavelets, as opposed to standard discrete wavelets. Dis-
crete non-decimated wavelets can be shifted to any location defined by the finest
resolution level, not just by dyadic shifts of 2−j as is the case for discrete deci-
mated wavelets. Discrete non-decimated wavelets are no longer orthogonal, but
an overcomplete collection of shifted vectors. The use of shift-equivariant non-
decimated wavelets ensures that the representation in (4) includes a large class
of correlated process, including all short memory stationary processes.

Model (4) also permits nonstationary first-order behaviour by incorporating
a smooth mean function μ. Imposing a Lipschitz continuous trend assumption
is not overly restrictive, given that trend functions are generally assumed to
be smooth and slowly-evolving. In particular, polynomials (restricted to the
interval [0, 1]) are Lipschitz continuous, as are sinusoids. Such an assumption is
commonly made in the literature, see for example [31] and [13]. Furthermore,
in Section 3.6 we will discuss the case when the trend is not Lipschitz. Lastly,
we note that the assumption that T = 2J is a theoretical one; in practice, using
the boundary handling method described in [16], we can analyse time series of
any length.

2.2. Background to LSW processes

In the original work of [21], the trend function μ(t/T ) in Equation (4) is assumed
to be everywhere zero, which forces the process mean E(Xt,T ) to be equal to zero
for all t. Consequently, within the original LSW framework it is only possible
to estimate time-varying second-order structure when the time series does not
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exhibit a trend. In order to discuss our proposed methodology in the setting
where a trend is present, we dedicate the rest of the section to recalling a
number of definitions and results from [21], which we will expand upon and
adapt to the setting where a trend is present.

The second-order structure of a LSW process is uniquely determined by its
spectrum. The evolutionary wavelet spectrum (EWS) of a LSW process is de-
fined as Sj(z) := |Wj(z)|2 for rescaled time z = k/T ∈ (0, 1), and measures the
contribution to variance at a particular rescaled time z and scale j. Since the
Wj are assumed to be Lipschitz continuous, the spectrum Sj is also Lipschitz
continuous, which ensures it evolves slowly over time. Alterations to the LSW
model that use different assumptions on the EWS can be found in [11] and [29],
which assume respectively that the EWS is piecewise constant and of bounded
total variation.

For ease of notation we now drop the dependence on T in the subscripts of the
model quantities. The EWS is estimated via the empirical wavelet coefficients
of the time series, given by dj,k := 〈Xt, ψj,k−t〉 =

∑
t Xtψj,k−t. As with Fourier

approaches, the raw wavelet periodogram Ijk := |dj,k|2 is a biased, inconsistent
estimator of the EWS ([21], Proposition 4):

E

(
Ijk

)
=

∑
l

AjlSl(k/T ) + O(T−1), (5)

Var(Ijk) = 2
(∑

l

AjlSl(k/T )
)2

+ O(2−jT−1), (6)

where the operator A = (Ajl)j,l<0 is given by Ajl := 〈Ψj ,Ψl〉 =
∑

τ Ψj(τ)Ψl(τ),
and the autocorrelation wavelets are defined by Ψj(τ) :=

∑
k∈Z

ψj,kψj,k−τ , j <

0, τ ∈ Z. Hence, for the vector of periodograms I(z) := {I l�zT�}l=−1,...,−J , and
the vector of corrected periodograms L(z) := {Lj

�zT�}j=−1,...,−J with L(z) =
A−1

J I(z), where the J-dimensional matrix AJ := (Ajl)j,l=−1,...,−J ,

E (L(z)) = E
(
A−1

J I(z)
)

= S(z) + O(T−1) ∀ z ∈ (0, 1), (7)

where S(z) := {Sj(z)}j=−1,...,−J . The raw wavelet periodogram is first smoothed
and then corrected to produce an asymptotically unbiased, consistent estimator.
There are several approaches to smoothing for consistency, for example via a
running mean as in [18] or wavelet thresholding as in [21]. The correction is
performed by premultiplying the (smoothed) raw wavelet periodogram by A−1

J ,
as motivated by Equation (7). The operator A is shown to have bounded inverse
for all Daubechies compactly supported wavelets in [2].

The local autocovariance (LACV) function for a LSW process provides in-
formation about the covariance at a rescaled location z = k/T ∈ (0, 1). The
LACV, c(z, τ), of a LSW process with EWS {Sj(z)} is defined as c(z, τ) =∑−1

j=−∞ Sj(z)Ψj(τ), for τ ∈ Z, z ∈ (0, 1). The LACV can be thought of as a
decomposition of the autocovariance of a process over scales and rescaled time
locations. The LACV is estimated by plugging in the smoothed, corrected esti-
mate for the EWS into the definition of the LACV. Using wavelet thresholding



4404 E. T. McGonigle et al.

of the EWS estimator, it is shown in [21] that the LACV estimator is consis-
tent. The next section addresses the consistent estimation of these second-order
quantities in the presence of first-order nonstationarity.

3. LSW estimation in the presence of trend via differencing

In this section, we discuss methodology for estimation of the evolutionary wavelet
spectrum and local autocovariance function of a trend-LSW process. In order
to estimate these quantities, we employ the ubiquitous practice of differencing
to remove the trend, but crucially correct for the effect of this on the spectrum.

3.1. Using differencing to detrend a time series

One of the most common methods for removing the trend in a time series is
differencing, see for example [3] and [27]. The time series {Xt} can be, for
example, first-differenced to obtain a new time series, {∇Xt = Xt − Xt−1},
upon which inference is then performed. One advantage of differencing is that
no parameters are estimated in the differencing operation, which is not the case
for detrending achieved using an estimator of the trend. An n-th order difference
is capable of removing a polynomial trend of degree n from the data.

One of the consequences of differencing is that the second-order statistical
properties of the time series in Model (4) will change, sometimes quite drasti-
cally. For example, differencing may induce spurious autocorrelation or lower
the autocorrelation at certain lags, or change the sparsity structure of the un-
derlying wavelet spectrum. Therefore, it is potentially problematic to directly
use the differenced process for inference on the original process. In the context
of ARIMA modelling, differencing is performed in order to induce stationarity,
and estimation is then performed on the differenced series. However, this rea-
soning does not hold within our setting: if we difference a nonstationary LSW
process, the result will still be a nonstationary process. Due to the potentially
complex structure of the LSW process, properties of the differenced series are
not necessarily representative of the original series. However, in order to esti-
mate the trend component in (4), we require an estimate of the second-order
structure of the original time series, not the differenced series.

It is straightforward to produce an example where spectral behaviour can
be completely altered as a consequence of detrending using, for example, first-
differencing. Consider the zero-mean LSW process of length T = 210 = 1024,
defined by the spectrum Sj(z) = 1 for j = −1, 0 otherwise. This time series is
referred to as the scale −1 Haar moving average process, and can be written
as Xt = (εt − εt−1)/

√
2, where the εt are independent identically distributed

(IID) random variables. Taking the first-difference, we obtain ∇Xt = Xt −
Xt−1 = (εt − 2εt−1 + εt−2) /

√
2. Computing the expectation of the raw wavelet

periodogram of the differenced time series, we find that E(I−1
k ) = 5, and for

j < −1, E(Ijk) = 3× 2j+1. Therefore, for all z ∈ (0, 1), the expected value of the
LSW estimator at time z is E(L(z)) = E(A−1

10 I(z)).
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Fig 1. Left: original spectrum of the scale −1 Haar moving average process. Right: expectation
of spectral estimate of differenced time series.

However, a problem arises since E(Ijk) =
∑

l AjlSl(k/T ) + O(T−1), due to
having differenced the time series. In particular, the expectation of the EWS
estimate at scale −2 at any time point is given by E

(∑
l A

−1
−2,lI

l
k

)
= −0.79 < 0.

Therefore, the expectation of our estimate of the spectrum at level −2 is −0.79,
while in the original time series we had S−2(z) = 0 for all z ∈ (0, 1). In Figure 1
left, we see a plot of the original spectrum, while on the right, we see the
expectation of the corrected periodogram estimate, showing a clear discrepancy.

Differencing can also cause vastly alter the sparsity structure of the spectrum
of the error process. The white noise process Yt = εt, where the εt are IID random
variables, can be represented as an LSW process using Haar wavelets and a
spectrum defined by Sj(z) = 2j for all z ∈ (0, 1). Differencing this time series
gives ∇Xt = Xt−Xt−1 = εt−εt−1, which is a Haar LSW process with spectrum
Sj(z) = 2 for j = −1, Sj(z) = 0 otherwise. This induces autocorrelation in the
time series at lag 1, which is similar to what is observed when over-differencing
in classical stationary time series. Therefore, it can be seen that we must take
into account the differencing of the time series if we wish to say something
meaningful about the original series.

3.2. Intuition behind estimation procedure

Denote the LSW component of Model (4) by εt. Given that the trend component
of the Model (4) is Lipschitz continuous, first-differencing the time series yields

∇Xt = Xt −Xt−1 = μ

(
t

T

)
+ εt − μ

(
t− 1
T

)
− εt−1

= εt − εt−1 + O(T−1).

Hence, differencing the original series results in a differenced locally stationary
wavelet process that is asymptotically zero-mean. We wish to estimate the evo-
lutionary wavelet spectrum of the original time series {Xt} using the differenced
series {∇Xt}. Proceeding by using the standard estimation procedure of [21] by
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taking the squared wavelet coefficients and premultiplying by the inverse of the
A matrix, as in Equation (7), is not appropriate, as we have seen in Section 3.1.
Denote the empirical non-decimated wavelet coefficients of the first-differenced
series by

d̃j,k :=
∑
t

∇Xtψj,k−t.

We can compute the expectation of the raw wavelet periodogram Ĩjk := |d̃j,k|2,
which will yield an analogous result to Equations (5) and (6). Hence, our es-
timation strategy will follow that of [21]. However, the correction of the raw
wavelet periodogram to achieve unbiasedness will require a different correction
matrix, to account for the fact that the raw wavelet periodogram is calculated
on the differenced series.

Note that, although wavelets themselves are differencing operators, coarser
wavelet scales accumulate large bias due to the trend and large filter length.
Bias in the coarse scales will also affect the bias in the finer scales, due to the
necessity for correcting the estimate using a correction matrix. This can be
particularly noticeable for trends that display cusps. Differencing first removes
the trend immediately, ensuring that the wavelet transform does not accumulate
large bias.

Remark 1. We can write the differenced process, in the mean-square sense, as

εt − εt−1 =
∑
j

∑
k

wj,kψj,k−tξ̃j,k,

where ξ̃j,k = ξj,k − ξj,k−1. This process satisfies all of the required properties of
a standard LSW process except one: the increments are no longer orthonormal.
Instead, we have that

Cov(ξ̃j,k, ξ̃l,m) =

⎧⎪⎨⎪⎩
2 for j = l, k = m,

−1 for j = l and k = m + 1 or k + 1 = m,

0 otherwise.

Therefore, there is a distinction between the observed time series, which we
assume to have LSW errors, and the differenced one, which we do not. This is in
contrast to existing approaches utilising differencing for second-order estimation,
such as ARIMA models, which instead assume that the differenced series follows
the model form rather than the original series.

3.3. Asymptotic behaviour of the differenced raw wavelet
periodogram

As motivated by the discussion in the previous section, we estimate the spectrum
by calculating the raw wavelet periodogram of the first-differenced time series.
We return to the case of general n-th differencing in Section 3.6. For the purpose
of theoretical results, we assume that the {ξj,k} in Model (4) are Gaussian. In
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practice, this assumption is not required, and in the simulation study in Section 5
we also investigate the case where the {ξj,k} are exponential random variables.
Before obtaining the result of the expectation of the raw wavelet periodogram,
we define the following two operators, which involve the inner product of the
autocorrelation wavelets at lag 1.
Definition 3.1. Let B be the backshift operator such that BΨj(τ) = Ψj(τ − 1).
Define the operator A1 = (A1

jl)j,l<0 by

A1
jl := 〈Ψj , BΨl〉 =

∑
τ

Ψj(τ)Ψl(τ − 1),

and the operator D1 = (D1
jl)j,l<0 by

D1
jl := 〈(1 −B)Ψj , (1 −B)Ψl〉 = 2Ajl − 2A1

jl

= 2
∑
τ

Ψj(τ) (Ψl(τ) − Ψl(τ − 1)) .

