
International Journal of Forecasting xxx (xxxx) xxx

c
a
i
o
p
s
e
d
t
D
b

h
0
t

Contents lists available at ScienceDirect

International Journal of Forecasting

journal homepage: www.elsevier.com/locate/ijforecast

Out-of-sample predictability in predictive regressionswith
many predictor candidates✩

Jesús Gonzalo a,∗, Jean-Yves Pitarakis b

a Department of Economics, Universidad Carlos III de Madrid, Spain
b Department of Economics, University of Southampton, United Kingdom

a r t i c l e i n f o

Keywords:
Forecasting
Nested models
High dimensional predictability
Out-of-sample
Predictive regression

a b s t r a c t

This paper is concerned with detecting the presence of out-of-sample predictability in
linear predictive regressions with a potentially large set of candidate predictors. We
propose a procedure based on out-of-sample MSE comparisons that is implemented
in a pairwise manner using one predictor at a time. This results in an aggregate test
statistic that is standard normally distributed under the global null hypothesis of no
linear predictability. Predictors can be highly persistent, purely stationary, or a combi-
nation of both. Upon rejecting the null hypothesis, we introduce a predictor screening
procedure designed to identify the most active predictors. An empirical application to
key predictors of US economic activity illustrates the usefulness of our methods. It
highlights the important forward-looking role played by the series of manufacturing
new orders.

© 2023 The Authors. Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Comparing the out-of-sample predictive accuracy of
ompeting statistical models in data-rich environments is
n essential component of data science and a key step
n the workflow that aims to produce reliable forecasts
f an outcome of interest or discriminate between com-
eting hypotheses. Over the past decade, a vast body of
tatistics research has been concerned with developing
stimation and prediction techniques that can accommo-
ate the availability of large datasets via regularization
echniques and sparsity assumptions on the underlying
GPs. An important objective driving this literature has
een obtaining accurate out-of-sample response variable
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predictions via suitable estimation and covariate selection
techniques.

The detection of predictability within linear regression
settings has also been the subject of extensive research
in the traditional econometrics literature. The broadly
labeled topic of predictive regressions, for instance, has
become an important field of research in its own right
due to the specificities associated with economic data
and the complications that these may cause for esti-
mation, inference, and prediction (e.g., persistent nature
of many financial and economic predictors, endogeneity
considerations, low signal to noise ratios, imbalance in
the persistence properties of predictand and predictors).
Unlike the statistics literature mentioned above, however,
predictive regressions as explored in econometrics have
been mainly concerned with in-sample goodness of fit
measures and traditional significance testing designed to
explicitly accommodate these specificities, often in
the context of single predictor settings (see Gonzalo and
Pitarakis (2019) for a survey of this literature). Some of
the early applied research also highlights the importance
of distinguishing between in-sample and out-of-sample
predictability in the context of stock return predictability
ility in predictive regressions with many predictor candidates. Interna-
.005.
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ith valuation ratios and related predictors (see Pesaran
nd Timmermann (1995), Goyal and Welch (2008)).
Our objective in this paper is to consider this pre-

ictive regression environment as commonly explored in
he econometrics literature and propose a method for
etecting the potential presence of out-of-sample lin-
ar predictability when the latter is induced by one or
ore predictors from a potentially large pool of candidate
redictors, possibly exceeding the available sample size.
hese predictors could be purely stationary or highly per-
istent without affecting our proposed approach’s validity
nd without the investigator’s need to know about these
roperties. We are considering an environment where
ne is confronted with not only a potentially large pool
f predictors but also with these predictors allowed to
isplay a mixture of dynamic characteristics, some (or
ll) being highly persistent and others noisier as com-
only occurs in economic and financial data. For instance,
macroeconomist interested in GDP growth forecasts

aces hundreds of potentially useful predictors ranging
rom noisy indicators with very little memory, such as
inancial returns, to more persistent series, such as in-
erest rates. With the increased availability of unconven-
ional predictor candidates beyond traditional macro and
inancial series (e.g., internet search-related data, climate-
elated predictors, etc.) and whose persistence properties
re not well known, this aspect of our proposed methods
hat allows one to remain agnostic about the stochastic
roperties of predictors is particularly important.
Our operating environment is that of a potentially

arge number of nested specifications that also include an
ntercept-only model, which we view as the benchmark
odel or the maintained theory. More specifically, we

ocus on testing this benchmark specification or global
ull against the alternative hypothesis that at least one of
he predictors under consideration is active in improving
ut-of-sample MSEs relative to the benchmark.
The approach introduced in this paper can accommo-

ate a large number of predictors as it relies on multi-
le pairwise comparisons of the benchmark model with
larger model that includes solely one predictor at a

ime. These pairwise MSE comparisons are implemented
ia the repeated evaluation of a novel test statistic suit-
ble for out-of-sample predictive accuracy comparisons in
ested environments. This latter aspect is a particularly
mportant contribution of this research as traditional test
tatistics for predictive accuracy comparisons are known
o fail in nested environments. This is due to a variance
egeneracy problem induced by the fact that the popu-
ation forecast errors of the two models being compared
re asymptotically identical under the null hypothesis.
ur proposed test statistic is designed so that nestedness-
nduced variance degeneracy is bypassed. Each pairwise
SE comparison between the benchmark model (global
ull) and a specification that includes one predictor at
time is performed via this novel test statistic. The re-
ulting individual test statistics (as many as there are
redictors within the aggregate pool of predictors) are
ubsequently reassembled into a single aggregate statistic,
llowing us to test the global null of no predictability
gainst the alternative that at least one of the predictors
s active.
2

Upon rejection of the benchmark model, the impor-
tant question of which predictors are the most impor-
tant drivers of predictability also arises. To address this
question, we subsequently introduce a covariate screen-
ing method that allows us to identify the key predictor
that most improves the accuracy of forecasts of the re-
sponse variable relative to the forecasts based on the
benchmark model. We refer to such a predictor as the
key player. Although identifying a single predictor may
come across as providing only a limited picture of an
underlying true specification, it is nevertheless a valuable
picture. Parsimonious models can often achieve desirable
levels of predictive strength by avoiding distortions due
to overfitting, for instance.

Our operating environment is particularly relevant to
economic and financial applications where one is inter-
ested in the maintained hypothesis of no predictability
whereby the response variable of interest is best de-
scribed by a martingale difference process (e.g., excess
stock returns, currency returns, consumption growth).
More generally, one often needs to compare the predic-
tive accuracy of a simple model nested within a richer
one. Nested models are one of the most commonly en-
countered setting in empirical research and help answer
fundamental questions such as: does the inclusion of
additional predictors significantly improve the predic-
tive power of a smaller model or a non-predictability
benchmark?

The plan of the paper is as follows. Section 2 intro-
duces our modeling environment and the key test statis-
tics to implement our predictive accuracy comparisons.
Section 3 develops the asymptotic theory under the global
null, followed by a comprehensive local power analysis in
Section 4. Section 5 introduces a theoretically supported
power-enhancing transformation to our proposed tests.
Section 6 introduces our key player estimator and stud-
ies its asymptotic properties. Section 7 demonstrates the
finite sample properties of our methods through a com-
prehensive simulation-based exercise. Finally, Section 8
illustrates the usefulness of our methods through an ap-
plication to the predictability of US economic activity.
Section 9 concludes. All technical proofs and further sim-
ulations are placed in a supplementary appendix.

2. Models and theory

Let {yt} denote a scalar random process. Given a sam-
ple of size n, we wish to assess the presence of linear
one-step ahead predictability in yt . If present, predictabil-
ity is induced by at least one predictor from a finite
pool of p predictors xt = (x1t , . . . , xpt )′. Predictability
is understood to be present whenever an intercept-only
benchmark model (the global null) is rejected in favor of
a larger model based on out-of-sample MSE-based com-
parisons. Thus, the generic framework within which we
operate is given by the predictive regressions

yt+1 = θ0 + β′xt + ut+1 (1)

where β = (β1, . . . , βp)′ and ut is a random disturbance
term. For later use we also define θ = (θ0, β′)′ and wt =

′ ′
(1, xt ) so that (1) can equivalently be expressed as yt+1 =
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′wt +ut+1. The predictors collected in xt may have differ-
nt degrees of persistence as commonly encountered in
conomic applications. Nevertheless, our approach does
ot rely on knowledge of the persistence properties of the
ool of predictors available to the investigator. We view
1) as encompassing a family of nested linear predictive
egressions, including the benchmark specification given
y

t+1 = θ0 + ut+1. (2)

Given the above framework, our primary goal is to
ddress the following questions. Suppose a researcher has
ccess to a pool of predictors collected within xt . Is at least
ne of these predictors active relative to the benchmark
odel in (2)? In the affirmative, is it possible to accurately

dentify which of the p predictors has the strongest influ-
nce in improving forecast accuracy the most relative to
he benchmark?

