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A B S T R A C T

Recently machine learning (ML) based approaches have gained significant attention in dealing with computa-
tionally intensive analyses such as uncertainty quantification of composite laminates. However, high-fidelity
ML model construction is computationally demanding for such high-dimensional problems due to the required
large amount of high-fidelity training data. We propose to address this issue effectively through multi-fidelity
ML based surrogates which can use a training dataset consisting of optimally distributed high- and low-fidelity
simulations. For forming multi-fidelity surrogates of progressive damage in composite laminates, we combine
low-fidelity finite element analysis data obtained using Matzenmiller damage model with Hasin failure criteria
and high-fidelity finite element analysis data obtained using three-dimensional continuum damage mechanics
based model with P Linde’s failure criteria. It is shown that there is a significant computational advantage
to using the multi-fidelity surrogate approach as compared to conventional single-fidelity surrogates. Such
computational advantage through optimal data fusion without compromising accuracy becomes crucial for the
subsequent data-driven uncertainty quantification and sensitivity analysis of composites involving thousands of
realizations. Ply orientations come out to be the most sensitive parameters to matrix damage, fibre damage and
reaction force in composite laminates. The degree of uncertainty in the output quantities depend on the input-
level stochastic variations. For example, a combined stochastic variation of ±10% in material properties and
±10◦ in ply orientations lead to 1.85%, 16.98% and 11.24% coefficient of variation in the matrix damage, fibre
damage and reaction force respectively. In general, the numerical results obtained based on the efficient data-
driven approach strongly suggest that source-uncertainty of composites significantly influences the progressive
damage evolution and global mechanical behaviour, leading to the realization of the importance of adopting
an inclusive analysis framework considering such inevitable random variabilities.
. Introduction

Analysis of composite laminates has been challenging not only due
o the occurrence of multiple failure and damage mechanisms but also
ue to uncertainty in the material and geometric properties (Sriramula
nd Chryssanthopoulos, 2009; Tornabene et al., 2018; Mukhopadhyay
t al., 2018; Mandal and Chakrabarti, 2018; Pagani et al., 2023; Sharma
t al., 2022a). Various failure criteria and damage models have been
sed in the past to predict the damage and failure in composite lam-
nates (Hinton et al., 2002; Gao et al., 2020). Continuum damage
echanics-based models are one of the most widely used progressive
amage models for simulating the failure mechanisms in composite
aminates (Matzenmiller et al., 1995; Maimí et al., 2007; Ghannadpour
t al., 2018; Ansari and Chakrabarti, 2016). The progressive damage
odels incorporate damage initiation criteria for predicting the onset

f damage and damage evolution criteria for damage progression.

∗ Corresponding author.
E-mail address: t.mukhopadhyay@soton.ac.uk (T. Mukhopadhyay).

1 Both the authors have contributed equally.

The focus of this article is to propose an efficient Gaussian process-
based multi-fidelity surrogate modelling approach for quantifying the
uncertainty associated with progressive damage in composite lami-
nates. The developed multi-fidelity surrogate models would further be
exploited for variance-based global sensitivity analysis to investigate
the relative influence of input parameters on laminate responses and
damage propagation behaviour.

Over the last decade, surrogate-based (Sharma et al., 2022b) un-
certainty quantification has been used increasingly to quantify the
uncertain global responses in the composite laminates considering un-
certainty in the material and geometric properties. Dey et al. (2016b)
applied a surrogate approach to perform stochastic analysis of the
frequency response of composite laminates considering uncertainty
in elastic modulus, mass density and ply orientation angle. A com-
parison between the predictions of General High Dimensional Model
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Fig. 1. Geometry and boundary conditions of the notched composite laminate under investigation. AS4/PEEK (
[

0∕45∕90∕−45
]

)2𝑆 composite layup is considered having width
20 mm, length = 100 mm and a circular hole of 5 mm diameter at the centre. Considering the symmetry, only one-quarter of the composite is modelled and displacement

ontrolled load is applied at the reference point (RP).
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epresentative (GHDMR) and commercial finite element (FE) software
NSYS was done for the frequency response of the composite laminate.
askar et al. (2018) used a random field-based surrogate approach

o quantify the effect of spatial variation in micromechanical proper-
ies on the frequency response of composite laminates. Surrogate and
achine learning based approaches have been widely integrated in

he uncertainty quantification (probabilistic and non-probabilistic) of
omposite structures concerning dynamic analyses including augmen-
ation of lower order theories (Vaishali et al., 2023; Naskar et al.,
019; Vaishali et al., 2021; Dey et al., 2016a; Mukhopadhyay et al.,
021). Of late stochastic failure analysis of composite structures have
een reported in the literature (Bhowmik et al., 2022; Karsh et al.,
018). A comprehensive account of surrogate-based approaches for
tochastic dynamic and stability analysis of laminated composites is
resented in the recent monograph by Dey et al. (2018). The rationale
ehind involving surrogate models in uncertainty quantification is that
Monte Carlo simulation-based approach for complete probabilistic

haracterization requires thousands of function evaluations (i.e. same
umber of expensive FE simulations), while a computationally efficient
urrogate can effectively replace the requirement of carrying out a large
umber of such FE simulations.

Propagation of the uncertainty is essential to capture the nonlinear
onstitutive behaviour and understand the failure mechanisms accu-
ately (Tao et al., 2020). Several works have tried to use an artificial
eural network (ANN) (Hosseinpour et al., 2023) to understand the
onstitutive behaviour (stress–strain and load–displacement curves) of
omposite laminates (Yan et al., 2020; Liu et al., 2020; Tao et al., 2021).
ostanabad et al. (2018) employed a Gaussian process-based surrogate
pproach to quantify the load–displacement response and stresses in
oven fibre composites due to spatial variation in fibre misalignment
ngle, fibre volume fraction and yarn angle. Surrogate models have
een utilized to carry out global sensitivity analysis (Thapa et al., 2021;
alokas et al., 2021b) for understanding the effect of variation in input
arameters on strength and ultimate failure of composite laminates.

The finite element model which has a sufficient amount of accuracy
ut normally requires a high amount of computational cost can be
alled a high-fidelity (HF) model whereas a model which requires less
mount of computational cost but is less accurate than the HF model
an be called a low-fidelity (LF) model. It is expected that a surrogate
odel formed using HF training data would predict more accurately

with respect to the ground truth) compared to that formed using LF
raining data. Multi-fidelity (MF) modelling (Forrester et al., 2007;
oo et al., 2021; Balokas et al., 2021a) makes a trade-off between
2

omputationally expensive high-fidelity models and computationally
heaper low-fidelity models for making reasonably accurate predic-
ions. The adoption of such MF modelling can reduce the computational
urden for training data generation in a surrogate-based approach
f uncertainty quantification by involving a high number of cheap
ow-fidelity data. West IV and Phillips (2020) used a multi-fidelity
pproach to quantify the uncertainty in drag and ground noise of the
ommercial supersonic aircraft reducing 50% and 70% computational
ost respectively. Guo et al. (2020) applied a multi-fidelity surrogate
pproach to optimize the buckling load of variable stiffness composite
ylinders considering low-fidelity FE models with a coarse mesh and
igh-fidelity FE models with a fine mesh. A similar approach was
pplied by Krishnan and Ganguli (2021) for analysing the dynamic
esponse of composite beams considering Euler–Bernoulli beam FE
odel as the LF model and Timoshenko beam FE model as the HF
odel. Balokas et al. (2021a) developed a variable-fidelity approach

or strength analysis of braided composites based on LF USDFLD model
nd HF UMAT model considering the micromechanical properties. Tian
t al. (2021), Xu et al. (2023) used a transfer learning-based surrogate
pproach to solve the variable stiffness composite shell problem and
ater visualized the full-field strength information of the stiffened plate
tructure. Lin et al. (2022) developed sequential sampling-based multi-
idelity surrogate modelling for robust design optimization, wherein an
xtended upper confidence boundary (EUCB) function was maximized
o determine the sampling locations of the sequential samples and
urrogate fidelity levels.