Denote by A1
J := (A1

jl)j,l=−1,...,−J and D1
J := (D1

jl)j,l=−1,...,−J as the corre-
sponding J-dimensional matrices of A1 and D1 respectively.

Proposition 3.2. The matrix D1
J is invertible.

Intuitively, it is not surprising that the quantity D1 will appear when we cal-
culate the expectation of the squared wavelet coefficients of the first-differenced
series. Indeed, we have the following result for the asymptotic behaviour of the
raw wavelet periodogram of the first-differenced time series.

Proposition 3.3. Let Ĩjk = |d̃j,k|2 be the wavelet periodogram of the first-
differenced time series. Under the assumptions of Model (4),

E(Ĩjk) =
∑
l

D1
jlSl

(
k

T

)
+ O(T−1),

Var(Ĩjk) = 2
(∑

l

D1
jlSl

(
k

T

))2

+ O(2−jT−1).

Therefore, for the vector of periodograms I(z) := {I l�zT�}l=−1,...,−J , and
the vector of corrected periodograms L(z) := {Lj

�zT�}j=−1,...,−J with L(z) =
(D1

J )−1I(z),

E (L(z)) = E
(
(D1

J)−1I(z)
)

= S(z) + O(T−1) ∀ z ∈ (0, 1),

where S(z) := {Sj(z)}j=−1,...,−J is the EWS of the original process. Thus we
can bias correct the raw wavelet periodogram of the first-differenced time series
by using the inverse of D1

J , instead of the inverse of AJ from [21].
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Remark 2. Proposition 3.3 can be generalised to the lag L differenced time
series {∇LXt := Xt−Xt−L}T−1

t=L for any fixed integer L. The expectation of the
raw wavelet periodogram of the lag L differenced series at location k is given by∑

l

DL
jlSl

(
k

T

)
+ O(T−1),

where DL
jl = 2

∑
τ Ψj(τ)(Ψl(τ)−Ψl(τ −L)). Then, the matrix DL

J is invertible
by the same argument used to show invertibiltiy of D1

J . This enables the raw
wavelet periodogram of the L-differenced series to be corrected using the matrix
(DL

J )−1. This technique can be used to extend the method to allow for seasonal
trends, as shown empirically in Section 5.3.

3.4. Bounded invertibility of Haar and Shannon operators

In order to achieve an asymptotically unbiased estimator of the EWS, we require
boundedness of the inverse operator used when performing the bias correction
step in the estimation procedure. In the original LSW work of [21], bounded-
ness of the inverse of the operator A was shown in the case of the Haar and
Shannon wavelets. The members of the Daubechies compactly supported fam-
ily of wavelets are characterised by the number of vanishing moments. The
Haar wavelet is equivalently the Daubechies extremal phase wavelet with one
vanishing moment, while the Shannon wavelet is the limiting wavelet in the
Daubechies compactly supported family [4] as the number of vanishing mo-
ments tends to ∞. As noted in [33], Haar and Shannon wavelets can therefore
be viewed as the lower and upper “extremes” of the family of Daubechies com-
pactly support wavelets. Therefore, proving bounded invertibility in these two
cases intuitively suggests that bounded invertibility should hold in the case of
all Daubechies’ compactly supported wavelets. It is for these two wavelets that
we prove bounded invertibility here; extensions to other wavelets are left for
future work.

Proposition 3.2 shows that the matrix D1
J is invertible with bounded inverse.

Asymptotically, however, the inverse operator is unbounded, which mirrors a
result in the setting of locally stationary Fourier time series [24, Equation 5].
Intuitively this is expected, since the differencing operator itself is asymptoti-
cally non-invertible. We can interpret the expectation result in Proposition 3.3
as a quantification of the effect of differencing on the spectral structure of the
time series.

We can account for this theoretical issue by proving bounded invertibility
for a related, rescaled operator P : 	2(N) → 	2(N), where the entries of P
are given by Pjl = 2−j/2D1

jl2−l/2. The use of P is due to the fact that the
inverse of the operator D1 is unbounded, so our approach is to work with the
operator P , which we can show has a bounded inverse. Showing that P possesses
a bounded inverse enables us to show theoretical consistency properties of the
wavelet periodogram-based estimator. Hence, we show for the Haar and Shannon



Trend-LSW modelling with differencing 4409

wavelet families that P possesses a bounded inverse, which enables consistent
estimation of the EWS for Model (4). Note that, in the practical implementation
of the methodology, we still use the inverse of the D1

J matrix for correcting the
raw wavelet periodogram as it is an invertible matrix (Proposition 3.2).

Theorem 3.4. Let λmin(P ) denote the smallest eigenvalue of P , where the
entries of P are given by Pjl = 2−j/2D1

jl2−l/2. Then, for the Haar and Shannon
wavelet families, there exists δ > 0 such that λmin(P ) ≥ δ and hence ||P−1|| <
∞. That is, P is positive-definite and has a bounded inverse.

3.5. Smoothing and estimation theory

As in the original LSW model, the wavelet periodogram is not a consistent
estimator and must be smoothed. Smoothing to achieve consistency can be
performed, for example, via wavelet thresholding or a running mean. For brevity,
we provide theoretical results for wavelet thresholding, building on known results
in the literature.

In order to utilise the result on boundedness of the operator P−1 in Theo-
rem 3.4, we rewrite the formula for the expectation of the wavelet periodogram.
We can express the expectation in terms of P and a scaled version of Sj , given
by S̃j = 2j/2Sj , by rescaling the periodogram appropriately. Concretely, con-
sider the auxiliary process εt =

∑
j,k w̃jkψ̃j,k−tξlm, where w̃jk = 2j/4wjk and

ψ̃j,k−t = 2−j/4ψj,k−t. Then, the expectation of the raw wavelet periodogram
(with respect to the rescaled wavelet ψ̃j,k−t) is given by

E(Ĩjk) =
∑
l

PjlS̃l(k/T ) + O(T−1),

where S̃j(k/T ) = 2j/2Sj(k/T ) and Pjl = 2−j/2D1
jl2−l/2.

Then, to achieve consistency we take a similar approach to [21]. For each fixed
scale j, the rescaled periodogram Ĩjk of a Gaussian LSW process (which is scaled
χ2-distributed) is smoothed as a function of z = k/T using, for example, discrete
wavelet transform (DWT) shrinkage or translation invariant (TI) denoising of
[5]. Using the DWT, smoothing is performed with respect to an orthonormal
wavelet basis {φ′

r0,s(z), ψ
′
rs(z)} of L2([0, 1]). Here, ψ′

rs(z) = 2r/2ψ′(2rz − s),
where r0 is the coarsest scale analysed and s = 0, . . . , 2r − 1. Smoothing is
achieved using non-linear thresholding of the empirical wavelet coefficients v̂jrs
of Ĩjk.

Explicitly, as described in [33], for levels j = −1, . . . ,−J , the wavelet expan-
sion of the scaled periodogram can be written as

Ĩj�zT� =
∑
r

∑
s

vjrsψ
′
rs(z),

where the “true” wavelet coefficients are given by vjrs =
∫ 1
0 Ĩj�zT�ψ

′
rs(z) dz. As

in [33], we employ a slight abuse of notation, with ψ′
r0−1,s = φ′

r0,s, in order
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to include the scaling coefficient at the coarsest scale r0 of the second wavelet
scheme. The empirical analogues of the wavelet coefficients are given by

v̂jrs = T−1
T−1∑
n=0

Ĩjn,Tψ
′
rs(n/T ), for r = r0, . . . , log2(T ), s = 0, . . . , 2r − 1. (8)

Analogously, we can build non-decimated wavelet coefficients for TI denoising.
Let ψ′

r(z) = 2r/2ψ′(2rz), and let

v̂jrs = T−1
T−1∑
n=0

Ĩjn,Tψ
′
rs((n− s)/T ), for r = r0, . . . , log2(T ), s = 0, . . . , T − 1.

Then, denoising is achieved by applying non-linear hard wavelet thresholding to
the wavelet coefficients v̂jrs. The resulting estimator is obtained by inverting the
wavelet transform using only the coefficients which remain after thresholding:

Îj�zT� =
∑
r

∑
s

ṽjrsψ
′
rs(z), z ∈ (0, 1),

where ṽjrs = v̂jrsI(|v̂jrs| > λ) are the hard thresholded wavelet coefficients with
threshold λ. The particular threshold is specified in Theorem 3.5, as is the
appropriate set of indices r over which to perform the summation.

The theoretical argument to consistently estimate Sj(k/T ) is thus as follows.
First, smooth the rescaled wavelet periodogram at each scale j using wavelet
thresholding. Next, use the (bounded) P -inverse matrix to correct the smoothed,
rescaled periodogram. Finally, multiply the estimate at each scale by 2−j/2, since
Sj(k/T ) = 2−j/2S̃j(k/T ), yielding the final estimator, Ŝj(k/T ), of Sj(k/T ).
Using the hard threshold λ(j, r, s, T )2 = Var(v̂jrs) log2(T ) when smoothing the
periodogram via wavelet thresholding, we can show that the smoothed, corrected
estimate Ŝj(z) is consistent with respect to the L2 error.

Theorem 3.5. Let ψ′ be a wavelet of bounded variation, with 2r = o(T ) for
wavelet coefficients v̂jrs. For a Gaussian trend-LSW process and using the thresh-
old λ2(j, r, s, T ) = Var(v̂jrs) log2(T ), for each fixed j,

E

[∫ 1

0

(
Ŝj(z) − Sj(z)

)2
dz

]
= O

(
2−jT−2/3 log2(T )

)
. (9)

The rate obtained in Equation (9) is a consequence of known results on
wavelet thresholding estimators, utilised in [22], and the multiplication of 2−j/2

that occurs in the estimation procedure. The rate highlights the fact that dif-
ferencing the time series has resulted in an “information loss”, with spectral
estimation in coarser scales resulting in slower rates of convergence. As a conse-
quence, we can only consistently estimate the wavelet spectrum for a proportion
of the finest scales j. In particular, we have that we need 2−j = O(T−2/3−δ)
for some δ > 0 in order for the mean-squared error of the EWS estimator to
be o(1). Next, we tackle estimation of the local autocovariance via the EWS
estimate.
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Proposition 3.6. Define ĉ(z, τ) by replacing Sj(z) by Ŝj(z) in the equation for
the local autocovariance and replacing the lower limit in the sum from j = −∞
to j = −J0, i.e.

ĉ(z, τ) =
−1∑

j=−J0

Ŝj(z)Ψj(τ).

Let T → ∞ and let J0 = α log2 T for α ∈ (0, 1). Assume that Sj(z) ≤ D2γj for
some positive constant D, where γ = (3α)−1 − 1/2. Then,

E

[∫ 1

0
(ĉ(z, τ) − c(z, τ))2 dz

]
= O

(
Tα−2/3 log2(T )

)
,

i.e. ĉ(z, τ) is a consistent estimator of c(z, τ) for each fixed τ ∈ Z, provided that
Tα−2/3 log2(T ) → 0.

We reiterate that the rescaling argument used to achieve consistency in Theo-
rem 3.5 and Proposition 3.6 is performed purely for theoretical reasons; practical
considerations for estimation are discussed at the end of the section. The results
in Theorem 3.5 and Proposition 3.6 show that in the case where the trend is
Lipschitz continuous, we can consistently estimate both the EWS and LACV of
the original process using first-order differences and a modified bias correction.

The assumption placed on the decay rate of the EWS in Proposition 3.6 is a
purely technical one, utilised in order to ensure mean square consistency of the
estimator. The assumption controls for the fact that the local autocovariance is
estimated using the finest J0 scales, instead of across infinite scales which are
not available in practice. The specific form of the decay rate is calculated in
order to balance with the error rate of the wavelet thresholding procedure.