To formalize our environment we let ŷ0,t+1|t denote
he one-step-ahead forecasts of yt+1 obtained from the
enchmark model in (2) and ŷj,t+1|t , j = 1, . . . , p, the
ne-step-ahead forecasts of yt+1 obtained from (1) using
ne predictor at a time from the available collection of
predictors and inclusive of a fitted intercept. The cor-

esponding forecast errors are ê0,t+1|t = yt+1 − ŷ0,t+1|t
nd êj,t+1|t = yt+1 − ŷj,t+1|t . Out-of-sample forecasts
re constructed recursively with an expanding window
pproach. We estimate each predictive regression via re-
ursive least-squares starting from an initial window of
ize t = 1, . . . , k0 and progressively expand the estima-
ion window to n−1. Throughout this paper k0 is taken to
e a given a fraction π0 of the sample size and we write
0 = [nπ0] for some π0 ∈ (0, 1). Under the benchmark
odel, we have θ̂0t =

∑t
s=1 ys/t leading to the uncon-

itional mean forecasts ŷ0,t+1|t = θ̂0t . Under the larger
models estimated with an intercept and one predictor at
a time we have θ̂jt = (

∑t
s=1 w̃j,s−1w̃

′

j,s−1)
−1∑t

s=1 w̃j,s−1ys
for w̃jt = (1, wjt ) and wjt ∈ {x1t , . . . , xpt} with forecasts
obtained as ŷj,t+1|t = θ̂

′

jtw̃jt for t = k0, . . . , n − 1. At
he end of this pseudo out-of-sample exercise we obtain
he p + 1 sequences of forecast errors {ê0,t+1|t}

n−1
t=k0

and
{êj,t+1|t}

n−1
t=k0

for j = 1, . . . , p which form the basis of our
inferences. Throughout this paper, the maintained null
hypothesis is that the population MSEs of the benchmark
model and the larger models are equal in the sense that
β = 0 in (1) or equivalently model (2) holds. The alterna-
tive of interest is that there is at least one active predictor
wjt in the sense that E[ê20,t+1|t − ê2j,t+1|t ] > 0 for at least
one j ∈ {1, 2, . . . , p}.

Addressing the two questions above raises four key
challenges addressed by the methods developed in this
paper. The first one arises from the fact that we wish to
conduct out-of-sample predictive accuracy comparisons
in a nested setting (e.g., intercept-only model versus sin-
gle predictor specifications), rendering traditional sample
MSE comparisons ineffective as under the null hypothesis
of equal predictive accuracy, all forecast errors under
consideration will be asymptotically identical, leading to
normalized sample MSE spreads identically equal to zero
in the limit (and similarly for their variances). The sec-

ond challenge is a dimensionality-related complication, as

3

we wish our methods to be computationally feasible to
implement despite the availability of a potentially large
pool of predictors. The third challenge is related to the
need for inferences to remain reliable regardless of the
persistence properties of the predictors. The fourth chal-
lenge has to do with the identification of active predictors
upon rejection of the null hypothesis. Although numerous
covariate screening procedures have been developed in
the statistics literature, the validity of most of these relies
on assumptions that are not tenable in our time series
environment with persistent predictors.

The issue of predictive performance testing in nested
environments has attracted considerable attention in the
forecasting literature following the observation that
Diebold–Mariano (DM) type constructions (Diebold and
Mariano (1995), West (1996)) are not suitable since under
the null hypothesis of equal predictive ability the pair
of models being compared become identical in the limit.
Consequently, suitably normalized sample MSE spreads
and their variance converge to zero asymptotically, result-
ing in statistics with ill-defined limits. In the context of
predictive regressions, this problem has been addressed
using alternative normalizations of sample MSEs, result-
ing in test statistics with well-defined but non-standard
limits requiring bootstrap-based approaches (see
McCracken (2007), West (2006), Clark and McCracken
(2013)).

More recently, alternative solutions involving modifi-
cations to DM-type statistics that result in conventional
standard normal asymptotics, regardless of the nested
nature of competing models, have been developed in
Pitarakis (2023). These are similar in spirit to the way
Vuong-type model selection tests (Vuong (1989)) have
been recently adapted to accommodate both nested and
non-nested environments via sample splitting and related
approaches (see Schennah andWilhelm (2017), Shi (2015)
and more recently, Corradi, Fosten, and Gutknecht (2023)
who focused on predictive accuracy comparisons across
overlapping models). The test statistic we introduce in
this paper differs from the above and offers another useful
way of making predictive accuracy comparisons across
nested specifications. This novel test statistic is intro-
duced to conduct initial pairwise comparisons between
the benchmark model in (2) and the p larger models
containing one predictor at a time. The formulation of
our test statistics designed to compare the null model
with specifications that include one predictor at a time
relies on the same principles as the statistics introduced
in Pitarakis (2023). Still, it does not involve any discarding
of sample information. These individual test statistics
associated with the p pairwise model comparisons are
subsequently reassembled into an aggregate statistic de-
signed to test whether at least one of the p predictors is
active in predicting yt+1.

The idea of considering one predictor at a time makes
the practical implementation of our approach trivial re-
gardless of the size of the pool of predictor candidates
and is here justified by the fact that our null hypothesis
is given by the benchmark model in (2). This is very
much in the spirit of Ghysels, Hill, and Moteigi (2020),
where the authors developed a procedure for testing the
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tatistical significance of a large number of predictors
hrough functionals (e.g., maximum) of multiple individ-
al t-statistics obtained from models estimated with one
egressor at a time and a benchmark model with none of
he explanatory variables included. However, an impor-
ant advantage unique to our setting is that each pairwise
M-type statistic will have identical limits under our null
ypothesis since the two error processes across each pair-
ise comparison will be identical in the limit. This makes
he exercise of constructing an aggregate statistic trivial.
y construction, the average of these individual statistics
ill also have a distribution identical to each component’s
istributions. We do not need to be concerned with the
ehavior of the covariances of the p individual test statis-
ics, and the nested nature of our setting is used to our
dvantage here.
Before proceeding further, it is also useful to mention

he recent but already extensive literature on screen-
ng for relevant predictors in high dimensional settings,
hich is related to our second concern of identifying
ominant predictors upon rejection of the benchmark
odel in (2). In this context, a particularly popular ap-
roach has been based on ranking marginal correlations
ia marginal linear regressions (see Fan and Liv (2008),
cKeague and Qian (2015)). In McKeague and Qian (2015)

or instance, the authors developed a test for the presence
f at least one significant predictor via a maximum corre-
ation type of approach between each predictor and pre-
ictand, also assuming a finite pool of predictors. Within
ur context and upon rejection of the benchmark model,
e aim to identify at least one of the active predictors
mong the pool of p predictors using the aggregate test
tatistic mentioned above instead. An important aspect
ccommodated by our framework is the possibility that
he pool of predictors contains dependent series with dif-
erent persistence properties in addition to being possibly
orrelated as it is the norm with economic data.
We now introduce and motivate the DM-type test

tatistic, which will be used to conduct pairwise predic-
ive performance comparisons between the benchmark
odel and each p marginal predictive regression. Recall-

ng that the key complication arising from the underlying
estedness of models is that in the limit ê20,t+1|t and ê2j,t+1|t

will be identical under the null hypothesis, we propose to
use a sample split estimator for the MSE of the benchmark
model instead of the traditional sample mean. This is
achieved by splitting the evaluation of the forecast errors
associated with the benchmark model across two sub-
samples of size m0 and (n − k0) − m0, respectively. We
formulate our test statistic as

Dn(m0, j) =

√
n − k0
ω̂n

(
1
2

(∑k0+m0−1
t=k0

ê20,t+1

m0

+

∑n−1
t=k0+m0

ê20,t+1

n − k0 − m0

)
−

∑n−1
t=k0

ê2j,t+1

n − k0

)
. (3)

A simple way to interpret (3) is by observing that it is
ased on the difference between the out-of-sample MSEs
f the benchmark and augmented models, as is the case
or most predictive accuracy testing statistics. The key
 a

4

novelty here is that we estimate the out-of-sample MSE of
the benchmark model via a sample-split estimator rather
than the full sample mean used for the ê2j,t ’s. In generic
notation, we are essentially estimating an unknown pop-
ulation mean with X split,n = (X1n + X2n)/2 rather than
Xn and within (3) m0 refers to the chosen location of the
sample split. Throughout this paper, we take m0 to be a
user-defined parameter and express it as a fraction µ0 of
the effective sample size n−k0, writing m0 = [(n−k0)µ0].
ote, of course, that X split,n is identical to Xn solely if the

split occurs in the middle of the sample. A scenario which
we will rule out by assumption.

The motivation for proceeding this way is that the
formulation in (3) avoids the variance degeneracy prob-
lems associated with nested model comparisons based
on traditional DM-type formulations. The basic intuition
behind the usefulness of (3) is that even if the MSEs
of the benchmark and alternative models are identical
in the limit, the variances of X split,n and Xn differ thus
avoiding the degeneracy problem. More specifically, un-
der the null hypothesis the numerator of (3) will have a
non-degenerate positive limiting variance provided that
µ0 ∈ (0, 1) \ {1/2}. As pointed out above, the exclusion
of the case µ0 = 1/2 is because, for such a choice
of the splitting location, we would have X split,n ≡ Xn
bringing us back to the traditional DM type constructions
which are not suitable for nested model comparisons. We
may also think of (3) as a way of robustifying predictive
accuracy inferences to the nestedness/non-nestedness di-
chotomy. Using averages of subsample means instead of
grand means has been used in various other contexts,
such as constructing more accurate confidence intervals,
as discussed in Decrouez and Hall (2014).