There has been a common consensus to reduce computational ex-
enses in generating the training dataset for machine learning model
ormation. Solution of complex finite element problems such as progres-
ive damage evolution and constitutive modelling of composites, which
ormally involves a large number of input parameters, incur huge
omputational costs as each finite element simulation is exorbitantly
ime-consuming. The studies on prediction of strength and progressive
amage for notched composite laminates based on multi-fidelity sur-
ogate approach considering material and geometric uncertainty are
elatively scarce in literature. The objective of this work is to reduce the
omputational burden in uncertainty quantification of progressive dam-
ge and evaluation of stochastic failure strength based on multi-fidelity
urrogate modelling approach.

We would establish the HF and LF models for progressive damage
nalysis of composite laminates (refer to Fig. 1) in this paper based on
ccuracy in prediction with respect to experimental data and computa-
ional time (Maa and Cheng, 2002). As shown in the following sections,
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Abaqus built-in model would be taken as a LF FEA model, while the
three-dimensional continuum damage mechanics-based damage model
coupled with P Linde’s failure criteria, implemented in user subroutine
UMAT, would be considered as a HF FEA model. Each HF finite element
simulation for accurate progressive damage analysis of composite lami-
nates being computationally very expensive, it is imperative to develop
MF surrogate approaches for maximizing the computational savings in
machine learning model formation for subsequent uncertainty quantifi-
cation. A Gaussian process-based machine learning algorithm would be
developed here in conjunction with finite element simulations for the
multi-fidelity surrogate modelling to quantify the uncertainty in matrix
damage, fibre damage and delamination along with the constitutive
behaviour of composite laminates considering stochasticity in material
properties and fibre orientation. The MF surrogate approach would
be further exploited to perform a variance-based global sensitivity
analysis to investigate the relative influence of input parameters on
the global mechanical behaviour of composite laminates. The hybrid
multi-fidelity machine learning models can be regarded here as the
most efficient surrogate of the occurrence of progressive damage in
composite laminates that unify high and low fidelity damage models
through optimal data fusion.

The novelty and impact of this article while addressing the above-
identified research gaps would be two-fold: (1) quantifying the un-
certainty associated with progressive failure of composites, leading to
complete probabilistic descriptions along with sensitivity analysis, (2)
developing the multi-fidelity ML based approach in conjunction with
finite element simulations for efficient progressive damage analysis
through optimal data fusion. Note that such multi-fidelity data fusion
is attempted here for the first time in the high dimensional stochas-
tic design space of laminated composites for subsequent uncertainty
quantification. Thus the primary contribution of this article is envisaged
to lie in coupling multi-fidelity machine learning models with optimal
fusion of two different finite element based damage models of variable
fidelity (Matzenmiller damage model with Hasin failure criteria and
three-dimensional continuum mechanics based damage model with P
Linde’s failure criteria) for most efficient stochastic analysis of the
progressive damage in composite laminates.

The remainder of the article is organized as follows: Section 2
describes the modelling of deterministic failure for the low-fidelity FE
approach (FE model 1) and high-fidelity FE approach (FE model 2);
Section 3 explains the multi-fidelity surrogate modelling along with
subsequent uncertainty quantification; the global sensitivity analysis is
described in Section 4; Section 5 discusses numerical results for notched
composite laminates loaded under uniaxial tension; Section 6 presents
concluding remarks.

2. Deterministic progressive failure modelling

As discussed in the preceding section, two different finite element
models are adopted here for the prediction of the composite laminate
constitutive behaviour. Abaqus built-in model is taken as a LF FEA
model (FE model 1), while the three-dimensional continuum damage
mechanics-based damage model coupled with P Linde’s failure cri-
teria, implemented in user subroutine UMAT, is considered as a HF
FEA model (FE model 2). Brief descriptions of these two models are
provided in this section.

2.1. Modelling of fibre and matrix damage: FE model 1 (LF model)

In FE model 1, a damage model proposed by Matzenmiller et al.
(1995) with Hashin failure criteria (Hashin, 1980) is used for the pre-
diction of the initiation of fibre and matrix damage. Hashin 2D failure
criteria is an in-built failure criterion in commercial finite element
code Abaqus (Smith, 2009). It uses four failure modes for the damage
initiation:
3
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(
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Matrix Compression
(

�̂�22 < 0
)

∶

𝐹𝑚𝑐
(

�̂�22, �̂�12
)

=
(

�̂�22
2𝑆𝑇

)2
+

[

(

𝑌𝐶
2𝑆𝑇

)2
− 1

]

(

�̂�22
𝑌𝐶

)

+
(

�̂�12
𝑆𝐿

)2
= 1 (4)

In the above Eqs. (1)–(4), �̂�𝑖𝑗 (𝐼, 𝑗 = 1, 2) are effective stress ten-
or components while 𝑋𝑇 , 𝑋𝐶 , 𝑌𝑇 , 𝑌𝐶 denote longitudinal tensile
trength, longitudinal compressive strength, transverse tensile strength
nd transverse compressive strength, respectively. 𝑆𝐿, 𝑆𝑇 denote in-

plane and transverse shear strengths respectively. 𝐹𝑓𝑡 , 𝐹𝑓𝑐 , 𝐹𝑚𝑡 and 𝐹𝑚𝑐
denote the initiation of the damage in the given failure modes. The
damaged elasticity matrix (Lapczyk and Hurtado, 2007) is obtained
using the model proposed by Matzenmiller et al. (1995).

𝐶𝑑 = 1
�̃�

⎡

⎢

⎢

⎢

⎣

(1 −𝐷𝑓 )𝐸1 (1 −𝐷𝑓 )(1 −𝐷𝑚)𝜈21𝐸1 0
(1 −𝐷𝑓 )(1 −𝐷𝑚)𝜈12𝐸2 (1 −𝐷𝑚)𝐸2 0

0 0 �̃�(1 −𝐷𝑠)𝐺12

⎤

⎥

⎥

⎥

⎦

(5)

where �̃� = 1 − (1 −𝐷𝑓 )(1 −𝐷𝑚)𝜈21𝜈21, and the parameters 𝐷𝑓 , 𝐷𝑚 and
𝐷𝑠 are fibre damage, matrix damage and shear damage variables re-
spectively. 𝐸1, 𝐸2 and 𝐺12 are material moduli and 𝜈12, 𝜈21 are Poisson’s
ratios of undamaged material. 𝐷𝑠 = 1−(1−𝐷𝑓𝑡 )(1−𝐷𝑓𝑐 )(1−𝐷𝑚𝑡 )(1−𝐷𝑚𝑐 ),
while the parameters 𝐷𝑓𝑡 , 𝐷𝑓𝑐 , 𝐷𝑚𝑡 and 𝐷𝑚𝑐 are used to denote fibre
nd matrix damage variables in tension and compression (‘t’ denotes
ension and ‘c’ denotes compression) as explained in Lapczyk and
urtado (2007).

Once a damage initiation has occurred, further material degradation
ollows the damage evolution law. A damage evolution law based on
racture energy is used with the assumption of linear material softening.
ach failure mode 𝐾 is governed by the following damage variable

𝐾 =
𝛿𝑓𝐾,𝑒𝑞

(

𝛿𝐾,𝑒𝑞 − 𝛿0𝐾,𝑒𝑞
)

𝛿𝐾,𝑒𝑞
(

𝛿𝑓𝐾,𝑒𝑞 − 𝛿
0
𝐾,𝑒𝑞

) 𝐾 ∈ {𝑓𝑡, 𝑓𝑐 , 𝑚𝑡, 𝑚𝑐} (6)

here, 𝛿0𝐾,𝑒𝑞 denotes equivalent displacement at which the damage
nset happens, and 𝛿𝑓𝐾,𝑒𝑞 denotes equivalent displacement at which full
egradation of material happens.

