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Four-Dimensional Wave Transformations By
Space-Time Metasurfaces
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Abstract—Static metasurfaces have shown to be prominent
compact structures for reciprocal and frequency-invariant trans-
formation of electromagnetic waves in space. However, incor-
porating temporal variation to static metasurfaces would result
in dynamic apparatuses which are capable of four-dimensional
tailoring of both the spatial and temporal characteristics of
electromagnetic waves, leading to functionalities that are far
beyond the capabilities of conventional static metasurfaces. This
includes nonreciprocal full-duplex wave transmission, pure fre-
quency conversion, parametric wave amplification, spatiotempo-
ral decomposition, and space-time wave diffraction. This paper
reviews recent progress and opportunities offered by space-time
metasurfaces to break reciprocity, revealing their potential for
low-energy, compact, integrated non-reciprocal devices and sub-
systems, and discusses the future of this exciting research front.

Index Terms—Space-time, metasurfaces, nonreciprocity, wave
engineering, refractive index, electromagnetic modulation.

I. INTRODUCTION

Controlled transformation of electromagnetic fields has ad-
vanced drastically in recent years thanks to the advent and
evolution of metamaterials and metasurfaces [1]–[6]. Three-
dimensional static metamaterials and metasurfaces has made
a substantial progress in wave engineering applications [2],
[3], [7]–[10]. However, recently there has been a growing
interest on four-dimensional metasurfaces, where adding the
temporal variation to three-dimensional metasurfaces leads
to functionalities that are far beyond the capabilities of
conventional static metasurfaces. For instance, asymmetric
wave transmission may be achieved by spatially asymmetric
structures when multiple modes are involved at different ports,
whereas nonreciprocal wave transmission is a noticeably more
challenging task that requires an external field for breaking the
time-invariance of the structure, biasing with odd-symmetric
quantities under time reversal, or nonlinear materials. Among
these nonreciprocity approaches, space-time (ST) modulation
is of high interest thanks to its immense capability for affecting
the spectrum of the electromagnetic waves while breaking the
time reversal symmetry.

ST metasurfaces provide huge degrees of freedom for
arbitrary alteration of the wavevector and temporal fre-
quency of electromagnetic waves, leading to an advanced
four-dimensional wave processing from acoustics and mi-
crowaves [11]–[13], [13]–[22] to terahertz and optics [23]–
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[28]. They represent a class of compact dynamic wave pro-
cessors, which have been recently proposed for extraordinary
transmission of electromagnetic waves. Such four-dimensional
compact apparatuses are endowed with unique properties not
readily seen in conventional static metamaterials and meta-
surfaces. ST metasurfaces may take advantage of space-time
modulation capabilities, including nonreciprocal frequency
generation [15], [19], [29], [30], parametric wave amplifi-
cation [12], [31]–[37], asymmetric dispersion [38]–[40], and
energy accumulation [41]. Frequency generation and directiv-
ity are of particular interest in space-time-modulated (STM)
slabs [19], [22], [28], [29], [38], [40], [42]–[44], which are
endowed by asymmetric periodic electromagnetic transitions
in their dispersion diagram [16], [38], [39], [42]. In practice,
the ST modulation is achieved through pumping the external
energy into the medium [14], [15], [21], [29], [38].

Some of the recently proposed applications of STM
metamaterials and metasurfaces include mixer-duplexer-
antenna [45], unidirectional beam splitters [14], nonreciprocal
filters [46], [47], signal coding metasurfaces [18], [48], ST
metasurfaces for advanced wave engineering and extraordinary
control over electromagnetic waves [6], [11], [15]–[17], [21],
[23], [24], [26], [49]–[56], nonreciprocal platforms [38], [40],
[42], [56]–[60], frequency converters [15], [19], [22], [29],
[30], time-modulated antennas [61]–[64] spectral camouflage
metasurfaces [65], antenna-mixer-amplifiers [66], and en-
hanced resolution imaging photonic crystals [67]. This strong
capability of STM media is due to their unique interactions
with the incident field [38], [54], [68]–[71].

This paper provides a review on the properties of ST
metasurfaces, their analysis, and their potential applications
in modern and future wireless communication systems, and
wave tailoring processors. We first present key properties of
ST interfaces, including spatial interfaces, temporal interfaces,
and ST interfaces. Then, we show that a nonreciprocal meta-
surface acts as a very thin ST slab, i.e., a moving metasur-
face. Next, analysis of general STM metasurfaces will be
given, including derivation of scattered electromagnetic fields,
four-dimensional dispersion diagrams, boundary conditions,
and spatiotemporal decomposition. Then, full-wave finite-
difference time domain (FDTD) simulation of ST metasurfaces
are presented.

To showcase various applications of ST metasurfaces, we
consider both transmissive and reflective ST diffraction grat-
ings, and discuss their nonreciprocal and asymmetric response.
We also discuss a ST diffraction-code multiple access sys-
tem, a unidirectional beam splitter based on superluminal ST
modulation, a nonreciprocal-beam-steering metasurface, and
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an antenna-mixer-amplifier transceiver metasurface.

II. ELECTROMAGNETIC WAVES IN SPACE-TIME

Figure 1 shows the Minkowski ST diagram and its Fourier
transformed pair known as the dispersion diagram. The four-
dimensional Minkowski ST diagram includes two light cones,
representing propagation of the light in the past and future.
The two cones have their apexes at the present, where the
three-dimensional (x, y and z) hyperspace exists. Any dis-
continuity in the four dimensional ST diagram may result in
forward and backward waves in space. Analysis and design
of ST media and metasurfaces can be substantially eased by
understanding the Fourier pair of the Minkowski diagram. To
best investigate the wave diffraction by a STM grating, we first
study the interaction of the electromagnetic wave with space
and time interfaces, separately. In general, three different ST
discontinuities may be studied as follows.

A. Space Interface

Figure 2(a) sketches the ST diagram of a spatial interface
between two media of refractive indices n1 and n2, respec-
tively, in the plane (z, ct). This figure shows scattering of
forward and backward fields and conservation of energy and
momentum for different scenarios. The temporal axis of the
Minkowski ST diagram is scaled with the speed of light c, and
therefore is labeled by ct for changing the dimension of the
addressed physical quantity from time to length, in accordance
to the dimension associated to the spatial axes labeled z. This
problem represents the textbook case of electromagnetic wave
incidence and scattering from a spatial (static) interface, where
n(z < 0) = n1 and n(z > 0) = n2. The boundary conditions
are derived by applying the fundamental physical fact that
all physical quantities must remain bounded everywhere and
at every time to the space and time derivatives in sourceless
Maxwell equations

∇× E = −∂B
∂t

and ∇×H =
∂D
∂t
. (1)

The discontinuity of the tangential components of electric
and magnetic fields at z = z0 would result in unbounded
and singular electromagnetic fields at the interface, which
is not physical. Therefore, the tangential components of the
electric and magnetic fields must be continuous at a space
discontinuity, i.e.,

ẑ× (E2−E1)|z=z0 = 0 and ẑ× (H2−H1)|z=z0 = 0. (2)

As a result, the wavenumber k changes, i.e., energy is
preserved but momentum changes, such that the forward
transmitted wave in the region 2 corresponds to kt = kin2/n1,
whereas the temporal frequency of the transmitted wave in
region 2 is equal to that of region 1, i.e., ωt = ωi.

E1 =
(
eikiz +Re−ikiz

)
e−iωit, and E2 = Teiktze−iωit,

(3a)
where R and T represent the spatial reflection and transmis-
sion coefficients, and defined as

R =
n1 − n2

n1 + n2
, and T =

2n2

n1 + n2
. (3b)

B. Time Interface

Figure 2(b) shows the ST diagram of a time interface
between two media of refractive indices n1 and n2, which is
the dual case of the spatial metasurface in Fig. 2(a) [72]–[74].
Here, the refractive index suddenly changes from one value
(n1) to another (n2) at a given time throughout all space, i.e.,
n(t < 0) = n1 and n(t > 0) = n2. The temporal change
of the refractive index produces both reflected (backward) and
transmitted (forward) waves, which is analogous to the re-
flected and transmitted waves produced at the spatial interface
between two different media in Fig. 2(a). The discontinuity of
D and B at ct = ct0 would result in unbounded and singular
E and H at the interface, which is not physical. Therefore, D
and B must be continuous at a time interface, that is,

(D2 − D1)|ct=ct0 = 0 and (B2 − B1)|ct=ct0 = 0. (4)

The total charge Q and the total flux ψ must remain constant
at the moment of the jump from n1 to n2, implying that both
transversal and normal components of D and B do not change
instantaneously [75], [76], which is different than the static
case (shown in Fig. 2(a)) where only the normal components
of the magnetic field B and electric field displacement D are
conserved. Specifically, at a time interface, the magnetic field
B, the electric field displacement D and the wavenumber k
are preserved. This yields a change in the temporal frequency
of the incident wave so that the frequency of the forward
transmitted wave in region 2 corresponds to ωt = ωin1/n2,
i.e., where momentum is preserved but energy changes.

D1 = eikize−iωit and D2 = eikiz
(
T̂ e−iωtt + R̂eiωtt

)
,

(5a)
where R̂ and T̂ represent the temporal reflection and trans-
mission coefficients, and defined as

R̂ =
n1

n2

η1 − η2

2η1
, and T̂ =

n1

n2

η1 + η2

2η1
. (5b)

where η1 =
√
µ1/ε1 and η2 =

√
µ2/ε2.

C. Space-Time Interface

Figure 2(c) depicts the ST diagram of a ST interface, i.e.,
n(z/c + t < 0) = n1 and n(z/c + t > 0) = n2, as the
combination of the space and time interfaces in Figs. 2(a)
and 2(b), respectively. It may be seen that the ST interface
resembles the spatial interface configuration in Fig. 2(a) in
the region n = n1 and the temporal interface configuration in
Fig. 2(b) for n = n2.

The reflection and transmission from a subluminal ST
interface reads

R =
η2 − η1

η1 + η2

v1 − vm

v1 + vm
and T =

2η2

η1 + η2

v1 − vm

v2 − vm
, (6a)

and the temporal and spatial frequencies of the reflected and
transmitted waves read

ωR = ωi
v1 − vm

v1 + vm
, and ωT = ωi

v1 − vm

v2 − vm
, (6b)

kR = ki
v1 − vm

v1 + vm
, and kT = ki

v1 − vm

v2 − vm
, (6c)
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Fig. 1. Space-time (ST) Fourier pair diagrams.

where v1 = c/n1 and v2 = c/n2.
The reflection and transmission from a superluminal ST

interface read

R̂ =
η2 − η1

2η1

vm − v1

vm + v2
, and T̂ =

η1 + η2

2η1

vm − v1

vm − v2
, (7a)

and the temporal and spatial frequencies of the reflected and
transmitted waves read

ωR̂ = ωi
vm − v1

vm + v2
, and ωT̂ = ωi

vm − v1

vm − v2
, (7b)

kR̂ = ki
vm − v1

vm + v2
, and kT̂ = ki

vm − v1

vm − v2
. (7c)

The pure-space interface is the vm = 0 limit of a subluminal
interface, while the pure-time interface is the vm = ∞ limit
of a superluminal interface.

The difference between the excitation and response for
validation of the symmetry and reciprocity of electromagnetic
systems, associated with new frequency generation, is clarified
in Figs. 3(a) and 3(b). Figure 3(a) shows the forward and
backward problems for the symmetry test of a particular sym-
metric electromagnetic system, where the backward problem
is represented by the spatial inversion of the forward problem,
i.e., the applied excitation wave (input) of the backward
problem must be the spatial inversion of the excitation wave
(input) of the forward problem. As a result, for a symmetric
system, the output of the backward problem would be exactly
the spatial inversion of the output of the forward problem.
Otherwise, the system is asymmetric. Figure 3(b) shows the
forward and backward problems for the reciprocity test of a
particular reciprocal electromagnetic system, where the back-
ward problem is the spatial inversion of the time-reversed of
the forward problem, i.e., the applied excitation wave (input)
of the backward problem must be the spatial inversion of the
output of the forward problem. As a result, for a reciprocal
system, the output of the backward problem would be exactly
the spatial inversion of the input of the forward problem.
Otherwise, the system is nonreciprocal.