The normalizer ω̂n in the denominator of (3) is un-
erstood to be a consistent estimator of the long-run
ariance of the numerator. Strictly speaking, we may have
ished to index it as ω̂j,n to highlight the fact that it may

be estimated using the residuals under the null or the
residuals of the single predictor-based augmented models
(for each j). This nuance is naturally inconsequential when
it comes to the asymptotics of Dn(m0, j) under the null
hypothesis whereby the benchmark model in (2) holds. It
may, however, have important implications regarding the
finite sample power properties of our proposed test, an
issue we study in greater depth below.

Given the sequences {ê0,t+1|t}
n−1
t=k0

, {êj,t+1|t}
n−1
t=k0

and suit-
able choices for µ0 and ω̂n the quantities in (3) can be
trivially obtained for each possible predictor j, resulting
in p such statistics which we aggregate into the following
overall statistic

Dn(m0) =
1
p

p∑
j=1

Dn(m0, j). (4)

A large positive magnitude of Dn(m0) is expected to in-
dicate that at least one of the p predictors improves the
predictability of yt+1 relative to the benchmark model.

emark 1. One may be tempted to view inferences based
n theDn(m0, j)’s through the lens of multiple comparison
nd reality check type settings and argue for alternative
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onstructs to (4) such as taking the supremum of these
n(m0, j)’s due for instance to power considerations. It
s here important to note, however, that within our set-
ing and under the null hypothesis of interest to us, all
n(m0, j)’s will be identical in the limit and in turn iden-
ical to Dn(m0). A useful analogy that illustrates this latter
oint is by thinking of the p components of Dn(m0) under

the global null hypothesis and in the limit as realizations
from the same seed of a random number generator. If
we were solely interested in null asymptotics and had
no power concerns, then any of the Dn(m0, j)′s could be
viewed as interchangeable.

In what follows, our first objective is to establish the
limiting behavior of (4) under the null hypothesis that
there are no active predictors, which we refer to as the
global null. We subsequently assess its local power prop-
erties against departures from (2) that are relevant to
practitioners. This also allows us to formalize suitable
choices for µ0 in the practical implementation of (4).

Upon rejecting the null hypothesis, the question of
which predictor is the key driver of predictability arises.
Although our goal here is not to develop a new covariate
screening method, our framework does allow us to iden-
tify a key predictor through the analysis of the Dn(m0, j)
components that make up the test statistic in (4). We
focus our attention on the following estimator

jn ∈ arg max
j=1,...,p

Dn(m0, j) (5)

which we expect to be informative about the most impor-
tant contributor to predictability, i.e., the predictor that
leads to the greatest reduction in out-of-sample MSEs
relative to the benchmark model and which we refer to as
the key player. A limitation of ĵn is of course the fact that it
allows us to identify only a single predictor. Nevertheless,
in numerous economic applications, this information can
be extremely valuable as it isolates the key player that
causes the rejection of a maintained martingale difference
hypothesis, for instance.

3. Asymptotics of Dn(µ0) under the benchmark model

Our objective here is to obtain the limiting distribution
of Dn(µ0) under the null hypothesis of no predictability.
Our assumptions are collected under Assumption 1 below
and consist of high-level assumptions general enough
to accommodate most environments commonly encoun-
tered in economics and finance applications.

Assumption 1. (i) The u′
ts form a martingale difference

equence (m.d.s.) with respect to the natural filtration and
he sequence ηt = u2

t+1 − E[u2
t+1] satisfies

∑k0−1+[(n−k0)r]
t=k0

ηt/
√
n − k0

d
→ φ W (r) for r ∈ [0, 1] with W (r) de-

oting a standard scalar Brownian Motion and φ2
=

∞

s=−∞
γη(s) > 0 for γη(s) = E[ηtηt+s]. (ii) There is a φ̂2

n

uch that φ̂2
n

p
→ φ2

∈ (0, ∞). (iii) Under the null hypothe-
is the forecast errors satisfy supr |

∑k0−1+[(n−k0)r]
t=k0

(ê2ℓ,t+1|t−

u2
t+1)/

√
n − k0| = op(1) ∀ℓ ∈ {0, 1, 2, . . . , p}. (iv) µ0

atisfies µ0 ∈ (0, 1) \ {1/2}. (v) The size of the pool of
redictors p is fixed throughout.
5

Assumption 1(i) rules out the presence of serial corre-
ation in the u′

ts and requires the sequence of demeaned
quared errors driving (2) to satisfy a suitable FCLT. From
he expression of φ2, we also note that the u′

ts, while
erially uncorrelated, could be either conditionally ho-
oskedastic or conditionally heteroskedastic. Taking the

′
ts to be an m.d.s. with an ARCH type variance combined
ith mild existence of moments requirements would sat-

sfy our environment in 1(i). Assumption 1(ii) requires
consistent estimator of the long-run variance associ-

ted with the ηt ’s to be available. Letting η̂t denote a
eneric estimator of the η′

ts a trivial choice under condi-
ional homoskedasticity would be φ̂2

=
∑

t η̂
2
t /(n − k0)

hile under conditional heteroskedasticity one may use
Newey–West type formulation as in Deng and Perron

2008). As we are operating under the global null, such an
stimator is readily available using the residuals from the
enchmark model in (2). Alternative formulations could
lso be based on the ê0,t+1’s or the êj,t+1’s as also justified
y Assumption 1(iii). The key point to make at this stage
s that these options will have no bearing on the limiting
ull distribution of Dn(m0). However, such choices may

influence power, an issue we postpone to further below.
Assumption 1(iii) can be viewed as a correct specification
assumption in the sense that under the null hypothesis,
squared forecast errors are understood to behave like
their true counterparts. Such a property holds within a
broad range of contexts as established in Berenguer-Rico
and Nielsen (2020), including settings with stationary or
highly persistent predictors. Assumption 1(iv) imposes a
minor restriction on m0 = [(n − k0)µ0] used in the con-
struction of Dn(µ0) to ensure that it has a non-degenerate
asymptotic variance. To gain further intuition on this im-
portant point, it is useful to explicitly evaluate the limiting
variance, say ω2, of the numerator of (3) under the null
hypothesis. Replacing ê20,t+1 and ê2j,t+1 with ηt+1 = u2

t+1 −

E[u2
t+1] in (3), rearranging and taking expectations (see

Lemma A1 in the appendix) results in

ω2
=

(1 − 2µ0)2

4µ0(1 − µ0)
φ2 (6)

so that the availability of a consistent estimator for φ2 also
ensures that ω2 can be estimated consistently provided
that µ0 satisfies Assumption 1(iv). Expression (6) also
highlights the well-known variance degeneracy problem
one would face in this context if we had instead used
the full sample mean associated with the forecast errors
of the benchmark model by setting µ0 = 1/2. Finally
Assumption 1(v) draws attention to the fact that all our
results rely on the assumption that the pool of predictors
is fixed so that the asymptotics are taken solely as n →

∞. Although this may appear restrictive for a setting
with many predictor candidates, it is important to point
out that our proposed tests can and do accommodate
potentially large magnitudes of p, including, for instance,
p near n as illustrated in our Monte-Carlo experiments
further below.

Proposition 1. Under the benchmark model in (2), Assump-
tion 1(i)–(v) and as n → ∞ we have

D (µ )
d

→ Z (7)
n 0
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ith Z denoting a standard normally distributed random
ariable.

As it is customary in this literature (7) is implemented
sing one-sided (right tail) tests so that a rejection of
he null provides support for the availability of at least
ne active predictor that helps generate more accurate
orecasts than the benchmark model.

. Asymptotic local power properties of Dn(µ0)

We next explore the ability of Dn(µ0) to detect pre-
dictability induced by one or more of the available p
predictors. Two aspects we are interested in exploring are
the influence of the persistence properties of predictors
on power and the role played by the choice of µ0 in
Dn(µ0). We analyze local power within the following
arameterization

t+1 = β′

nxt + ut+1 (8)

with βn = n−γ β∗ for β∗
= (β∗

1 , . . . , β
∗
p )

′, noting that
within (8) all but one of the β∗

i ’s may be zero. We let

I∗
= {1 ≤ j ≤ p : β∗

j ̸= 0} (9)

denote the set of active predictors with cardinality |I∗
| =

≥ 1 (i.e., the size of the true model).
In what follows, we establish the local power proper-

ies of Dn(µ0) across three scenarios. In the first instance,
we take all p components of xt to be stationary and
ergodic processes (scenario A). We then focus on the case
where the xt ’s are parameterized as persistent processes
(scenario B). Finally our last scenario sets xt = (x1,t , x2,t )′
with x1,t and x2,t containing non-persistent and persistent
predictors respectively (scenario C). In this latter case (8)
takes the following form

yt+1 = β′

1nx1t + β′

2nx2t + ut+1 (10)

with x1t = (x1,t , . . . , xp1,t ) and x2t = (xp1+1,t , . . . , xp,t )
so that the pool of p predictors is subdivided into two
types. The slope parameter vectors are in turn specified as
β1n = n−γ1β∗

1 for β∗

1 = (β∗

1,1, . . . , β
∗

1,p1
)′ and β2n = n−γ2β∗

2
for β∗

2 = (β∗

2,p1+1, . . . , β
∗

2,p)
′. This mixed environment also

requires us to modify the formulation of the active set of
predictors included in the DGP. For this purpose we let

I∗

1 = {1 ≤ j ≤ p1 : β∗

1,j ̸= 0} (11)

I∗

2 = {p1 + 1 ≤ j ≤ p : β∗

2,j ̸= 0} (12)

with |I∗

1 | = q1 and |I∗

2 | = q2. In this setting, the
specification in (10) has q1 active predictors satisfying
scenario A and q2 active predictors satisfying scenario B.