.2. Modelling of fibre and matrix damage: FE model 2 (HF model)

In this model, failure criteria suggested by Linde et al. (2004) is
ncorporated in the UMAT user subroutine to predict the fibre and the
atrix damage. The failure modes used for the initiation of damage are

s follows

𝑓
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√

√

√

√
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=

√

√

√

√

√

𝜖𝑡22
𝜖𝑐22

(

𝜖22
)2 +

⎡

⎢

⎢

⎣

𝜖𝑡22 −

(

𝜖𝑡22
)2

𝜖𝑐22

⎤

⎥

⎥
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𝜖22 +

(

𝜖𝑡22
𝜖𝑠12

)2
(

𝜖12
)2 > 𝜖𝑡22

(8)

where 𝜖𝑡11, 𝜖
𝑐
11, 𝜖

𝑡
22, 𝜖

𝑐
22 are the failure strain in the fibre direction in

tension, failure strain in the fibre direction in compression, failure
strain perpendicular to the fibre direction in tension and failure strain
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Table 1
Material properties of AS4/PEEK composite (Maa and Cheng, 2002; Chen et al., 2012).
Parameter Value

Longitudinal elastic modulus (𝐸1) 139 000 MPa
Transverse elastic modulus (𝐸2) 10 200 MPa
In-plane shear modulus (𝐺12) 5900 MPa
Transverse shear modulus (𝐺23) 3700 MPa
In-plane Poisson’s ratio (𝜈12) 0.32
Transverse Poisson’s ratio (𝜈23) 0.45
Longitudinal tensile strength (𝑋𝑇 ) 2023 MPa
Longitudinal compressive strength (𝑋𝐶 ) 1234 MPa
Transverse tensile strength (𝑌𝑇 ) 92.7 MPa
Transverse compressive strength (𝑌𝐶 ) 176 MPa
In-plane shear strength (𝑆12) 82.6 MPa
Matrix fracture energy in tension (𝐺𝑚𝑡) 5.6 N/mm

Fibre fracture energy in tension (𝐺𝑓𝑡) 128 N/mm
Table 2
Material properties of Adhesive layers (Chen et al., 2014).
𝐾0
𝑛𝑛 = 𝐾0

𝑠𝑠 = 𝐾0
𝑡𝑡 𝜎0𝑛 𝜏0𝑠 𝜏0𝑡 𝐺𝐼𝑐 𝐺𝐼𝐼𝑐 𝐺𝐼𝐼𝐼𝑐

6 3
10 N/mm 80 MPa 100 MPa 100 MPa 0.969 N/mm 1.719 N/mm 2.01 N/mm
Table 3
Comparison of failure loads and percentage error between the present FEA models and the experimental data for AS4/PEEK
([0◦∕45◦∕90◦∕−45◦])2𝑆 composite layup.
Failure load (kN) Error (%)

Present (Abaqus
built-in)

Present (UMAT) Maa and Cheng
(Experimental)

Present (Abaqus
built-in)

Present (UMAT)
19.323 16.149 15.31 26.2116 5.48

w
i

f
2

Table 4
Comparison of computational costs of the present finite element analysis (FEA) models
for AS4/PEEK ([0◦∕45◦∕90◦∕−45◦])2𝑆 composite layup till the final failure.

FEA model CPU time (s) Wallclock time (s)

Abaqus built-in 2220 332
UMAT 6453 1036

perpendicular to the fibre direction in compression respectively. Failure
occurs when 𝑓𝑓 and 𝑓𝑚 exceeds 𝜖𝑡11 and 𝜖𝑡22 respectively.

After the damage initiation, further material degradation follows the
amage evolution law

𝑓 = 1 −
𝜖𝑡11
𝑓𝑓

𝑒
(

−𝐶11𝜖𝑡11
(

𝑓𝑓−𝜖𝑡11
)

𝐿𝑐∕𝐺𝑓
)

(9)

𝑚 = 1 −
𝜖𝑡22
𝑓𝑚

𝑒
(

−𝐶22𝜖𝑡22
(

𝑓𝑚−𝜖𝑡22
)

𝐿𝑐∕𝐺𝑚
)

(10)

The damaged elasticity matrix (Linde et al., 2004) is obtained as
follows

𝐶𝑑 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(1 −𝐷𝑓 )𝐶11 (1 −𝐷𝑓 )(1 −𝐷𝑚)𝐶12 (1 −𝐷𝑓 )𝐶13 0 0 0

(1 −𝐷𝑚)𝐶22 (1 −𝐷𝑚)𝐶23 0 0 0

𝐶33 0 0 0

(1 −𝐷𝑓 )(1 −𝐷𝑚)𝐶44 0 0

𝑠𝑦𝑚𝑚 𝐶55 0

𝐶66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(11)

2.3. Delamination modelling

In both the FE models (FE model 1 and FE model 2), cohesive zone
method which has been implemented in Abaqus FEA (Smith, 2009),
is used to model the delamination damage. Before the initiation of
delamination, traction–separation relation is assumed as linearly elastic
to describe the interaction between adjacent surfaces.

⎧

⎪

⎨

⎪

𝜎𝑛
𝜏𝑠
𝜏

⎫

⎪

⎬

⎪

=
⎡

⎢

⎢

⎣

𝐾0
𝑛𝑛 0 0
0 𝐾0

𝑠𝑠 0
0 0 𝐾0

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

𝛿𝑛
𝛿𝑠
𝛿

⎫

⎪

⎬

⎪

(12)
⎩

𝑡
⎭

𝑡𝑡
⎩

𝑡
⎭

4

where, 𝜎𝑛, 𝜏𝑠 and 𝜏𝑡 are nominal traction vectors. 𝐾0
𝑛𝑛, 𝐾0

𝑠𝑠 and 𝐾0
𝑡𝑡

are penalty stiffness coefficients and 𝛿𝑛, 𝛿𝑠 and 𝛿𝑡 are relative displace-
ments (Sharma et al., 2017). The quadratic stress criterion is used for
the onset of delamination (Chen et al., 2014).
(

⟨𝜎𝑛⟩
𝜎0𝑛

)2

+

(

𝜏𝑛
𝜏0𝑛

)2

+

(

𝜏𝑡
𝜏0𝑡

)2

= 1 (13)

here ⟨.⟩ represents Macaulay bracket and 𝜎0𝑛 , 𝜏0𝑠 and 𝜏0𝑡 are the
nterface strengths in mode I, mode II and mode III, respectively.

Once the damage initiation criterion of the delamination is satis-
ied, delamination propagates as per power-law criterion (Chen et al.,
014).
(

𝐺𝐼
𝐺𝐼𝑐

)�̃�
+
(

𝐺𝐼𝐼
𝐺𝐼𝐼𝑐

)�̃�
+
(

𝐺𝐼𝐼𝐼
𝐺𝐼𝐼𝐼𝑐

)�̃�
= 1 (14)

where, 𝐺𝐼𝑐 , 𝐺𝐼𝐼𝑐 and 𝐺𝐼𝐼𝐼𝑐 are interfacial critical fracture energies in
modes I, II and III respectively. In this work, �̃� = 1 is taken in Eq. (14).
Such selection suits well for the prediction of complete delamination
in AS4/PEEK thermoplastic composites (Chen et al., 2014; Camanho
et al., 2003). AS4/PEEK composite lamina and adhesive layer material
properties are given in Table 1 and Table 2 respectively.

2.4. Remarks on multi-fidelity

A mesh convergence study of the finite element models (Abaqus
built-in and UMAT model) is presented in Fig. 3(A–B). Note that the
behaviour of the entire constitutive curve along with the failure point
is of critical significance here. Based on the converged results, it is
noted from Fig. 3(C) that UMAT FE model predictions are closer to
experimental data than Abaqus built-in FE model, making the UMAT
model more accurate than Abaqus built-in model. The percentage
error between the two models is given in Table 3. The UMAT model
becomes slow for the applied displacements close to failure. This is
due to convergence rate at higher applied loads. The comparison of
computational costs of UMAT model and Abaqus-builtin model are
presented in Table 4. Such results justify our consideration of the UMAT
FE model as the high-fidelity model (with more computational cost)
and the Abaqus built-in model as a low-fidelity model (with lesser
computational cost) for subsequent multi-fidelity machine learning
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Fig. 2. Contour plots of fibre and matrix damage (A) Fibre damage in 0◦ ply, (B) Matrix damage in 0◦ ply, (C–E) Matrix damages in 45◦, 90◦ and −45◦ plies respectively.