Fig. 2. ST diagrams showing scattering of forward and backward fields and
conservation of energy and momentum for different scenarios. (a) Spatial
interface, i.e., n(z < 0) = n1 and n(z > 0) = n2. (b) Temporal interface,
i.e., n(t < 0) = n1 and n(t > 0) = n2. (c) ST interface, i.e., n(z/c+ t <
0) = n1 and n(z/c+ t > 0) = n2.

III. EXPERIMENTAL DEMONSTRATION OF ST INTERFACE

Figures 4(a) and 4(b) depict the operation principle of
the nonreciprocal nongyrotropic metasurface. For t < 0,
the metasurface operates as a reflector where a +z-direction
traveling wave is reflected by the metasurface and travels
back along −z direction. For t > 0, the metasurface oper-
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Fig. 3. Schematic of the experimental set-up configurations for validation
of symmetric and reciprocal response of electromagnetic systems. (a) The
electromagnetic symmetry of the system is validated, in which the backward
problem is the spatial inversion of the forward problem. (b) The electromag-
netic reciprocity of the system is validated, in which the backward problem
is the spatial inversion of the time-reversed forward problem.

ates as a nonreciprocal sheet, where a +z-direction traveling
wave passes through the metasurface with gain and without
polarization alteration, whereas a wave traveling along the
opposite direction from is being reflected by the metasurface.
The transmission scattering parameters of the metasurface are
not equal, i.e., S21 > S12, where S21 = ψF

out/ψ
F
in > 1 and

S12 = ψB
out/ψ

B
in < 1.

Figure 5(a) shows the full-wave simulation results, where
transmission of waves from left to right is allowed and accom-
panied by power amplification but the transmission of waves
from right to left is prohibited. Figure 5(b) shows an image of
the fabricated metasurface [12]. The metasurface is formed by
an array of unit cells. Such unit-cells are constituted of two
microstrip patch elements interconnected through a unilateral
transistor, introducing transmission gain in one direction and
transmission loss in the other direction. Fig. 5(c) shows the
measured transmission levels for both directions, and for t < 0
and t > 0. The metasurface introduces gain over a bandwidth
of about 130◦, i.e., from θ = 25◦ to 155◦ in the 1 → 2
direction, while it introduces attenuation by more than 12 dB
in the 2→ 1 direction. This corresponds to an isolation level of
more than 21 dB across the bandwidth. The power gain makes
the metasurface particularly efficient as a repeater device.
Furthermore, in contrast to other nonreciprocal metasurfaces,
the structure is fairly broadband and its bandwidth can be
further enhanced by various standard techniques [77]. The
operating angular sectors of this metasurface over 100◦, are
much greater than those of typical metasurfaces.

The nonreciprocal nongyrotropic metasurface in Fig. 5 may
be represented as a moving metasurface in Fig. 6. The general
case of a bianisotropic medium reads [12]

D = ε ·E + ξ ·H, (8a)

B = ζ ·E + µ ·H. (8b)

Fig. 4. Nonreciprocal nongyrotropic metasurface. (a) For t > 0 operating
as a reflective sheet. (b) For t > 0 operating as a nonreciprocal transmissive
sheet.

The continuity equations of a metasurface may be expressed
as

ẑ ×∆H = jωε0χee ·Eav + jk0χem ·Hav, (9a)

∆E × ẑ = jωµ0χmm ·Hav + jk0χme ·Eav, (9b)

where ∆ and the subscript ‘av’ represent, respectively, the
difference of the fields and the average of the fields between
the two sides of the metasurface. Eq. (9) provides a relation
between the electromagnetic fields on the two sides of a
metasurface and its susceptibilities, in the absence of normal
susceptibility components. The constitutive parameters of the
metasurface may be represented according to the suscepti-
bilities in (9) as ε = ε0(I + χee), µ = µ0(I + χmm),
ξ = χem/c0, ζ = χme/c0.

We then seek for the susceptibilities that provide the
nonreciprocal nongyrotropic response of the metasurface by
substituting the electromagnetic fields of the corresponding
transformation into (9). Such a transformation includes passing
a +z-propagating plane wave through the metasurface and
complete absorption of a −z-propagating plane incident wave,
yielding

χee = − j

k0

1 0

0 1

 , χmm = − j

k0

1 0

0 1

 , (10a)
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Fig. 5. Nonreciprocal metasurface. (a) Full-wave (FDTD) electric field
distribution for excitations from the left and right (bottom) [12]. (b) An image
of the fabricated metasurface [12]. (c) Experimental scattering parameters
versus angle at f = 5.9 GHz for transmission in a straight line under an
oblique angle [12].

χem =
j

k0

 0 1

−1 0

 , χme =
j

k0

0 −1

1 0

 , (10b)

This shows that χem and χme are the ones that contribute
to the nonreciprocity of the metasurface. The form of the
susceptibility tensors in (10) is identical to that of a moving
uniaxial medium [78]. To an observer in the rest frame of
reference, this tensor set transforms to the bianisotropic set,
which assumes motion in the z-direction and is characterized
by

ε ξ

ζ µ

 =



ε 0 0 0 ξ 0

0 ε 0 −ξ 0 0

0 0 εz 0 0 0

0 −ξ 0 µ 0 0

ξ 0 0 0 µ 0

0 0 0 0 0 µz


, (11)

where the primes indicate the moving frame of reference and
εz and µz can take arbitrary values. The elements of (11) are
determined using the Lorentz transform operation [78] C =

L
−1

6 ·C
′
·L6. The matrices C and L6 are respectively expressed

by

C =

c(ε− ξ · µ−1 · ζ) ξ · µ−1

−µ−1 · ζ µ
−1
/c,

 (12)

and [12]

L6 = ζ



1 0 0 0 −β 0

0 1 0 β 0 0

0 0 1/ζ 0 0 0

0 β 0 1 0 0

−β 0 0 0 1 0

0 0 0 0 0 1/ζ


, (13)

In Eq. (12), ζ = 1/
√

1− (v/c)2, with v being the velocity
of the medium. We next seek for the moving uniaxial meta-
surface that is equivalent to the nonreciprocal metasurface.
The forward propagating wave transmits through the moving
metasurface while the backward propagating wave would
never reach the metasurface, as shown in Fig. 6. Therefore,
the backward wave never passes through. For T 6= 1, there
exist a complex velocity. The fact that this design approach
is practically impossible shows that the engineering approach
proves the significance of the realized metasurface in Fig. 5(b).

IV. ANALYSIS OF SPACE-TIME (ST) METASURFACES

Consider the STM metasurface in Fig. 7, with the length
of L, electric permittivity ε(z, t) and magnetic permeabil-
ity µ(z, t), sandwiched between two semi-infinite unmodu-
lated media. A general analysis assumes a metasurface with
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Fig. 6. ST representation of the nonreciprocal nongyrotropic metasurface in
Figs. 4 and 5. (left) Forward wave incidence leading to full transmission,
and (right) Backward wave incidence, where the wave can not catch up the
metasurface.

temporally-periodic electric permittivity and magnetic perme-
ability, and a general aperiodic/periodic spatial variation [16].
Since the metasurface is time-periodic, its constitutive param-
eters may be expressed by a time-Floquet series expansion, as

ε(z, t) =

∞∑
k=−∞

εk,aper(z)e
ikΩt, (14a)

µ(z, t) =

∞∑
k=−∞

µk,aper(z)e
ikΩt, (14b)

where Ω is the temporal frequency of the modulation, and
εk,aper(z) and µk,aper(z) are spatially-variant unknown coeffi-
cients of the permittivity and permeability, to be determined
based on the spatial variation of the metasurface. We consider
oblique incidence of a y-polarized electric field under an ngle
of incidence of θi to the metasurface, as

EI(x, z, t) = ŷE0e
i(kx,ix+kz,iz−ω0t), (15)

where E0 is the amplitude of the incident wave, and ω0

and kI =
√
k2
x,i + k2

z,i are respectively the temporal and
spatial frequencies of the incident wave. Given the temporal
periodicity of the metasurface, the electric field inside the
metasurface may be represented based on the temporal Bloch-
Floquet decomposition as

EM(x, z, t) = ŷ

∞∑
n=−∞

En(x, z)e−iωnt, (16a)

Fig. 7. Illustration of oblique incidence and scattering in a general STM
metasurface. The metasurface is infinitely extended in the y-direction and is
hence y-invariant [16].

where ωn = ω0 + nΩ, and

En(x, z) = Kn(z)

M∑
m=−M

Emn exp[i(kx,ix+mϕz/L)],

(16b)
where Emn is the unknown electric field coefficient matrix,
ϕ is the unknown spatial frequency between 0 and 2π, to be
known given the spatial variation of the metasurface, kx,i =
k0 sin(θi) = ω0

√
εavµav sin(θi)/c, with εav and µav being

the average permittivity and permeability of the metasurface.
In (16b), Kn(z) is the principal spatial frequency matrix, given
as

Kn(z) = diag {[exp(κ−Nz) · · · exp(κ0z) · · · exp(κNz)]}
(16c)

where κn are the unknown eigenvalues of the nth mode to be
found. The magnetic field inside the metasurface reads

HM(x, z, t) =
1

kn

∞∑
n=−∞

(−x̂βz,n + ẑkx,i) Hn(x, z)e−iωnt,

(17a)
where kn =

√
k2
x,i + β2

z,n, and

Hn(x, z) = Kn(z)

M∑
m=−M

Hmn exp[i(kx,ix+mϕz/L)].

(17b)
Here, βz,n = βz,n(z) = kz,i +nq(z), with kz,i = k0 cos(θi)

and q(z) = Ω/vm(z) = Ω/Γvb(z) being the z-component of
the incident wavevector and spatial frequency of the modula-
tion, respectively. Here, vm(z) and vb(z) are phase velocities
of the modulation and background medium, respectively, and
Γ = vm/vb is the ST velocity ratio [38]. The unknown field
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coefficient matrices, Emn, Hmn, βz,n and Kn are to be found
through satisfying Maxwell equations, so that

∇× EM(x, z, t) = −∂[µ(z, t)HM(x, z, t)]

∂t
(18a)

∇×HM(x, z, t) =
∂[ε(z, t)EM(x, z, t)]

∂t
(18b)

which may be cast in the form of coupled matrix equations as

E(x, z) = Z(z)H(x, z) (19a)

H(x, z) = Y(z)E(x, z) (19b)

where E(x, z) = [E−N (x, z) . . . E0(x, z) . . . EN (x, z]T and
H(x, z) = [H−N (x, z) . . . H0(x, z) . . . HN (x, z)]T, and

W(z) =



ω−N
k−N

ϑ0(z) · · · ω−N
k−N

ϑ2N (z)

ω−N+1

k−N+1
ϑ−1(z) · · · ω−N+1

k−N+1
ϑ2N−1(z)

...
. . .

...
ωN
kN
ϑ−2N (z) · · · ωN

kN
ϑ0(z)

 (19c)

where W(z) = Z(z) considering ϑn = µn and W(z) = Y(z)
considering ϑn = εn, and where ωn = ω0 + nΩ. Equa-
tions (19a) and (19b) form the coupled matrix equation of
the general STM medium in Fig. 1. To solve this coupled
matrix equation, we express the aperiodic/periodic spatially-
variant Z(z) and Y (z) matrices based on the series expansion
as W(z) =

∑M
m=−M Wm exp[(imϕz)/L], where W(z) rep-

resents either Z(z) or Y(z), and Zm and Ym are unknown
coefficients to be determined given the spatial variation of the
metasurface. The dispersion relation of the unbounded general
STM medium is expressed as

det
{[−→

Λm
−→
Z
−→
Λm
−→
Y − I

]}
= 0. (20)

A. Scattered Electromagnetic Fields

Considering the TMxz or Ey incident field in (15), the
incident magnetic field reads [16]

HI(x, z, t) = [−x̂ cos(θi) + ẑ sin(θi)]
E0

η1
ei(kx,ix+β0z−ω0t),

(21)
where η1 =

√
µ0µr/(ε0εr). The electric and magnetic fields

in the metasurface may be explicitly written using (6) as

EM(x, z, t) = ŷ
∑
n,p

Enp
(
A0pe

iβ+
npz +B0pe

−iβ−npz
)
ei(kx,ix−ωnt),

(22a)
and

HM(x, z, t) =
1

k

∑
n,p

Hnp

( [
−x̂β+

np + ẑkx,i
]
A0pe

iβ+
npz

+
[
x̂β−np + ẑkx,i

]
B0pe

−iβ−npz
)
ei(kx,ix−ωnt).