3.6. n-th order differencing

In some cases, a first-difference may not be enough to remove a trend. Further
differencing can be performed, although it is usually only necessary to at most
second-difference a time series [1]. If we assume that the (n−1)-th derivative of
μ is Lipschitz, then the n-th difference of the time series will be (asymptotically)
free of trend. We denote the n-th difference of a time series as {∇nXt}.

To calculate the expectation of the squared non-decimated wavelet coef-
ficients of the n-th differenced series, we can argue in a similar fashion to
the case of first-differencing. Denote the operator An = (An

jl)j,l<0 by An
jl :=

〈Ψj , B
nΨl〉 =

∑
τ Ψj(τ)Ψl(τ −n), and the corresponding J-dimensional matrix

An
J := (An

jl)j,l=−1,...,−J . The entries of the matrix An
J are given by the inner

product of the autocorrelation wavelet with the autocorrelation wavelet at lag
n. If we difference a time series n times, then the expectation of the squared
wavelet coefficients will involve linear combinations of inner product autocor-
relation wavelet matrices from lag 0 (i.e. the standard A-matrix) up to lag n
(the matrix An). The result for the expectation of the wavelet periodogram of
the n-th differenced time series mirrors that of the first-differenced series, and
is given by the following proposition.



4412 E. T. McGonigle et al.

Proposition 3.7. Let d̃j,k =
∑

t ∇nXtψj,k−t be the non-decimated wavelet
coefficients of ΔnXt, and let Ĩjk := |d̃j,k|2. If the (n − 1)-th derivative of μ is
Lipschitz, then

E(Ĩjk) =
∑
l

Dn
jlSl(k/T ) + O(T−1),

where

Dn
jl =

(
2n
n

)
Ajl + 2

n∑
τ=1

(−1)τ
(

2n
n + τ

)
Aτ

jl.

Corollary 3.8. For second differences,

E(Ĩjk) =
∑
l

(
6Ajl − 8A1

jl + 2A2
jl

)
Sl

(
k

T

)
+ O(T−1).

Note that Proposition 3.7 generalises Proposition 4 in [21], in which n = 0. As
in the case of first-differences, the bias operator Dn does not possess a bounded
inverse. Intuitively, for higher order differences, the eigenvalues of Dn decay
to 0 at increasingly faster rates. As such, correcting the estimation in a similar
fashion as was described in Theorem 3.5 yields much slower rates of convergence.

For the remainder of the section, we focus on the situation where a second-
difference suffices to remove the trend. We can show that using first-differences
suffices to obtain a consistent spectral estimate, even though the trend has not
been fully removed. The first-differences of the trend are Lipschitz continuous,
and as such the magnitude of the wavelet coefficients can be bounded using the
wavelet characterisation of Hölder spaces [8]. Using this bound, we can bound
the error of the first-differenced estimator in terms of the error due to estimation
and error due to the squared wavelet coefficients of the first-differenced trend.
Using this argument we are able to show consistency of both the spectrum and
local autocovariance estimator as follows.

Theorem 3.9. Assume that the first derivative of μ is Lipschitz, and let J1 =
β log2 T for β ∈ (0, 1). Further assume that the smoothed raw wavelet peri-
odogram is corrected across the finest J1 scales only. Under the same conditions
as Theorem 3.5, for each fixed j, Ŝj(z) is a consistent estimator of Sj(z), pro-
vided that T 7β−4 → 0 as T → ∞, since

E

[∫ 1

0

(
Ŝj(z) − Sj(z)

)2
dz

]
= O

(
2−jT 7β−4)+ O

(
2−jT−2/3 log2(T )

)
+ O

(
2−jT−β

)
.

Define ĉ(z, τ) by replacing Sj(z) by Ŝj(z) in the equation for the local autoco-
variance and replacing the lower limit in the sum from j = −∞ to j = −J0,
i.e.

ĉ(z, τ) =
−1∑

j=−J0

Ŝj(z)Ψj(τ),
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where J0 = α log2 T for α < β ∈ (0, 1). Under the assumptions of Proposi-
tion 3.6, provided that Tα+7β−4 → 0 and Tα−2/3 log2(T ) → 0, ĉ(z, τ) is a
consistent estimator of c(z, τ), since for each fixed τ ∈ Z,

E

[∫ 1

0
(ĉ(z, τ) − c(z, τ))2 dz

]
= O

(
Tα+7β−4)+O

(
Tα−2/3 log2(T )

)
+O(Tα−β).

Hence, we can still consistently estimate the EWS and LACV via first-order
differences when the trend of the time series has a Lipschitz continuous first
derivative. Therefore, we argue that in most practical scenarios, it is sufficient
to only perform one difference in order to estimate the evolutionary wavelet
spectrum and local autocovariance in the presence of a trend.

In practice, we set J0 = J1 when performing EWS and LACV estimation.
That is, we use J1 scales for estimating the EWS, and the same number of scales
for estimating the LACV. Performing estimation in this fashion ensures that the
spectral estimate is well-behaved, and is an approach commonly adopted in the
LSW literature. We suggest using J1 = �β log2(T )�, with β = 7/10, motivated
by extensive numerical results given in Appendix A.5. Furthermore, this choice
is in agreement with other discussion in the literature, see for example [26].
Finally, an algorithmic description of the spectral estimation procedure, where
smoothing is carried out either via wavelet thresholding or using a running
mean, is detailed in Algorithm 1.

4. Trend estimation using the spectral estimate

In this section, we discuss a wavelet thresholding approach for the estimation of
the trend component of Model (4). If a first (or second) difference is capable of
removing the trend from a time series, we have shown that we can consistently
estimate the time-varying evolutionary wavelet spectrum using the smoothed,
corrected raw wavelet periodogram of the differenced time series. We now wish
to use this estimate in order to estimate the trend of the time series.

4.1. Wavelet thresholding estimator

The approach we take is to use the spectral estimate directly within a wavelet
thresholding estimation procedure. In [32], the authors describe a wavelet thresh-
olding methodology for consistent curve estimation in the presence of locally sta-
tionary errors, subject to mild regularity conditions. The authors propose to use
a local median absolute deviation pre-estimate for the variance of the wavelet
coefficients, which is used in the threshold. We instead incorporate the consis-
tent spectral estimate into the thresholding procedure. This yields an analogous
version of Theorem 1 in [32], for the specific case of Lipschitz continuous trend
functions.

With a slight abuse of notation, denote the estimated wavelet coefficients of
the time series by v̂rs. The results in this section apply to the commonly used
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Algorithm 1: Spectral Estimation Procedure
Input: Data {Xt}T−1

t=0 , spectral estimation wavelet ψ0, maximum scale J1, smoothing
wavelet ψ′ or smoothing bin width parameter W

1. Compute wavelet periodogram of first-differenced time series:

Ĩj
k =

(∑
t

∇Xtψ
0
j,k−t

)2

, j = −1, . . . ,−J1.

2. Compute the smoothed wavelet periodogram Îjk for j = −1, . . . ,−J1, either by
(A) Wavelet thresholding:

Îjk =
∑
r

∑
s

ṽjrsψ
′
rs(k/T ),

where ṽjrs = v̂jrsI(v̂jrs > λ(j, r, s, T )), with v̂jrs given in Equation (8), and
λ(j, r, s, T ) = σ̂j log(T ), with σ̂j computed using the median absolute deviation
estimator of the v̂jrs.

(B) Running mean :

Îj
k

=
1

2W + 1

W∑
w=−W

Ĩj
k+w

.

3. Compute the corrected, smoothed wavelet periodogram as

Ŝ(k/T ) = (D1
J1

)−1Îk,

where Ŝ(k/T ) = {Ŝj(k/T )}−J1
j=−1, Îk = {Îlk}

−J1
l=−1, and D1

J1
is defined in

Definition 3.1.
Output: Spectrum estimate {Ŝj(k/T )}−J1

j=−1 for k = 0, . . . , T − 1.

soft and hard thresholding rules, given respectively by

v̂Srs = sgn(dr,s) (|dr,s| − λ)I(|dr,s| > λ) ,
v̂Hrs = dr,sI(|dr,s| > λ),

where λ = λ(r, s, T ) is the threshold, and I is the indicator function. Asymptotic
normality of the empirical wavelet coefficients, established in [32], permits the
use of a coefficient-dependent universal threshold λ(r, s, T ) = σrs

√
2 log(T ),

where σ2
rs is the variance of the wavelet coefficients. This yields the following

result for the wavelet thresholding estimator μ̂ obtained using the DWT and
the threshold λ(r, s, T ), with either soft or hard thresholding, calculated in the
same way as described in Section 3.5. We note here however, that the result also
holds for TI wavelet denoising (outlined in Section 3.5) since the non-decimated
wavelet coefficients can be seen as a set of DWT coefficients computed from
cyclic shifts of the data.

Proposition 4.1. Let ψ̃ be a wavelet of bounded variation, with 2r = o(T )
for wavelet coefficients v̂rs. For a trend-LSW process with Lipschitz continu-
ous trend, and using the threshold λ(r, s, T ) = σrs

√
2 log(T ), the estimator μ̂
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satisfies

E

[∫ 1

0
(μ̂(z) − μ(z))2 dz

]
= O

((
log(T )

T

)2/3
)
.

Note that this result is subject to mild regularity assumptions on the LSW
component of the model, all of which are satisfied. The innovations {ξj,k} are
not restricted to be Gaussian, and can for example be exponential, gamma, or
inverse Gaussian distributed. To estimate the variance σ2

rs, which is necessary
to choose the threshold λ(r, s, T ), we use an estimate of the variance of the
empirical wavelet coefficients. If the LSW process is generated by wavelet ψ0,
and the wavelet used for thresholding is denoted ψ1, the variance of the empirical
wavelet coefficients dj,k :=

∑
t Xtψ

1
j,k−t is given by

Var(dj,k) =
∑
l

C1,0
jl Sl(k/T ) + O(T−1), (10)

where C
(1,0)
jl =

∑
τ Ψ0

j (τ)Ψ1
l (τ), and where Ψ0

j (τ) and Ψ1
j (τ) are autocorrelation

wavelets with respect to wavelets ψ0 and ψ1. By plugging in the estimate Ŝj(z),
obtained in Section 3.5, into the expression (10), this yields the universal-type
threshold λ(r, s, T ) = σ̂r,s

√
2 log(T ), where σ̂2

r,s =
∑

l C
1,0
rl Ŝl(s/T ).

4.2. Practical considerations

In alignment with discussion in [32], in practice we analyse approximately the
finest 7/10 scales of the time series, the same as in the spectral estimation pro-
cedure. In practice, we have found that applying hard thresholding yields better
performance. We recommend the use of translation invariant (TI) thresholding
over a standard discrete wavelet transform. We have found that it offers stronger
practical performance, in terms of the mean squared error of the estimator. As
noted in [17], use of a non-decimated transform ensures that there is “more
chance” of the wavelet coefficients picking up the signal of the time series.

Note that it is possible to obtain negative estimates of the variance of the
wavelet coefficients, although based upon our empirical analyses this is rare. In
this case we replace the negative values by the nearest neighbouring positive
value, which was found to have no discernible impact on the trend estimation
procedure. We recommend the use of the Daubechies Least Asymmetric wavelet
with 4 vanishing moments, as we have found empirically that it works well for
estimation purposes and also helps to minimise the number of negative variance
estimates. Note that Proposition 4.1 holds for non-Gaussian time series, while
theoretical results concerning the second-order estimation require an assumption
of normality. In practice, our approach still performs well in the presence of non-
Gaussian noise, as we show in the simulation study.

To complete the discussion, we provide algorithmic pseudo code for the trend
estimation procedure using TI thresholding in Algorithm 2.
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Algorithm 2: Trend Estimation Procedure
Input: Data {Xt}T−1

t=0 , spectrum estimate {Ŝj(k/T )}−J1
j=−1 for k = 0, . . . , T − 1,

spectrum estimation wavelet ψ0, trend estimation wavelet ψ1

1. Compute non-decimated wavelet transform of data:

vr,s =
∑
t

Xtψ
1
r,s−t, j = −1, . . . ,− log2(T ).

2. Compute variance of wavelet coefficients as

σ̂2
r,s = Var(vr,s) =

−J1∑
l=−1

C1,0
rl

Ŝl(s/T ).