Fig. 3. Load–displacement curves of the notched composite laminate. (A) Mesh sensitivity of load displacement curves for Abaqus built-in model. (B) Mesh sensitivity of
load displacement curves for UMAT model. (C) Comparison of predicted load–displacement curves of LF and HF finite element analysis (FEA) simulations with experimental data
of Maa and Cheng (2002). The LF FEA simulation is based on Hashin failure criteria (Abaqus built-in) and the HF FEA simulation is based on P Linde’s failure criteria (UMAT).
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model formation. In this context, it may further be noted that the
approach of coupling low and high-fidelity damage models through
machine learning is generic in nature. Other low and high-fidelity
models can be optimally integrated following a similar framework
based on the problem under consideration.

3. Gaussian process algorithm based multi-fidelity stochastic anal-
ysis

This section presents a multi-fidelity surrogate approach based on
Gaussian process, coupled with the finite element simulation presented
in the preceding section, to quantify the uncertainty in progressive
damage of composite laminates. Assuming that 𝑣1 (𝑥) and 𝑣2 (𝑥) are
two independently chosen Gaussian processes having mean as zero and
covariance functions, 𝑐1 and 𝑐2 respectively. It can be written in the
mathematical form as,

𝑣1 (𝑥) ∼ 𝐺𝑃
(

0, 𝑐1
(

𝑥, 𝑥′;𝛺1
))

, 𝑣2 (𝑥) ∼ 𝐺𝑃
(

0, 𝑐2
(

𝑥, 𝑥′;𝛺2
))

(15)

The covariance functions 𝑐1 and 𝑐2 are squared exponential functions
of the form

𝑐
(

𝑥, 𝑥′;𝛺
)

= 𝛼2𝑒𝑥𝑝

⎛

⎜

⎜

⎜

⎝

−1
2

𝑃
∑

𝑝=1

(

𝑥𝑝 − 𝑥′𝑝
)2

𝛽2𝑝

⎞

⎟

⎟

⎟

⎠

(16)

here 𝛺 = (𝛼, 𝛽) are the hyper-parameters.
We model the low-fidelity function by 𝑓𝑙(𝑥) = 𝑣1(𝑥) and high-fidelity

unction by 𝑓ℎ(𝑥) = 𝜌𝑣1(𝑥) + 𝑣2(𝑥). This will result in the following
expression (Raissi and Karniadakis, 2016),
[

𝑓𝑙(𝑥)
𝑓ℎ(𝑥)

]

∼ 𝐺𝑃
(

0,
[

𝑐𝑙𝑙
(

𝑥, 𝑥′;𝛺1
)

𝑐𝑙ℎ
(

𝑥, 𝑥′;𝛺1, 𝜌
)

𝑐ℎ𝑙
(

𝑥, 𝑥′;𝛺1, 𝜌
)

𝑐ℎℎ
(

𝑥, 𝑥′;𝛺1, 𝛺2, 𝜌
)

])

, (17)

where

𝑐𝑙𝑙
(

𝑥, 𝑥′;𝛺1
)

= 𝑐1
(

𝑥, 𝑥′;𝛺1
)

,

𝑐ℎ𝑙
(

𝑥, 𝑥′;𝛺1, 𝜌
)

= 𝑐𝑙ℎ
(

𝑥, 𝑥′;𝛺1, 𝜌
)

= 𝜌𝑐1
(

𝑥, 𝑥′;𝛺1
)

,

𝑐ℎℎ
(

𝑥, 𝑥′;𝛺1, 𝛺2, 𝜌
)

= 𝜌2𝑐1
(

𝑥, 𝑥′;𝛺1
)

+ 𝑐2
(

𝑥, 𝑥′;𝛺1
)

3.1. Training

Given the training data {xl, yl} and {xh, yh}, we assume that

𝐲l = 𝑓𝑙(𝐱l) + 𝜖𝑙 , 𝜖𝑙 ∼ 
(

𝟎, 𝜎2𝑙 𝐈
)

,

and

𝐲h = 𝑓ℎ(𝐱h) + 𝜖ℎ, 𝜖ℎ ∼ 
(

𝟎, 𝜎2ℎ𝐈
)

Consequently, we obtain

𝐲 ∼  (𝟎,𝐂) , (18)

where

𝐲 =
[

𝐲𝑙
𝐲ℎ

]

and

𝐂 =
[

𝑐𝑙𝑙(𝐱l, 𝐱l;𝛺1) + 𝜎2𝑙 𝐈 𝑐𝑙ℎ(𝐱l, 𝐱h;𝛺1, 𝜌)
𝑐ℎ𝑙(𝐱h, 𝐱l;𝛺1) 𝑐ℎℎ(𝐱h, 𝐱h;𝛺1, 𝛺2, 𝜌) + 𝜎2ℎ𝐈

]

The hyper-parameters 𝛺1, 𝛺2, 𝜌 and the noise variance parameters
𝜎2𝑙 , 𝜎

2
𝑙 are trained by minimization of the negative log marginal like-

lihood (Raissi et al., 2017), which can be written as

(𝛺1, 𝛺2, 𝜌) =
1
2
𝑙𝑜𝑔 ∣ 𝐂 ∣ +𝑁

2
𝑙𝑜𝑔(2𝜋) + 1

2
𝐲𝑇𝐂−1𝐲 (19)

.2. Prediction

After training the model, the prediction is done at a new test point
∗ by writing the joint distribution

𝑓ℎ(𝑥∗)
]

∼ 
(

0,
[

𝑐ℎℎ
(

𝑥∗, 𝑥∗;𝛺1, 𝛺2, 𝜌
)

𝐪𝑇
])

, (20)
𝐲 𝐪 𝐂

6

here
𝑇 =

[

𝑐ℎ𝑙(𝑥∗, 𝐱𝑙;𝛺1, 𝜌) 𝑐ℎℎ(𝑥∗, 𝐱ℎ;𝛺1, 𝛺2, 𝜌)
]

hen conditional distribution can be used to make the predictions

ℎ(𝑥∗)|𝐲 ∼ 
(

𝐪𝑇𝐂−1𝐲, 𝑐ℎℎ(𝑥∗, 𝑥∗) − 𝐪𝑇𝐂−1𝐪
)

(21)

.3. Stochastic analysis of composite laminates

The stochasticity in elastic properties (𝐸1, 𝐸2, 𝐺12, 𝐺23, 𝜈12, 𝜈23), fail-
re properties (𝑋𝑇 , 𝑌𝑇 , 𝑆12, 𝐺𝑚𝑡, 𝐺𝑓𝑡), ply orientations (𝜃1, 𝜃2, 𝜃3) and
pplied displacement (𝑢1) is considered to study the effect of source-
ncertainty in the responses of composite laminates. Considering the
ractical implementation of the fibre orientations, 0◦, 45◦ and 90◦ plies
only unique fibre orientation angles) are considered as three variables
or defining uncertainty in all 16 plies of

([

0∕45∕90∕−45
])

2𝑆 laminated
omposite layup. Only magnitude of 45◦ is taken as a variable for
efining the uncertainty in 45◦ and −45◦ plies. Variation in the material
roperties and displacement is taken as ±10% while variation in the
ly orientations is taken as ±10◦ with respect to nominal values (as per
ommon industry standards). The following cases are considered for
erforming Monte Carlo simulations based on multi-fidelity surrogates,
eeping the nominal applied displacement at 0.3 mm:
1) Only varying elastic properties (𝐸1, 𝐸2, 𝐺12, 𝐺23, 𝜈12, 𝜈23) which can
e written as:
𝐼{𝐸1(𝜔), 𝐸2(𝜔), 𝐺12(𝜔), 𝐺23(𝜔), 𝜈12(𝜔), 𝜈23(𝜔)}

=

⎧

⎪

⎨

⎪

⎩

𝜓1 (𝐸1(1) …𝐸1(𝑙)
)

, 𝜓2 (𝐸2(1) …𝐸2(𝑙)
)