Assumption 2A summarizes our operating framework
when all predictors are assumed to be stationary.

Assumption 2A. (i) Assumption 1(i), 1(ii) and 1(iv)–(v)
hold. (ii) The model in (8) holds with γ = 1/4. (iii) The p
predictors satisfy supλ∈[0,1] |

∑
[nλ]

t=1 xitxjt/n − λE[xitxjt ]| =∑
[nλ]

√
n = O (1) for i, j = 1, . . . , p.
op(1) and t=1 xitut+1/ p

6

Note that part (i) of Assumption 2A excludes 1(iii) as
we no longer operate under the null hypothesis. Part (ii)
sets the rate at which we explore departures from the
null. Here, it is useful to point out that the local to the
null parameterization with γ = 1/4 as opposed to the
more familiar n1/2 rate is not in any way the result of our
modeling environment or methods. This choice is driven
by the fact that we conduct inferences using squared
errors rather than their level. The remainder parts of As-
sumption 2A require that a uniform law of a large number
applies to the predictors and that a suitable CLT holds,
ensuring the uniform boundedness of relevant sample
moments. Another important point to make here is that
under the local to the null specification in (8), the resid-
ual variance estimated from the benchmark model will
continue to remain consistent so that Assumption 1(ii)
requiring φ̂2 p

→ φ2 continues to hold when estimated
using the residuals from the benchmark model or any of
the alternative choices mentioned earlier.

Regarding the scenario with persistent predictors, we
parameterize these as mildly integrated processes via

xjt =

(
1 −

cj
nα

)
xjt−1 + vjt j = 1, . . . , p (13)

where cj > 0, α ∈ (0, 1) and vjt denotes a random
disturbance term. The high-level assumptions we impose
under Assumption 2B explicitly accommodate dynamics
such as (13) and follow directly from Phillips and Magdali-
nos (2009). We also let Σ vv denote the p × p covariance
of the vjt ’s and refer to its diagonal components as σ 2

vj
and

its off-diagonal components as σvivj respectively.

Assumption 2B. (i) Assumption 1(i), 1(ii) and 1(iv)-(v)
hold. (ii) The model in (8) holds with γ = (1 + 2α)/4
for α ∈ (0, 1). (iii) The p predictors follow the process
in (13) and satisfy

∑
[nλ]

t=1 xitxjt/n
1+α p

→ λσvivj/(ci + cj),∑
[nλ]

t=1 x
2
jt/n

1+α p
→ λσ 2

vj
/(2cj) and

∑
[nλ]

t=1 xjtut+1/n
1+α
2 =

Op(1) for i, j = 1, . . . , p.

In the context of our specification in (8), Assump-
tion 2B(iii) is guaranteed to hold when the predictors
follow the mildly integrated process in (13) as established
in Lemmas 3.1–3.3 of Phillips and Magdalinos (2009).
Our last assumption accommodates an environment that
combines stationary and persistent predictors.

Assumption 2C. (i) Assumption 1(i), 1(ii) and 1(iv)-(v)
hold. (ii) The model in (10) holds with γ1 = 1/4 and γ2 =

(1+2α)/4 for α ∈ (0, 1). (iii) The pool of p predictors con-
sists of p1 predictors satisfying Assumption 2A(ii)-(iii) and
p2 = p − p1 predictors satisfying Assumption 2B(ii)-(iii).

4.1. Local power under stationarity (scenario A)

Proposition 2A. Under Assumption 2A, q : = |I∗
| active

predictors in (8) with associated slope parameters βi =
−1/4 ∗ ∗
n βi for i ∈ I , and as n → ∞ we have
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Dn(µ0)
d

→ Z + g(µ0, π0, φ)
1
p

p∑
j=1

⎛⎝∑
i∈I∗

β∗

i
E[xitxjt ]√

E[x2jt ]

⎞⎠2

(14)

where

g(µ0, π0, φ) =
2
√
1 − π0

√
µ0(1 − µ0)√

φ2(1 − 2µ0)
(15)

ith π0 denoting the sample fraction used to initiate the
ecursive forecasts and µ0 and 1 − µ0 the proportions used
n the split sample averages in (3).

The result in (14) establishes the consistency of our
roposed test and its ability to detect departures from the
onstant mean model in (2) when predictors are taken
o be stationary processes. The expression in (14) and its
ounterparts under persistence presented further below
ffer novel insights on the asymptotic behavior of predic-
ive accuracy comparisons not explored in the existing lit-
rature. We can also observe that power is monotonic as
he non-centrality component in (14) is non-decreasing as
he slope parameters of the active predictors increase. An-
ther implication of (14) is that under fixed alternatives

Dn(µ0) → ∞ and more specifically

Dn(µ0)
H1
= Op(

√
n). (16)

Remark 2. The local power result in Proposition 2A has
been obtained under local departures from the null that
are of order n−1/4 rather than the conventional square
root rates one typically observes in stationary environ-
ments. This is not due to the way the test statistic Dn(µ0)
has been constructed or to our inference framework in
general. The main reason for operating under such a rate
comes from using squared errors, which result in the
squaring of the relevant parameters in the DGP.

To gain further intuition on the formulation of the
second component in the right-hand side of (14), it is
useful to specialize the result to a single active predictor
scenario. Suppose that there is a single active predictor,
say xat , with associated slope parameter βan = n−1/4β∗

a . It
ow follows directly from (14) that

Dn(µ0)
d

→ Z + g(µ0, π0, φ) (β∗

a )
2 E[x2at ]

1
p

p∑
j=1

ρ2
a,j. (17)

It is interesting to note the role played by the corre-
lation between the single predictor xat driving the DGP
in (8) and the remaining components of the predictor
pool (i.e., the irrelevant candidates). The higher this cor-
relation is, the stronger we expect the power to be. This
conforms with intuition since the models are estimated
with one predictor at a time. A particular fitted specifi-
cation containing a predictor other than xat and therefore
misspecified will continue to dominate the intercept-only
model in an MSE sense provided that this pseudo-signal
contains relevant information about xat . Note also that
this does not mean that in an environment where all
predictors in the pool are uncorrelated with xat power will

2
vanish as we have ρa,a = 1 by construction, implying that q

7

the second component in the right-hand side of (17) will
always be strictly positive under our assumptions. Note,
however that in such instances where all candidate pre-
dictors are uncorrelated with xat , the size of the predictor
pool p will have a detrimental impact on power, all other
things kept equal.

Another important implication of (17) is the favor-
able impact that the variance of xat has on power. The
more persistent xat is, the better the power is expected
to be. This hints that all other things being equal, the
presence of persistent predictors in the pool will improve
the detection ability of our test. We can also note that
the role of persistence may manifest itself not only via
E[x2at ] but also via ρ2

a,j due to the spurious correlation
phenomenon characterizing persistent processes. These
issues are explored in the next proposition.

4.2. Local power under persistence (scenario B)

Proposition 2B. Under Assumption 2B, q = |I∗
| active

predictors in (8) with slope parameters βi = n−(1+2α)/4β∗

i
for i ∈ I∗ and as n → ∞ we have

Dn(µ0)
d

→ Z + g(µ0, π0, φ)

×
1
p

p∑
j=1

⎛⎝∑
i∈I∗

β∗

i

σvivj√
σ 2

vj

√
2cj

(ci + cj)2

⎞⎠2

(18)

with g(µ0, π0, φ) as in (15).

The result in (18) highlights the beneficial impact that
predictor persistence will have on the detection ability of
Dn(µ0). This can also be observed by focusing on fixed
alternatives under which we can immediately infer from
(18) that

Dn(µ0)
H1
= Op(n

1+2α
2 ). (19)

If we were to restrict all predictors to have the same
on-centrality parameter, say ci = c ∀i = 1, . . . , p, (18)

reduces to

Dn(µ0)
d

→ Z + g(µ0, π0, φ)
1
p

1
√
2c

p∑
j=1

⎛⎝∑
i∈I∗

β∗

i

σvivj√
σ 2

vj

⎞⎠2

(20)

hich also suggests that, all other things being equal,
ower is expected to improve for smaller magnitudes of
his non-centrality parameter.