(22b)

A0p =
E0k1[cos(θi) + cos(θr0)]/

[
−η1β

+
0p + k1Zp cos(θr0)

]
1 +

η1β
−
0p+k1Zp cos(θr0)

−η1β+
0p+k1Zp cos(θr0)

η3β
+
0p−k3Zp cos(θt0)

η3β
−
0p+k3Zp cos(θt0)

ei(β
+
0p+β−0p)L

,

(23a)

B0p = A0pe
i(β+

0p+β−0p)L
η3β

+
0p − k3Zp cos(θt0)

η3β
−
0p + k3Zp cos(θt0)

, (23b)

where Zp = E0p/H0p. for the backward problem, where k1 =
ω0
√
εr,1µr,1/c and k3 = ω0

√
εr,3µr,3/c is the spatial frequency

in the unmodulated media. From this point, the scattered fields
in the unmodulated regions, are found as

ER = ŷ
∑
n,p

[Enp (A0p +B0p)− E0δn0] ei[kx,ix−kz,rnz−ωnt],

(24a)
ET = ŷ

∑
n,p

Enp
(
A0pe

iβnpL +B0pe
−iβnpL

)
ei[kx,ix−kz,tnz−ωnt].

(24b)
where k0n = (ω0 + nΩ/vb).

B. ST Decomposition

The scattering angles of the different space-time harmon-
ics (STHs) may be achieved from the Helmholtz relations
where k2

1 sin2(θi) + k2
1n cos2(θrn) = k2

1n and k2
3 sin2(θi) +

k2
3n cos2(θtn) = k2

3n, where θrn and θtn are the reflection and
transmission angles of the nth STH, yielding

θrn = θt,n = sin−1

(
sin(θi)

1 + nΩ/ω0

)
, (25)

Equation (25) reveals the ST spectral decomposition of the
scattered wave. For k1 = k2 = k3 = k0, the reflection and
transmission angles for a given harmonic n are equal, given
the equal tangential wavenumber, kx,i = k0 sin(θi) in all the
regions. It may be achieved from Eq. (25) that the harmonics in
the n-interval [ω0(sin(θi)−1)/Ω,+∞] are scattered (reflected
and transmitted) at angles ranging from 0 to π/2 through θi
for n = 0, whereas the STHs outside of this interval represent
imaginary k±znp and are thus not scattered but rather propagate
as surface waves along the boundary of the metasurface. The
scattering angles of the STHs inside the modulated medium
read

θ±np = tan−1

(
kx2

k±znp

)
= tan−1

(
k02 sin(θi)

β±0p ± nq

)
. (26)

C. Results and Discussion

This section presents the analytical and numerical inves-
tigation of wave propagation and scattering from general
STM metasurfaces. As a particular case, which is easier to
realize [38], [45], we consider a sinusoidally STM medium,
as

ε(z, t) = ε0εr [1 + δε sin(qz − Ωt)] , (27a)

µ(z, t) = µ0µr [1 + δµ sin(qz − Ωt)] , (27b)

where δε and δµ represent respectively the permittivity and
permeability modulation strengths. Figure 9 plots the spatial
and temporal variation of the permittivity and permeability of
a sinusoidally STM metasurface, with length of L, sandwiched
between two semi-infinite free-space regions. The metasurface
assumes Ω = 2π×0.1 GHz, Γ = 1, δε = δµ = 0.15, t = 1ps,
t = 0.75ns, t = 2.5ns and t = 4.1ns. Such a metasurface is
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Fig. 8. ST decomposition resulting from the oblique incidence to a STM
metasurface [16].

Fig. 9. Spatial and temporal variation of the permittivity and permeability
of a sinusoidally STM metasurface, with length L, sandwiched between two
semi-infinite free-space regions, where Ω = 2π × 0.1 GHz, Γ = 1 δε =
δµ = 0.15, and for t = 1ps, t = 0.75ns, t = 2.5ns and t = 4.1ns [16].

characterized with a ST-varying intrinsic impedance [40], i.e.,

η(z, t) =

√
µ0µr [1 + δµ sin(qz − Ωt)]

ε0εr [1 + δε sin(qz − Ωt)]

∣∣∣∣∣
δµ=δε

= η0ηr (28)

Equation (28) reveals that such a STM metasurface ex-
hibits zero space- and time local reflections as the intrinsic
impedance of the metasurface is ST-independent.

D. Dispersion Diagrams for a Sinusoidal STM Medium

Wave propagation in an unbounded STM medium may
be best investigated by the analysis of its dispersion dia-
grams. Figure 10(a) plots the three dimensional dispersion
diagram using (20) for sinusoidally STM medium with the
electric permittivity and magnetic permeability in (27) for
δµ = δε = 0.15 and Γ = 0.85, exhibiting β0(ω0, kx,i). This
diagram is constituted of an array of cones with different
diameters and different origins. For a fixed frequency ω0,
this 3D diagram gives a 2D diagram constituted of an array
of circles, each of which representing a STH (shown in
Figs. 10(b) and 10(b)). However, for a fixed kx,i, the 3D
diagram in Fig. 10(a) provides an infinite set of forward lines
(∂β/∂ω > 0) with the distance of ∆β+/q = 1 − Γ , and
an infinite set of backward lines (∂β/∂ω < 0) with the
distance of ∆β−/q = 1 + Γ (shown in Figs. 10(d) and 10(e).
The nonreciprocity of the medium is proportional to the ratio
∆β−/∆β+. In the sonic regime, where Γ → 1, the distance
between the forward lines tends to zero ∆β+/q = 1−Γ → 0,
yielding a strong exchange of energy and momentum between
the forward harmonics, whereas the distance between the
backward lines ∆β−/q = 1 + Γ → 2, yielding a weak
exchange of energy and momentum between the backward
harmonics. As a consequence, exciting the medium at the
temporal and spatial frequencies [ω0,β0] results in a strong
cascade transition of energy and momentum to higher order
forward harmonics [ω0 + nΩ,|β0| + nq] (shown with black
dashed arrows in Fig. 10(a)), and a weak cascade transition of
energy and momentum to higher order backward harmonics
[ω0 + nΩ,−|β0| + nq] (shown with yellow dashed arrows in
Fig. 10(a)), with n being any integer. Hence, in the limiting
case of the sonic regime where the strongest nonreciprocity
(∆β−/∆β+) is provided by the STM medium, there still
exist a weak transition of backward STHs as the distance
between backward harmonics ∆β−/q does not acquire an
infinite value, rather tends to ∆β−/q → 2.

For a nonzero permittivity (or permeability) modulation
strength (Fig. 10(d)), i.e., δµ 6= δε, the equilibrium between
the electric permittivity and magnetic permeability of the
medium will be lost. Hence, asymmetric (with respect to
β/q = 0) and unequal electromagnetic band gaps open up at
the synchronization points between the forward and backward
harmonics [40]. These band gaps correspond to frequencies
where the incident wave will be largely reflected by the
medium. However, as we equally increase both the permittivity
and permeability modulation strength (Fig. 10(e)), equilibrium
in the electromagnetic properties of the medium occurs and the
electromagnetic band gaps disappear.

E. FDTD Numerical Simulation

We next verify the above theory by FDTD numerical simu-
lation of the dynamic process through solving Maxwell’s equa-
tions. Figure 11 plots the implemented finite-difference time-
domain scheme for numerical simulation of the oblique wave
impinging to the STM slab. We first discretize the medium to
K + 1 spatial samples and M + 1 temporal samples, with the
steps of ∆z and ∆t, respectively. Next, the finite-difference
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Fig. 10. Analytical dispersion diagram of the sinusoidally STM medium with
the electric permittivity and magnetic permeability in (27) in the quasisonic
regime, i.e., Γ = 0.85. (a) Three dimensional dispersion diagram constituted
of an array of double-cones for δε = δµ → 0 [16]. (b) and (c) Isofrequency
diagrams at ω/Ω = 3 and for δε = δµ → 0, respectively, for the subsonic
regime (Γ = 0.3) and the quasisonic regime (Γ = 0.85) [16]. (d) Normal
incidence (kx,i = 0) dispersion diagram of the conventional ST permittivity-
modulated metasurface, i.e., δε = 0.15 and δµ = 0. This diagram is
constituted of an infinite set of periodic forward lines with the distance ∆β+

and an infinite set of periodic backward lines with the distance ∆β−, and
periodic electromagnetic band gaps appear at the intersection of the forward
and backward STHs [16]. (e) Normal incidence (kx,i = 0) dispersion diagram
of the equilibrated STM metasurface with δµ = δε = 0.15, yielding enhanced
nonreciprocity, ∆β−/∆β+, and zero electromagnetic band gaps [16].

Fig. 11. General representation of the finite-difference time-domain scheme
for numerical simulation of the oblique incidence of an Ey wave to STM
slab [14].

discretized form of the first two Maxwell’s equations for the
electric and magnetic fields in (18a) and (18b) are simplified
to

Hx|i+1/2
j+1/2= (1−∆t)Hx|i−1/2

j+1/2+
∆t

µ0∆z

(
Ey|ij+1−Ey|ij

)
(29a)

Hz|i+1/2
j+1/2= (1−∆t)Hz|i−1/2

j+1/2−
∆t

µ0∆z

(
Ey|ij+1−Ey|ij

)
(29b)

Ey|i+1
j =

(
1−

∆tε′|ij
ε|i+1/2
j

)
Ey|ij+

∆t/∆z

ε|i+1/2
j

.
[(
Hx|i+1/2

j+1/2−Hx|i+1/2
j−1/2

)
−
(
Hz|i+1/2

j+1/2−Hz|i+1/2
j−1/2

)]
(29c)

where ε′ = ∂ε(z, t)/∂t = −Ωδε cos(qz − Ωt).

F. Advanced Wave Engineering Based on Unidirectional Fre-
quency Generation and ST Decomposition

This section investigates the wave transmission and reflec-
tion from STM media using the FDTD numerical simulation.
We consider oblique incidence to general STM metasurfaces,
and compare the numerical results with the analytical solution
provided in Sec. IV. A plane wave with temporal frequency
ω0 = 2π × 3 GHz is propagating along the +z-direction
under an angle of incidence of θi = 25◦, and impinges
to the conventional ST permittivity-modulated metasurface
in Fig. 9 with the constitutive parameters in (27), where
Ω = 2π × 0.1 GHz, Γ = 1, L = 16λ0.
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Fig. 12. Electric field distribution, Ey , for the forward oblique excitation of
a plane wave with frequency ω0 = 2π×3 GHz to ST permittivity-modulated
metasurface (δµ = 0) in Fig. 9 with Ω = 2π × 0.1 GHz, Γ = 1, L =
16λ, θi = 25◦ and at t = 200 ns. (a) Moderate modulation strength δε =
0.15 [16]. (b) Large modulation strength δε = 0.4 [16]. (c) A magnified image
highlighting the spatiotemporally decomposed transmitted STHs in (b) [16].

1) Periodic ST Modulation: Figure 12(a) plots the elec-
tric field distribution for the scattered field from the ST
permittivity-modulated metasurface with δε = 0.15 and δµ =
0. The transmitted field from the metasurface, on top of this
figure, is constituted of a set of STHs, i.e. ωn = 2π × (3 +
0.1n) GHz, with n being any integer. Small reflections are
seen at the bottom of this figure, highlighted with arrows,
which are due to the local space and time reflections inside
the STM metasurface. In addition, it is however obvious that
the frequency generation and decomposition is not strong. To
achieve stronger frequency generation and ST decomposition,
we may increase the modulation strength or the metasurface
length.

Figures 12(b) and 12(c) plot the result for the same meta-
surface as Fig. 12(a) except for a higher modulation strength
of δε = 0.4, with δµ = 0. ST decomposition of the transmitted
wave is pronounced in this figure, where high frequency
harmonics (ωn > ω0) are transmitted under the angle of
transmission of θt,n < ωn, and low frequency harmonics
(ωn < ω0) are transmitted under the angle of transmission
of θt,n > ωn. As expected, for such a metasurface with strong
permittivity modulation, δε = 0.4, the reflected STHs at the
bottom of the figure, are more pronounced.