, 𝜓3 (𝐺12(1) …𝐺12(𝑙)
)

,

𝜓4 (𝐺23(1) …𝐺23(𝑙)
)

,

𝜓5 (𝜈12(1) … 𝜈12(𝑙)
)

, 𝜓6 (𝜈23(1) … 𝜈23(𝑙)
)

⎫

⎪

⎬

⎪

⎭

(2) Only varying failure properties (𝑋𝑇 , 𝑌𝑇 , 𝑆12, 𝐺𝑚𝑡, 𝐺𝑓𝑡) which can
be written as:

𝑔𝐼𝐼{𝑋𝑇 (𝜔), 𝑌𝑇 (𝜔), 𝑆12(𝜔), 𝐺𝑚𝑡(𝜔), 𝐺𝑓𝑡(𝜔)}

=

⎧

⎪

⎨

⎪

⎩

𝜓1 (𝑋𝑇 (1) …𝑋𝑇 (𝑙)
)

, 𝜓2 (𝑌𝑇 (1) … 𝑌𝑇 (𝑙)
)

, 𝜓3 (𝑆12(1) …𝑆12(𝑙)
)

,

𝜓4 (𝐺𝑚𝑡(1) …𝐺𝑚𝑡(𝑙)
)

, 𝜓5 (𝐺𝑓𝑡(1) …𝐺𝑓𝑡(𝑙)
)

⎫

⎪

⎬

⎪

⎭

(3) Only varying geometric properties (𝜃1, 𝜃2, 𝜃3) which can be written
as:

𝑔𝐼𝐼𝐼{𝜃1(𝜔), 𝜃2(𝜔), 𝜃3(𝜔)}

=
{

𝜓1 (𝜃1(1) … 𝜃1(𝑙)
)

, 𝜓2 (𝜃2(1) … 𝜃2(𝑙)
)

, 𝜓3 (𝜃3(1) … 𝜃3(𝑙)
)

}

(4) Compound effect of varying all properties (𝐸1, 𝐸2, 𝐺12, 𝐺23, 𝜈12, 𝜈23,
𝑋𝑇 , 𝑌𝑇 , 𝑆12, 𝐺𝑚𝑡, 𝐺𝑓𝑡, 𝜃1, 𝜃2, 𝜃3) which can be written as:

𝑔𝐼𝑉 {𝐸1(𝜔), 𝐸2(𝜔), 𝐺12(𝜔), 𝐺23(𝜔), 𝜈12(𝜔), 𝜈23(𝜔), 𝑋𝑇 (𝜔), 𝑌𝑇 (𝜔), 𝑆12(𝜔),

𝐺𝑚𝑡(𝜔), 𝐺𝑓𝑡(𝜔), 𝜃1(𝜔), 𝜃2(𝜔), 𝜃3(𝜔)}

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜓1 (𝐸1(1) …𝐸1(𝑙)
)

, 𝜓2 (𝐸2(1) …𝐸2(𝑙)
)

, 𝜓3 (𝐺12(1) …𝐺12(𝑙)
)

,

𝜓4 (𝐺23(1) …𝐺23(𝑙)
)

,

𝜓5 (𝜈12(1) … 𝜈12(𝑙)
)

, 𝜓6 (𝜈23(1) … 𝜈23(𝑙)
)

, 𝜓7 (𝑋𝑇 (1) …𝑋𝑇 (𝑙)
)

,

𝜓8 (𝑌𝑇 (1) … 𝑌𝑇 (𝑙)
)

,

𝜓9 (𝐺𝑚𝑡(1) …𝐺𝑚𝑡(𝑙)
)

, 𝜓10 (𝐺𝑓𝑡(1) …𝐺𝑓𝑡(𝑙)
)

, 𝜓11 (𝑆12(1) …𝑆12(𝑙)
)

,

𝜓12 (𝜃1(1) … 𝜃1(𝑙)
)

,

𝜓13 (𝜃2(1) … 𝜃2(𝑙)
)

, 𝜓14 (𝜃3(1) … 𝜃3(𝑙)
)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

Operator 𝜓 generates the set of input parameters for performing Monte
Carlo simulations. 𝐸1(𝑖), 𝐸2(𝑖), 𝐺12(𝑖), 𝐺23(𝑖), 𝜈12(𝑖), 𝜈23(𝑖), 𝑋𝑇 (𝑖), 𝑌𝑇 (𝑖),
𝑆12(𝑖), 𝐺𝑚𝑡(𝑖), 𝐺𝑓𝑡(𝑖) and 𝜃1(𝑖), 𝜃2(𝑖), 𝜃3(𝑖) are material properties and ply
orientations respectively, for 𝑖th sample. Symbol 𝑙 denotes the total
number of samples in Monte Carlo simulations. We have used 𝜔 to
represent the stochastic character of the respective parameters.
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Fig. 4. Flow chart of the proposed multi-fidelity surrogate modelling approach for uncertainty quantification.
Fig. 5. Reaction force vs. displacement plots. (A) Reaction force vs. displacement plot using one-dimensional MF surrogate model comparing MF predictions (for 20 LF and 10
HF training samples) with LF and HF FEA simulation data. (B) Reaction force vs. displacement plot using one-dimensional MF surrogate model comparing MF predictions (for 20
LF and 15 HF training samples) with LF and HF FEA simulation data.
a

4. Variance-based global sensitivity analysis

Global sensitivity analysis classifies the relative importance of un-
certain input parameters based on the variance of the uncertain out-
put (Trinh et al., 2020; Sinha and Mukhopadhyay, 2022; Bhowmik
et al., 2022). First-order sensitivity indices represent the fractional
contributions of uncertain inputs in the variance of the output while
total sensitivity indices represent the sum of the main effects of un-
certain parameters and all interactions in which those parameters
are involved. The method proposed by Saltelli and Andrea (Saltelli,
7

2002) is adopted here for the computation of the sensitivity indices.
The algorithm involved in the sensitivity analysis is discussed in the
following paragraph.

Given that 𝑁 is the number of evaluations, we obtain two (𝑁, 𝑘)
matrices called 𝐴 and 𝐵 using the Latin hypercube sampling method for
the 𝑘 dimensional model. We define a matrix 𝐶𝑖, which has all columns
of the matrix 𝐵 except 𝑖th column that has been taken from matrix 𝐴.
Taking input from 𝐴, 𝐵 and 𝐶𝑖 matrices, we get three outputs (𝑁, 1),
s given in Saltelli et al. (2008).

�̃� = 𝑓 (𝐴), �̃� = 𝑓 (𝐵), �̃� = 𝑓 (𝐶 ) (22)
𝐴 𝐵 𝐶𝑖 𝑖
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𝑆

T
c

Table 5
Percentage relative L2 norm error for one-dimensional HF and MF surrogate models. Here % error comparison is presented
between the HF surrogate model trained with 30 and 50 HF data and the MF surrogate model trained with three sets of LF
and HF data.
Surrogate model Training samples % relative L2 norm error

𝑅𝐹 𝐷𝑚 𝐷𝑓 𝑆11 𝑆𝐷𝐸𝐺

High-fidelity 50 HF 0.003687 1.2092 1.7208 2.9377 0.3917
30 HF 0.01130 1.17078 3.9238 2.9846 0.836123

Multi-fidelity
20 LF + 30 HF 0.009487 0.5567 1.3732 0.8242 0.5100
20 LF + 20 HF 0.10 0.6284 3.2200 0.8333 4.1652

20 LF + 10 HF 0.5286 2.6856 10.4172 3.5434 19.6162

w
m
c
a
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s

Table 6
Comparison of computational time for training the HF and MF surrogate models for
different sample sizes for one-dimensional case. The proportions of low and high fidelity
training data and the corresponding accuracy of these samples are shown in Table 5.
The computation time shown here is the time taken by finite element model for
simulating the low and high-fidelity progressive damage in addition to surrogate model
formation (computation time for training the multi-fidelity surrogates is comparatively
negligible).

