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Abstract 1

Active noise control (ANC) is broadly used to cancel the unwanted disturbance in different 2

fields because of its excellent performance in abating low-frequency noise. In practice,3

however, the limited driving capability of actuators restrict the maximum output power of ANC4

systems. Once the driving signal of the ANC system exceeds these limitations, the inherent 5

nonlinearity of the actuators will deteriorate the noise reduction and may result in the 6

divergence of the adaptive algorithm. Hence, the two-gradient direction filtered-x least mean 7

square (2GD-FXLMS) algorithm based on the optimal Kuhn-Tucker solution with the output 8

constraint is proposed in this paper. This algorithm has the advantage of minimizing system 9

overdriving, maintaining a specified power budget, and enhancing system stability. Compared 10

to existing output-constrained adaptive algorithms, this proposed algorithm has the same 11

computational complexity as the conventional FXLMS algorithm, while maintaining a stricter12

output constraint that minimizes the saturation distortion.13

Index Terms- Saturation distortion, constrained optimization, Kuhn-Tucker solution, nonlinear 14

active noise control, filtered-x least mean square algorithm, Hemstitching method.15

16

1. Introduction 17

Conventional unconstrained adaptive algorithms are widely used in active noise control (ANC)18

systems [1–7]. The steady-state output of these algorithms usually drives actuators (for 19

example, the combination of loudspeakers and amplifiers) to minimize the residual sound 20

pressure level in a specified area. The actuators, however, have limited output capacity, 21

reducing the effectiveness of conventional adaptive algorithms in handling large amplitude22

output signals [8]. In the case of output saturation, the mean square error (MSE) surface of the 23
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linear adaptive algorithms severely deforms as the degree of nonlinearity increases [9]. High 1

degree of nonlinearity leads to the divergence of the adaptive algorithm [10], resulting in 2

notable distortion [8]. Therefore, the saturation problem often limits the practical 3

implementation of ANC solutions for suppressing loud noises [11]. 4

In general, the nonlinear adaptive algorithm seems to be an effective solution to overcome the 5

nonlinearity incurred in an ANC system [12]. When the actuators are partially overdriven, a 6

typical nonlinear ANC algorithm either uses a truncated Volterra series [13,14] or a functional 7

link artificial neural network (FLANN) [15,16] to improve the noise reduction performance8

and convergence speed [12,17]. Some other algorithms, such as the fuzzy adaptive algorithm, 9

due to their self-tuning capability for the free parameters during the updating progress, also 10

shows promise to handle the distortion of sensors and actuators [18,19]. However, the huge 11

computational expense of the nonlinear ANC algorithms undermines their practicality. More 12

importantly, when the power of the optimum control signal is greater than the output threshold 13

of the actuator, neither the linear nor nonlinear ANC algorithms can provide sufficient power 14

to cancel the disturbance [8,9]. If the anti-noise signal incompletely cancels the disturbance, 15

the residual error accumulates in the weights of the control filter and may result in overflow16

[20]. Therefore, the nonlinear adaptive algorithm without any constraints may not be the17

desired solution for the saturation problem of ANC systems, in the case when actuators are 18

severely overdriven.  19

A noteworthy strategy is to constrain the output amplitude of the control filter, which limits the 20

maximum output level, prevents the actuators from being overdriven, and maintains a specified 21

power budget [21–23]. For example, a clipping algorithm reported in [20] merely truncates the 22

part of the output signal above the maximum output value at the expense of stability and 23

convergence speed. Output constraint algorithms can be broadly classified into two categories: 24

(1. cost function modification, which is exemplified by the leaky filtered-x least mean square 25
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(Leaky FXLMS) algorithm [24], and (2. search direction modification methods [20]. The leaky 1

FXLMS algorithm defines a new cost function by introducing a leakage or penalization factor 2

that confines the control effort and stabilizes the adaptation [10,25]. However, its noise 3

reduction occurs across all frequencies, resulting in a large, steady-state convergence error [26].4

Improved leaky-type FXLMS algorithms introduce constraints into the frequency-domain 5

implementation of the LMS algorithms, where only specific bins that violate constraints are 6

penalized without severely affecting other frequencies [26–28]. The steady-state performances7

of these leaky-type FXLMS algorithms are easily affected by the empirical choice of the 8

penalty coefficient [28]. Moreover, there is no guarantee that the output signal adheres to the 9

imposed constraints [10]. 10

Algorithms in [20,29,30] modify the search direction by using the gradient projection method11