.3. Local power under mixed predictors (scenario C)

The pool of predictors now consists of p1 purely sta-
ionary and p2 persistent predictors with p1 + p2 = p
nd we let J1 and J2 denote the sets associated with the
tationary and persistent predictors respectively so that
J1| = p1 and |J2| = p − p1.

roposition 2C. Under Assumption 2C, q1 = |I∗

1 | and
= |I∗

| active predictors in (10) with slope parameters
2 2
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1,i = n−1/4β∗

1,i for i ∈ I∗

1 and β2,i = n−(1+2α)/4β∗

2,i for
i ∈ I∗

2 we have as n → ∞

Dn(µ0)
d

→ Z +
g(µ0, π0, φ)

p

⎛⎜⎝∑
j∈J1

⎛⎝∑
i∈I∗

1

β∗

i
E[xitxjt ]√

E[x2jt ]

⎞⎠2

+

∑
j∈J2

⎛⎝∑
i∈I∗

2

β∗

i

σvivj√
σ 2

vj

√
2cj

(ci + cj)2

⎞⎠2
⎞⎟⎠ (21)

ith g(µ0, π0, φ) as in (15).

emark 3. The expressions in (14), (18), (21) provide use-
ul insights on suitable choices of µ0 when constructing
our test statistic. As µ0 affects local power via g(µ0, π0, φ)
a choice in the vicinity of 0.5 is expected to lead to the
most favorable power outcomes.

5. A power enhancing modification of Dn(µ0)

We here consider a modification of Dn(µ0) designed to
enhance its power without affecting its null distribution.
Our proposal is in the spirit of Fan, Liao, and Yao (2015).
It involves augmenting the test statistic with a quantity
that converges to 0 under the null while diverging under
the alternative of at least one active predictor. For this
purpose we introduce the quantity dnj =

∑n−1
t=k0

(ê0,t+1|t −

êj,t+1|t )2/(n−k0). Within our nested context and under the
null of the benchmark model, we have dnj = Op(n−1/2)
∀j = 1, . . . , p while under the alternative whereby the
true model contains at least one active predictor we have
dnj ≡

√
n − k0 dnj/ω̂n = Op(1) ∀j = 1, . . . , p with the as-

sociated limiting random variable being strictly positive.
This prompts us to propose the following augmentation
to Dn(m0)

Dd
n(m0) =

1
p

p∑
j=1

(Dn(m0, j) + d̃nj) (22)

which we expect to be power-enhancing while also being
size-neutral. Noting that

Dd
n(m0) − Dn(m0) =

1
p

p∑
j=1

d̃nj (23)

roposition 3 below formalizes these observations.

roposition 3. (i) Under Assumption 1(i)–(v) and the null
ypothesis we have Dd

n(m0) − Dn(m0)
p

→ 0 as n → ∞.
(ii) Under Assumption 2A, 2B or 2C we have Dd

n(m0) −

Dn(m0)
p

→ Qℓ > 0, ℓ = A, B, C with Qℓ given by the
second component in the right-hand side of (14), (18) and
(21) respectively.

A key implication of Proposition 3 (ii) is that a test
of size α based on Dd

n(µ0) will be strictly preferable in
terms of local power to a test of the same size based on
Dn(µ0). A more formal comparison using Pitman’s asymp-
totic relative efficiency is also informative as it takes a
particularly simple form in the present context. Indeed,
8

our local power results in (14), (18), (21) combined with
Proposition 3(ii) above imply that

ARE(Dn(µ0),Dd
n(µ0)) = 1/2 < 1 (24)

irrespective of any model-specific parameters.

Remark 4. The above power-enhancing tranformation
based on d̃nj is analogous to adjusting the forecast errors
associated with the larger models. More specifically, im-
plementing our main test statistic in (3) with the ê2j,t+1’s
replaced with say ẽ2j,t+1 = ê2j,t+1 − (ê0,t+1 − êj,t+1)2 results
in a formulation that is algebraically identical to (22). It
is now interesting to observe that these ẽ2j,t+1’s are es-
sentially adjusting the ê2j,t+1’s for estimation noise coming
from the estimation of the larger model when its true pa-
rameters are zero. This is precisely the motivation behind
the well-known Clark and West adjustment to equal pre-
dictive accuracy tests proposed in Clark and West (2007).
Unlike the setting in Clark and West (2007), however
our proposed test statistics result in formal normal limits
rather than approximate ones.

6. Detecting the key player

Upon rejection of the benchmark model, it becomes
interesting to explore ways of identifying the predic-
tors driving these departures from the null hypothe-
sis. In this context, we distinguish between two settings
and obtain the corresponding limiting behavior of ĵn ∈

argmaxj=1,...,p Dn(m0, j) and ĵdn ∈ argmaxj=1,...,p Dd
n(m0, j)

which select the predictor that results in the greatest MSE
spread relative to the benchmark model.

In the first instance we evaluate the large sample be-
havior of these estimators when the DGP contains a single
active predictor (i.e., q = |I∗

| = 1 in (9)) that can be
either stationary or persistent. We subsequently extend
our analysis to environments with multiple predictors
that are again assumed to be of the same type in their
persistence properties (i.e., all stationary or all persistent).
Finally, we consider the case of mixed predictors as in
(11)–(12) with the joint presence of stationary and persis-
tent active predictors numbering q1 and q2 respectively.
The large sample behavior of these key player estimators
is summarized in the following proposition.

Proposition 4. (i) Under Assumption 2A or 2B and as n →

∞ we have {ĵn, ĵdn}
p

→ j0 ∈ I∗ for q ≥ 1. (ii) Under
Assumption 2C and as n → ∞ we have {ĵn, ĵdn}

p
→ j0 ∈

I∗

1 ∪ I∗

2

When the DGP consists solely of a single predictor
(stationary or persistent), part (i) of Proposition 4 implies
that ĵn or ĵdn will be consistent for that true predictor
asymptotically. When there are multiple predictors of the
same type, the same result implies that ĵn or ĵdn remain
consistent for one of the q > 1 active predictors i.e., ĵn
or ĵdn is consistent for one of the true components in I∗.
Part (ii) of Proposition 4 relates to a scenario with mixed
active predictors and states that in such a mixed setting,
jn or ĵdn will continue to point to one of the true predictors,

which may come from either of the two sets.
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Using the results provided in the proof of Proposi-
tion 4, it is useful to illustrate the mixed predictor sce-
nario via a simple example of a predictive regression with
two active predictors, say yt+1 = θ0+βanxat+βbnxbt+ut+1
with xat ∈ I∗

1 , xbt ∈ I∗

2 and as before βan = β∗
a /n

1/4 and
βbn = β∗

b /n
(1+2α)/4. Proposition 4(ii) clearly applies and

implies that ĵn or ĵdn will asymptotically point to either
xat or xbt . More specifically (see proof of Proposition 4),
we have that ĵn or ĵdn will asymptotically point to xbt (the
persistent predictor) if

(β∗

b )
2 >

E[x2at ]
(σ 2

vb
/2cb)

(β∗

a )
2 (25)

and to xat otherwise. It is now interesting to observe from
(25) that ĵn or ĵdn is expected to pick xbt when the squared
slope associated with this predictor exceeds the scaled
slope of xat with the scaling factor given by the ratio of the
variances of the two predictors. As the ratio of these vari-
ances is likely to be small due to the higher persistence
of xbt , the procedure is also more likely to identify the
persistent predictor unless the slope associated with xat
is particularly large relative to that of xbt . More generally,
these results suggest that the key player selected by our
proposed methods will depend on the relative magnitude
of its associated slope combined with its relative variance
(relative to the remaining active predictors). Thus, when
it comes to where ĵn or ĵdn point asymptotically, there
will be a trade-off between slope strength and variance
dominance.

7. Implementation and experimental properties

This section aims to document the empirical prop-
erties of our proposed test and key player estimator in
finite samples. Given our theoretical analysis about the
superior local power properties of Dd

n(µ0) versus Dn(µ0)
we concentrate our discussion on Dd

n(µ0) which we then
follow with experiments documenting the correct deci-
sion frequencies associated with the proposed key player
estimators. A supplementary appendix accompanying this
paper provides additional simulation-based illustrations
of the finite sample behavior of our proposed tests.

Implementation: The implementation of our test statis-
tics in (3) and (4) requires the availability of an estimator
of the long-run variance associated with the numerator
of (3) which we generically referred to as ω̂2

n . The asymp-
totic outcomes documented above operated under the
assumption that an estimator satisfying ω̂2

n
p

→ ω2 was
available. Given the expression of ω2 obtained in (6) and
the fact that we operate under given µ0 it is also clear
that a consistent estimator of φ2 would also ensure the
availability of a consistent estimator of ω̂2

n .
We may consider two alternative estimators of the

long-run variance in (3) using either residuals from the
null model or the marginal regressions considered under
the alternative. From Assumption 1(iii), it is straightfor-
ward to note that these will be asymptotically equiva-
lent under the null hypothesis of interest, but may re-

sult in potentially important differences in finite samples,

9

when it comes to power in particular. For conditionally
homoskedastic η′

ts we consider

ω̂2,a
n =

(1 − 2µ0)2

4µ0(1 − µ0)

∑n−1
t=k0(ê

2
0,t+1 − ê20)

2

n − k0
, (26)

ω̂
2,b
n,j =

(1 − 2µ0)2

4µ0(1 − µ0)

∑n−1
t=k0(ê

2
j,t+1 − ê2j )

2

n − k0
. (27)

which can also be readily adapted to accommodate con-
ditionally heteroskedastic u′

ts (equivalently, serial corre-
lation in the η′

ts) using Newey–West type formulations.
Letting η̂t denote a generic estimator of ηt , such an esti-
mator for the counterpart to ω̂2,a

n above would be given
y

2,a
n =

(1 − 2µ0)2

4µ0(1 − µ0)

m∑
s=−m

(
1 −

⏐⏐⏐⏐ s
n − k0

⏐⏐⏐⏐) γ̂η(s) (28)

here γ̂η(s) =
∑

η̂t η̂t−s/n − k0 for η̂t = û2
0,t+1 − σ̂ 2

0,u and
imilarly for (27). Note that (28) specializes to (26) under
onditional homoskedasticity, whereby γη(s) = 0 ∀s ̸= 0
nd m refers to a suitable bandwidth for which one may
onsider the rule of thumb m = mn = 0.75(n − k0)1/3.
n the simulations presented below, we analyze finite
ample size and power using the variance normalizer in
27).