Next, we investigate the field scattering from an equilibrated
STM metasurface, i.e. δµ = δε = 0.15. Figure 13(a) plots
the electric field distribution inside and scattered from this
metasurface at t = 20 ns. It may be seen from this figure

that, an equilibrated STM metasurface with δµ = δε = 0.15
exhibits similar frequency generation and ST decomposition
as a conventional ST permittivity-modulated metasurface with
much stronger modulation strength of δε = 0.4 (shown
in Fig. 12(b)). It may be shown that an equilibrated STM
metasurface with δµ = δε = 0.15 may be realized with
the same amount of pumping energy required for the realiza-
tion of conventional permittivity-modulated metasurface with
δε = 0.15 and δµ = 0 [40]. Moreover, as we see in Fig. 13(a),
the equilibrated metasurface exhibits zero local space and time
reflection. The strict zero reflection from such a metasurface
can be shown by increasing the number of space and time
samples in the numerical scheme.

Figure 13(b) shows the numerical simulation result for the
electric field distribution inside the STM metasurface and
scattered from the same metasurface as in Fig. 13(a) except
at t = 40 ns. As expected, such a time-varying metasurface
presents a time-varying beam for the transmitted field, as well
as the reflected field.

Figure 13(c) compares the analytical and numerical solu-
tions for the spectrum of the transmitted electric field for
forward incidence to the metasurface, at t = 200 ns, for three
different angles, i.e. θt = 0, 40, 65◦. Interestingly, the energy of
the incident wave at ω0 = 2π×3 GHz is strongly transitioned
to higher STHs for θt = 0◦, and to lower STHs for θt = 40◦

and θt = 65◦. This figure reveals that the STM metasurface
may be cast as a subharmonic mixer.

Figures 14(a) and 14(b) respectively plot the numerical
simulation result for the electric wave scattering from the
conventional (same metasurface as in Fig. 12) and equilibrated
(same metasurface as in Fig. 13) for the backward excitation.
It may be seen that for both cases, the frequency generation
and ST decomposition of the transmitted field are negligible.
As a result, such STM metasurface, provides nonreciprocal
frequency generation and ST decomposition.

Figure 14(c) compares the analytical and numerical solu-
tions for the spectrum of the transmitted electric field for
backward incidence to the equilibrated metasurface (same
metasurface as in Figs. 13 and 14(a) and 14(b) for three
different angles, i.e. θt = 0, 40, 65◦. Figure 14(c) shows that,
the energy of the incident wave at ω0 = 2π×3 GHz is weakly
transited to higher and lower STHs.

2) Controlling the STHs Using Aperiodic ST Modulation:
To best control the transmitted STHs, one may use an aperiodic
ST modulation [29]. The aperiodic ST modulation provides
the leverage for the suppression of undesired STHs [29], as
well as the capability to change the angles and amplitudes
of the transmitted STHs. An appropriate periodic/aperiodic
spatial variation added to the periodic ST modulation in the
previous section may provide the sufficient design flexibility
to control the properties of the transmitted STHs. Such an
aperiodic spatial variation may be specified through a similar
synthesis procedure reported in [29]. In order to show the
effect of a nonuniform (periodic/aperiodic) spatial variation
on the transmitted STHs, we consider a particular case of a
quasi-aperiodic STM permittivity

ε(z, t) = ε0εr

[
2 +M cos(σ

2π

λ0
z) + δε sin(qz − Ωt)

]
, (30)
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Fig. 13. Forward oblique excitation of the equilibrated STM metasurface in Fig. 9, with a plane wave of frequency ω0 = 2π× 3 GHz, with δµ = δε = 0.15
and for θi = 25◦. (a) Numerical simulation result for the electric field distribution, Ey , at t = 20 ns [16]. (b) Numerical simulation result for the electric field
distribution, Ey , at t = 40 ns [16]. (c) Comparison of the analytical and numerical solutions for the spectrum of the transmitted electric field, at t = 200 ns,
for three different angles, i.e. θt = 0, 40, 65◦ for Γ = 0.85 [16].

Fig. 14. Backward oblique excitation of the metasurface in Fig. 13, with a plane wave of frequency ω0 = 2π × 3 GHz, with δε = 0.15, θi = 25◦ and at
t = 200 ns. (a) δµ = 0 [16]. (b) δµ = δε = 0.15 [16]. (c) Analytical and numerical solutions for the spectrum of the transmitted electric field at t = 200 ns
at three different angles, i.e. θt = 0, 40, 65◦ for Γ = 0.85 [16].

and constant permeability µ(z, t) = µ0µr, where λ0 = vb/ω0.
We aim to achieve a desired transmission, in which ω−10 and
ω14 are respectively transmitted under the transmission angles
of θT,−10 = 30◦ and θT,14 = 10◦, where ωn > ω20 and
ωn < ω−10 are attenuated. We first look for a periodic spatial
profile. Following the synthesis procedure in [29], M = 1 and
σ provide a suitable response. Figures 15(a) and 15(b) show
the numerical results for the time domain response for the
transmission of the STHs, respectively, through the periodic
STM medium and quasi-aperiodic STM. It may be observed
that the quasi-aperiodic STM medium has provided quite
different transmitted STHs than the periodic case, i.e., with
different amplitudes and different angles of transmissions. This
effect may be best seen in the frequency domain. Figures 15(c)
and 15(d) show the analytical and numerical simulation results
for the frequency domain transmitted STHs, respectively,
through the periodic STM medium and quasi-aperiodic STM.
As specified, the strongest harmonic at θT,14 = 10◦ is at
ω14 = 4.4 GHz, where the strongest harmonic at θT,−10 = 10◦

is at ω14 = 2 GHz, and ωn > ω20 and ωn < ω−10 are
significantly attenuated. This demonstrates the capability of

the obliquely illuminated STM in wave engineering. It should
be noted that, an aperiodic profile may provide better response
in terms of the suppression of undesired STHs, but here
we consider the simplest case which is easier to design and
implement.

V. ST DIFFRACTION METAGRATINGS

Light diffraction by spatially periodic structures is a funda-
mental phenomenon in optics and is of great importance in a
variety of engineering applications [79]. Here, we first intro-
duce the concept of generalized periodic gratings [18]. Such
gratings are varying periodically in both space and time, repre-
senting the generalized version of standard conventional static
(time-invariant) spatially varying gratings. Different from the
ST metasurfaces in Secs. IV-C where the ST modulation is
applied along the z (perpendicular) direction, here the STP
grating is periodic along the x (transverse). The analytical
solution in Sec. IV is for general aperiodic ST metasurfaces
where the metasurfaces lie outside the diffraction regime. As
a result, here we present a deep analysis on the functionality
of STP gratings in the diffraction regime based on the modal
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Fig. 15. Numerical simulation results for the electric field distribution, Ey , for the forward oblique excitation under the angle of incidence θi = 25◦,
ω0 = 2π× 3 GHz, where δε = 0.4, δµ = 0, Ω = 2π× 0.1 GHz, Γ = 0.85, L = 16λ, and at t = 200 ns. (a) and (c) Time domain and frequency domain
results, respectively, for the periodic ST permittivity-modulated medium [16]. (b) and (d) Time domain and frequency domain results, respectively, for the
quasi-aperiodic STM medium [16].

analysis for electromagnetic waves inside a STP grating along
with the wavevector-diagram analysis for diffracted waves
outside the STP grating.

Figure 16(a) depicts the wave diffraction from a conven-
tional transmissive planar spatially periodic diffraction grat-
ings. The conventional static grating in Fig. 16(a) possesses
a relative electric permittivity in the region from z = 0 to
z = d given by n2

gr(x) = εgr(x) = fper(x), where fper(x) is
a periodic function of x, e.g., a sinusoidal, binary (square),
or sawtooth function. Electromagnetic waves always travel in
straight lines, but when passing near an obstruction they tend
to bend around that obstruction and spread out. The diffraction
phenomenon occurs when an electromagnetic wave passes by
a corner or through a slit or grating that has an optical size
comparable to the wavelength. The diffraction by a grating is
a specialized case of wave scattering, where an object with
regularly repeating features yields an orderly diffraction of
the electromagnetic wave in a pattern consisting of a set of
diffraction orders m.

As shown in Fig. 16(a), considering normal incidence of
the input wave (θi = 0), a symmetric diffraction pattern with
respect to x = 0 will be produced by conventional static
gratings, possessing a symmetric profile with respect to the
x = 0 axis. An asymmetric diffraction pattern for normal

incidence can be achieved by an asymmetric static periodic
metagratings [80], [81]. However, gratings with symmetric and
asymmetric profiles are both restricted by the Lortentz reci-
procity theorem, and therefore, possess reciprocal diffraction
transmission response. The symemtry of the diffraction pattern
in conventional periodic static gratings includes the symmetry
in both the angles of diffraction orders θm (e.g., θ+2 = θ−2)
and the symmetry in the intensity of the diffracted orders Pm
(e.g., P+2 = P−2). In addition, assuming a monochromatic
input wave with temporal frequency ω0, no change in the
temporal frequency of the incident field occurs, and hence,
the diffracted orders share the same temporal frequency of
ω0.

Now, consider the transmissive planar STP diffraction grat-
ing shown in Fig. 16(b). This figure shows a generic repre-
sentation of the ST diffraction from a STP diffraction grating,
which is distinctly different from the spatial diffraction from
a conventional space-periodic diffraction grating in Fig. 16(a).
The grating is interfaced with two semi-infinite dielectric
regions, i.e., region 1 is characterized with the refractive index
n1 and wavenumber k, and region 3 characterized with the
refractive index n3 and wavenumber k′′. The relative electric
permittivity of this STP grating is periodic in both space and
time, with temporal frequency Ω and spatial frequency K,
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Fig. 16. Diffraction from a transmissive grating for a monochromatic incident
wave. (a) Conventional spatial diffraction grating with n2

gr(x) = εgr(x) =
fper(x) [18]. (b) Generalized STP diffraction grating with n2

gr(x, t) =

εgr(x, t) = f
(
f1,per(x), f2,per(t)

)
[18]. (c) Wavevector isofrequency diagram

for the diffraction from a STP diffraction grating [18].

given by n2
gr(x, t) = εgr(x, t) = f (f1,per(x), f2,per(t)), where

f1,per(x) and f2,per(t) are periodic functions of space (in the x
direction) and time, respectively. The wavenumber in region
2 (inside the STP grating) is denoted by k′.

Assuming normal (or oblique) incidence of the input wave,
the STP gratings (shown in Fig. 16(b)) produces an asymmet-
ric diffraction pattern with respect to x = 0. This asymmetry
in the diffraction pattern is due to the asymmetric ST profile of
the structure provided by the ST modulation. The asymmetry
of the diffraction pattern extends to both the diffraction angles
of diffracted orders θm (e.g., θm=+2 6= θm−2) and the inten-
sities of the diffracted orders Pm (e.g., Pm=+2 6= Pm=−2).
Furthermore, the time-variation of the grating (with frequency
Ω) results in the generation of new frequencies. Hence, assum-
ing a monochromatic input wave with temporal frequency ω0,
an infinite set of temporal frequencies will be generated inside
the grating and will be diffracted, so that each spatial diffracted
order (m) is composed of an infinite number of temporal
diffraction orders n. As a result, for such a generalized STP
diffraction grating, the diffraction characteristics are defined
for each ST diffracted order (mn) so that the diffracted order
(mn) is transmitted at a specified angle θmn attributed to the
electric field ET

mn.
Figure 16(c) shows a generic illustration example of a

wavevector isofrequency diagram for the diffraction from a
STP diffraction grating. The grating is characterized with the
spatial frequency K (the spatial periodicity of the STP grating
reads Λ = 2π/K) and the temporal frequency Ω. Figure 16(c)
sketches the phase matching of ST harmonic components of
the total field inside the grating with propagating backward
diffracted orders in region 1, and forward diffracted orders
in region 3. We assume the grating is interfaced with two
semifinite dielectrics, i.e., z → −∞ < region 1 < z = 0
and d < region 3 < z → ∞, respectively. Region 1, region
2 (inside the STP grating) and region 3 are, respectively,
characterized with the phase velocities vr = c/n1, v′r = c/nav
and v′′r = c/n3, and the wavevectors kmn = kx,mnx̂+kz,mnẑ,
k′pmn = k′x,pmnx̂ + k′z,pmnẑ, and k′′mn = k′′x,mnx̂ + k′′z,mnẑ.
Here, c represents the velocity of the light in vacuum, m
and n denote the number of the space and time harmonics,
respectively, while p represents the number of the mode in
region 2, inside the grating (these modes only exist inside the
grating).