[31,32], which concurrently rescales the output signal and control filter weights when the 12

output violates the constraint. Those algorithms can ensure the control filter converges to an 13

optimal solution under any specified power budget. Stability is achievable without pre-set 14

penalty coefficient but at the cost of incurring more division and multiplying operations than 15

the conventional FXLMS. Therefore, this paper proposes the two-gradient direction filtered-x 16

least mean square (2GD-FXLMS) algorithm based on the Hemstitching method [33], which 17

prevents the output saturation of the actuator while maintaining the same order of18

computational complexity as the conventional FXLMS algorithm [34]. 19

The paper is organized as follows. Section 2 presents an overview of the existing ANC20

algorithms with output constraint. In addition, an improved objective function with the optimal 21

solution is proposed, along with its minimum mean square error (MMSE) analysis. Section 3 22

proposes the 2GD-FXLMS algorithm to achieve the optimal solution based on the improved23

objective function, without increasing the computational complexity from the conventional 24

FXLMS algorithm. Section 4 analyzes its computational complexity in detail. Lastly,25
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simulation and testing results based on single-in/single-out (SISO) ANC are discussed in 1

Section 5.2

3

2. Output-constrained FXLMS4

The block diagram of an adaptive feedforward ANC system is shown in Fig. 1. The signal 𝑥(𝑛)5

is the reference signal directly retrieved from the primary source in this paper, and the residual 6

error signal 𝑒(𝑛) is the acoustic superposition in the air of the anti-noise 𝑦′(𝑛) and the7

disturbance 𝑑(𝑛). The control signal 𝑦(𝑛) is the output of the control filter 𝑊(𝑧). The transfer 8

function 𝑃(𝑧) represents the combined physical path from the primary source to the error 9

sensor. S(z) is the transfer function of the secondary path from the output of the control filter10

𝑊(𝑧) to the input of the error sensor, and it can be estimated by an adaptive filter 𝑆̂(𝑧) using 11

either off-line or online secondary path modeling methods [35]. 12

13

Fig. 1. Block diagram of the adaptive feedforward ANC system [4].14

The adaptive ANC algorithm aims to minimize the power of the residual error 𝑒(𝑛). In practice, 15

the adaptive algorithm must incorporate the output constraint so that the ANC system can 16

manage a power budget, suppress the saturation of the actuator, and maintain the system 17

stability. This is a constraint optimization problem. There are two common strategies to solve 18
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this constraint optimization problem: (1. through the cost function modification [36], and (2.1

changing the direction of the error gradient [29]. 2

3

2.1 Cost function modification 4

The first strategy is to modify the cost function of the mean square error, as exemplified by the5

leaky FXLMS algorithm [24,37],6

2( ) ( ) ( ) ( )TJ n e n n n= + w w , (1)7

where 𝛾 is the leakage factor (to mitigate the coefficient overflow problem,  𝛾 ∈ (0,0.1);8

otherwise to constraint the output power, 𝛾 > 0.1) [38]. The vector of the control filter is 9

expressed by 𝒘(𝑛) = [𝑤0(𝑛), 𝑤1(𝑛), … , 𝑤𝑀−1(𝑛)]𝑇, where T denotes the transpose function, 10

and 𝑀 is the length of the control filter. The coefficient updating equation can be obtained by 11

using the gradient descent method [39]12

( 1) (1 ) ( ) ( ) '( )n n e n n + = − +w w x , (2)13

where 𝜇 is the step size of adaptation, and 𝐱′(𝑛) = [𝑥′(𝑛), 𝑥′(𝑛 − 1), … , 𝑥′(𝑛 − 𝑀 + 1)]𝑇 is 14

the vector of the filtered reference signal, which is derived from the convolution of15