Sample size HF computation time (Min) MF computation time (Min)

30 180 150
40 230 215
50 300 270

The first-order indices are calculated as (Saltelli et al., 2008)

𝑆𝑖 =
𝑉 𝑎𝑟

[

𝐸
(

𝑌 |𝑋𝑖
)]

𝑉 𝑎𝑟 (𝑌 )
=
�̃�𝐴.�̃�𝐶𝑖 − 𝑓

2

�̃�𝐴.�̃�𝐴 − 𝑓 2
=

(1∕𝑁)
∑𝑁
𝑗=1 �̃�

(𝑗)
𝐴 �̃�

(𝑗)
𝐶𝑖

− 𝑓 2

(1∕𝑁)
∑𝑁
𝑗=1

(

�̃�(𝑗)𝐴
)2

− 𝑓 2
(23)

where

𝑓 2 =

(

1
𝑁

𝑁
∑

𝑗=1
�̃�(𝑗)𝐴

)2

he total effects are calculated as

𝑇
𝑖 = 1−

𝑉 𝑎𝑟
[

𝐸
(

𝑌 |𝐗∼𝑖
)]

𝑉 𝑎𝑟 (𝑌 )
= 1−

�̃�𝐴.�̃�𝐶𝑖 − 𝑓
2

�̃�𝐴.�̃�𝐴 − 𝑓 2
= 1−

(1∕𝑁)
∑𝑁
𝑗=1 �̃�

(𝑗)
𝐴 �̃�

(𝑗)
𝐶𝑖

− 𝑓 2

(1∕𝑁)
∑𝑁
𝑗=1

(

�̃�(𝑗)𝐴
)2

− 𝑓 2
(24)

he notation 𝐗∼𝑖 denotes the set of all variables except 𝐗𝑖. The total
omputational cost in this approach is 𝑁(𝑘+2) runs instead of 𝑁2 runs

of the brute-force method giving a computational advantage.

5. Uncertainty quantification: Results and discussion

In this section, we use the multi-fidelity surrogate-based approach
(as described in Section 3) for the uncertainty quantification and global
sensitivity analysis concerning reaction force, matrix damage, fibre
damage, stress and delamination in AS4/PEEK

([

0∕45∕90∕−45
])

2𝑆 lam-
inated composite under uniaxial tension in the longitudinal direction
(refer to Fig. 1). The composite laminate has the following dimensions:
length = 100 mm, width = 20 mm, and a circular hole at the centre
with a diameter of 5 mm. The fibre damage contour plot in 0◦ ply and
the matrix damage contour plots in 0◦, 45◦, 90◦ and −45◦ plies are
presented in Fig. 2 for the deterministic FEA model. It can be noted in
this context that the current study involves a two-fold validation. Val-
idation and convergence study of the finite element model has already
been presented in Fig. 3, while the prediction accuracy and validation
of the multi-fidelity surrogate models are discussed in this section.
After having adequate confidence based on such two-fold validation,
we have carried out uncertainty quantification and sensitivity analysis
by exploiting the efficient surrogates of original simulation models. The
flow chart of the proposed multi-fidelity surrogate modelling approach
for uncertainty quantification is presented in Fig. 4. Note that a conver-
gence study concerning the training sample size for surrogate formation
is involved here. The multi-fidelity surrogate model is rebuilt with
higher training sample size if the prediction error is not acceptable.
 t

8

Once the surrogate prediction is accurate enough and acceptable for
further analyses, the ‘rebuild’ step is not used any further.

Two problems (with one-dimensional and fifteen-dimensional in-
put parameter space) have been taken for the demonstration of MF
surrogate predictions. In the one-dimensional problem, we have taken
stochastic variation in applied displacements while for the fifteen-
dimensional problem, variation is taken in the material properties,
displacements and ply orientations. Training samples are generated
from an optimal Sobol sequence algorithm (Mukhopadhyay, 2018).
Abaqus/standard 2016 version with the following computer specifi-
cation is used to run FEA simulations: Intel(R) Xeon(R) W-1290 CPU
at 3.20 GHz processor speed and 64 GB RAM, wherein 8 cores are
utilized in parallel computing for surrogate model construction. In the
context of number of input parameters for surrogate model forma-
tion, the curse of dimensionality is an important issue. One of the
ways to look at the curse of dimensionality is that when we keep
on increasing the dimensions or features of the problem to improve
the model accuracy, the model prediction accuracy might drop after
a threshold dimension value. Another way to look at it is when we
increase the dimension of the problem, the data required to train the
surrogate model increases exponentially. The notion of low, medium or
high dimensional space is rather relative, wherein the complexity and
nonlinearity involved in the model are also closely interlinked with the
curse of dimensionality. Note that considering the complexity of the
model of composite laminates and their progressive failure analysis,
we referred to the fifteen-dimensional space as high-dimensional. In
the current progressive damage model, we have taken almost all major
input parameters which affect the global response of the composite
laminate and the progressive damage behaviour. In this context, dimen-
sionality reduction methods can also be explored to alleviate the curse
of dimensionality in future studies.

One-dimensional multi-fidelity predictions are shown in Figs. 5 and
6. Multi-fidelity predictions as compared to LF and HF FEA data are
shown in Fig. 7 for the fifteen-dimensional case. A data set of 25 points
for the one-dimensional case and 100 points for the fifteen-dimensional
case are used outside the training set for checking the prediction ability.
We have further evaluated the following relative L2 norm error (RL2N
Error) which is used for cross-benchmark comparison.

RL2N Error =

√

∑𝑁
𝑖=1 |𝑦

(𝑖)
𝑝𝑟𝑒𝑑 − 𝑦

(𝑖)
𝐹𝐸𝐴|

2

√

∑𝑁
𝑖=1 |𝑦

(𝑖)
𝐹𝐸𝐴|

2
(25)

here 𝑁 denotes number of test samples, 𝑦(𝑖)𝑝𝑟𝑒𝑑 is a vector of surrogate
odel predictions and 𝑦(𝑖)𝐹𝐸𝐴 is a vector of FEA predictions. The results

oncerning RL2N Error are shown in Tables 5 and 7 for the one
nd fifteen dimensional cases, respectively. In this context, it can be
oted that multi-fidelity surrogate modelling is a data fusion approach.
owever, this also gives the opportunity to minimize the computational
xpense by choosing the necessary combination of low and high-fidelity
raining datasets depending on the required level of accuracy (refer to
ables 5 and 7). For this reason, we have brought in the notion of ‘‘op-
imal’’ computational expenses in the context of data fusion. In future
tudies, it is also possible to involve different optimization algorithms
o decide the proportion of high and low fidelity datasets for achieving
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Table 7
Percentage relative L2 norm error for HF and MF surrogate models (fifteen dimensional case). Here % error comparison is
presented between the HF surrogate model trained with 400, 600 and 1000 HF data and the MF surrogate model trained
with three sets of LF and HF data.
Surrogate model Training samples % relative L2 norm error

𝑅𝐹 𝐷𝑚 𝐷𝑓 𝑆11 𝑆𝐷𝐸𝐺

High-fidelity 1000 HF 0.3871 2.7657 9.0157 2.390 17.458
600 HF 0.2208 2.924 11.77 2.4519 20.5197
400 HF 0.2212 3.6230 14.0563 2.7154 27.9870

Multi-fidelity
400 LF + 600 HF 0.2218 3.015 11.811 2.6005 19.109
200 LF + 400 HF 0.2228 3.1477 11.88 2.6826 19.89
200 LF + 200 HF 0.3361 4.997 20.9157 3.37 22.75

200 LF + 100 HF 0.6142 6.7217 24.872 6.89 31.31

8
r
m
a
a

p

Table 8
Comparison of computational time for training the HF and MF surrogate models for
different sample sizes for fifteen-dimensional case. The proportions of low and high
fidelity training data and the corresponding accuracy of these samples are shown in
Table 7. The computation time shown here is the time taken by finite element model for
simulating the low and high-fidelity progressive damage in addition to surrogate model
formation (computation time for training the multi-fidelity surrogates is comparatively
negligible).