The STP grating assumes oblique incidence of the y-
polarized electric field in Eq. (15). The x component of
the wavevector outside the STP grating, in region 3, reads
k′′x,mn = k′′n sin(θ′′mn), where k′′n = k′′0 + nΩ/v′′r and where
k′′0 = ω0/v

′′
r . The corresponding z component of the wavevec-

tor in region 3 is calculated using the Helmholtz relation,
as k′′z,mn =

√
(k′′mn)2 − (k′′x,mn)2 = k′′n cos(θ′′mn). The ST

diffraction process may be simply interpreted as follows. The
incident wave is refracted into the grating medium at z = 0,
while generating an infinite set of time harmonics inside the
grating, with frequencies ωn corresponding to the wavevectors
k′n = k′0 +nΩ/v′r . The refracted ST plane waves in the grating
are diffracted into an infinite set of plane waves traveling
toward the z = d boundary. The ST harmonic waves inside
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the grating are phase matched into propagating and evanescent
waves in region 3, i.e., the x components of the wavevectors
of the mth mode in regions 1 and 3 and the x component of
the wavevector of the mth ST harmonic field in region 2 must
be the same.

To determine the spatial and temporal frequencies of the
diffracted orders, we consider the momentum conservation
law, i.e., kx,diff = k′′x,mn = kx,i + mK and the energy
conservation law, i.e., ωdiff = ω0 + nΩ, where kx,diff and kx,i
denote the x components of the wavevector of the diffracted
and incident fields, respectively, and ωdiff and ω0 represent
the temporal frequencies of the diffracted and incident fields,
respectively. Then,(

k′′0 + n
Ω

v′′r

)
sin (θ′′mn) = k0 sin(θi) +mK, (31)

where k0 = n1ω0/c. Considering n1 = n3, the angle of
diffraction for the forward ST diffracted orders in region 3
and the backward ST diffracted orders in region 1, i.e., the
mth spatial and nth temporal harmonic, yields

sin (θ′′mn) =
sin(θi) +mK/k0

1 + nΩ/ω0
, (32)

A. Propagating and evanescent Orders

For a given set of incident angles, spatial and temporal
frequencies of the grating, and the wavelength of the incident
beam, the grating equation may be satisfied for more than one
value of m and n. However, there exists a solution only when
| sin (θmn) | < 1. Diffraction orders corresponding to m and
n satisfying this condition are called propagating orders. The
other orders yielding | sin (θmn) | > 1 correspond to imaginary
z components of the wavevector kz,mn as well as complex an-
gles of diffraction sin(θmn). These evanescent orders decrease
exponentially with the distance from the grating, and hence,
can be detected only at a distance less than a few wavelengths
from the grating. However, these evanescent orders play a key
role in some surface-enhanced grating properties and are taken
into account in the theory of gratings. Evanescent orders are
essential in some special applications, such as for instance
waveguide and fiber gratings. The specular order (m = 0) is
always propagating while the others can be either propagating
or evanescent. The modulations with 2π/K << λ0 will
produce evanescent orders for m 6= 0, while the modulations
with 2π/K >> λ0 will yield a large number of propagating
orders.

In the homogeneous regions, i.e., regions 1 and 3, the
magnitude of the wavevectors of the backward- and forward-
diffracted orders read |kmn| = |kn|, and |k′′mn| =
|k′′n|. The x components of the diffracted wavevectors, kx,mn
and k′′x,mn, can be deduced from the phase-matching require-
ments. Then, the propagating and evanescent nature of the
corresponding orders will be specified based on the kz,mn and
k′′x,mn, as follows. The real kz,mns and k′′z,mns correspond to
propagating orders, whereas the imaginary kz,mns and k′′z,mns
correspond to evanescent orders. The propagating and evanes-
cent mth fields in regions 1 and 3 are shown in Fig. 16(c).
The wavevectors in regions 1 and 3 possess magnitudes |kn|

and |k′′n|, respectively. Hence, all the spatial diffraction orders
for the nth temporal harmonic in these two regions share
the same amplitude, i.e, |kmn| = |kn| and |k′′mn| = |k′′n|.
Semicircles with these radii are sketched in Fig. 16(c). The
allowed wavevectors in these regions must be phased matched
to the boundary components of the ST diffracted order inside
the grating. This is shown by the horizontal dashed lines in
the figure. In the qualitative illustration in Fig. 16(c), for the
incident wave of wavevector k0 and the grating with grating
wavevector K and temporal frequency Ω, the m = −1 to
+2 waves exist as propagating diffracted orders in regions 1
and 3. However, m 6 −2 and m > +1 will be diffracted as
evanescent orders.

First, we expand the field inside the modulated medium
in terms of the ST diffracted orders (m and n) of the field
in the periodic structure. This is due to the fact that the
electromagnetic waves in periodic media take on the same
periodicity as their host. These ST diffracted orders inside
the grating are phase matched to diffracted orders (either
propagating or evanescent) outside of the grating. The partial
ST harmonic fields may be considered as inhomogeneous
plane waves with a varying amplitude along the planar phase
front. These inhomogeneous plane waves are dependent and
they exchange energy back and forth between each other in
the modulated grating.

Since the electric permittivity of the grating is periodic
in both space and time, with spatial frequency K and tem-
poral frequency Ω, it may be expressed in terms of the
double Fourier series expansion, as n2

gr(x, t) = εgr(x, t) =∑
m

∑
n εmn exp(i(mKx − nΩt)), where εmn are complex

coefficients of the permittivity, and K and Ω are the spatial and
modulation frequencies, respectively. The electric field inside
the grating is expressed in terms of a sum of an infinite number
of modes, i.e., E2(x, z, t) =

∑
p E2,p(x, z, t). Given the ST

periodicity of the grating, the corresponding electric field of
the pth mode inside the grating may be decomposed into ST
Bloch-Floquet plane waves, as

E2,p(x, z, t) = ŷ
∑
m

∑
n

E′pmne
i(k′x,pmnx+k′z,pmnz−ωnt),

(33a)

where

E′pmn =
(ωn/c)

2

(k′x,pmn)2 + (k′z,pmn)2

∑
j

∑
q

εm−j,n−qE
′
pjq

(33b)

k′x,pmn =

(
k′p00 + n

Ω

v′r

)
sin

(
tan−1

(
k′x,p0n
k′z,p0n

))
+mK

(33c)

and k′z,pmn = k′pmn cos(θi).
Next, we determine the backward diffracted fields in region

1 and forward diffracted fields in region 3. As depicted in
Fig. 16(c), one must consider the multiple backward and
forward-propagating diffracted orders that exist inside and
outside of the grating. The total electric field in region 1 is
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Fig. 17. FDTD numerical simulation results of the y-component of the electric
field for the diffraction from a conventional spatially periodic (static) grating
(Ω = 0) [18].

the sum of the incident and the backward-traveling diffracted
orders, as

E1 = ŷE0e
i(kx,ix+kz,iz−ω0t) + ŷ

∑
m,n

ER
mne

i(kx,mnx−kz,mnz−ωnt),

(34)

where ER
mn is the unknown amplitude of the mth reflected

ST diffracted orders in region 1, with the wavevectors kx,mn
and kz,mn. The total electric field in region 3 reads E3 =

ŷ
∑
m,nE

T
mne

i(k′′x,mnx+k′′z,mnz−ωnt), where ET
mn is the am-

plitude of the mth transmitted ST diffracted order in region
3, with the wavevectors k′′x,mn and k′′z,mn. To determine
the unknown field coefficients of the backward and forward
diffracted orders, ER

mn and ET
mn, we enforce the continuity of

the tangential electric and magnetic fields at the boundaries of
the grating at z = 0 and z = d.

For the sake of comparison, we first investigate the diffrac-
tion from a conventional planar spatially periodic (static)
diffraction gratings. Such a static grating assumes a sinu-
soidal relative electric permittivity. Figure 17 shows the time
domain FDTD simulation results for the diffraction from a
conventional spatially periodic grating with θi = 0◦, ω0 =
2π×10 GHz, δε = 0.5, Ω = 0, K = 0.4k0, d = 0.8λ0. It may
be seen from this figure that, for a monochromatic incident
wave, all spatial diffracted orders possess the same wavelength
(frequency). Another observed phenomenon is that, since the
grating is ”undirectional”, the diffraction pattern for a normal
incidence (θi = 0) is symmetric with respect to the x axis.

Next, we demonstrate the diffraction from a planar STP
(dynamic) diffraction grating. As a particular case, which is
practical and common, we study the grating with a sinusoidal
relative electric permittivity in the region from z = 0 to
z = d given by n2

gr(x, t) = εav + δε[1 + sin(Kx − Ωt)].
Figure 18(a) shows the corresponding time domain FDTD
simulation results for the diffraction from this STP grating.

This figure shows that, different than the conventional case in
Fig. 17, the diffraction pattern of the STP grating is asym-
metric with respect to the x axis. Furthermore, the diffracted
orders acquire different wavelengths, which correspond to
different frequencies. Figures 18(b) to 18(g) plot the analytical
and FDTD numerical simulation frequency domain responses
for the m = −1 to m = +4 diffracted orders. These figures
show that each diffracted spatial order includes an infinite set
of temporal harmonics, ωn.

B. Effect of the grating thickness

It is of great interest to investigate the effect of the thick-
ness of the STP grating (d) on the generation of space and
time diffraction orders and the grating efficiency. In general,
diffraction gratings may be classified in two main categories,
i.e., thin and thick gratings, each of which exhibiting its
own angular and wavelength selectivity characteristics. The
thin gratings usually result in Raman-Nath regime diffraction,
where multiple diffracted orders are produced. In contrast, the
thick gratings usually result in Bragg regime diffraction, where
only one single diffracted order is produced. Following the
procedure described in [82], [83], we characterize these two
diffraction regimes, i.e., the Bragg and Raman-Nath regimes,
by the dimensionless parameter

Qn =
vrK

2d

(ω0 + nΩ) cos(θ′n)
(35)

The grating strength parameter is represented by

ξn =
δε
εav

d(ω0 + nΩ)

4vr cos(θ′n)
(36)

for TE polarization, and

ξn =
δε
εav

d(ω0 + nΩ) cos(2θ′n)

4vr cos(θ′n)
(37)

for TM polarization.
1) Raman–Nath regime: : The required condition for thin

STP gratings exhibiting Raman-Nath regime diffraction is
represented by Qnξn ≤ 1. Thin gratings may be also char-
acterized as gratings showing small angular and wavelength
selectivity. As the incident wave is dephased (either in angle
of incidence or in wavelength) from the Bragg condition,
the diffraction efficiency decreases. The angular range or
wavelength range for which the diffraction efficiency decreases
to half of its on-Bragg-angle value is determined by the
thickness of the grating d expressed as a number of grating
periods Λ = 2π/K. For a thin grating this number is
reasonably chosen to be Kd ≤ 20π. Figure 19(a) shows a
generic representation of the Raman-Nath regime diffraction
in STP transmissive diffraction gratings, for normal incidence
(θi = 0◦), ω0 = 2π × 10 GHz, Ω = 0.4ω0 and K = 0.4k0,
δε = 0.5 and d = 0.5λ. Figure 19(b) shows the numerical
simulation results for Raman-Nath regime diffraction of the
STP grating in Fig. 19(a). Following the procedure described
in [82], [83] (for conventional spatially periodic gratings),
for a thin transmissive STP grating operating in the Raman-
Nath regime, the diffraction efficiency reads ηmn = J2

m(2ξn),
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Fig. 18. Analytical and FDTD simulation results for the y-component of the
electric field, for the ST diffraction from a STP grating with ω0 = 2π ×
10 GHz, where δε = 0.5, Ω = 0.28ω0, K = 0.4k0, d = 0.8λ0. (a) Time
domain response [18]. (b)-(g) Frequency domain responses for m = −1 to
m = +4 ST diffraction orders [18]. Fig. 19. Two different operation regimes of STP transmissive diffraction

gratings. (a) Raman-Nath regime diffraction of a thin grating, where Ω =
0.4ω0 and K = 0.4k0, δε = 0.5 and d = 0.5λ [18]. (b) Bragg regime
diffraction of a thick grating, where Ω = 0.347ω0 and K = 0.867k0,
δε = 0.1 and d = 16λ [18].
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where Pmn and Pinc are the diffracted and incident powers, re-
spectively, and where J represents the, integer-order, ordinary
Bessel function of the first kind.