1

0

ˆ'( ) ( )
L

l

l

x n s x n l
−

=

= − , (3)16

where 𝑠̂𝑙 is the 𝑙th coefficient of the filter S(z), whose length is 𝐿. In Eqs. (1) and (2), the 17

leakage factor controls the “tightness” of the penalty for the cost function. If the selected 18

leakage factor is significant, the control output may not be sufficiently large for satisfactory19

noise reduction. In contrast, if the selected leakage is trivial, the control output may violate the 20

constraint and result in a saturation problem. Moreover, the optimal leakage factor depends on 21
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specific applications. Therefore, the leakage factor potentially causes instability to the ANC 1

system and requires unnecessary complexity for practical implementation. Other algorithms 2

based on penalty method even incurs higher computational complexity [23,25,27,28,40,41].3

2.2 Search direction modification 4

An alternate strategy is the direction modification method, which does not alter the cost 5

function. In this strategy, some algorithms search for the optimal solution along the constraints6

[20], while others search between the constraints and the feasible region [31], [33]. The typical 7

example based on this strategy is the rescaling algorithm, which is given by8

( 1) ( ) ( ) '( ),

( 1) [ ( 1), ( ), , ( 2)] ( 1).T

n n e n n

y n x n x n x n M n

+ = +

+ = + − + +

w w x

w
(4)9

If |𝑦(𝑛 + 1)| > 𝐶, then 10

( 1) ( 1)[ / | ( 1) |],

( 1) ( 1)[ / | ( 1) |],

n n C y n

y n y n C y n

+ = + +

+ = + +

w w
(5)11

where  |⋅| denotes the absolute value, and C is the maximum output magnitude of the amplifier 12

that can be obtained from its specification, circuit simulation or real measurement.13

The rescaling algorithm adopts a gradient projection method to rescale the weights of the 14

control filter and the output signal when the filter output violates the constraint. This step 15

ensures that the adaptive algorithm eventually converges to the optimal solution (Kuhn-Tucker16

solution) under the constraint [42]. In contrast to the conventional FXLMS algorithm, the 17

rescaling algorithm requires more multiplications and divisions, which increases with the18

length of the control filter and the control channels leading to a lower system sampling rate in19

the practical implementation of ANC.20

2.3 Proposed objective function and its optimal solution21
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To obtain the optimal solution of the output-constrained adaptive algorithm, we reconstruct an 1

optimization problem with inequality constraints given by2

2

2

1

0

2

min ( ) ( ) ( ) ( )

. . ( ) ( ) ( ) ,

L
T

l

l

T

J E d n s n l n l

s t g E n n 

−

=

 
= − − − 

  

  = 
  

w w x

w w x

(6)3

where 𝐸[∙] and |⋅|2 denote the expectation operation and absolute value, respectively. 𝑠𝑙 is the 4

lth coefficient of the filter S(z) whose length is 𝐿, and 𝐱(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), … , 𝑥(𝑛 − 𝑀 +5

1)]𝑇 is the reference signal vector. The cost function in Eq. (6) is the same as the conventional6

FXLMS algorithm, which aims to minimize the mean square error. In addition, the cost 7

function must be subjected to an inequality constraint, whose average output power of ANC 8

system must be less than the limit, 𝜌2 for all 𝜌 > 0.9

The optimal solution 𝐰𝑜 of Eq. (6) is derived in Appendix A as,10

1

' ' '( )o o xx x x dx −= +w R R P , (7)11

where 𝐑𝑥𝑥 and  𝐑𝑥′𝑥′ are autocorrelation matrix of the reference signal 𝑥(𝑛) and filtered 12

reference signal 𝑥′(𝑛), respectively; 𝐏𝑑𝑥′ is the cross-correlation vector 𝐸[𝑑(𝑛)𝐱′(𝑛)]. Note 13

that 𝜆𝑜 is the Lagrangian factor and 14

2

{ '( )[ ( ) '( )]}
0o o

o

E y n d n y n




−
=  , (8)15

where the optimal anti-noise  𝑦0
′ (𝑛) = ∑ 𝑠𝑙𝒘𝑇(𝑛 − 𝑙)𝒙(𝑛 − 𝑙)𝐿−1

𝑙=0 . Specifically, when  𝜆016

equals to 0, the optimal solution of the control filter reduces to17

1

0 ' ' '|
oo x x dx

−

= =w R P (9)18
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which is the optimal weight vector of the Wiener-Hopf equations [43]. The optimal solution 1

indicates that the anti-noise signal completely cancels the disturbance 𝑑(𝑛) within the output 2

constraint. Therefore, the solution of the constrained optimization in Eq. (6) would reduce to 3