Sample size HF computation time (Min) MF computation time (Min)

300 1800 1550
400 2600 2400
600 3900 3700
1000 6500 6100

Table 9
Percentage coefficient of Variation (% COV) in responses for ±10% stochasticity in
material properties and ±10◦ stochasticity in ply orientations.

Response Input parameters % COV

Matrix damage Elastic properties 0.9%
Failure properties 0.8%
Ply orientation 1.22%
All properties 1.85%

Fibre damage
Elastic properties 7.28%
Failure properties 5.23%
Ply orientation 9.94%
All properties 16.98%

Reaction force Elastic properties 7.29%
Failure properties 0.17%
Ply orientation 8.64%
All properties 11.24%

a target level of accuracy. While forming the surrogate models, we
have checked 𝑅2 values (correlation coefficient) for low-fidelity, high-
fidelity and multi-fidelity surrogate predictions considering the one
and fifteen dimensional cases, wherein a good correlation is noticed
(values ∼ 1).

The validity and advantage of MF surrogate models are presented
by comparing MF predictions against LF and HF FEA data. Fig. 5
shows the deterministic prediction capability of the one-dimensional
ML surrogates to capture the entire constitutive curve. We show that
the prediction capability of MF surrogates is far superior to LF surro-
gates and comparable to that of HF surrogates without the addition of
significant computational costs for training. For the one-dimensional
model, the computational cost of training the HF surrogate (refer to
Table 6) is 300 min which uses 50 HF samples for training whereas the
computational cost of training the MF surrogate is 270 min which uses
20 LF and 30 HF samples for training. Table 8 shows the computational
costs of fifteen-dimensional model. It is noted that the computational
cost of training the HF surrogate is 3900 min which uses 600 HF
samples for training whereas the computational cost of training the MF
surrogate is 3700 min which uses 200 LF and 400 HF samples for train-
ing, making it more computationally efficient than HF surrogate. While
an increase in HF training data improves the prediction capability of MF
surrogates, the trade-off needs to be addressed based on engineering
 t

9

judgment of required accuracy and computation intensiveness. For
the one-dimensional case, we further present scatter plots for reac-
tion force, matrix damage, fibre damage, stress 𝑆11 and delamination
corresponding to different values of applied displacement within the
analysis domain (refer to Fig. 6). For each sample, these outputs are
the maximum values in the model. The results demonstrate that the
prediction capability of MF surrogates is significantly better than LF
finite element simulations (and any surrogate formed based on LF
training data). The results of RL2N Error for the one-dimensional case,
as presented in Table 5 further corroborate the prediction accuracy of
MF surrogates.

For the fifteen-dimensional case, we present scatter plots for re-
action force, matrix damage, fibre damage, stress 𝑆11 and delami-
nation corresponding to different random combinations of the input
parameters within the analysis domain (refer to Fig. 7). The results
demonstrate that the prediction capability of MF surrogates is signif-
icantly better than LF finite element simulations (and any surrogate
formed based on LF training data). Percentage relative L2 norm error
comparing MF surrogate predictions with HF surrogate predictions for
the fifteen-dimensional case are shown in Table 7. From the results, we
observe that the accuracy of the MF surrogate model can be increased
by increasing HF training samples. However, the trade-off needs to be
addressed based on engineering judgment of required accuracy and
computation intensiveness. In this context, it can be noted that the one-
dimensional problem considered in the preceding paragraph is a subset
of the fifteen-dimensional problem. Thus the MF surrogates considering
the fifteen-dimensional input parameter space can also be utilized to
predict the complete constitutive curve presented in Fig. 5 by setting
the value of all the other input parameters except displacement to their
respective deterministic values. Similarly, the variation of deterministic
reaction force (or other response quantities of interest) with respect to
any other input parameter can be investigated without carrying out any
additional finite element simulations, as presented in Fig. 8.

Having established the superiority of MF surrogates in deterministic
predictions, we now investigate the complete probabilistic descriptions
and statistical characteristics for reaction force, matrix damage, fibre
damage, stress 𝑆11 and delamination based on Monte Carlo simulation
considering 10 000 realizations. Table 9 presents a statistical study
which shows the effect of variation in material and geometrical prop-
erties with different combinations on the responses of the laminate.
Four groups of the input parameters (refer to Section 3.3) are made
for this purpose (elastic properties, failure properties, ply orientations,
All properties). From this study, it is noticed that variation in ply
orientations affects the matrix damage, fibre damage and reaction force
most. A ±10◦ variation in ply orientations only gives 1.22%, 9.94% and
.64% coefficient of variation in the matrix damage, fibre damage and
eaction force respectively. A combined stochastic variation of ±10% in
aterial properties and ±10◦ in ply orientations lead to 1.85%, 16.98%

nd 11.24% coefficient of variation in the matrix damage, fibre damage
nd reaction force respectively.

From Fig. 9, it can be observed that probability density function
lots (PDF) obtained using MF surrogate models match closely with
he HF model. In HF surrogate models, 600 HF training samples are
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Fig. 6. One-dimensional multi-fidelity scatter plots. Scatter plots of the reaction force, the matrix damage, the fibre damage, the stress and the delamination obtained by MF
surrogate models are presented with respect to LF and HF FEA simulation data. Three sets of LF and HF samples are used for training varying the applied displacement.
used for reaction force and 1000 training samples have been used
for matrix damage, fibre damage, stress and delamination predictions
while in the case of all multi-fidelity surrogate models, 200 LF and
400 HF training samples have been used, saving a fair amount of
computational cost. After establishing the prediction ability of MF
surrogates for deterministic and probabilistic computations, we present
different individual and compound effects of stochasticity considering
10
the uncertainty cases described in Section 3.3. Fig. 10 presents the com-
plete probabilistic descriptions for reaction force, matrix damage, fibre
damage, stress 𝑆11 and delamination considering the individual effect
of stochasticity in the elastic material properties, the failure properties,
and ply orientation angles separately, along with the compound effect
of stochasticity of all these input parameters (Refer to Section 3.3).
The figure shows that the stochastic response bound and probabilistic
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Fig. 7. Fifteen-dimensional multi-fidelity scatter plots. Scatter plots of the reaction force, the matrix damage, the fibre damage, the stress and the delamination obtained by
MF surrogate models are presented with respect to LF and HF FEA simulation data. Three sets of LF and HF samples are used for training taking ±10% stochasticity in material
properties and ±10◦ stochasticity in ply orientations.
p
r

istribution depend strongly on the nature of source-uncertainty under
onsideration. The compound effect of all the uncertain input parame-
ers leads to the highest stochastic response bounds for all the output
uantities of interest.

We have exploited the prediction capability of MF surrogates further
o investigate the relative sensitivity of different input parameters.
11
A variance-based global sensitivity analysis (GSA) is presented here
following Section 4, wherein the GSA indices are found to converge
at 10 000 samples. The results of GSA are presented in Fig. 11 con-
sidering different output quantities of interest. It is observed that 0◦

ly orientation, longitudinal elastic modulus (𝐸1), in-plane Poisson’s
atio (𝜈 ) and 90◦ ply orientation are the most sensitive (in descending
12