2) Bragg regime: : The Bragg regime diffraction may
be achieved in thick gratings. Thick gratings are capable
of exhibiting strong angular and wavelength selectivity. A
relatively small change in the angle of incidence from the
Bragg angle or a relatively small change in the wavelength at
the Bragg angle may result in a relatively strong dephasing,
which in turn, decreases the diffraction efficiency. Thick
grating behavior occurs when Kd ≥ 20π. Figure 19(c) shows
a generic representation of the Bragg regime diffraction in
STP transmissive diffraction gratings, for normal incidence
(θi = 0◦), ω0 = 2π × 10 GHz, Ω = 0.4ω0 and K = 0.4k0,
δε = 0.5 and d = 0.5λ. Figure 19(d) shows the numerical
simulation results for Bragg regime diffraction of the STP grat-
ing in Fig. 19(c). Following the procedure described in [82],
[83] (for conventional spatially periodic gratings), for a thick
transmissive STP grating operating in the Bragg regime, the
diffraction efficiency reads η1n = sin2(2ξn).

C. Asymmetric and Nonreciprocal Diffractions

1) Transmissive STP Grating: Figure 20(a) illustrates a
particular example, where a +z-propagating incident field
(forward problem) obliquely impinges on a transmissive STP
grating. Figure 20(d) shows the FDTD numerical simulation
result of the transmissive diffraction by the STP diffraction
grating in Fig. 20(a) with θi = 35◦, ω0 = 2π × 10 GHz,
where δε = 0.5, Ω = 2π × 4 GHz, d = 0.8λ0. As expected,
the diffracted ST orders possess different wavelengths and dif-
ferent amplitudes. Figures 20(b) to 20(f) present the simulation
results for the nonreciprocity and angle-asymmetric operation
of the transmissive STP diffraction gratings. It may be seen
from Figs. 20(b) and 20(e) that the output of the backward
problem is completely different than the incident wave of the
forward problem, showing a nonreciprocal wave diffraction.
This asymmetric diffraction test is depicted in Fig. 20(c), and
the corresponding time domain response is given in Fig. 20(f).
Comparing the numerical simulation results in Figs. 20(d)
and 20(f), we see that the STP grating introduces completely
different diffraction patterns for forward and backward inci-
dence, which includes difference in the angle of diffraction
and amplitude of the diffracted fields.

2) Reflective STP Grating: Figures 21(a) to 21(f) show the
nonreciprocal and angle-asymmetric responses of reflective
STP diffraction gratings. It may be seen from Fig. 21(b)
and 21(e) that the output of the backward problem is totally
different than (the spatial inversion of) the incident wave of the
forward problem, which demonstrates strong nonreciprocity of
the reflective STP grating. Comparing the results of the for-
ward and backward incidence, shown in Figs. 21(d) and 21(f),
respectively, one may obviously see that the reflective diffrac-
tion by the grating is completely angle-asymmetric. Such an
asymmetric reflective diffraction includes asymmetric angles
of diffraction and unequal amplitudes of the diffracted orders.

VI. DIFFRACTION CODE MULTIPLE ACCESS SYSTEM

The proposed STP grating offers unique properties that can
be utilized for the realization of new types of electromagnetic
devices and operations, such as for instance, nonreciprocal
beam shaping and beam coding, multi-functionality antennas,
tunable and nonreciprocal beam steering, enhanced resolution
holography, multiple images holography, illusion cloaking, etc.

Figure 22(a) presents an original application of the STP
diffraction grating to wireless communications. Such a com-
munication system is hereby called ST diffraction code mul-
tiple access (STDCMA) system. In the example provided in
Fig. 22(a), we consider three pairs of transceivers (in practice
one may consider more pairs of transceivers). In such a
scenario, only the transceiver pairs that share the same ST
diffraction pattern can communicate. Each diffraction pattern
is attributed to the properties of the grating ST modulation,
i.e., the input frequency, where the input data (message) plays
the role of the modulation signal. For a specified input data
(modulation signal), a unique diffraction pattern is created.
In the particular example in Fig. 22(a), the transceiver pairs
that are allowed to communicate are 1 and 1′, 2 and 2′,
and 3 and 3′, so that the transceivers 2′ and 3′ (2 and 3)
are incapable of retrieving the data sent by the transceiver 1
(1′), and the transceivers 1′ and 3′ (1 and 3) are incapable
of retrieving the data sent by the transceiver 2 (2′), and so
forth. Each communication pair shares a certain ST diffraction
pattern. Each diffraction pattern can be created by certain ST
modulation parameters, e.g. δε, εav, the K/Ω ratio, and the
grating thickness d. Since the radiation pattern provided by a
STP diffraction grating is very diverse and is very sensitive to
the ST modulation parameters, an optimal isolation between
the transceivers can be achieved by proper design of the
diffraction patterns.

Such a multiple access scheme is endowed with full-duplex
operation, thanks to the unique nonreciprocity provided by the
properties of a STP diffraction grating. Figure 22(b) depicts
the architecture of a STP-diffraction-grating-based transceiver
in the STDCMA system in Fig. 22(a). Such an architecture
is composed of a STP diffraction grating illuminated by an
incident wave with frequency f0. In the transmit mode (TX),
the grating is modulated by the input data denoted by ψTX
which is injected to the grating from the top and travels in the
−x direction. In the receive mode (RX), the incoming wave
(which includes a set of ST diffraction orders) impinges on
the grating and while interacting with the incident wave with
frequency f0, yields a −x traveling wave inside the grating,
denoted by ψRX. We shall stress that traveling of the ψRX
signal in the −x direction is enforced by proper design of the
grating, which will be explained later.

As we see in Fig. 22(b), the signal wave at the receiver
port is composed of the received signal (ψRX) plus a portion
of the input data of the transmission mode (αψTX). To ensure
complete cancellation of the ψTX in the receiver port, we may
use the circuit in the left side of Fig. 22(b). This circuit is
composed of a signal splitter that provides a sample from the
input data of the transmit mode (ψTX), a variable attenuator
and a variable phase shifter for calibration purposes to provide
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Fig. 20. Nonreciprocal and asymmetric wave diffraction from a transmissive STP grating with sinusoidal STM permittivity, i.e., ε(x, t) = εav+δε sin(Kx−Ωt),
where θi = 35◦, ω0 = 2π × 10 GHz, δε = 0.5, Ω = 2π × 4 GHz and d = 0.8λ0. (a) and (d) Forward problem [18]. (b) and (e) Backward problem for
demonstration of nonreciprocal wave diffraction [18]. (c) and (f) Backward problem for demonstration of asymmetric wave diffraction [18].

Fig. 21. Nonreciprocal and angle-asymmetric ST diffraction of a reflective STP diffraction grating with a +x-traveling STM electric permittivity, i.e.,
ε(x, t) = εav + δε[1 + sin(Kx − Ωt)], where δε = 0.5, Ω = 0.4ω0, d = 0.8λ0. (a) and (d) Forward wave incidence [18]. (b) and (e) Backward wave
incidence for nonreciprocal diffraction demonstration [18]. (c) and (f) Backward wave incidence for angle-asymmetric demonstration [18].
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Fig. 22. ST diffraction code multiple access (STDCMA) system. (a)
Schematic representation [18]. (b) Full-duplex operation mechanism [18]. (c)
Wavevector diagram of a particular transceiver pair [18].

αψTX. Then, the signal wave at the receiver port, i.e., ψRX +
αψTX, will be subtracted from the calibrated sample signal,
that is αψTX, by a rat-race coupler. Thus, the signal at the
difference port of the rat-race coupler is the desired received
signal ψRX. It is worth mentioning that the calibration of the
architecture can be performed by disconnecting the RX port
from port-1 of the rat-race coupler, connecting port-1 to a
match load, and then seeking for a null at the difference port
of the rat-race coupler by adjusting the variable attenuator and
variable phase shifter, so that ψTX is completely canceled out
at the difference port of the rat-race coupler.

An elegant feature of the transceiver scheme in Fig. 22(b)
is that the diffraction grating is used as the receiver (as well
as the transmitter), where the received signal wave acts as
the modulation signal (specifies the K and Ω parameters)
instead of the incident field. The key reason for the duplexing
operation is that, inside the grating the wave can only flow
downstream. Figure 22(c) shows how the full-duplex operation
is achieved by proper design of the diffraction grating, where
only negative diffraction orders, i.e., −x propagating orders,
are generated, while positive diffraction orders, that is +x
propagating orders, are evanescent. This way, we ensure that
inside the grating, all the diffraction orders are traveling in
the −x direction, in both the transmit and receive modes. In
Fig. 22(c), transceiver 1 operates in the transmit mode, where
the input data (ψTX) is injected to the grating from the top and
while interacting with the incident wave with the wavenumber
k0, generates a number of nonpositive diffraction orders, i.e.,
m ≥ 0. In the right side of Fig. 22(c), transceiver 1′ receives
the diffracted orders by transceiver 1, so that the resultant
wave inside ψRX exits the grating from the bottom port of the
grating, as all the diffraction orders can only travel in the −x
direction.

VII. UNIDIRECTIONAL BEAM SPLITTER

Beam splitters are quintessential elements of communi-
cation systems. In spite of the immense scientific attempts
for the realization of efficient beam splitters, beam splitters
are restricted to reciprocal response and suffer from sub-
stantial transmission loss. As a consequence, the resource
requirements of the overall system, including demand for high
power microwave sources and isolators, will be increased.
Here, we introduce a one-way, tunable and highly efficient
beam splitter and amplifier based on coherent electromagnetic
transitions through the oblique illumination of STM structures.
The contributions in this regard are as follows. In contrast to
conventional beam splitters which are restricted to reciprocal
response with more than 3 dB insertion loss, the proposed
STM beam splitter is capable of providing nonreciprocal
response with transmission gain. It can be also used in antenna
applications, where the transmitted and received waves are
engineered appropriately. Moreover, the angle of transmission
and the amplitude of the transmitted beams depend on the ST
modulation parameters. Hence, the ST modulation parameters
provide the leverage for achieving the desired angle of trans-
mission for the two output beams of the STM beam splitter.
In addition, unequal power division between the output beams
can be achieved by varying the ST modulation parameters.
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Figure 23(a) sketches the nonreciprocal beam transmission
and splitting in a STM metasurface. By appropriate design
of the band structure, that is, the ST modulation format and
its associated temporal and spatial modulation frequencies,
unidirectional energy and momentum exchange between the
incident wave-under angle of incidence and transmission θi =
θT,0 = 45◦ and temporal frequency ω0- to the first lower
STH-under angle of transmission θT,−1 = −45◦ and temporal
frequency ω0- will occur. We assume the incident electric field
in Eq. (15) under the angle of incidence θi = 45◦ impinges to
the periodic STM metasurface.

The STM metasurface assumes a sinusoidal ST-varying per-
mittivity with the temporal modulation frequency of Ω = 2ω0,
and the spatial modulation frequency of q = 2k0/Γ . Here,
kz,n = β0 +nq and the temporal frequency ωn = (1 + 2n)ω0,
with β0 being the unknown spatial frequency of the fundamen-
tal harmonic. The unknowns of the electric field, that is, An
and β0, will be found through satisfying Maxwell’s equations.

The transmission angle of the mth transmitted STH,
θT,n, satisfies the Helmholtz relation as k2

0 sin2(θi) +
k2
n cos2(θT,n) = k2

n, where kn = ωn/vb denotes the wavenum-
ber of the nth transmitted STH outside the STM metasurface.
The angle of transmission θT,n reads

θT,n = sin−1

(
kx,i
kn

)
= sin−1

(
sin(θi)

1 + 2n

)
. (38)

which demonstrates the spectral decomposition of the trans-
mitted wave. Consequently, the fundamental STH, n = 0, and
the first lower STH, n = −1, with equal temporal frequency
ω0, will be respectively transmitted under the angles of trans-
mission of θT,0 = θi = 45◦ and θT,−1 = −θi = −45◦ so that
they are transmitted under 90◦ angle difference, presenting the
desired beam splitting.