the Wiener-Hopf solution, if the output power remains in the constraint.4

2.4 Minimal mean square error (MMSE) analysis5

The MSE function of an ANC system can be stated as 6

2

' ' ' '( ) ( ) T T T

dx dx x xJ E d n  = − − + w P w w P w R w (10)7

If 𝜆𝑜 > 0, the minimum mean square error (MMSE) is derived in Appendix B as8

1
2 2 2

min

0

( ) 2
L

o l

l

J E d n s 
−

=

 
 = − +  

 
 (11)9

In Eq. (11), when 𝜆𝑜 > 0 , a bigger threshold 𝜌2 can lead to a smaller MSE. If 𝜆𝑜 = 0 ,  10

substituting Eq. (9) into Eq. (10) yields 11

2

min '( ) ( ) T

o dx oJ E d n  = − w P w , (12)12

which is as the same as the MSE of the conventional FXLMS algorithm [44].13
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1

Fig. 2. Mean square error surface of the adaptive algorithm with output constraint when the 2

threshold is (a) less than the power of the disturbance, (b) equals to the power of the disturbance, 3

and (c) larger than the power of the disturbance. The case without constraint is shown in (d).4

5

From Eqs. (11) and (12), it is obvious that the threshold 𝜌2 relates to the MSE, which is shown 6

in Fig. 2. If 𝜌2 is smaller than the power of the noise disturbance 𝑑(𝑛), 𝐸[𝑑(𝑛)2], the MSE 7

cannot achieve the minimum solution of the algorithm without constraint as depicted in 8

Fig. 2(a). The MSE performance is improved as 𝜌2 increases. When 𝜌2 equals to 𝐸[𝑑(𝑛)2], 9

the MMSE is as the same as the algorithm without constraint and locates the minimum point 10

on the bound of the MSE surface, as shown in Fig. 2(b). If 𝜌2 surpasses the power of the 11

disturbance noise, the adaptive algorithm with constraint can gain the same noise reduction as 12

the conventional FXLMS algorithm, as shown in Fig. 2(c). However, this threshold is decided 13

by the driving capability of the secondary source, which is measured by experiments. Fig. 2(d) 14

illustrates the optimal solution of FXLMS algorithm without constraint.15
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1

3. Output-constrained two-gradient direction FXLMS (2GD-FXLMS) algorithm2

Although the optimal solution of the output-constrained control filter has been derived in3

Eq. (7), the real-time implementation incurs high computation load due to matrix inversion. 4

Hence, we proposed a time-iterative algorithm based on the hemstitching method [33]. The 5

algorithm searches for the optimal solution along the negative gradient direction of the cost 6

function or the output constraint, depending on the condition, which is described in this section.7

When the average output power of the control filter is within the constraint (𝐸[𝑦(𝑛)2] =8

𝐸[|𝒘𝑇(𝑛)𝒙(𝑛)|2] ≤ 𝜌2), the weight update is given by9

1 ( )
( 1) ( )

2 ( )

J
n n

J



+ = −



w
w w

w
. (13)10

In contrast, when the average output power exceeds the constraint ( 𝑔(𝒘) =11

𝐸[|𝒘𝑇(𝑛)𝒙(𝑛)|2] > 𝜌2), the weight update changes to12

1 ( )
( 1) ( )

2 ( )

g
n n

g



+ = −



w
w w

w
, (14)13

where ∇ and ‖⋅‖ denote the differentiation operator and the Euclidean distance, respectively.14

Since the statistics of the autocorrelation matrix of the reference and the filtered reference 15

signal cannot be directly obtained in practical applications, we approximate the gradient of the 16

cost function and the constraint by their instantaneous value, as17
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2

0

0

[ ( ) ( ) ( )]

( )
( )

2 ( ) ( )

2 ( ) '( ),

L
T

l

l

L

l

l

d n s n l n l

J
n

e n s n l

e n n

=

=

 − − −

 


            − −

            −





w x

w
w

x

x

(15)1

and2

[ ( ) ( ) ( ) ( )]
( )

( )

2 ( ) ( ).