3. Obtain the thresholded wavelet coefficients v̂r,s using the soft or hard
thresholding rules

v̂Srs = sgn(dr,s) (|dr,s| − λ(r, s, T ))I(|dr,s| > λ(r, s, T )) ,

v̂Hrs = dr,sI(|dr,s| > λ(r, s, T )),

where
λ(r, s, T ) = σ̂r,s

√
2 log(T ), s = −1, . . . ,−J1.

4. Invert the thresholded wavelet coefficients v̂r,s using basis averaging to obtain
μ̂(t/T ).

Output: Trend estimate μ̂(t/T )

Fig 2. Left: spectrum S1, sinusoid with “burst”. Centre: S2, concatenated moving average
process. Right: S3, slowly-evolving fine-scale power.

5. Simulation study

In this section we illustrate the ability of our proposed methodology to jointly
estimate the mean and EWS of a trend-LSW process by performing a simulation
study. For each set of simulations, we use the three EWS shown in Figure 2,
which represent spectra with distinct characteristics. The spectra are explic-
itly defined in the supplementary material. Spectrum S1, studied in [17], dis-
plays coarse-scale, slowly-evolving sinusoidal behaviour with a fine-scale burst
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Fig 3. Example realisations from each trend and spectrum scenario. Dashed line shows time
series with true underlying trend shown in solid line. Left: spectrum S1, sinusoid with “burst” .
Centre: S2, concatenated moving average process. Right: S3, slowly-evolving fine-scale power.

in power at time point 800. Spectrum S2 is a concatenation of moving aver-
age processes and contains power moving from fine to coarser scales, and was
examined in [21]. Spectrum S3 contains slowly-evolving power at fine scales.

We simulate 100 realisations of time series {Xt}T−1
t=0 of length T = 210 = 1024

from LSW processes with those spectra, with different additive trend functions.
The trends used in the simulation study are a linear, sinusoidal, logistic and
piecewise quadratic trend, denoted in Figure 3 by μli, μs, μlo and μq respec-
tively, and defined explicitly in the supplementary material. These functions are
Lipschitz continuous with varying degrees of smoothness, with μq also being
non-differentiable at two time-points. All LSW processes were simulated using
the Daubechies Extremal Phase wavelet with 4 vanishing moments. Similar re-
sults, which can be found in the supplementary material, were reported for other
wavelets. Example realisations from the simulation study are shown in Figure 3.
All simulations were performed in R with estimation procedures implemented
using modifications to code in the locits [19] and wavethresh [20] packages.
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5.1. Spectral estimation performance

In this simulation we show that by first-differencing to remove the trend, we can
obtain an unbiased EWS estimate, which in turn can be used to obtain a trend
estimate that performs well. For each realisation, the un-smoothed estimate of
the EWS was calculated, which was then used to obtain an averaged estimate
for the EWS across the 100 realisations. In alignment with the discussion in
Section 3.5, we correct the raw wavelet periodogram across the finest 7 scales.

We report the mean squared error of the averaged spectrum compared with
the true spectrum in Table 1. We compare these values with the mean squared
error obtained by using the standard LSW estimation procedure of [21]. In this
case, no trend is present, the estimate is performed using the original A matrix
inverse for bias correction, and no differencing is performed. This is calculated
using the ewspec3 command in the locits R package. This is reported in the
“None” row in Table 1, and represents the ‘best-case’ performance with which
to compare. We see that despite the presence of a trend, differencing enables us
to approximately remove it in order to accurately estimate the spectrum. The
estimation error is smaller using our methodology than the “None” case for spec-
trum 2, while it is marginally worse for the other two spectra. Visual inspection
of the resulting estimators shows they are generally satisfactory, with exam-
ples given in Figure 4. Note that, while the spectral estimation could also have
been performed using a second difference instead of first, this over-differencing
results in higher estimation error. A numerical comparison between first and
second differences, showing the effect of over-differencing, is given in Appendix
A.3.

Table 1

Mean squared error comparison for the averaged spectrum estimate, multiplied by 103,
across the spectrum and trend scenarios.

Trend Spectrum 1 Spectrum 2 Spectrum 3
None 3.13 4.88 1.87
Linear 3.32 4.63 2.76
Sine 3.32 4.63 2.76

Logistic 3.32 4.63 2.76
Piece. Quad. 3.32 4.67 2.79

5.2. Trend estimation performance

We next assess the trend estimation procedure. The trend estimate is computed
using the Daubechies Least Asymmetric wavelet with 4 vanishing moments,
analysing the finest 6 scales. The spectrum estimate used in the thresholding
procedure is smoothed with a running mean of bin width size 128. We compute
the average mean squared error across the 100 realisations, as well as the stan-
dard deviation of the errors. For all simulations, a hard threshold of the form
σ̂r,s

√
2 log(1024) is used.
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Fig 4. Example averaged spectral estimates. Left: spectrum 1, linear trend. Middle: spectrum
2, logistic trend. Right: spectrum 3, piecewise quadratic trend.

We compare our method to two other wavelet-based trend estimation meth-
ods. In order to make a fair comparison, we use the same hyper-parameters
where applicable. Firstly, we compare to the standard wavelet thresholding
method based upon a global, time-independent universal threshold given by
σ̂r

√
2 log(1024), computed using the wavethresh package in R. This estima-

tor assumes that the error process is second-order stationary, and is referred to
as stationary wavelet thresholding (SWT) in the tables. Secondly, we compare
to the wavelet-based trend estimation procedure in [32]. No code is publicly
available for this method, and so we have implemented the method utilising
wavethresh and following the description of the computation of the thresh-
old in Section 2.5 of [32]. In the tables, the abbreviation LSWT refers to our
method of locally stationary wavelet thresholding, and MVSWT refers to the
wavelet-based method of [32].

We repeat this simulation twice; firstly using Gaussian innovations in the
LSW process, and secondly using exponentially distributed innovations. Fur-
ther results examining the performance in other, non-LSW error scenarios can
be found in the supplementary material. The results of the simulation for Gaus-
sian LSW processes are reported in Table 2, while the results for exponentially
distributed innovations are shown in Table 3. Values in bold are the lowest
values for each trend and spectrum value across the three methods.

From the tables we observe that the performance of our estimator in the
presence of exponentially distributed random innovations is comparable to the
Gaussian case. The error is consistent across the various time series scenarios,
and the standard deviation is low. We see that our method outperforms the two
other wavelet-based methods across all trend and spectrum scenarios.

5.3. Extension to seasonal time series

Our approach can be extended empirically to time series that display an addi-
tive deterministic seasonal component. From the discussion in Remark 2, if the
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Table 2

Average mean squared error and standard deviation in brackets of trend estimate over 100
realisations generated using Gaussian innovations.

Trend Spectrum Method
LSWT SWT VSMWT

Linear
1 0.024 (0.012) 0.519 (0.112) 0.303 (0.100)
2 0.030 (0.019) 0.762 (0.078) 0.225 (0.068)
3 0.028 (0.024) 0.441 (0.040) 0.160 (0.038)

Sine
1 0.022 (0.010) 0.526 (0.110) 0.286 (0.109)
2 0.026 (0.014) 0.744 (0.075) 0.215 (0.068)
3 0.022 (0.017) 0.447 (0.043) 0.156 (0.037)

Logistic
1 0.023 (0.015) 0.494 (0.109) 0.261 (0.093)
2 0.033 (0.019) 0.753 (0.083) 0.226 (0.071)
3 0.027 (0.024) 0.449 (0.037) 0.164 (0.035)

Piece. quad.
1 0.022 (0.012) 0.517 (0.127) 0.290 (0.105)
2 0.032 ( 0.018) 0.720 (0.087) 0.216 (0.072)
3 0.028 (0.024) 0.366 (0.046) 0.167 (0.039)

Table 3

Average mean squared error and standard deviation in brackets of trend estimate over 100
realisations generated using exponential innovations.

Trend Spectrum Method
LSWT SWT VSMWT

Linear
1 0.030 (0.018) 0.521 (0.148) 0.305 (0.127)
2 0.035 (0.024) 0.779 (0.108) 0.328 (0.092)
3 0.040 (0.026) 0.497 (0.052) 0.318 (0.057)

Sine
1 0.027 (0.025) 0.520 (0.119) 0.308 (0.102)
2 0.033 (0.020) 0.782 (0.110) 0.322 (0.085)
3 0.037 (0.022) 0.495 (0.060) 0.309 (0.064)

Logistic
1 0.030 (0.018) 0.508 (0.126) 0.291 (0.108)
2 0.036 (0.022) 0.788 (0.098) 0.332 (0.085)
3 0.044 (0.031) 0.506 (0.061) 0.327 (0.058)

Piece. quad.
1 0.031 (0.016) 0.524 (0.116) 0.319 (0.106)
2 0.038 (0.022) 0.748 (0.098) 0.326 (0.100)
3 0.045 (0.031) 0.432 (0.055) 0.318 (0.055)

time series possesses a (known) number of seasons K, lag K-differencing can
be performed to remove the seasonality in order to estimate the EWS of the
original time series. To illustrate this, we investigated the performance of the
method in the presence of seasonal and smooth trends.

We simulated 100 realisations of time series according to the various trend
and spectrum scenarios described in Section 5.1. To each of these scenarios, we
added a (monthly) stationary seasonal component with K = 12, where the value
of each of the 12 seasonal components K1, . . . ,K12 is generated from a uniform
random variable on the interval [0, 10]. That is, the time series is generated by

Xt = μ

(
t

T

)
+ st + εt,

where μ is the smooth trend function, the seasonal component st = K1 for t
mod 12 = 1, . . . , st = K12 for t mod 12 = 0, and εt is the LSW component.

Lastly, we considered the case where the seasonal component can be time-
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Fig 5. Example averaged spectral estimates. Left: spectrum 1, seasonal trend only. Middle:
spectrum 2, seasonal and sinusoidal trend. Right: spectrum 3 and time-varying seasonal trend
only.

varying, with the smooth trend component μt = 0. In this case, the seasonal
component is given by a linear trend where the initial values are simulated from
the uniform distribution on the interval [0, 10], with slope parameters generated
as a uniform random variable on the interval [−0.05, 0.05].

Table 4

Mean squared error comparison for the averaged spectrum estimate, multiplied by 103,
across the spectrum, trend, and seasonality scenarios.

Trend Spectrum 1 Spectrum 2 Spectrum 3
Seasonal + No Trend 4.76 8.44 2.54

Seasonal + Linear 4.76 8.44 2.54
Seasonal + Sine 4.76 8.43 2.54

Seasonal + Logistic 4.76 8.44 2.54
Seasonal + Piece. Quad. 4.79 8.46 2.55

Time-Varying Seasonal + No Trend 4.76 8.43 2.53

The results of these experiments are given in Table 4, which can be compared
to the results for the lag 1 differences in Table 1. In particular, the performance
is actually slightly better for spectrum 3; the smoothest spectrum. The other 2
spectra yield worse results, however: the performance drop-off is most noticeable
for spectrum 2, which contains piecewise stationary components. This is due
to the increased bias caused in estimating the time-varying spectra using lag
12 differences instead of lag 1 differences. Examples of the averaged spectrum
estimates are given in Figure 5, qualitatively showing strong similarities to the
examples in Figure 4.

6. Data application: Baby electrocardiogram data

Next, we discuss a data application that highlights the benefits of our proposed
methodology. We re-analyse the baby electrocardiogram (ECG) data set first
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Fig 6. Left: original ECG data. Right: first-differenced ECG data.

examined in [21]. Furthermore, in the supplementary material, we analyse a
wave height data set collected from a buoy in the Atlantic Ocean that was
studied in [15].

In Figure 6 left, we see a time series for the ECG reading of a 66-day-old
infant. The series is available in the wavethresh package and was collected by
the Institute of Child Health at the University of Bristol. The series can be seen
to exhibit both nonstationary trend and second-order behaviour. As [21] note,
one reason for the nonstationarity is that the ECG varies considerably over
time and changes significantly between periods of sleep and waking. In [21],
the authors first-difference the series to remove the trend, as shown in Figure 6
right, resulting in an approximately zero-mean time series. Then, LSW analysis
is performed on the differenced series.