Figure 23(b) presents the isofrequency dispersion diagram.
This diagram is formed by 2N + 1 periodic set of double
cones (here, only m = 0 and n = −1 harmonics are
shown), each of which representing a STH, with apexes at
kx,i = 0, kz = −nq and ω = −2nω0, and the slope of vm
with respect to kz − kx,i plane. Consider oblique incidence
of a wave, representing the fundamental harmonic n = 0
with temporal frequency ω0, propagating along the [+x,+z]
direction. It is characterized by x- and z-components of the
spatial frequency, kx = x̂kx,i and kF

z = ẑkz . The wave
impinges to the medium under the angle of incidence θI = 45◦

and excites an infinite number of (we truncate it to 2N + 1)
STH waves, with different spatial and temporal frequencies
of [kx,i, kz,n] and ωn. However, interestingly, the first lower
STH n = −1 offers similar characteristics as the fundamental
harmonic, that is, the identical temporal frequency of ω0 and
identical z-component of the spatial frequency of kF

z,−1 =

kF
z,0, but opposite x-component of the spatial frequency of

kx,−1 = −kx,0. Hence, m = −1 harmonic propagates along
[−x,+z] direction. In general the x-component of the nth
STH reads kx,n = −kx,−n−1). Moreover, since ωn = ω−n−1,
the undesired STHs acquire temporal frequency of 2nω0, and
are far away from the fundamental harmonic. Thus, most
of the incident energy is residing in n = 0 and n = −1

harmonics, both at ω0, respectively transmitted under θT,0 = θI
and θT,-1 = −θI transmission angles with 2θI angle difference.

Figure 23(c) shows the numerical simulation results for the
forward oblique wave incidence to the metasurface, shown
in Fig. 23(a), with εr = 1, δε = 0.2, Γ = 1.2, d =
3λ0 = 3 × 2π/k0, θI = 45◦ and ω0 = 3 GHz. It may
be seen from this figure that an efficient beam splitting
with significant transmission gain is achieved in the forward
direction. Figures 23(d) and 23(e) provide the results for
the oblique wave incidence from the right side and top,
respectively, corresponding to θI = 45◦ and θI = −45◦. The
presented analytical and numerical results demonstrate that
the dynamic beam splitter provides a perfect nonreciprocal
beam splitting, in the lack of beam tilting. In contrast to
conventional passive beam splitters, here the beam splitting is
achieved for a non-collimated beam. It may be shown that by
changing the modulation parameters, i.e., Γ , θI and εav, tunable
transmission angles, unequal splitting ratio and unequal angles
of transmission will be achieved.

Given the weak transition of energy and momentum from
the fundamental STH n = 0 to higher order STHS except
n = −1, the electric field inside the STM metasurface can be
represented based on the superposition of the aforementioned
two STHs, i.e., n = 0 and n = −1. The electric field is then
defined by

ES(x, z, t) =a0(z)e−i(kx,ix+kzz−ω0t)

+ a−1(z)ei(−kx,ix+(q−kz)z−ω0t),
(39)

where a0(z) and a−1(z) are the unknown field coefficients.
We shall stress that, here the field coefficients are z-dependent
since they include both the amplitude and the change in
the spatial frequency (wavenumber) introduced by the ST
modulation. The coupled differential equation for the field
coefficients reads

d

dz

 a0(z)

a−1(z)

 =

M0 C0

C−1 M−1

 a0(z)

a−1(z)

 , (40a)

where

M0 =
ik2

0

2kz
(εav − εr),

M−1 =
ik2

0

2(kz − q)

[
εav − εr

k2
x,i + (q − kz)2

k2
0

]
,

C0 = i
δk2

0

4kz
, and C−1 = i

δk2
0

4(kz − q)
. (40b)

The solution to the coupled differential equation in (40a) is
given by [14]

a0(z) =
E0

2∆

(
(M0 −M−1 +∆)e

M0+M−1+∆

2 z (41a)

− (M0 −M−1 −∆)e
M0+M−1−∆

2 z

)
,

a−1(z) =
E0C−1

∆

(
e
M0+M−1+∆

2 z − e
M0+M−1−∆

2 z
)
, (41b)
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Fig. 23. One-way beam splitting by a STM metasurface. (a) Schematic [14]. (b) Isofrequency diagram at ω = ω0 composed of an infinite set of circles
centered at (kz/q, kx,i/q) = (−n, 0) with radius Γ (0.5 + n) [14]. (c)-(e) FDTD numerical simulation for the wave incidence to the metasurface for the
forward wave incidence to the metasurface, from the left (θI = 45◦), from the right (θI = 45◦), and from the top (θI = −45◦), respectively [14].

where ∆ =
√

(M0 −M−1)2 + 4C0C−1. For a given ST
modulation ratio Γ , the field coefficients in Eq. (41) acquire
different forms. In general, ST modulation is classified into
three categories, i.e., subluminal (0 < Γ < 1 or vm < vb),
luminal (Γ → 1 or vm → vb), and superluminal (Γ > 1 or
vm > vb).

A. Subluminal and Superluminal ST Modulations

Considering εav = εr, the a0(z) and a−1(z) in Eq. (41)
would be a periodic sinusoidal function with respect to z, if
∆ =

√
(M0 −M−1)2 + 4C0C−1 is imaginary, i.e., (M0 −

M−1)2+4C0C−1 < 0. By solving this, we achieve an interval
for the luminal ST modulation, that is,

Γsub <
1√

εav + δε
≤ Γlum ≤

1√
εav − δε

< Γsup, (42)

where Γsub, Γlum and Γsup are ST velocity ratio for subluminal,
luminal and superluminal ST modulations, respectively. The
interval for luminal ST modulation is called sonic regime in
analogy with the sonic boom effect in acoustics, where an
airplane travels with the same speed or faster than the speed

of sound. It should be noted that the luminal ST modulation
interval in Eq. (42) is exactly the same as the one achieved
from the exact analytical solution [33], [38], [40].

Figure 24(a) plots the closed form and FDTD numerical
simulation results for the absolute electric field coefficient
inside the metasurface, with the wave incidence from the
left side (forward incidence), considering superluminal ST
modulation of Γ = 1.2 and δε = 0.28. It is seen from this
figure that both a0(z) and a−1(z) possess periodic sinusoidal
form and exhibit a substantial transmission gain at z = 3λ0.
Such a transmission gain is tuned through the variation of
Γ and δε. This result is consistent with the transmission
gain achieved in the FDTD numerical simulation results in
Figs. 23(c). The coherence length lc, where both a0(z) and
a−1(z) acquire their maximum amplitude is found as [14]

lc = π

([
k2

0[εav − εr]/kz − q
(Γ − 2)/(Γ − 1)

]2

+
δ2k4

0

4kz(kz − q)

)−1

. (43)

Figure 24(b) plots the result for the superluminal STM
metasurface in Fig. 24(a), except for wave incidence from
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the right side (backward incidence). It may be seen from this
figure that, in contrast to the forward wave incidence where
a substantial exchange of the energy and momentum between
the m = 0 and m = −1 STHs are achieved, here the incident
wave passes through the metasurface with negligible alteration
and minor transition of energy and momentum to the m = −1
STH. This is obviously in agreement with the nonreciprocal
response presented in Figs. 23(c), 23(d) and 23(e).

It may be shown that the for the luminal ST modulation,
where Γ → 1, the field coefficients in Eq. (41), a0(z) and
a−1(z), acquire pure real (or complex) forms. This yields
exponential growth of the electric field amplitude along the
STM metasurface. Hence, considering Γ = 1, the total electric
field inside the STM metasurface reads

ES(x, z, t)|Γ=1 = E0 cosh

(
δk2

0

4kz
z

)
e−i(kx,ix+kzz−ω0t) (44)

− i δk
2
0

2kz
E0 sinh

(
δk2

0

4kz
z

)
ei(−kx,ix+(q−kz)z−ω0t).

Figure 24(c) plots the closed form and FDTD numerical
simulation results for the absolute value of the electric field
coefficients a0(z) and a−1(z) inside the luminal (Γ = 1
and δε = 0.28) STM metasurface for forward wave inci-
dence. It may be seen from this figure that both a0(z) and
a−1(z) possess a non-periodic exponentially growing profile
and exhibit a substantial transmission gain at z ≥ 3λ0. It
should be noted that, the solution for the field coefficients
presented in Eqs. (41) and (44) are very useful and provide
a deep insight into the wave propagation inside the STM
metasurface, especially for the luminal ST modulation (sonic
regime), where the Bloch-Floquet-based analytical solution
does not exist since the solution does not converge [33], [38],
[40]. Figure 24(d) plots the result for the luminal STM
metasurface in Fig. 24(c), except for wave incidence from
the right side (backward incidence). This figure shows that,
in contrast to the forward wave incidence, here the incident
wave passes through the metasurface with negligible alteration
and minor transition of energy and momentum to the m = −1
STH.

VIII. NONRECIPROCAL-BEAM METASURFACE

Here, we present the concept, theoretical model and ex-
perimental implications of full-duplex nonreciprocal-beam-
steering transmissive phase-gradient metasurfaces. Such meta-
surfaces are realized by exploiting the unique properties of
the asymmetric frequency-phase electromagnetic transitions in
time-modulated particles. It is shown that when the refractive-
index of structures is time-modulated, the incident wave ex-
periences interband electromagnetic transitions between elec-
tromagnetic states due to temporal and spatial frequency
shifts [6], [38], [84], [85], in analogy to electronic transitions
in semiconductors. Such metasurfaces may be placed on top
of a source antenna, transforming their radiation pattern and
providing different radiation patterns for the transmit and
receive states. Such metasurfaces are composed of an array
of twin time-modulated unit cells, each of which functioning
four major operations, i.e. wave reception, nonreciprocal phase

Fig. 24. Closed-form solution results and the FDTD numerical simulation
results for the z-dependent absolute field coefficients in Eq. (39), i.e., a0(z)
and a−1(z), inside the and luminal STM beam splitters. (a) and (b) Forward
and backward wave incidence for the superluminal regime (Γ = 1.2 and δε =
0.28), respectively [14]. (c) and (d) Forward and backward wave incidence
for the luminal regime (Γ = 1 and δε = 0.28), respectively [14].

shift for nonreciprocal beam steering, filtering out of unwanted
temporal harmonics, and wave radiation.

Figure 25 illustrates the functionality of the nonreciprocal
radiation beam from a gradient metasurface for efficient full-
duplex point to point telecommunications. In the transmission
state, the wave is launched from the source antenna traveling
along the +z direction, passes through the metasurface from
region 1 to region 2 and radiates at an angle θ2,TX. In contrast,
in the receive state, the metasurface presents the maximum
transmission from region 2 to region 1 for the incoming
wave at angle θ2,RX. Therefore, for a given radiation angle
θ0, the metasurface is nonreciprocal, and may be represented
by asymmetric and nonreciprocal radiation beams.

To realize the full-duplex nonreciprocal-beam-steering
radome in Fig. 25, we consider a transmissive metasurface
formed by an array of unit cells. In the transmission state, a
plane wave with frequency ωi impinges on the metasurface
from the bottom left side with an angle of incidence θ1,TX.
The outgoing wave at θ2,TX acquires a discrete phase-profile
φ(md) = φm where m is the modulation phase at the mth
unit cell and d is the spacing between each two adjacent
unit cells. However, in the transmission state, a plane wave
with frequency ωi impinges on the metasurface from the top
right side with an angle of incidence θ2,RX. In contrast to the
transmission state, and due to the conservation of momentum,
the outgoing wave at θ1,RX acquires a discrete phase-profile
φ(x), where −φ(md) = −φm. Assuming a constant gradient
phase shift along the metasurface, the generalized Snell’s law
of refraction yields

∂φTX

∂x
= k2 sin(θ2,TX)− k1 sin(θ1,TX), (45)
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Fig. 25. Full-duplex nonreciprocal radiation beam yielding highly directive
reception and transmission radiation beams for efficient full-duplex point to
point telecommunications [21].

for the transmission state, and

∂φRX

∂x
= k2 sin(θ2,RX)− k1 sin(θ1,RX), (46)

for the reception state. Here, k1 and k2 are the wave numbers
in region 1 and region 2, respectively. Considering a constant
phase gradient ∂φMS/∂x, the outgoing wave acquires anoma-
lous refraction with respect to the incident wave, whereas
a spatially variant gradient, i.e, ∂φMS/∂x, leads to arbitrary
radiation beams which enables beam-forming and advanced
beam steering purposes.