T Tn n n n
g

n

y n n


 



           

w x x w
w

w

x

(16)3

respectively. By substituting Eqs. (15) and (16) into Eqs. (13) and (14), respectively, and by 4

replacing the normalized gradient and average power constraint with the instantaneous gradient5

and amplitude constraint, the update equation can now be expressed as 6

( 1) ( ) ( ) '( )n n e n n+ = +w w x , (17)7

when the output signal |y(n)| = |𝐰T(n)𝐱(n)| ≤ C, while8

( 1) ( ) ( ) ( )n n y n n+ = −w w x , (18)9

when the output signal |y(n)| = |𝐰T(n)𝐱(n)| > C. 𝐶 is the equivalent constraint of the output10

amplitude and can be measured by experiments or obtained from the technical specifications11

of the actuator and amplifier. If the output signal is a sine tone, 𝐶 equals to 
𝜌

√2 
. It is noteworthy 12

that, because we replaced the normalized step size 
𝜇

2‖𝑔(𝒘)‖
with a constant step size 𝜇 in 13

Eq. (18), the convergence speed and stability of the algorithm will be sensitive to the value of  14

𝜇 [45], which depends on the correlation statistics of the input data [46] and the constraint. If 15

the 𝜇 is too small, then Eq. (18) cannot promptly adjust the control filter back to the feasible 16

area after it violates the constraint, which will lead the distortion in the output signal; However, 17
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if 𝜇 is large, it will cause a bigger steady-state error in the algorithm. One potential solution is 1

to use two different step sizes in Eqs. (17) and (18), but this requires an in-depth theoretical 2

analysis and practical verifications, and is thus out of the research scope in this paper. 3

Henceforth, the same step size will be used for both Eqs. (17) and (18).   4

As indicated in Eqs. (17) and (18), the weight of the control filter varies along the same 5

direction as the FXLMS algorithm if the output signal is within its constraint. Once the output 6

signal violates the constraint, it switches the gradient direction of the constraint so that the 7

weight rebounds from the boundary, which reduces the output power. The weight update8

continues in this manner until it reaches the optimal solution. As the proposed algorithm 9

updates along two gradient directions, it is named the two-gradient direction FXLMS (2GD-10

FXLMS). Since the constraint in Eq. (6) restricts the average output power, there is no 11

guarantee that the instantaneous output power falls within the constraint, which results in 12

saturation distortion. To solve this problem, the output signal is clipped when its amplitude is13

above the constraint. Hence, if |y(n)| ≤ C the output signal is given by14

( ) ( ).outy n y n= (19)15

If |y(n)| > C , the output signal will become16

, ( ) 0
( ) ,

, ( ) 0
out

C y n
y n

C y n

   
= 

−    
(20)17

where 𝑦𝑜𝑢𝑡(𝑛) is the clipped output signal.18

19

4. An analysis on the computational complexity of the algorithm 20

Computational burden is a critical issue that should be taken into account when referring to the 21

practical implementation of an adaptive algorithm. For a real-time platform, such as the digital 22
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signal processor (DSP) [47], the microcontroller unit (MCU) [48,49], the field programmable 1

gate array (FPGA) [50] and so on, the burden is mainly brought on by multiplication/division, 2

addition/subtraction in the execution of the algorithm. Compared to the conventional FXLMS 3

algorithm, the 2GD-FXLMS algorithm has the same computational complexity (regarding the 4

multiplication and addition), as illustrated in 5

Table 1.6

Table 1. Comparison on the computational complexity of different algorithms7

Algorithm Multiplication Addition Division

FXLMS 2M+L+1 2M+L-2 0

Leaky FXLMS 3M+L+1 2M+L-2 0

Rescaling Algorithm 3M+L+2 2M+L-2 1

2GD-FXLMS 2M+L+1 2M+L-2 0

However, the 2GD-FXLMS also requires several additional switches and one threshold, as 8

shown in Fig. 3. When the output signal 𝑦(𝑛) exceeds the constraint, it will be clipped by the 9

threshold. Meanwhile, the threshold triggers the switches to select the “Y” branch so that the 10

weight update direction changes to reduce the output power until the output signal returns 11

within the constraint. In contrast, if the output signal is within the constraint, the switches 12

choose the “N” branch, which makes the algorithm search the optimal solution on the negative 13

gradient direction of FXLMS algorithm. 14
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1