Empirical Size: The DGP is given by the benchmark
pecification in (2) with θ0 set as equal to one throughout.
he pool of p predictors is taken to follow the VAR(1)
rocess xt = Φxt−1 + vt with vt ∼ N(0,Σ vv) which
e parameterize in ways that can distinguish between
ncorrelated, weakly correlated and strongly correlated
redictors. We consider the following scenarios for the
ersistence properties of the predictors: (A) Φ = 0.50 Ip,
B) Φ = 0.95 Ip and (C) Φ = (Φ1,Φ2), Φ1 = 0.5 Ip1 ,
2 = 0.95 Ip−p1 . Letting Ω denote the covariance matrix
f (ut , vt )′ we write

p+1×p+1 =

(
σ 2
u σ ′

uv
σuv Σ vv

)
(29)

where σuv = (σuv1 , σuv2 , . . . , σuvp )
′ collects the covari-

ances between the shocks to yt and the shocks to individ-
ual predictors and Σ vv is the p × p covariance matrix of
the p predictors. Our experiments involving either purely
stationary, purely persistent or mixed predictors are con-
ducted across three configurations of Ω : (i) Ω0: σ 2

u =

1, σuv = 0p×1,Σ vv = Ip, (ii) Ω1: σ 2
u = 1, σuv =

0p×1,Σ vv = [0.5|i−j|
]i,j and (iii) Ω2: σ 2

u = 1, σuv =

[(−0.5)j]j,Σ vv = [0.5|i−j|
]i,j. Accordingly we label these

size related DGPs as (A-i)-(A-iii), (B-i)-(B-iii) and (C-i)-(C-
iii). Scenario (i) forces all p predictors to be uncorrelated
between themselves. It also requires the shocks to the
predictors and predictand to be uncorrelated, as does
scenario (ii). In this latter case, predictors are now allowed
to be correlated. Finally, scenario (iii) allows the shocks to
the predictand and predictors to be contemporaneously
correlated.

Empirical size outcomes are obtained for p ∈ {10, 50,
500} and samples of size n = 500 with π0 = 0.25 used
as the starting point for generating recursive forecasts
i.e., n − k = 375. For the sample-split location of our
0
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Table 1
Empirical size of Dd

n(µ0) (10% Nominal).
µ0 p=10 p=50 p=500 p=10 p=50 p=500 p=10 p=50 p=500

A(i) A(ii) A(iii)

0.35 0.106 0.102 0.103 0.107 0.103 0.103 0.105 0.103 0.103
0.40 0.108 0.103 0.104 0.109 0.105 0.106 0.108 0.105 0.106
0.45 0.109 0.093 0.100 0.115 0.093 0.100 0.114 0.094 0.100

B(i) B(ii) B(iii)

0.35 0.105 0.103 0.103 0.106 0.102 0.103 0.107 0.102 0.103
0.40 0.114 0.105 0.105 0.114 0.104 0.104 0.114 0.104 0.104
0.45 0.116 0.099 0.101 0.119 0.100 0.103 0.122 0.100 0.103

C(i) C(ii) C(iii)

0.35 0.106 0.103 0.103 0.105 0.102 0.102 0.105 0.102 0.102
0.40 0.110 0.104 0.103 0.109 0.106 0.103 0.109 0.106 0.103
0.45 0.115 0.093 0.100 0.119 0.098 0.102 0.118 0.099 0.102
test statistic, we experiment with µ0 ∈ {0.35, 0.40, 0.45}.
esults are collected in Table 1 below using 5000 Monte-
arlo replications and a nominal size of 10%. It is worth
ointing out that the case p = 500 implies an envi-
onment where the number of predictors exceeds the
ffective sample size of n − k0 = 375. Recalling that our
ain result in Proposition 1 is obtained under n → ∞,
ur chosen parameterizations of the pair (n, p) are meant
o illustrate the finite sample adequacy of our asymptotics
ven when n lies below p or is near p.
From Table 1, we can note that the one predictor at a

ime approach based on Dd
n(µ0) appears to be robust to

he dimension of the predictor pool with almost identical
ize estimates obtained across p = 10, p = 50 and
= 500 predictors. This highlights the excellent approx-

mation provided by our asymptotics even when n − k0
s smaller than p. Outcomes can also be seen to be ro-
ust to predictor persistence as expected from our result
n Proposition 1. Equally importantly, we can highlight
hat the chosen sample split location µ0 has very little
nfluence on outcomes with almost identical empirical
izes obtained across all chosen magnitudes of µ0. This is
articularly important as our earlier local power analysis
uggested that choosing µ0 in the vicinity of 0.5 should
esult in better power outcomes, all other things being
qual.
Empirical Power: We consider predictive regressions

ith up to four active predictors parameterized as

t+1 = θ0 +βanxa,t +βbnxb,t +βcnxc,t +βdnxd,t +ut+1 (30)

ith βan = β∗
a /n

0.25, βbn = β∗

b /n
0.25, βcn = β∗

c /n
0.675,

nd βdn = β∗

d /n
0.675. The two predictors labeled as

a, b} are chosen to be non-persistent, while the predic-
ors labeled as {c, d} will have more persistence. Accord-
ngly, it will be understood that the pool of predictors
o which {xat , xbt , xct , xdt} belong is generated from a
AR(1) parameterized as in (C-iii) above. The active pre-
ictors {xat , xbt} belong to the first set of p1 predictors and
xct , xdt} belong to the second set of p−p1 predictors. We
ake xat = x1t , xbt = x2t and xct = xp1+1,t , xdt = xp1+2,t .
The local parameterizations of the slope parameters are
chosen in a way to be compatible with our earlier local
power analysis where we documented local departures
of n−0.25 under the stationary setting and n−(1+2α)/4 under

mild integratedness. For this latter case, setting α = 0.85

10
in the mildly integrated process in (3) results in (1 +

2α)/4 = 0.675. As these persistent predictors are driven
by the VAR(1) component with slopes 0.95, we may also
note that this corresponds roughly to (1 − c/nα) = (1 −

10/5000.85) ≈ 0.95.
We consider 3 DGP configurations: (i) β∗

a ∈ {2, 3, 4, 5},
β∗

b ∈ {5, 6, 7, 8}, β∗
c = 0, β∗

d = 0, (ii-a) β∗
a = 0,

β∗

b = 0, β∗
c ∈ {2, 3, 4, 5}, β∗

d ∈ {5, 6, 7, 8} and (ii-b)
β∗
a = 0, β∗

b = 0, β∗
c ∈ {5, 6, 7, 8}, β∗

d ∈ {8, 9, 10, 11}.
Scenario (i) involves two active predictors xat and xbt
that are not persistent (i.e., selected from the pool of
p1 predictors that follow autoregressive processes with
slopes equal to 0.5). Scenarios (ii-a) and (ii-b) involve two
active predictors xct and xdt selected from the remaining
pool of p−p1 persistent predictors. Relative to (ii-a), DGP
(ii-b) is characterized by a stronger signal-to-noise ratio.

It is also useful to point out that with n = 500,
the chosen slope parameterizations translate into βan ∈

{0.422, 0.634, 0.845, 1.057} and βbn ∈ {1.057, 1.269,
1.480, 1.692} for scenario (i), βcn ∈ {0.030, 0.045, 0.060,
0.075} and βdn ∈ {0.075, 0.090, 0.106, 0.121} for sce-
nario (ii-a), βcn ∈ {0.075, 0.090, 0.106, 0.121} and βdn ∈

{0.121, 0.136, 0.151, 0.166} for scenario (ii-b). These high-
light that power is evaluated as the DGP moves further
away from the null under a fixed sample size set at n =

500. We also note that the above slope magnitudes span
low, medium, and high signal-to-noise ratios.

Our power experiments are implemented using a pre-
dictor pool of p = 100 predictors, with the first half
consisting of autoregressive processes with slopes set at
0.50 and the second half having slopes of 0.95. All exper-
iments are implemented using the covariance structure
labeled as Ω2 above. Outcomes associated with Dd

n(µ0)
are collected in Table 2.