We instead perform analysis on the original series, and note the similarities
and differences to the original analysis in [21]. We use the Daubechies Least
Asymmetric wavelet with 10 vanishing moments to analyse both series and the
same bin width of size 128 for the running mean smoother, but as discussed we
use a different matrix to correct for bias. In Figure 7 left, we see our analysis
on the original series. The top plot is not scaled, while the bottom plot is
individually scaled at each level. On the right, we see (our version of) the original
analysis of [21], again with top plot unscaled and bottom plot scaled individually.
In line with previous discussion, only the finest 7 scales were used for analysis.
From the top plots, we can see the effect that differencing has had on the
resulting spectral estimate. In our estimate based on the original time series, we
see that the power is spread fairly evenly across scales. However, in the spectral
estimate of the differenced series, power is concentrated in the finest scales. From
the bottom plots, we see that both estimates exhibit similar overall behaviour,
with both evolving over time in a similar fashion.

Due to the difference in magnitude between the estimated spectra at different
scales, some features of the original series can be identified more easily in our
analysis. In [21], an accompanying data set, the sleep state of the observed
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Fig 7. Comparison of the spectral estimates. Top left: spectrum estimate using our methodol-
ogy, unscaled, bottom left: scaled individually. Top right: spectrum estimate of the differenced
series, unscaled, bottom right: scaled individually.

infant, is also used in the analysis. The sleep state is judged by a trained human
observer, and is measured as either quiet (1), between quiet and active (2), active
(3), or awake (4). A strong association between sleep state and spectral value is
observed for scales −1 to −5 in [21]. However, using the original series instead
of the differenced series can allow this association to become more apparent: in
particular, consider the spectrum estimate at scale −4, enlarged in Figure 8. In
solid line is the spectral estimate of the original series, while the dashed line
shows the spectral estimate for the differenced series. The dotted line shows the
sleep state of the infant. Our estimate correlates strongly with the sleep state,
especially in highlighting periods of being awake (sleep state 4). In general,
the “signal” of variability appears stronger in our analysis, which is due to the
differencing lowering the level of autocorrelation within the series. Furthermore,
our estimate contains fewer negative spectral values, perhaps suggesting that
the original time series is better represented as an LSW process as opposed to
the first-differenced series.

We perform TI wavelet thresholding using the Daubechies Least Asymmetric
wavelet with 4 vanishing moments to estimate the trend of the Baby ECG series.
We analyse the finest 7 scales of the series, using a hard universal threshold of
σ̂r,s

√
2 log(2048), where σ̂r,s is calculated using the spectral estimate in Figure 7

left. The trend estimate is shown in Figure 9 in the solid line. We see that in
general the estimate is quite smooth, with more rapid changes in mean occurring
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Fig 8. Estimate of the EWS at scale −4: solid line is for the original series, while the dashed
line is for the differenced series. Sleep state shown in dotted line.

Fig 9. Trend estimate for the Baby ECG data shown in solid line, with data shown in dashed
line.

at approximately 23:00, 03:00, and 06:00, corresponding to changes in sleep
state. The estimate again correlates with the underlying sleep state, highlighting
the benefit of performing a joint first and second-order analysis of the data.
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7. Concluding remarks

In this article, we have considered the problem of jointly modelling time-varying
first and second-order properties of nonstationary time series. Our model em-
ploys the locally stationary wavelet model of [21], used for modelling second-
order nonstationarity, and adapts it to incorporate a nonstationary trend com-
ponent. Using the common statistical technique of differencing, we have shown
that we can consistently estimate the evolutionary wavelet spectrum and local
autocovariance of the original series. Using these results, we have proposed a
wavelet thresholding approach for the nonparametric estimation of the trend of
the time series. The trend estimation methodology benefits from the informa-
tion provided by the ability to consistently estimate the second-order structure
of the time series, despite the presence of the trend component.

Using our methodology we have analysed two time series that highlight the
strength of the method to provide information about the original time series,
which can become masked when only considering the differenced time series.
In particular, our analysis of the Baby ECG data set highlights the benefit of
modelling the stochastic component of the original series for the purpose of
identifying sleep states more readily.

Appendix A: Additional numerical results

A.1. Spectra and trend functions used

In this section we provide additional information for the discussion in Section 5
of the main text. The three evolutionary wavelet spectra used in the simulation
study in Section 5 are defined as

S1
j (z) =

⎧⎪⎨⎪⎩
sin2(4πz) for j = −5, z ∈ (0, 1),
1 for j = −1, z ∈ (800/1024, 900/1024),
0 otherwise,

S2
j (z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 for j = −1, z ∈ (0/1024, 256/1024),
1 for j = −2, z ∈ (256/1024, 512/1024),
1 for j = −3, z ∈ (512/1024, 768/1024),
1 for j = −4, z ∈ (768/1024, 1),
0 otherwise,

S3
j (z) =

⎧⎪⎨⎪⎩
1
2 + 1

4 sin(πz) − 1
2 cos(3πz/2) for j = −1, z ∈ (0, 1),

1
2 − 1

8 sin(2πz) − 1
4 cos(πz/2) for j = −3, z ∈ (0, 1),

0 otherwise.

The four trend functions used in the simulation study are defined as

μli(z) = 4z,
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Table 5

Mean squared error, multiplied by 103, comparing across the spectrum and trend scenarios.
Trend Spectrum 1 Spectrum 2 Spectrum 3
None 1.25 3.32 1.30
Linear 1.29 4.09 2.34
Sine 1.29 4.09 2.34

Logistic 1.29 4.09 2.34
Piece. Quad. 1.29 4.11 2.34

μs(z) = −2 sin(2πz) − 3
2 cos(πz),

μlo(z) = 4
1 + exp(4 − 7 log 4z) ,

μq(z) =

⎧⎪⎨⎪⎩
12z2 + 2z for z ∈ (0, 300/1024),
1.81 − 16z2 + 4z for z ∈ (300/1024, 800/1024),
4z − 7.94 for z ∈ (800/1024, 1),

where z = t/T .

A.2. Results for Daubechies LA10 wavelet LSW processes

In this section we report the results of the simulations when the Daubechies
Least Asymmetric wavelet with 10 vanishing moments (LA10) is used to sim-
ulate the LSW processes. Table 5 reports the mean squared error comparison
for the averaged spectral estimates, where the LSW process has been generated
using the LA10 wavelet. The estimation error for spectrum 1 is almost iden-
tical comparing to “None” using our methodology with a trend present, while
for spectrum 2 and 3 there is only a marginal increase. The results show that
the method performs well irrespective of the wavelet that generates the LSW
process.

Table 6 reports the average mean squared error and standard deviation for
the trend estimate where the 100 LSW processes have been generated using
Gaussian innovations and the LA10 wavelet. Lastly, Table 7 reports the average
mean squared error and standard deviation for the trend estimate where the 100
LSW processes have been generated using exponential innovations and the LA10
wavelet. For both cases, a hard threshold of σ̂r,s

√
2 log(1024) is used. Again, the

error is consistent across the various time series scenarios. We see that the trend
estimate performs well no matter the generating wavelet of the process.

A.3. Effect of over-differencing

In the main text, we recommended using a first difference for removing the trend.
Here, we compare the estimation performance of the spectral estimate computed
using first- and second-differences, to highlight the effect of over-differencing
the time series. We perform the same simulations as in Section 5.1 of the main
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Table 6

Average mean squared error and standard deviation in brackets of trend estimate over 100
realisations generated using Gaussian innovations and the Daubechies LA10 wavelet.

Trend Spectrum Method
LSWT SWT VSMWT

Linear
1 0.019 (0.013) 0.516 (0.117) 0.275 (0.091)
2 0.038 (0.024) 0.746 (0.083) 0.207 (0.0644)
3 0.029 (0.027) 0.494 (0.042) 0.171 (0.039)

Sine
1 0.021 (0.012) 0.547 (0.130) 0.287 (0.111)
2 0.031 (0.016) 0.752 (0.077) 0.214 (0.067)
3 0.024 (0.018) 0.485 (0.045) 0.156 (0.040)

Logistic
1 0.022 (0.013) 0.544 (0.112) 0.306 (0.107)
2 0.042 (0.028) 0.764 (0.088) 0.214 (0.066)
3 0.028 (0.025) 0.491 (0.038) 0.170 (0.041)

Piece. quad.
1 0.025 (0.014) 0.537 (0.127) 0.280 (0.110)
2 0.041 (0.024) 0.736 (0.076) 0.211 (0.080)
3 0.034 (0.028) 0.414 (0.043) 0.162 (0.042)

Table 7

Average mean squared error and standard deviation in brackets of trend estimate over 100
realisations generated using exponential innovations and the Daubechies LA10 wavelet.

Trend Spectrum Method
LSWT SWT VSMWT

Linear
1 0.027 (0.016) 0.547(0.140) 0.312 (0.107)
2 0.050 (0.028) 0.793 (0.113) 0.337(0.096)
3 0.040 (0.029) 0.529 (0.066) 0.311 (0.068

Sine
1 0.027 (0.014) 0.540 (0.138) 0.311 (0.121)
2 0.041 (0.021) 0.788 (0.118) 0.340 (0.103)
3 0.036 (0.019) 0.542 (0.059) 0.308 (0.067)

Logistic
1 0.026 (0.017) 0.544 (0.143) 0.315 (0.118)
2 0.046 (0.026) 0.801 (0.112) 0.254 (0.091)
3 0.045 (0.030) 0.541 (0.053) 0.327 (0.059)

Piece. quad.
1 0.032 (0.020) 0.515 (0.122) 0.296 (0.102)
2 0.044 (0.028) 0.774 (0.111) 0.347 (0.100)
3 0.042 (0.029) 0.473 (0.057) 0.319 (0.061)

Table 8

Relative mean squared error comparison for the averaged spectrum estimate, across the
spectrum and trend scenarios.

Trend Spectrum 1 Spectrum 2 Spectrum 3
Linear 1.562 1.251 1.461
Sine 1.562 1.251 1.461

Logistic 1.561 1.251 1.461
Piece. Quad. 1.562 1.251 1.459

text, and compute the averaged spectral estimate using both first- and second-
differences. To compare the two results, we compute the relative mean squared
error (RMSE) of the first-differenced estimate and second-differenced estimate,
in each of the trend and spectrum scenarios. To control for boundary effects, we
only compute the RMSE on the non-boundary wavelet coefficients. The results
are reported in Table 8. We see that over-differencing yields a higher MSE for
spectral estimation. The RMSE is above 1 in all scenarios, showing that the
first-difference estimator achieves a uniformly stronger performance.
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Table 9

Average mean squared error and standard deviation in brackets of trend estimate over 100
realisations generated from Models A – D.

Trend Model Method
LSWT SWT VSMWT

Linear

A 0.140 (0.061) 0.376 (0.108) 0.482 (0.139)
B 0.147 (0.040) 0.265 (0.070) 0.500 (0.086)
C 0.129 (0.048) 0.435 (0.080) 0.532 (0.095)
D 0.216 (0.059) 0.349 (0.160) 0.840 (0.129)

Sine

A 0.124 (0.069) 0.389 (0.134) 0.494 (0.130)
B 0.134 (0.033) 0.241 (0.091) 0.499 (0.087)
C 0.122 (0.040) 0.421 (0.083) 0.516 (0.100)
D 0.174 (0.045) 0.256 (0.146) 0.806 (0.135)

Logistic

A 0.129 (0.048) 0.370 (0.091) 0.474 (0.100)
B 0.150 (0.033) 0.267 (0.077) 0.495 (0.092)
C 0.129 (0.047) 0.431 (0.093) 0.531 (0.098)
D 0.214 (0.051) 0.357 (0.147) 0.837 (0.143)

Piece. quad.