Fig. 3. The detailed block diagram of the 2GD-FXLMS algorithm.2

To swap the two gradient directions of the 2GD-FXLMS algorithm in the processor, we can 3

use some conditional statements, such as “if…else”, as the pseudocode shows in Table 2. The4

conditional branch sentences usually costs few machine cycles, which can be ignored compared5

to the machine cycles used by addition, multiplication, and division operations [51]. When we 6

implement the 2GD-FXLMS on the digital circuit, such as VLSI and FPGA, the mechanism of 7

the switch in Fig. 3 can be realized by the multiplexer. The multiplexer is a basic component8

in the digital circuit and composes of few gates. Compared to the adder, multiplier, and divider, 9

the number of gates used in the multiplexer can also be ignored [52]. Therefore, the additional10

complexity for the control part of the 2GD-FXLMS algorithm is trivial compared to the 11

computational complexity of the conventional adaptive algorithm. 12

Table 2. Pseudocode of the proposed algorithm13

Two gradients FXLMS (2GD-FXLMS) algorithm

Input    : Reference signal ( )x n and error signal ( )e n

Output : Clipped output signal outy
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Step 1  : (( )) ) (Ty n nn = w x   

               ˆ'( () )Tx nn = s x   

Step 2 : If ( )y n C

                 ( 1) ( ) ( ) ( )n n e n n + = +w w x

             else
                 ( 1) ( ) ( ) ( )n n y n n+ = −w w x

Step 3 : If ( )y n C

                 outy C=

             else if ( )y n C −

                        outy C= −

                    else

                        ( )outy y n=

1

5. Simulation performance of the 2GD-FXLM algorithm2

5.1 Control of simulated tonal noise3

In the first simulation, we carried out a comparative study on the performance of FXLMS4

algorithm, leaky FXLMS algorithm, rescaling algorithm, and the proposed 2GD-FXLMS5

algorithm in a time-invariant system, through Figs. 4 to 7. The sampling frequency 𝑓𝑠 is set to 6

10 kHz, and the reference signal 𝑥(𝑛) is 2.15 sin(0.16𝜋𝑛). The primary and secondary path7

is chosen as 𝐩 = [0.3,0.3]𝑇 and 𝐬 = [1,0]𝑇 , respectively. The step size 𝜇 of the adaptive 8

algorithm is 0.05, and the output constraint 𝐶 is 0.75. 9

As illustrated in Fig. 4, the FXLMS algorithm (or the leaky FXLMS algorithm with leakage 10

factor 𝛾 = 0) failed to control the amplitude of the output signal, while the leaky FXLMS 11

algorithm with 𝛾 = 0.25 , rescaling algorithm, and 2GD-FXLMS algorithm successfully 12

confined the output signal within the output constraint.13
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1

Fig. 4. The output signal of (a) FXLMS algorithm, (b) leaky FXLMS algorithm, (c) rescaling 2

algorithm, and (d) 2GD-FXLMS algorithm. 3

In Fig. 5, the dashed red curve denotes the average power4

2
2

( ) 0.28125
2

( )T nE n
C  ==

  
w x , (21)5

which divides the solution surface into two parts: (1. The feasible region, where the average 6

output power of the control filter is less than the value 
𝐶2

2
, and contains the origin (0,0); and (2.7

the infeasible region, where the average output power of the control filter exceeds the value
𝐶2

√2
. 8

Although the FXLMS algorithm converges to the optimal solution, as illustrated in Fig. 5(a), 9

it is out of the feasible region, and hence, results in the average output power exceeding the 10

power limitation. In contrast, the final solutions of the other algorithms are close to this average 11

power constraint curve. Furthermore, the optimal solution with output constraint was derived 12

from Eqs. (7) and (8) as 13
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0.172

0.206
o

 
=  

 
w . (22)1

In Fig. 5, the final solutions of these algorithms are 𝒘𝐹𝑋𝐿𝑀𝑆 = [0.3,0.3]T , 𝒘𝑙𝑒𝑎𝑘𝑦 =2

[0.162,0.214]𝑇, 𝒘𝑟𝑒𝑠𝑐𝑎𝑙𝑖𝑛𝑔 = [0.183,0.243]𝑇, and 𝒘2𝐺𝐷𝐹𝑋𝐿𝑀𝑆 = [0.169,0.204]𝑇. Therefore, 3

the 2GD-FXLMS is the closest to the Kuhn-Tucker’s solution.4

5

Fig. 5. The weight convergence path of the (a) FXLMS algorithm, (b) leaky FXLMS, (c) 6

rescaling algorithm, and (d) 2GD-FXLMS algorithm against contours of the mean square error 7