We note that power increases towards 100% as the
slope parameters move away from the null (each column
of Table 2 corresponds to one pair of slopes, and moving
rightwards along the table illustrates power progression
for larger departures from the null). Under DGP(i), em-
pirical powers lie within 100% for µ0 ≥ 0.40 and across
all slope parameterizations. DGP(ii-a) is associated with
much weaker signal-to-noise ratios, which translate into
much less favorable empirical powers. Nevertheless, we
do note powers as high as 75%, even in this context. Here,
it is important to recall that this DGP consists solely of

persistent predictors. Had we used the slope magnitudes
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Table 2
Empirical power of Dd

n(µ0) under DGPs (i)-(ii).
DGP (i)

βan 0.423 0.634 0.846 1.057
βbn 1.057 1.269 1.480 1.692

µ0 = 0.35 0.829 0.936 0.976 0.991
µ0 = 0.40 0.977 0.997 1.000 1.000
µ0 = 0.45 1.000 1.000 1.000 1.000

DGP (ii-a)

βcn 0.030 0.045 0.060 0.075
βdn 0.075 0.090 0.106 0.121

µ0 = 0.35 0.174 0.231 0.304 0.346
µ0 = 0.40 0.217 0.296 0.391 0.464
µ0 = 0.45 0.349 0.500 0.641 0.747

DGP (ii-b)

βcn 0.075 0.090 0.106 0.121
βdn 0.121 0.136 0.151 0.166

µ0 = 0.35 0.337 0.399 0.464 0.492
µ0 = 0.40 0.455 0.533 0.604 0.655
µ0 = 0.45 0.742 0.827 0.885 0.924

(βan, βbn) instead of (βcn, βdn) in this context all empirical
powers would have resulted in 100% or nearly 100% cor-
rect decision frequencies. This can also be inferred from
the outcomes based on DGP (ii-b), which uses larger slope
magnitudes for the same persistent predictor scenario.
Under (βcn, βdn) = (0.121, 0.166) which are much lower
han the most favorable slope pairs considered in DGP(i),
or instance, we note empirical power outcomes in excess
f 90%.
Finite Sample Properties of the key player estimator:

n this last set of experiments, we illustrate the result
n Proposition 3 by documenting the behavior of the
roposed key player estimator as n is allowed to grow.
e base our evaluation of ĵdn on its ability to point to
ne of the true underlying active predictors. Although this
stimator would be typically implemented upon rejection
f the null hypothesis, our empirical results below are
nderstood to be unconditional in the sense that the cor-
ect decision frequencies associated with ĵdn’s are averaged
cross all realizations rather than the ones associated with
ejections of the null. This is justified here on the basis
hat ĵdn may still point to the true predictor (or one of the
rue predictors) even if the underlying inferences based
n Dd

n(µ0) do not result in a rejection of the null. Differ-
ntly put, the realized magnitude of Dd

n(µ0) could still be
he largest amongst the j = 1, . . . , p realizations even if
t falls below the null hypothesis rejection threshold.

The DGPs parallel the specifications labeled as (i)-(ii)
n our earlier power analysis. The number of predictors is
et at p = 100 throughout. The specific parameterizations
re: (i) (βan, βbn) = (0.634, 1.269), xat = x1t , xbt = x2t , (ii-

a) (βcn, βdn) = (0.075, 0.121), xct = x51,t , xdt = x52,t , (ii-b)
(βcn, βdn) = (0.106, 0.151), xct = x51,t , xdt = x52,t . We
implement the above experiments across samples of size
n = 100 and n = 200. In DGP(i) the active predictors are
j0 ∈ {1, 2}. In DGPs (ii-a) and (ii-b), we have j0 ∈ {51, 52}.
Results are collected in Table 3, which displays relevant
correct decision frequencies. An important primary obser-
vation is the similarity of outcomes across the different
11
sample split locations (i.e., choices for µ0) whose choice
does not matter much. For DGP (i) our estimator picks
up j0 = 2 in excess of 99% of the times even under
(n = 100, p = 100). The preference for j0 = 2 over j0 = 1,
which is also included as an active predictor, is due to the
much larger slope associated with x2t combined with the
fact that these predictors have the same variance. For DGP
(ii-a), which is driven by the two active predictors x51,t
and x52,t , we note that the bulk of ĵdn’s decision frequencies
converge towards x52,t (e.g., about 70% under n = 200).
This can again be explained by the fact that x52,t has a
stronger signal due to its larger slope parameter. Similar
outcomes also characterize DGP (ii-b).

8. Application: Predictability of economic activity

We apply our methods to the predictability of US eco-
nomic activity and the monthly growth rate in indus-
trial production in particular. The predictor pool consists
of 130 lagged monthly series drawn from the FRED-MD
database whose detailed constituents are discussed in
McCracken and Ng (2016). These series have also been
transformed and outliers processed, as documented in
McCracken and Ng (2016). FRED-MD consists of eight
groups of time series and is closely aligned with the early
Stock and Watson dataset (Stock and Watson (2002)): (1)
output and income, (2) labor market, (3) housing, (4) con-
sumption, (5) money and credit, (6) interest and exchange
rates, (7) prices and (8) stock market. Our selection of 130
predictors follows Giannone, Lenza, and Primiceri (2021),
GLP2021) using the data vintage provided by the authors
and the same sample range of February 1960 to December
2014. This allows us to compare the inferences developed
in this paper and existing findings in the literature. Re-
calling that our forecasts are generated recursively, we
set the starting point of the first recursion at the 165th
month (i.e., k0 = [658(0.25)] = 165). We implement
our inferences across µ0 ∈ {0.30, 0.35, 0.40, 0.45} and
consider both the ‘‘raw’’ Dn(µ0) statistic and its power
enhanced counterpart Dd

n(µ0). We also implement these
two test statistic formulations using variance normaliz-
ers based on residuals obtained under the null and the
alternative. Accordingly we label these four versions as
Dn(µ0)0, Dd

n(µ0)0, Dn(µ0)1 and Dd
n(µ0)1.

Table 4 presents the p-values associated with test-
ing the global null of no predictability. We note strong
rejections of the null across all implementations. US eco-
nomic activity is predictable using past macroeconomic
information. More importantly, our key-player estima-
tor based on either of the four formulations of our test
statistic identifies the same series given by the ISM: New
Orders Index (coded as NAPMNOI and numbered as 61
in FRED-MD). This is a monthly index published by the
Institute for Supply Management, informing about the
number of surveyed businesses reporting increased cus-
tomer orders relative to the previous month. Interestingly,
our key-player estimator has pointed to this predictor,
as NAPMNOI is the first forward-looking indicator made
public early each month. This variable is an important
predictor of US recessions in Liu and Moench (2016).
Still, perhaps more interestingly here, NAPMNOI can also
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Table 3
Key player estimators: Frequency of detection of active predictors.

µ0 = 0.35 µ0 = 0.40 µ0 = 0.45 µ0 = 0.35 µ0 = 0.40 µ0 = 0.45

n=100 n=200

DGP − (i), j0 ∈ {1, 2}

ĵdn = 1 0.009 0.009 0.009 0.000 0.000 0.000

ĵdn = 2 0.991 0.991 0.991 1.000 1.000 1.000

DGP − (ii − a), j0 ∈ {51, 52}

ĵdn = 51 0.184 0.182 0.183 0.235 0.235 0.234

ĵdn = 52 0.413 0.414 0.413 0.703 0.702 0.703

ĵdn ̸= {51, 52} 0.403 0.404 0.404 0.062 0.063 0.063

DGP − (ii − b), j0 ∈ {51, 52}

ĵdn = 51 0.252 0.253 0.252 0.270 0.271 0.270

ĵdn = 52 0.508 0.508 0.508 0.705 0.705 0.705

ĵdn ̸= {51, 52} 0.239 0.239 0.239 0.025 0.025 0.025
Table 4
p-values.

µ0 0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45

Dn(µ0)0 0.000 0.001 0.003 0.001 Dn(µ0)1 0.000 0.001 0.002 0.000

Dd
n(µ0)0 0.000 0.000 0.000 0.000 Dd

n(µ0)1 0.000 0.000 0.000 0.000
be the most important predictor detected through the
Bayesian methods developed in GLP2021. In their Figure
6 (GLP2021, p. 2425), this variable is amongst the ones
with the highest probabilities of inclusion. The picture is
even more apparent in Fava and Lopes (2020), FL2020),
who have reconsidered GLP2021’s study by evaluating its
sensitivity to the chosen priors. Figure 7 in FL2020 points
to the 61th predictor as having a 100% probability of
inclusion as a predictor of the US growth rate in industrial
production.

Although going beyond the detection of a key player is
utside the scope of this paper, it is nevertheless interest-
ng to evaluate leading predictors beyond the argmax of
d
n(µ0). Table 5 isolates the top 6 predictors leading to the
ighest magnitudes of Dd

n(µ0). We note a cluster of inter-
st rate-related predictors and a labor market indicator. It
s again interesting to point out that predictors 92 and 39
lso appear amongst the predictors with the highest prob-
bilities of being included in both GLP2021 and FL2020.
he heatmap presented in Figure 6 of GLP2021 (p. 2425)
lso shows a clustering of active predictors with IDs in
he 90 s range, as in Table 5. Lastly, it is also important to
oint out that the outcomes presented in Tables 4 and 5
emained unaffected when we also augmented the pool of
redictors to include the lagged growth rate in industrial
roduction. This is in line with the fact that the growth
ate in industrial production is only very weakly serially
orrelated.