Figure 26(a) shows a qualitative dispersion diagram of
the structure for forward (green arrows) and backward (blue
arrows) wave incidences, showing the general concept of the
nonreciprocal phase shifting based on electromagnetic transi-
tions in a time-modulated unit cell supporting two resonant
frequencies, ωi and ωi + Ω. In the up-conversion, i.e., the
electromagnetic transition from ωi to ωi + Ω, a phase shift
of φ is achieved, whereas in the down-conversion, that is, the
electromagnetic transition from ωi + Ω to ωi, a phase shift of
−φ is introduced by the time modulation.

The structure of the twin time-modulated unit cells is
formed by four resonators, with electric permitivitties. In
Fig. 26(b) and 26(c), Rr and R′r represent the radiation

resistances of the first and second unit cells, and K and
K ′ denote the coupling between the arms of the first and
second unit cells, whereas Km is the coupling between the
two unit cells. In the forward incidence (left to right), the
first time-modulated unit cell, characterized with permitivitties
ε1(t) and ε′1(t), provides a frequency-phase transition from
(ωi, 0) to (ωi + Ω, φ1). Then, the second time-modulated
unit cell, characterized with permitivitties ε2(t) and ε′2(t),
introduces a frequency-phase transition from (ωi + Ω, φ1) to
(ωi, φ1 − φ2). In contrast, in the backward incidence (right
to left), the second time-modulated unit cell, characterized
with permitivitties ε2(t) and ε′2(t), provides frequency-phase
transition from (ωi, 0) to (ωi +Ω, φ2), and then, the first time-
modulated unit cell, characterized with permitivitties ε1(t)
and ε′1(t), provides frequency-phase transition (ωi + Ω, φ2)
to (ωi, φ2 − φ1). As a result, no frequency alteration occurs
for both forward and backward transmitted waves, whereas
a nonreciprocal phase shift is achieved, i.e., the backward
transmitted wave acquires the phase shift of φ2−φ1 which is
opposite to that of the forward transmitted wave phase φ1−φ2.

Figure 27(a) and 27(b) show, respectively, a schematic and
photo of the fabricated phase-gradient metasurface comprising
4×4 twin time-modulated unit cells.. The modulation signal is
fed to the metasurface via a SMA connector. The metasurface
includes eight gradient phase shifters (φ1 to φ8), i.e. four phase
shifters in each side, providing the required modulation phase
shifts for nonreciprocal beam steering. In addition, eight 180◦

phase shifters (φπ) are utilized for achieving the π phase-
shifted version of each gradient phase shifted modulation
signal.

Figures 27(c) to 27(e) plot the full-wave simulation
and experimental results for the nonreciprocal angle-
symmetric/asymmetric transmission and reception radiation
patterns of the nonreciprocal radiation beam metasurface for
different angles of transmission and reception. The experimen-
tal isolation between the transmission and reception radiation
patters at specified transmission radiation angle (θ2,TX = 45◦)
is about 15.8 dB, and the isolation at specified reception radia-
tion angle (θ2,RX = −27◦) is about 10.4 dB. To achieve higher
isolation levels, one may change the modulation parameters or
use a more directive metasurface by increasing the number of
twin unit cells.

IX. ANTENNA-MIXER-AMPLIFIER TRANSCEIVER

We next show that a ST medium can function as a full
transceiver front-end, that is, an antenna-mixer-amplifier-filter
system. Specific related contributions of this study are as
follows. Such an interesting functionality of the ST medium
is endowed by ST surface waves. Other recently proposed
ST antenna systems are formed by integration of the STM
medium with an antenna [45], [86], and hence suffer from
a number of drawbacks, i.e., requiring long structures, low
efficiency and narrow-band operation. The proposed antenna-
mixer-amplifier introduces large frequency up- and -down
conversion ratios. This is very practical, because in real-
scenario wireless telecommunication systems, a large fre-
quency conversion is required, i.e., a frequency conversion
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Fig. 26. Nonreciprocal radiation based on electromagnetic transitions in time-
modulated meta-atoms. (a) Qualitative dispersion diagram [21]. (b) Architec-
ture of the coupled time-modulated radiating loops introducing nonreciprocal
phase shift [21]. (c) Equivalent circuit model for the coupled meta-atoms
architecture in (b) [21].

from a microwave/millimeter-wave frequency to an intermedi-
ate frequency in receivers. In contrast, recently proposed ST
frequency converters suffer from very low frequency conver-
sion ratios (up-/down-converted frequency is very closed to
the input frequency) [15], [45], [86].

Consider the antenna-mixer-amplifier metasurface in
Fig. 28(a), with the thickness of d and a STP electric
permittivity. The metasurface in Fig. 28(a)is obliquely
illuminated by the y-polarized incident electric field given
in Eq. (15). As shown in Fig. 28(a), in the receiving state
(down-link), strong transition from a space-wave with
temporal frequency ω0, to a ST surface wave with temporal
frequency ωIF = ω0 − Ω, occurs. In the transmission state
(up-link), a transition from a ST surface wave at ωIF to a
space-wave at ω0 = ωIF + Ω occurs.

Figure 28(b) shows the functionality of the antenna-mixer-
amplifier in Figs. 28(a). Thanks to the unique properties of
STM media, that will be described later in this study, such
a medium introduces the functionality of a highly directive
antenna, a pure frequency up-converter, a pure frequency
down-converter, up-link and down-link filters, and a down-link
amplifier. Such a rich functionality has not been experienced
in other media unless several components and media are
integrated together, as shown in Fig. 28(b). However, here we
show that a single medium can offer such versatile and useful
operation.

As the metasurface is periodic in both space and time, the
spatial and temporal frequencies of the ST harmonics inside
the structure are governed by the momentum conservation law,
i.e., γz,n = kz,i + nq + iαz,n and the energy conservation
law, i.e., ωn = ω0 + nΩ. The incident angle reads θi =
sin−1 (1− Ω/ω0). In addition, to achieving a strong transition
to the n = −1 harmonic, the scattered n = −1 harmonic
inside the medium should propagate in parallel to the two ST
surface waves on the two boundaries of the medium at z = 0
and z = d, i.e., θn=−1 = 90◦. Thus, using Eq. (26), we achieve
βz,−1 = 0. As a result, the z component of the Wave vector
inside the medium is purely imaginary, i.e., γz,−1 = iαz,−1,
whereas the incident field wavenumber kz is purely real.

The STM medium presents a transition from the funda-
mental harmonic n = 0 to a large (theoretically infinite,
−∞ < n < ∞) number of ST harmonics. Such a transition
is very strong for the luminal ST modulation, where the
ST modulation velocity is close to the background phase
velocity, i.e., vm = vb [38], [40]. To prevent generation
of strong undesired time harmonics, here the STM medium
operates in the subluminal regime, where 0 < vm < vb, i.e.,
0 < Γsubluminal <

√
εr/(εav + εm). As a result, a pure and

precise transition between the fundamental (n = 0) harmonic
and the desired (here n = −1) ST surface wave harmonic can
occur.

Figure 10(b) plots the analytical isofrequency dispersion
diagram (βz,n(kx,i) at ω/Ω = 1.363) of the sinusoidally ST
surface wave medium with the electric permittivity in (14a)
for the subluminal regime, i.e., Γ = 0.55 for εm → 0. It
may be seen from this figure that forward n = 0 and n = −1
harmonics are excited very close to each other, where n = 0 is
excited at an angle of scattering of θ0 = θi = 15◦. However,
the n = −1 harmonic is intentionally excited at the angle
of scattering of θ−1 = 90◦. Figure 10(c) plots the same
isofrequency βz,n(kx,i) diagram as Figure 10(b) except for
a greater modulation amplitude of εm = 0.45. As a result of
non-equilibrium in the electric and magnetic permitivitties of
the medium, several electromagnetic badgaps appear at the
intersections between ST harmonics [40]. As a consequence,
strong coupling between some of the harmonics has occurred,
e.g. between the n = 0 and n = −1 harmonics.

Figure 28(d) plots the complex isofrequency dispersion
diagram γz,n(kx,i) for the medium in Fig. 10(c). This diagram
is formed by two different curves, i.e., the real βz,n(kx,i) and
the imaginary αz,n(kx,i) parts of the wavenumber. For the
sake of clarification, we have included only a few number
of harmonics. This figure shows that at the excited angle of
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Fig. 27. Nonreciprocal-beam-steering transmissive phase-gradient metasurface. (a) Schematic view [21]. (b) The top and bottom views of the fabricated
prototype, respectively [21]. (c) and (d) Full-wave simulation results [21]. (e) Experimental results [21].

incidence θi = 15◦, the n = 0 harmonic introduces a pure
real wavenumber, i.e., γz,0 = kz,i, whereas the n = −1
harmonic acquires a pure imaginary wavenumber, that is,
γz,−1 = iαz,−1. As a result, a perfect ST transition from a
pure propagating wave to a pure ST surface wave is ensured.

The metasurface assumes εm = 0.45, Γ = 0.55, and d =
0.8λ0. A plane wave with temporal frequency ω0 = 1.363Ω is
propagating in the +z-direction under an angle of incidence
of θi = 15◦, and impinges on the metasurface. Figure 29(a)
shows the time domain numerical simulation result for the
receiving state (down-link). It may be seen from this figure
that a pure transition from the incident space-wave at ω0

to the ST surface wave, propagating along the x-direction,

at frequency ωIF = ω0 − Ω occurs. Furthermore, it may
be seen from Fig. 29(a) that the amplitude of the received
wave is stronger than the amplitude of the incident wave.
Figure 29(c) plots the frequency domain numerical simulation
result. This plot clearly shows a pure and strong transition
(frequency-conversion) from the incident wave to the down-
converted ST surface wave. The 3.5 dB power conversion
gain is in agreement with the analytical result. In addition,
the amplitudes of the undesired harmonics are more than 33
dB lower than the amplitude of the down-converted harmonic
at ωIF.

Figure 29(b) shows the time domain FDTD numerical
simulation result for the transmission state (up-link). Here, a
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Fig. 28. Antenna-mixer-amplifier metasurface. (a) Schematic representation showing the down-link and up-link wave transformations [66]. (b) Circuital
representation [66]. (c) Analytical isofrequency dispersion diagram (for Γ = 0.2 and εm =→ 0) depicting down-link (reception) and up-link (transmission)
electromagnetic transitions [66]. (d) Analytical isofrequency dispersion diagram for Γ = 0.55, including the real and imaginary parts of the γz,n, i.e., βz,n
and αz,n, for n = 0 and n = −1 [66].

transition (up-conversion) from the ST surface wave at ωIF
to the space-wave at ω0 = ωIF + Ω occurs. Figure 29(d)
plots the frequency domain numerical simulation result for
the transmission state (up-link). This plot clearly shows a pure
and strong transition (frequency-conversion) from the incident
wave to the down-converted ST surface wave. The 3.52 dB
power conversion loss is in agreement with the analytical
result. In addition, the amplitude of the undesired harmonics
are more than 27 dB lower than the amplitude of the down-
converted harmonic at ω0.

X. CONCLUSION

We presented a comprehensive review of space-time meta-
surfaces. It is shown that space-time metasurfaces are capa-
ble of four-dimensional electromagnetic wave transformations
which are significantly more versatile and useful than the
three-dimensional wave transformations of conventional spa-
tially variant static metamaterials and metasurfaces. We pro-
vided some of the unique applications of space-time metasur-
faces, including nonreciprocal full-duplex wave transmission,
pure frequency conversion, parametric wave amplification,
spatiotemporal decomposition, space-time wave diffraction,
and antenna-mixer-amplifier functionality. Recent progress on
space-time metasurfaces for breaking time-reversal symme-
try and reciprocity reveals a great potential for applications
of such metasurfaces for low-energy and energy-harvesting
telecommunication systems, and compact and integrated non-
reciprocal devices, and sub-systems.
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Fig. 29. FDTD simulation results of the antenna-mixer-amplifier ST surface wave medium with ω0/Ω = 1.363, εm = 0.45, d = 0.8λ0, and θi == 15◦.
(a) and (c) Time-domain and frequency-domain responses for the down-link transition [66]. (b) and (d) Time-domain and frequency-domain responses for the
up-link transition [66].
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