A 0.141 (0.051) 0.362 (0.094) 0.467 (0.115)
B 0.141 (0.040) 0.275 (0.073) 0.500 (0.099)
C 0.131 (0.046) 0.420 (0.084) 0.525 (0.098)
D 0.221 (0.057) 0.332 (0.138) 0.834 (0.145)

A.4. Further trend estimation simulations

Next, we assess the performance of the trend estimation procedure in the pres-
ence of non LSW-type error structures to highlight the versatility of our method-
ology. In particular, we simulate 100 realisations of time series using the previ-
ously defined trends, with (Gaussian) errors simulated from the following mod-
els:

(A) Time-varying AR(2) model with parameters given by φ1(z) = 0.8 cos(1.5−
cos(4πz)), φ2(z) = −0.2 + 0.4z, z ∈ (0, 1).

(B) AR(1) model with parameter φ = 0.6.
(C) Time-varying AR(1) model with parameter given by φ(z) = 0.7 for z ∈

(0, 600/1024) and φ(z) = −0.3 for z ∈ (600/1024, 1).
(D) ARMA(1,3) model with AR parameter φ = 0.4 and MA parameters θ1 =

0.8, θ2 = −0.3, and θ3 = 0.4.

These scenarios represent some common stationary and nonstationary error
structures. Model A is an AR(2) process with slowly-evolving autoregressive
parameters, and is a variant of a process studied in [32]. Model C represents
a piecewise stationary AR(1) process with a single changepoint in the autore-
gressive parameter. The results of these simulations are given in Table 9, again
with bold values showing the lowest reported mean squared error. We see that
our methodology is able to perform well across the four scenarios, working well
in both stationary and nonstationary second-order settings. It outperforms the
other methods in all of the trend and error scenarios. Overall, we see that our
proposed methodology offers strong practical performance across a variety of
time series models.
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A.5. Choice of α and β Parameters

In this section we investigate the effect that the choice of the parameters α and β
have on estimation quality, in order to inform the best choice of the parameters
in practice. Recall that β is the proportion of scales used when estimating the
spectrum, whilst α is the number of scales used for estimating the LACV.

Firstly, the choice of β was investigated. We simulated 1000 realisations of
LSW processes, for three wavelets: the Haar, Daubechies EP4, and Daubechies
EP10 wavelet. For each realisation the spectrum was given by Sj = Uj2γj , where
Uj ∼ Uniform(0, 5) and γ > 0 is varied. This provides a more complete picture
of the impact of the choice of β than only using the three previously defined
spectra. The decaying spectral structure is used in order to control for the fact
that estimation of the EWS is more difficult in coarse scales, and mirrors the
assumption in Proposition 3.6 in the main text. In addition, we use a global
mean to smooth the raw wavelet periodogram at each level, in order to focus
on the effect of β, rather than the bin width parameter.

We calculated the smoothed EWS estimate, while varying the number of
scales used to perform EWS correction, for γ = 1/2, 1/4, 1/8, and time series
length T = 512, 1024, 2048. We computed the average mean squared error over
the 1000 realisations between the estimated and true spectra. For sake of brevity,
the results presented here are for the case where the time series has no trend:
further simulations in each of the trend scenarios considered in the main text
produced almost identical results. The results are shown in Figure 10. Note that
the results in Figure 10 suggest that the choice of β is dependent on the wavelet
used: the higher the number of vanishing moments, the higher the optimal choice
of β. Across all (27) scenarios, the mean value of β that produces the lowest
average mean squared error in each scenario is 0.721. This motivates setting
J1 = � 7

10 log2(T )� as a flexible rule-of-thumb. In practice, different values of β
can also be compared visually to assess the fit.

Next, given the above choice of β = � 7
10 log2(T )�, we perform the same set

of simulations as above, this time with varying α, the number of scales used
to estimate the LACV function. Note that necessarily α ≤ β. We compute the
average MSE (averaged across lags) of the estimated autocovariance function,
computed at the first 2J−3 lags where J = log2(T ). The results of the simulation
are shown in Figure 11. These show that taking α = β yields the best practical
performance in all scenarios.

A.6. Canadian wave height data

Here we examine publicly available wave height data for a location in the North
Atlantic. The data we use are obtained from Fisheries and Oceans Canada,
East Scotian Slop buoy ID C44137. The data measures wave heights collected
at hourly intervals, from approximately mid-June 2005 to mid-May 2006, giv-
ing a time series of length 213 = 8192, and is available in the changepoint
package in R [14]. [15] also perform nonstationary analysis on the series, using
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Fig 10. Average mean squared error (MSE) for different choices of J1, for varying values of
γ and T , using the Haar, EP4, and EP10 wavelets.

the first-differences of a longer version of the series to detect changepoints in
variance only. The data are plotted in Figure 12 left, from which we see larger
wave heights in the winter and smaller wave heights in the summer, as well as
increased variability in the winter. Figure 12 right shows the first-differenced
time series. [15] take first-differences to remove the trend, and we also find this
is sufficient.

For the spectral estimate, we use the Daubechies Least Asymmetric wavelet
with 10 vanishing moments. For simplicity, the periodogram is smoothed using
a running mean with bin width 512, corresponding to a time length of roughly 3
weeks. The estimate is shown in Figure 13, where each level in the plot is scaled
individually for clarity. We can see strong nonstationarity in the spectrum, with
more variability during the winter months and less in the summer, as found in
[15] using a changepoint approach.

To estimate the trend of the series, we perform TI wavelet thresholding using
the Daubechies Least Asymmetric wavelet with 4 vanishing moments. In line
with previous discussion, we analyse the finest 9 scales of the series. We use a soft
universal threshold of σ̂r,s

√
2 log(8192) to account for likely non-Gaussianity,

where σ̂r,s is calculated using the spectral estimate in Figure 13. The trend
estimate is shown in the solid line in Figure 14. We see that the estimated trend
function is relatively smooth with occasional sharp changes, with the mean wave
height larger during the winter and smaller in the summer. There are several
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Fig 11. Average mean squared error (MSE) for different choices of J0, for varying values of
γ and T , using the Haar, EP4, and EP10 wavelets.

Fig 12. Left: North Atlantic wave heights recorded hourly between June 2005 and May 2006.
Right: first-differenced wave heights.

locations where perhaps the wavelet coefficients were not thresholded correctly,
leading to the sharp changes. Using a scale-dependent smoothing of the raw
wavelet periodogram is one possible way to remedy this.

Using the spectral estimate in Figure 13, we calculated the local autocovari-
ance estimate of the series. In Figure 15, we see in the solid line the estimate
using our methodology for the local variance function of the time series. The
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Fig 13. Smoothed spectral estimate for the wave height data in Figure 12, performed using
first-differencing of the data.

nonstationary nature of the variance is clear to see, with the summer months
containing low variability, while winter months display much higher variability.
As one way of determining the performance of our method, we can compare
the variance estimate with the estimate obtained by using the detrended wave
height data. The detrended wave height data is obtained by subtracting the
wavelet thresholding trend estimate from the data. We then perform standard
LSW inference on this series, using the same parameters as in our approach.
In dashed line, we see the local variance estimate obtained in this way. We see
that the two estimates agree, which is reassuring on two counts: first that our
spectral estimate obtained using the differenced data is accurate, and secondly
that the trend estimate obtained was accurate.

Finally, we plot the autocorrelation function across 4 time points, which high-
lights the second-order nonstationary nature of the data, and shows how the
structure of the autocorrelation varies considerably over time. In Figure 16, we
see that estimate for the local autocorrelation function for the first observation
recorded in the months of July 2005, October 2005, January 2006 and April
2006. These are shown in the solid, dashed, dotted, and dashed and dotted
lines respectively. We see that in general the series exhibits strong autocorre-
lation, which we may expect due to the observations being recorded at hourly
intervals. Furthermore, we note that the shape of the autocorrelation function
changes across the four months plotted.
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Fig 14. Trend estimate for the North Atlantic wave data shown in solid line, with data shown
in dashed line.

Fig 15. Local variance estimate for the wave height data. Solid line: obtained using our
methodology. Dashed line: obtained from the detrended data.

Fig 16. Local autocorrelation function estimate for the wave height data, at 4 different time
points. Solid: July, dashed: October, dotted: January, dotted and dashed: April.
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Appendix B: Proofs of results

B.1. Proof of Proposition 3.2

The matrix D1
J is symmetric and positive semi-definite, since it can be expressed

as a Gram matrix of vector inner products:

D1
J = 〈∇Ψj ,∇Ψl〉,

where Ψj is the autocorrelation wavelet vector at scale j, and ∇ is the first-
differencing matrix with diagonal entries 1, above the main diagonal entries
equal to −1, and all other entries equal to zero. The matrix ∇ is invertible
(with inverse given by the upper triangular matrix with non-zero entries equal
to 1). By [21] Theorem 1, the family of vectors {Ψj}−1

j=−J is linearly independent.
This implies that {∇Ψj}−1

j=−J is also linearly independent, since this family is
given by the invertible matrix transform of a family of linearly independent
vectors. Therefore, D1

J is invertible since it is the Gram matrix of a set of
linearly independent vectors.

B.2. Proof of Proposition 3.3

The expectation is given by

E(Ĩjk) = E

⎡⎣(∑
t

[
εt − εt−1 + O(T−1)

]
ψj,k−t

)2
⎤⎦

= E

⎡⎣(∑
t

εtψj,k−t

)2
⎤⎦+ E

⎡⎣(∑
t

εt−1ψj,k−t

)2
⎤⎦

− 2E
(∑

s

∑
t

εtεs−1ψj,k−tψj,k−s

)
+ O(T−1)

:= I + II + III + O(T−1),

where the remainder term can come out of the inner bracket since, for fixed
j, the sum is finite as the wavelet is compactly supported. Now we evaluate
each expectation individually. The term I is simply the expectation of the raw
wavelet periodogram of the original LSW model. Hence,

I =
∑
l

AjlSl

(
k

T

)
+ O(T−1).

Next, the term II is equal to E(Ijk−1), since dj,k−1 =
∑

s Xsψj,k−1−s, and by
substituting s = t−1, we obtain

∑
t Xt−1ψj,k−t =

∑
s Xsψj,k−1−s. Next, setting
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u = k − 1, we obtain

E(Iju) =
∑
l

∑
m

w2
lm

(∑
t

ψl,m−tψj,u−t

)2

.

Now, following a similar argument to [21], we obtain

II =
∑
l

Sl

(
u + 1
T

)∑
n

∑
t

∑
s

ψj,−sψj,−tψl,n−sψl,n−t + O(T−1)

=
∑
l

AjlSl

(
k

T

)
+ O(T−1).

Finally,

III = −2E
(∑

s

∑
t

εtεs−1ψj,k−tψj,k−s

)

= −2
∑
s

∑
t

ψj,k−tψj,k−sE(εtεs−1)

= −2
∑
s

∑
t

ψj,k−tψj,k−s

∑
l

Sl

(
t + s− 1

2T

)
Ψl(s− t− 1) + O(T−1),

since
E(εtεs−1) = c

(
t + s− 1

2T , s− t− 1
)

+ O(T−1).

The remainder of the proof is similar to that of the proof of Theorem 1 of [18].
Let u = k − t and v = k − s, substituting into the above to obtain

III = −2
∑
l

∑
u

∑
v

ψj,uψj,vSl

(
k

T
− u + v − 1

2T

)
Ψl(u− v − 1) + O(T−1)

= −2
∑
l

∑
u

∑
v

ψj,uψj,v

[
Sl

(
k

T

)
+ O

(
|u + v − 1|

2T

)]
Ψl(u− v − 1)

+ O(T−1).

The remainder term in the above expression can be shown to be O(T−1) (A.2.1
in [18]). Hence, we are left with

III = −2
∑
l

Sl

(
k

T

)∑
u

∑
v

ψj,uψj,vΨl(u− v − 1) + O(T−1).

Finally, substituting r = u− v, we obtain

C = −2
∑
l

Sl

(
k

T

)∑
u

∑
r

ψj,uψj,u−rΨl(r − 1) + O(T−1)
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= −2
∑
l

Sl

(
k

T

)∑
r

Ψj(r)Ψl(r − 1) + O(T−1)

= −2
∑
l

A1
jlSl

(
k

T

)
+ O(T−1).