. Conclusions

We proposed a method for detecting the presence
f out-of-sample predictability in the context of linear
12
predictive regressions linking a response variable to one
or more lagged predictors. An important novelty of our
approach is its robustness to the dynamic properties of
predictors, which can be noisy, persistent, or a mixture of
both. In addition, our approach can accommodate a large
number of predictors at negligible computational cost
and is very reliable even in contexts where the effective
sample size is smaller than the available pool of predic-
tors. This is despite an asymptotic theory that operates
solely under n → ∞. As argued by McKeague and Qian
(2015), who developed a theory of marginal screening
in high dimensional regressions assuming a fixed pool
of predictors, extending our asymptotic framework that
accommodates persistence and predictor correlatedness
to environments in which p is allowed to grow with n
would also raise formidable technical challenges. Never-
theless, our local power analysis and simulation-based
results have highlighted the suitability and accuracy of
our asymptotic regime in large p environments.

In a wide range of applications, one is often inter-
ested in whether a series is best described as a mean
independent process or is characterized by predictability.
This predictability may be driven by one or more pre-
dictors belonging to a very large information set. One
may not wish to take a stance on a particular predictor
while also constrained by dimensionality problems. The
test we introduced in this paper is precisely designed to
accommodate such environments. Although our primary
focus is not on uncovering a true model, our framework
allows us to detect a key player, which can be valuable
information. It could, for instance, be used in a model
further augmented with diffusion index-type factors. It
could also be useful in contexts where predictors consist
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Table 5
Key player and Top 5 predictors.
Fred-MD ID Fred-MD Code Description

61 NAPMNOI ISM: New Orders Index

96 T1YFFM 1-Year Treasury C Minus FEDFUNDS
95 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS
92 BAA Moodys Seasoned Baa Corporate Bond Yield
93 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS
39 NDMANEMP All Employees: Nondurable goods
solely of principal components, as in such environments,
PC-type factors are typically obtained while being agnos-
tic about how they relate to the predictand. As PCs are
typically obtained using a pool of very diverse predictors
in terms of their persistence properties, the robustness
of our methods to such characteristics also makes them
particularly suitable.

Declaration of competing interest

The authors declare that they have no known com-
eting financial interests or personal relationships that
ould have appeared to influence the work reported in
his paper.

ppendix A. Supplementary data

Supplementary material related to this article can be
ound online at https://doi.org/10.1016/j.ijforecast.2023.
0.005.

eferences

erenguer-Rico, V., & Nielsen, B. (2020). Cumulated sum of squares
statistics for nonlinear and nonstationary regressions. Economic
Theory, 36(1), 1–47.

lark, T. E., & McCracken, M. W. (2013). Advances in forecast evaluation.
In Handbook of Economic Forecasting, Chapter 20 (pp. 1107–1201).
Elsevier.

lark, T. E., & West, K. D. (2007). Approximately normal tests for
equal predictive accuracy in nested models. Journal of Econometrics,
138(1), 291–311.

orradi, V., Fosten, J., & Gutknecht, D. (2023). Predictive ability tests with
possibly overlapping models: SSRN working paper, http://dx.doi.org/
10.2139/ssrn.4375650.

ecrouez, G., & Hall, P. (2014). Split sample methods for constructing
confidence intervals for binomial and Poisson parameters. Journal
of the Royal Statistical Society. Series B. Statistical Methodology, 76(5),
949–975.

eng, A., & Perron, P. (2008). The limit distribution of the cusum
of squares test under general mixing conditions. Economic Theory,
24(3), 809–822.

iebold, F. X., & Mariano, R. (1995). Comparing predictive accuracy.
Journal of Business & Economic Statistics, 13(3), 253–265.
13
Fan, J., Liao, Y., & Yao, J. (2015). Power enhancement in high
dimensional cross-sectional tests. Econometrica, 83(4), 1497–1541.

Fan, J., & Liv, J. (2008). Sure independence screening for ultrahigh
dimensional feature space. JRSS Series B, 70(5), 849–911.

Fava, B., & Lopes, H. F. (2020). The illusion of the illusion of sparsity: An
exercise in prior sensitivity. arXiv:2009.14296v1. September 2020.

Ghysels, E., Hill, J. B., & Moteigi, K. (2020). Testing a large set of
zero restrictions in regression models, with an application to
mixed frequency Granger causality. Journal of Econometrics, 218(2),
633–654.

Giannone, D., Lenza, M., & Primiceri, G. E. (2021). Economic predictions
with big data: The illusion of sparsity. Econometrica, 89, 2409–2437.

Gonzalo, J., & Pitarakis, J. (2019). Predictive regressions, Oxford research
encyclopedia: Economics and finance, November 2019.

Goyal, A., & Welch, I. (2008). A comprehensive look at the empirical
performance of equity premium prediction. The Review of Financial
Studies, 21, 1455–1508.

Liu, W., & Moench, E. (2016). What predicts US recessions? International
Journal of Forecasting, 32, 1138–1150.

McCracken, M. (2007). Asymptotics for out of sample tests of Granger
causality. Journal of Econometrics, 140(2), 719–752.

McCracken, M., & Ng, S. (2016). FRED-MD: A monthly database for
macroeconomic research. Journal of Business & Economic Statistics,
34, 574–589.

McKeague, I. W., & Qian, M. (2015). An adaptive resampling test
for detecting the presence of significant predictors. Journal of the
American Statistical Association, 110(512), 1422–1433.

Pesaran, M. H., & Timmermann, A. (1995). Predictability of stock re-
turns: Robustness and economic significance. The Journal of Finance,
50, 1201–1228.

Phillips, P. C. B., & Magdalinos, A. (2009). Limit theory for cointegrated
systems with moderately integrated and moderately explosive
regressors. Economic Theory, 25(2), 482–526.

Pitarakis, J. (2023). A novel approach to predictive accuracy testing in
nested environments. Econometric Theory, 1–44. http://dx.doi.org/
10.1017/S0266466623000154.

Schennah, S. M., & Wilhelm, D. (2017). A simple parametric model se-
lection test. Journal of the American Statistical Association, 112(520),
1663–1674.

Shi, X. (2015). A nondegenerate vuong test. Quantitative Economics, 6(1),
85–121.

Stock, J. H., & Watson, M. W. (2002). Macroeconomic forecasting using
diffusion indexes. Journal of Business & Economic Statistics, 20,
147–162.

Vuong, Q. H. (1989). Likelihood ratio tests for model selection and
non-nested hypotheses. Econometrica, 57(2), 307–333.

West, K. (1996). Asymptotic inference about predictive ability.
Econometrica, 64(5), 1067–1084.

West, K. (2006). Forecast evaluation. In Graham Elliott, Clive W.
J. Granger, & Allan Timmermann (Eds.), Handbook of economic
forecasting, volume 1.

https://doi.org/10.1016/j.ijforecast.2023.10.005
https://doi.org/10.1016/j.ijforecast.2023.10.005
https://doi.org/10.1016/j.ijforecast.2023.10.005
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb1
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb1
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb1
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb1
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb1
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb2
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb2
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb2
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb2
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb2
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb3
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb3
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb3
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb3
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb3
http://dx.doi.org/10.2139/ssrn.4375650
http://dx.doi.org/10.2139/ssrn.4375650
http://dx.doi.org/10.2139/ssrn.4375650
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb5
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb5
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb5
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb5
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb5
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb5
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb5
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb6
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb6
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb6
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb6
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb6
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb7
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb7
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb7
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb8
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb8
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb8
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb9
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb9
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb9
http://arxiv.org/abs/2009.14296v1
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb11
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb11
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb11
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb11
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb11
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb11
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb11
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb12
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb12
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb12
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb13
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb13
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb13
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb14
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb14
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb14
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb14
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb14
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb15
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb15
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb15
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb16
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb16
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb16
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb17
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb17
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb17
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb17
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb17
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb18
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb18
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb18
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb18
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb18
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb19
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb19
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb19
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb19
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb19
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb20
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb20
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb20
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb20
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb20
http://dx.doi.org/10.1017/S0266466623000154
http://dx.doi.org/10.1017/S0266466623000154
http://dx.doi.org/10.1017/S0266466623000154
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb22
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb22
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb22
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb22
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb22
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb23
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb23
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb23
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb24
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb24
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb24
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb24
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb24
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb25
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb25
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb25
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb26
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb26
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb26
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb27
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb27
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb27
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb27
http://refhub.elsevier.com/S0169-2070(23)00104-8/sb27

	Out-of-sample predictability in predictive regressions with many predictor candidates
	Introduction
	Models and Theory
	Asymptotics of Dn(µ0) under the benchmark model
	Asymptotic Local Power Properties of Dn(µ0)
	Local Power under Stationarity (scenario A)
	Local Power under Persistence (scenario B)
	Local Power under Mixed Predictors (scenario C)

	A Power enhancing modification of Dn(µ0)
	Detecting the key player
	Implementation and Experimental Properties
	Application: Predictability of Economic Activity
	Conclusions
	Declaration of competing interest
	Appendix A. Supplementary data
	References