R.S. Chahar and T. Mukhopadhyay Engineering Applications of Artificial Intelligence 125 (2023) 106647
Fig. 8. Deterministic variation of reaction force with respect of different influencing parameters individually. (A–O) Influence of deterministic variation in input parameters
on the reaction force. MF surrogates are used for the predictions. Here 𝐸1, 𝐺12, 𝐺23, 𝐸2, 𝜈12, 𝜈23, 𝑋𝑇 , 𝑌𝑇 , 𝑆12, 𝐺𝑚𝑡, 𝐺𝑓𝑡, 𝜃1, 𝜃2, 𝜃3, 𝑢1 represents longitudinal elastic modulus,
in-plane shear modulus, transverse shear modulus, transverse elastic modulus, in-plane Poisson’s ratio, transverse Poisson’s ratio, longitudinal tensile strength, transverse tensile
strength, in-plane shear strength, matrix fracture energy in tension, fibre fracture energy in tension, 0◦ ply, 45◦ ply, 90◦ ply and applied displacement respectively.
order of sensitivity) while transverse Poisson’s ratio (𝜈23), transverse
tensile strength (𝑌𝑇 ), matrix fracture energy in tension (𝐺𝑚𝑡) are least
sensitive input parameters to reaction force. The 0◦ ply orientation,
applied displacement (𝑢1), longitudinal elastic modulus (𝐸1), in-plane
Poisson’s ratio (𝜈12), ply orientation 𝜃2, in-plane shear modulus (𝐺12)
and ply orientation 𝜃3 are the most sensitive (in descending order of
sensitivity) parameters to matrix damage. For fibre damage, 90◦ ply
orientation, longitudinal elastic modulus (𝐸1), in-plane Poisson’s ratio
(𝜈12), longitudinal tensile strength (𝑋𝑇 ), applied displacement (𝑢1),
45◦ ply orientation and 0◦ ply orientation are the most sensitive (in
12
descending order of sensitivity) parameters. Applied displacement (𝑢1)
and longitudinal tensile strength (𝑋𝑇 ) are the only most sensitive input
parameters to stress in the direction of applied load. Here parameter 𝑋𝑇
is sensitive to the stress (which is the maximum stress in the laminate)
is due to the fact that the maximum stress is dependent on the matrix
and the fibre damage in the laminate and the matrix damage propagates
in the laminate at much lower applied displacement than the nominal
value of applied displacement 0.3 mm which is kept constant in the
GSA. In case of delamination, 90◦ ply orientation, 0◦ ply orientation,
in-plane Poisson’s ratio (𝜈12), longitudinal elastic modulus (𝐸1), applied
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Fig. 9. Probability density function (pdf) plots based on LF, HF and MF surrogate models. Comparison among the pdfs of reaction force, matrix damage, fibre damage, stress
and delamination obtained based on LF, HF and MF surrogate models (considering the compound effect of stochasticity). LF and MF surrogate models use 600 training samples
for the prediction of the reaction force whereas 1000 training samples are used for the prediction of the fibre damage, the matrix damage, the stress and the delamination. 200
low-fidelity and 400 high-fidelity samples are used for the training of all MF surrogate models.
displacement (𝑢1) and longitudinal tensile strength (𝑋𝑇 ) are most sen-
sitive (in descending order of sensitivity) parameters. In-plane shear
modulus does not affect the responses much except the matrix damage.
It is also noted that ply orientations play a major role in the variation of
13
reaction force, matrix damage, fibre damage and delamination but not
in the variation of stress. It may be noted that the first order and total
sensitivity indices follow a similar trend (though the numerical values
vary marginally) as presented in Fig. 11. An interesting correlation can
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Fig. 10. Probability density function (pdf) plots representing individual and compound stochastic effects based on MF surrogate models. Comparison among the pdfs of
reaction force, matrix damage, fibre damage, stress and the delamination obtained from multi-fidelity (MF) surrogate models is presented taking individual stochastic effects in
elastic properties, failure properties, ply orientation and compound stochastic variation of all properties. 200 low-fidelity and 400 high-fidelity samples are used for the training
of all MF surrogate models keeping the nominal applied displacement at 0.3 mm.

14
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Fig. 11. Global sensitivity analysis. Variance-based global sensitivity analysis is carried out to understand the relative importance of the uncertain input parameters on reaction
force, matrix damage, fibre damage, stress and delamination. (A, C, E, G, I) First-order sensitivity indices. (B, D, F, H, J) Total sensitivity indices.

15
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be established between the sensitivity of different input parameters and
the response bounds obtained considering different individual effects of
stochasticity, as presented in Fig. 10.

6. Conclusions and perspective

An efficient stochastic progressive damage analysis framework is
presented to quantify the uncertainty in notched composite laminates
under uniaxial tension. A Gaussian process-based multi-fidelity (MF)
machine learning algorithm is coupled with finite element simula-
tions to train surrogate models for uncertainty quantification, wherein
we combine low-fidelity (LF) finite element analysis data obtained
using Matzenmiller damage model with Hasin failure criteria and
high-fidelity (HF) finite element analysis data obtained using three-
dimensional continuum mechanics based damage model with P Linde’s
failure criteria. The HF data used in MF surrogate model construction
is much lesser as compared to that of HF surrogate models, resulting
in a fair amount of reduction in computational cost while ensuring a
sufficient level of accuracy. The hybrid multi-fidelity machine learning
models can be regarded here as the most efficient surrogate of the
occurrence of progressive damage in composite laminates that unify
high and low fidelity damage models through optimal data fusion.

The proposed multi-fidelity surrogate modelling approach for com-
posites essentially addresses the concern of having a large high-fidelity
training dataset for accurate prediction by introducing a hybrid dataset
and optimal data fusion. Since laminated composites involve a large
number of input parameters and the finite element simulation model for
composites is exorbitantly expensive, the required number of training
datasets and the computational intensiveness for conventional sur-
rogate modelling becomes quite high. The multi-fidelity modelling
approach proves to be a panacea for uncertainty quantification of
laminated composites.

The inevitable source-uncertainty in material (such as elastic and
failure properties) and geometrical (such as ply orientation angle) prop-
erties is propagated from the input level to the global response level
through the efficient MF surrogates along with Monte Carlo simulations
for quantifying the stochastic reaction force, matrix damage, fibre
damage, stress and delamination. Complete probabilistic descriptions
corresponding to different individual and compound cases of stochas-
ticity are captured through the Monte Carlo simulations, wherein the
function evaluations are performed by exploiting the MF surrogates.
The new probabilistic insights obtained through extensive numerical
results strongly suggest that source-uncertainty of composites signif-
icantly influences the progressive damage evolution and global me-
chanical behaviour, leading to the realization of the importance of
adopting an inclusive analysis framework considering such inevitable
random variabilities. Further, computationally prohibitive global sen-
sitivity analysis is performed based on the MF surrogate models to
understand the relative significance of the uncertain input parameters
on the critical responses. It is found that the ply orientations play the
most important role in the variation of composite laminate damage,
followed by different material properties depending on the response
quantity of interest. Such sensitivity analysis can lead to significantly
improved efficiency by incorporating only the sensitive parameters in
the uncertainty modelling and selective quality control during design
and manufacturing.

The novelty and impact of this article are two-fold: (1) quantify-
ing the uncertainty associated with progressive failure of laminated
composites, leading to complete probabilistic descriptions, along with
sensitivity analysis, (2) developing the multi-fidelity ML based ap-
proach in conjunction with finite element simulations involving UMAT
subroutine for efficient progressive damage analysis through optimal
data fusion. Note that such multi-fidelity data fusion is attempted for
the first time in this article involving the high dimensional stochastic
parameter space of laminated composites for subsequent uncertainty

quantification. It is particularly crucial for intensive stochastic sim-

16
ulations like progressive failure analysis of composites that require
thousands of random realizations for the complete probabilistic char-
acterization and prospective optimal designs including the effect of
uncertain manufacturing effects. Thus the primary contribution of this
article lies in coupling multi-fidelity machine learning models with
optimal fusion of two different finite element based damage models of
variable fidelity and computational intensiveness (Matzenmiller dam-
age model with Hasin failure criteria and three-dimensional continuum
mechanics based damage model with P Linde’s failure criteria) for most
efficient stochastic analysis of the progressive damage in composite
laminates. This approach allows us to strike the desired balance in
maximizing the accuracy while minimizing the computational expense.
Other failure criteria and damage models can be integrated into this
framework further depending on the problem under consideration. In
general, the proposed multi-fidelity approach for uncertainty quan-
tification here can be extended to dynamic and stability analysis,
optimization and reliability analysis of laminated composites. In this
work, we have propagated the inherent randomness (aleatoric uncer-
tainty) in input parameters and quantified its effect on the progressive
damage of composite laminates. Such variations in material and geo-
metric attributes are normally quite significant due to manufacturing
inaccuracies and service-life degradation. This work does not include
epistemic uncertainty (lack of information in the system) in LF, HF
and surrogate models. However, epistemic uncertainty involved in
the Gaussian process models may be addressed in future works by
quantifying it separately and superimposing it subsequently with the
bounds of aleatoric uncertainty.
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