Hence, we obtain

E(Ĩjk) = I + II + III

=
∑
l

AjlSl

(
k

T

)
+
∑
l

AjlSl

(
k

T

)
− 2

∑
l

A1
jlSl

(
k

T

)
+ O(T−1)

= 2
∑
l

(
Ajl −A1

jl

)
Sl

(
k

T

)
+ O(T−1).

For the variance part, we follow the same argument as in the proof of Propo-
sition 4 of [21]. The wavelet coefficients of the differenced series are asymp-
totically Gaussian. Hence, the wavelet periodograms are asymptotically scaled
χ2-distributed, and hence the variance is asymptotically proportional to the
expectation squared.

B.3. Proof of Theorem 3.4

(Proof for the Haar wavelet). The proof follows the same strategy to that of
the proof of Theorem 2 in [21]. We show that there exists δ > 0 such that
λmin(P ) ≥ δ, by using the following property from Toeplitz matrix theory. Let T
be Toeplitz (and Hermitian) with elements {t0, t1, . . .}. Let f(z) =

∑∞
n=−∞ tnz

n

for z ∈ C be the symbol of the operator associated with T . If
∑

n |tn| < ∞, then
f(z) is analytic in the open unit disc D in the complex plane and continuous in
the closed unit disc Δ = D∪S, where S denotes the unit circle. The spectrum Λ
of the (Laurent) operator T is Λ(T ) = f(S). If T is symmetric then an estimate
of the smallest eigenvalue of T is

min
|z|=1

{f(z)} = min
|z|=1

{
t0 + 2Re

( ∞∑
n=1

tnz
n

)}
.

([23], theorem 3.1 (i)). For ease of notation, indices will now run from 1 to
∞ instead of −1 to −∞. Using straightforward algebra, we can derive explicit
formulae for the entries of P , which are given by the following lemma.

Lemma B.1. In the case of the Haar wavelet, the elements of the matrix P
are given by

Pjj = 10,

Pj,j+m = 6 × 2−m/2, for l = j + m,m > 0.
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Proof. In general, we can derive the discrete autocorrelation wavelets Ψj(τ)
by discretising the continuous wavelet autocorrelation function Ψ(τ), using the
relationship

Ψj(τ) = Ψ
(
|τ |
2j

)
.

For Haar wavelets, the continuous wavelet autocorrelation function is given by

Ψ(τ) =
∫ ∞

−∞
ψH(x)ψH(x− τ)dx =

{
1 − 3|τ | for |τ | ∈ [0, 1/2],
|τ | − 1 for |τ | ∈ (1/2, 1],

where ψH(x) is the Haar mother wavelet. The discretisation formula holds for
τ = −(2j − 1), . . . , 0, . . . , (2j − 1), and is equal to zero for all other values of τ .
By [21], we have that the elements of A are given by

Ajj = 1
32j + 5

32−j , Ajl = 22j−l−1 + 2−l, l > j > 0.

We must therefore calculate the elements of A1, from which we can obtain the
elements of D1, and hence P . Note that replacing the (τ −1) terms with (τ +1)
results in an equivalent definition of the operators A1 and D1. When l = j, we
have that

A1
jj =

2j−1∑
τ=−(2j−1)

Ψj(τ)Ψj(τ + 1)

= 2

⎡⎣2j−1−1∑
τ=1

Ψj(τ)Ψj(τ + 1) +
2j−1∑

τ=2j−1+1

Ψj(τ)Ψj(τ + 1)

⎤⎦
− 2−j−1 + 1

4 − 2−j−1 + 1
4

= 2

⎡⎣2j−1−1∑
τ=1

(
1 − 3τ

2j

)(
1 − 3(τ + 1)

2j

)
+

2j−1∑
τ=2j−1+1

( τ

2j − 1
)(τ + 1

2j − 1
)⎤⎦

− 2−j + 1
2

= 1
32j − 10

3 2−j .

Hence D1
jj = 2Ajj − 2A1

jj = 10 × 2−j , and therefore Pjj = 10. When j = l,
without loss of generality assume l > j. We have that

A1
jl =

2j−1∑
τ=−(2j−1)

Ψj(τ)Ψl(τ + 1) =
2j−1∑

τ=−(2j−1)

Ψj(τ)
(

1 − 3|τ + 1|
2l

)
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= 1 − 3 × 2−l +
−1∑

τ=−(2j−1)

Ψj(τ)
(

1 − 3|τ + 1|
2l

)

+
2j−1∑
τ=1

Ψj(τ)
(

1 − 3(τ + 1)
2l

)
,

since the value of |τ + 1| is always less than or equal to 1/2, and so we use the
1 − 3|τ | part of the autocorrelation wavelet formula. The first sum is equal to

−2j−1−1∑
τ=−(2j−1)

Ψj(τ)
(

1 + 3(τ + 1)
2l

)
+

−1∑
τ=−2j−1

Ψj(τ)
(

1 + 3(τ + 1)
2l

)

=
−2j−1−1∑

τ=−(2j−1)

(
−1 − τ

2j
)(

1 + 3(τ + 1)
2l

)
+

−1∑
τ=−2j−1

(
1 + 3τ

2j

)(
1 + 3(τ + 1)

2l

)

=
(
−2j−l−2 − 2j−3 + 2−l−1 + 1

4 − 2j−l−1 + 22j−l−2
)

+
(

3 × 2j−l−2 + 2j−3 − 3 × 2−l−1 − 3
4

)
= 22j−l−2 − 2−l − 1

2 .

The second sum is given by

2j−1∑
τ=1

Ψj(τ)
(

1 − 3(τ + 1)
2l

)
+

2j−1∑
τ=2j−1+1

Ψj(τ)
(

1 − 3(τ + 1)
2l

)

=
2j−1∑
τ=1

(
1 − 3τ

2j

)(
1 − 3(τ + 1)

2l

)
+

2j−1∑
τ=2j−1+1

( τ

2j − 1
)(

1 − 3(τ + 1)
2l

)

=
(

2j−3 + 3 × 2−l − 3
4

)
+
(

22j−l−2 − 2j−3 − 2−l + 1
4

)
= 22j−l−2 + 21−l − 1

2 .

From this, we finally obtain that

A1
jl =

(
22j−l−2 − 2−l − 1

2

)
+
(

22j−l−2 + 21−l − 1
2

)
+
(
1 − 3 × 2−l

)
= 22j−l−1 − 21−l.

Therefore, we have that D1
jl = 2Ajl − 2A1

jl = 6 × 2−l, from which the required
form for P follows.
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Returning to the main proof, we have that P is symmetric, however the
formula above only refers to the upper triangular portion of the matrix P . Now,
P is a Toeplitz matrix with p0 = 10 and pm = 6×2−m/2. We can now show that
λmin(P ) ≥ δ > 0. Substituting in the formula for the symbol of the symmetric
Toeplitz P , we obtain

min
|z|=1

{f(z)} = min
|z|=1

{
10 + 2Re

( ∞∑
n=1

6 × 2−n/2zn

)}

= 10 + 12 min
|z|=1

{
Re
(

−
√

2z√
2z − 2

)}

= 10 + 12 min
|z|=1

{
2
√

2Re(z) − 2
6 − 4

√
2Re(z)

}
.

This function is strictly monotonically increasing on −1 ≤ Re(z) ≤ 1, therefore
it follows that min|z|=1{f(z)} = f(−1). Hence,

λmin(P ) ≥ f(−1) = 10 + 12(−2
√

2 − 2)
6 + 4

√
2

= 18 + 8
√

2
3 + 2

√
2

> 0.

(Proof for the Shannon wavelet). Note that the indices now run over the negative
integers. We can compute the entries of P using a variant of the Fourier domain
formula shown in Equation (11) below, which is a consequence of Parseval’s
relation.

Ajl =
∑
τ

Ψj(τ)Ψl(τ) = 1
2π

∫
Ψ̂j(ω)Ψ̂l(ω)dω, (11)

where Ψ̂j(ω) denotes the Fourier transform of Ψj(τ), which is equal to the
squared modulus of the Fourier transform of the non-decimated wavelet coeffi-
cients, ψ̂j(ω). Explicitly,

Ψ̂j(ω) =
∣∣∣ψ̂j(ω)

∣∣∣2 = 2−j
∣∣∣m1

(
2−(j+1)ω

)∣∣∣2 −(j+2)∏
l=0

∣∣m0
(
2lω
)∣∣2 , (12)

where m0(ω) = 2−1/2∑
k hk exp(−iωk) is the transfer function; {hk} is is the

high-pass quadrature mirror filter with
∑

k h
2
k = 1 and

∑
k hk = 21/2; and

|m1(ω)|2 = 1 − |m0(ω)|2.
The formula for the Fourier transform of the non-decimated wavelets given

in Equation (12) and the corresponding formulae for m0(ω) and m1(ω) for the
Shannon wavelet can be found using the Fourier transform of the continuous
time mother and father wavelets, which can be found in [4], pages 46 and 64.
Define the set Cj , for j < 0, to be

Cj =
[
− π

2−j−1 ,−
π

2−j

]
∪
[ π

2−j
,

π

2−j−1

]
.
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As in [21], the Fourier transform of the non-decimated Shannon wavelets is given
by

ψ̂j(ω) = −2−j/2 exp(−2−j−1iω)ICj (ω),

where ICj is the indicator function on the set Cj . From this the Fourier transform
of the autocorrelation wavelets can be obtained as

Ψ̂j(ω) =
∣∣∣ψ̂j(ω)

∣∣∣2 = 2−j
ICj (ω).

Using Parseval’s relation and the shifting property of the Fourier transform, we
have that

D1
jl = 2

∑
τ

Ψj(τ)(Ψl(τ) − Ψl(τ + 1))

= 1
2π

∫
Ψ̂j(ω)Ψ̂l(ω)dω − 1

2π

∫
e−iωΨ̂j(ω)Ψ̂l(ω)dω.

The first term in the sum is exactly the entries of the original A-matrix which
are given by Ajj = 2−j for j < 0, Ajl = 0 for j = l. When j = l, the second
term is equal to zero since the supports of different Ψ̂j(ω) do not overlap. Thus,
the matrix is diagonal, and when j = l, the second term is given by

−
∑
τ

Ψj(τ)Ψj(τ + 1) = − 1
2π

∫
e−iωΨ̂j(ω)2dω

= −2−2j−1

π

∫
e−iω

ICj (ω)dω

= −2−2j−1

π

(∫ −2jπ

−2j+1π

e−iωdω +
∫ 2j+1π

2jπ

e−iωdω

)

= −2−2j−1

π

([
ie−iω

]−2jπ

−2j+1π
+
[
ie−iω

]2j+1π

2j1π

)
= −2−2j−1i

π

(
e2jπi − e2j+1πi + e−2j+1πi − e−2jπi

)
.

Now, expanding the complex exponential terms into trigonometric functions, we
obtain

−
∑
τ

Ψj(τ)Ψj(τ + 1) = −2−2j−1i

π

{
cos(2jπ) + i sin(2jπ) − cos(2j+1π)

−i sin(2j+1π) + cos(−2j+1π) + i sin(−2j+1π)
− cos(−2jπ) − i sin(−2jπ)

}
.

After much simplification in which the cosine terms will vanish, we obtain

−
∑
τ

Ψj(τ)Ψj(τ + 1) = 2−2j

π

(
sin(2jπ) − sin(2j+1π)

)
.



Trend-LSW modelling with differencing 4441

Hence, the diagonal entries of the matrix D1 are given by

D1
jj = 2−j+1 + 2−2j+1

π

(
sin(2jπ) − sin(2j+1π)

)
.

Hence, Pjj = 2−2j+1 +2−3j+1 [sin(2jπ) − sin(2j+1π)
]
/π, while the off-diagonal

terms are zero. Next, approximate the diagonal terms using a Maclaurin series:

Pjj ≈ 2−2j+1 + 2−3j+1

π

(
2jπ − (2jπ)3

6 − 2j+1π + (2j+1π)3

6

)
= 2−2j+1 + 2−2j+1 − 2−2j+2 − π2

3 + 8π2

3

= 7π2

3 .

Therefore, the matrix is diagonal, with all diagonal entries being uniformly
bounded away from 0, with Pjj ≥ P−1,−1 ≈ 13.09 for all j. Hence, we have
shown that there exists some δ > 0 such that λmin(P ) ≥ δ.

B.4. Proof of Theorem 3.5

As T → ∞, the eigenvalues of D1 tend to zero and hence, when viewed as an
operator acting on the sequence space 	2(N), its inverse is unbounded. In the
locally stationary Fourier time series setting, a similar relationship is found,
as given in Equation (5) of [24]. Loosely speaking, the original spectrum at
frequency ω is related to the differenced one through multiplication of the term
|1 − e−iω|−2. As ω → 0 (corresponding to low frequencies) the equation blows
up. This mirrors our scenario, where, as the correction matrix grows in size
– and we consider coarse-scale (low frequency) behaviour – the inverse matrix
norm becomes larger.

We can account for the unboundedness of the inverse of D1 by using a
rescaling of the LSW process itself. Consider the auxiliary process defined by
εt =

∑
j,k w̃jkψ̃j,k−tξlm, where w̃jk = 2j/4wjk and ψ̃j,k−t = 2−j/4ψj,k−t. Then,

the expectation of the raw wavelet periodogram (with respect to the rescaled
wavelet) is given by

E(Ĩjk) =
∑
l

PjlS̃l(k/T ) + O(T−1), (13)

where S̃j(k/T ) = 2j/2Sj(k/T ) and Pjl = 2−j/2D1
jl2−l/2. We can therefore use

the (bounded) P -inverse matrix to correct the smoothed, rescaled periodogram,
and then multiply by 2−j/2, since Sj(k/T ) = 2−j/2S̃j(k/T ). To determine the
appropriate threshold for the wavelet-based estimator, we use the following
lemma:

Lemma B.2. For a Gaussian trend LSW process and using a wavelet ψ′ of
bounded variation, the wavelet coefficients v̂jrs, with 2r = o(T ), obey uniformly
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in s,

E(v̂rs) −
∫ 1

0

∑
n

PjnS̃n(z)ψ′
rs(z)dz = O

(
2r/2T−1

)
,

and

Var(v̂rs) = 2T−1
∫ 1

0

(∑
n

PjnS̃n(z)
)2

ψ′ 2
rs(z)dz + O

(
2rT−2) .

Lemma B.2 is analogous to Theorem 3 of [21]. The result of mean square
consistency follows due to a combination of Equation (13) and Theorem 4 of
[21]. The mean squared error of the smoothed, corrected wavelet periodogram
is given by

E

[∫ 1

0

(
Ŝj(z) − Sj(z)

)2
dz

]
= 2−j

E

[∫ 1

0

( ˆ̃Sj(z) − S̃j(z)
)2

dz

]

≤ 2−j+1
E

⎡⎣∫ 1

0

( −1∑
l=−J

(
Î l�zT� − Λl(z)

)
P−1
jl

)2

dz

⎤⎦
+ 2−j+1

∫ 1

0

(∑
l<−J

Λl(z)P−1
jl

)2

dz,

where Î l�zT� is the smoothed estimate of the rescaled raw wavelet periodogram
and Λl(z) =

∑
n PnlS̃n(z). The first term can be bounded as

I ≤ 2−j+1

( −1∑
l=−J

P−1
jl

(
E

[∫ 1

0

(
Î l�zT� − Λl(z)

)2
dz

])1/2)2

≤ 2−j+1

( −1∑
l=−J

P−1
jl O

(
T−2/3 log2(T )

)1/2
)2

= O
(
2−jT−2/3 log2(T )

)
,

which follows since P possesses a bounded inverse with exponentially decaying
entries, and using the rate of convergence of the mean squared error of the
wavelet thresholding estimator derived in [22], Theorem 3.1 A. The second term
is asymptotically dominated by the first, since it can be bounded as

II ≤ 2−j+1

(∑
l<−J

Λl(z)P−1
jl

)2

≤ 2−j+1

(∑
l<−J

P−1
jl

−1∑
n=−∞

2−l/2D1
lnSn(z)

)2

≤ 2−j+1

(∑
l<−J

O(2l/2)
−1∑

n=−∞
Sn(z)

)2

= O(2−j × 2−J) = O(2−jT−1),

which follows since P−1
jl is bounded, D1

ln = O(2l),
∑

n Sn(z) < ∞, and T = 2J .
Hence, the mean squared error is given by O

(
2−jT−2/3 log2(T )

)
.
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B.5. Proof of Proposition 3.6

We can write the mean squared error as

E

[∫ 1

0
(ĉ(z, τ) − c(z, τ))2 dz

]
≤ 2E

⎡⎢⎣∫ 1

0

⎛⎝ −1∑
j=−J0

(
Ŝj(z) − Sj(z)

)
Ψj(τ)

⎞⎠2

dz

⎤⎥⎦
+ 2RJ0 ,

where RJ0 can be bounded as

RJ0 =

⎛⎝ ∑
j<−J0

Sj(z)Ψj(τ)

⎞⎠2

≤

⎛⎝ ∑
j<−J0

Sj(z)

⎞⎠2

≤

⎛⎝ ∑
j<−J0

O(2γj)

⎞⎠2

= O(2−2γJ0) = O(T−2γα) = O(Tα−2/3).

For the first term, we obtain

E

⎡⎢⎣∫ 1

0

⎛⎝ −1∑
j=−J0

(
Ŝj(z) − Sj(z)

)
Ψj(τ)

⎞⎠2

dz

⎤⎥⎦
≤

⎛⎝ −1∑
j=−J0

Ψj(τ)
(
E

[∫ 1

0

(
Ŝj(z) − Sj(z)

)2
dz

])1/2
⎞⎠2

≤

⎛⎝ −1∑
j=−J0

O
(
2−jT−2/3 log2(T )

)1/2
⎞⎠2

= O
((

Tα−2/3 log2(T )
)1/2

)2

= O
(
Tα−2/3 log2(T )

)
,

by Equation (6) from the main text, and using that Ψj(τ) ≤ 1 for all j and
τ . Hence, provided that Tα−2/3 log2(T ) → 0 as T → ∞, the estimator is mean
square consistent.

B.6. Proof of Proposition 3.7

In order to derive the formula for the expectation of the squared wavelet coef-
ficients of a general n-th difference, we require the formula the n-th difference
itself, which is a well-known result. Denote by ∇nXt the n-th difference of the
time series {Xt} at time t. Then,

∇nXt =
n∑

k=0
(−1)k

(
n

k

)
Xt−k =

n∑
k=0

(−1)k
(
n

k

)
εt−k + O(T−1), (14)
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which follows from the differentiability assumption of the trend μ. Now, observe
that, for an n-th difference, the expectation will involve the sum of the spectrum
over all scales, multiplied by a linear combination of lagged inner product A-
matrix entries, denoted Aτ , from lag 0 to lag n. To calculate the coefficient in
front of each of the Aτ , we simply calculate the sum of the coefficients of the
{εtεs} for each particular lag in the expansion obtained by squaring the n-th
difference of the time series, for which we can use Equation (14).

For example, to calculate the coefficient of A, we add together the coeffi-
cients of the squared terms in the square of the differenced series, i.e. add the
coefficients of ε2t , ε2t−1, . . . ε

2
t−n. For the coefficient of A1, we add together the co-

efficients of the terms in the square of the difference that differ in index by 1, i.e.
we add the coefficients of εtεt−1, εt−1εt−2, εt−1εt, . . . , εn−1εn. In particular, if we
were interested in the third difference, then the coefficient in front of A would be
1+9+9+1, and the coefficient in front of A1 would be −3−3−9−9−3−3 = −30,
and so on. Hence the formula for the coefficient in front of A is given by

n∑
r=0

(
n

r

)2

=
(

2n
n

)
,

and similarly, the formula for the coefficient in front of Aτ , for τ ≥ 1, is given
by

2(−1)τ
n−τ∑
r=0

(
n

r

)(
n

r + τ

)
= 2(−1)τ

(
2n

n + τ

)
,

where the multiplication by 2 arises due to symmetry (for example we must add
both the coefficients of εt−1εt−2 and εt−2εt−1). The equality on the right follows
from a counting argument. The number of ways to choose n + τ objects from
2n choices is the same as the number of ways of choosing r objects from the
first n and choosing r + τ from the remaining n objects, for 0 ≤ r ≤ n − τ .
The expectation is accurate up to order O(T−1) by the same argument as in
the proof of Proposition 3.3. Hence, the squared expectation of the wavelet
coefficients of the n-th differenced series are given by

E(Ĩjk) =
∑
l

Sl

(
k

T

)[(
2n
n

)
Ajl + 2

n∑
τ=1

(−1)τ
(

2n
n + τ

)
Aτ

jl

]
+ O(T−1).

B.7. Proof of Theorem 3.9

By the Daubechies characterisation of Hölder spaces, rescaling of the LSW pro-
cess, and Proposition 3.3, the expectation of the rescaled raw wavelet peri-
odogram of the differenced time series is given by

E(Ĩjk) =
∑
l

PjlS̃l(k/T ) + O(2−7j/2T−2) + O(T−1). (15)
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Hence, the mean squared error of the smoothed wavelet periodogram is given
by

E

[∫ 1

0

(
Ŝj(z) − Sj(z)

)2
dz

]
= 2−j

E

[∫ 1

0

( ˆ̃Sj(z) − S̃j(z)
)2

dz

]

≤ 2−j+1
E

⎡⎣∫ 1

0

( −1∑
l=−J1

(
Î l�zT� − Λl(z)

)
P−1
jl

)2

dz

⎤⎦
+ 2−j+1

∫ 1

0

( ∑
l<−J1

Λl(z)P−1
jl

)2

dz

where Î l�zT� is the smoothed estimate of the raw wavelet periodogram and
Λl(z) =

∑
n PnlS̃n(z). The first term can be bounded as

I ≤ 2−j+1

( −1∑
l=−J1

P−1
jl

(
E

[∫ 1

0

(
Î l�zT� − Λl(z)

)2
dz

])1/2)2

≤ 2−j+1

( −1∑
l=−J1

P−1
jl

(
O
(
2−7lT−4)+ O

(
T−2/3 log2(T )

))1/2
)2

= O
(
2−jT 7β−4)+ O

(
2−jT−2/3 log2(T )

)
,

which follows since P possesses a bounded inverse with exponentially decaying
entries, and using Equation (15). The second term can be bounded in the same
fashion as in the proof of Theorem 3.5, and is of order O(2−jT−β), which gives
the stated consistency result. Similarly, the mean squared error of the LACV
estimator is calculated as

E

[∫ 1

0
(ĉ(z, τ) − c(z, τ))2 dz

]
≤ 2E

⎡⎢⎣∫ 1

0

⎛⎝ −1∑
j=−J0

(
Ŝj(z) − Sj(z)

)
Ψj(τ)

⎞⎠2

dz

⎤⎥⎦
+ 2RJ0 ,

where RJ0 is asymptotically negligible by the argument in Proposition 3.6. For
the first term, we obtain

E

⎡⎢⎣∫ 1

0

⎛⎝ −1∑
j=−J0

(
Ŝj(z) − Sj(z)

)
Ψj(τ)

⎞⎠2

dz

⎤⎥⎦
≤

⎛⎝ −1∑
j=−J0

2−j/2
(
O
(
T 7β−4)+ O

(
T−2/3 log2(T )

)
+ O(T−β)

)1/2
⎞⎠2
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=
(
O
(
T 7β−4)+ O

(
T−2/3 log2(T )

)
+ O(T−β)

)⎛⎝ −1∑
j=−J0

2−j/2

⎞⎠2

= O
(
Tα+7β−4)+ O

(
Tα−2/3 log2(T )

)
+ O(Tα−β).

B.8. Proof of Proposition 4.1

The appropriate threshold is derived by using an analogous result to B.2, from
which we obtain

E(v̂rs) −
∫ 1

0
μ(z)ψ′

rs(z)dz = O
(
2r/2T−1

)
,

and
Var(v̂rs) = T−1

∫ 1

0

∑
n

Sn(z)ψ′ 2
rs(z)dz + O

(
2rT−2) .

The mean squared error rate is obtained by using Theorem 1 of [32], with the
specific case of a Lipschitz continuous trend.
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