𝐸[𝑒2(𝑛)], with the red curve denoting the constraint 𝐸[|𝐰𝑇(𝑛)𝐱(𝑛)|2] = 0.28125 .8

Since the leaky FXLMS, rescaling, and 2GD-FXLMS algorithms restricted the output signal9

in the presence of the constraint, it can be observed that the FXLMS algorithm has the smallest 10

residual error, as shown in Fig. 6 The noise reduction after convergence was 8.1 dB, 8.9 dB, 11

and 8.5 dB for leaky FXLMS, rescaling, and 2GD-FXLMS algorithms, respectively. The 12

rescaling algorithm has the better noise reduction at the expense of slightly exceeding the 13

average power limitation, as shown in Fig. 5(c). As one would expect, the FXLMS algorithm 14
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almost entirely canceled the noise at the expense of letting the output signal exceeding the 1

constraint by a large margin, as illustrated in Fig. 4(a).    2

3

Fig. 6. The residual error of the FXLMS algorithm, leaky FXLMS algorithm, rescaling 4

algorithm, and 2GD-FXLMS algorithm. 5

5.2 Control of simulated random noise6

7

The performance of the three algorithms under a time-varying system using random noise as 8

the reference signal is shown through Figs. 7 to 9. The mean value of the random noise used in 9

the simulations is 0, and its standard deviation is 0.9. In the simulation, the primary path is a 10

time-varying system with 𝐩 = [0.25,0.35]𝑇 for the first 1.5 seconds and then changes to 𝐩 =11

[0.5,0]𝑇 in the next 1.5 s, and 𝐩 = [0,0.5]𝑇for the last 1.5 s, totalling 4.5 s. The secondary path 12

remains unchanged with 𝒔 = [1,0]𝑇. The step size of the three algorithms is set to 𝜇 = 0.001, 13

and the leakage factor 𝛾 in the leaky FXLMS algorithm is set to 0.5.14
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In Fig.7 (a), it is noted that the leakage factor 𝛾 = 0.5 can limit the amplitude of the output 1

signal with the constraint of 𝐶 = 0.75 for the first primary path but fails for the second and 2

third primary paths. Therefore, the leaky FXLMS with a fixed leakage factor cannot fully 3

guarantee that the output signal can always satisfy the output constraint for a time-varying 4

system or for different primary paths. In contrast, the rescaling and 2GD-FXLMS algorithm 5

successfully restricted the output signal within the constraint during the whole adaptation 6

process, as shown in Fig. 7(b) and (c). These three algorithms successfully track the variation 7

of the primary path, as illustrated in Fig. 8. Fig. 8 (d) depicts the distribution ratio of two 8

gradient directions (GD1 and GD2) used in the 2GD-FXLMS algorithm during the adaptive 9

control process. Moreover, 2GD-FXLMS has a smaller residual error than both the rescaling 10

and leaky FXLMS algorithms, as shown in Fig. 9. Its average output power constraint performs 11

better with broadband noise.   12

13

Fig. 7. The control filter output variation of the (a) leaky FXLMS, (b) rescaling, and (c) 2GD-14

FXLMS algorithms with a constraint of 0.75, as indicated by the dashed line.15

16
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1

2

Fig. 8. The control filter weight variation of the (a) leaky FXLMS, (b) rescaling, and (c) 2GD-3

FXLMS algorithm, as a function of the number of iterations; and (d) the distribution ratio of 4

the two gradient directions in 2GD-FXLMS.5
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1

Fig. 9. The error signal variation of the (a) leaky FXLMS, (b) rescaling, and (c) 2GD-FXLMS 2

algorithms, as a function of the number of iterations.3

4

5.3 Tonal control in a single channel practical active control system5

In the final simulation, we considered an actual single channel feedforward ANC system. The 6

impulse responses of the primary path and secondary path are illustrated in Fig. 10 (a) and (b), 7

respectively. In this system, the TDA2003 audio amplifier was used, whose output amplitude 8

limit was 0.75 and gain was close to unity. Its input-output transfer function is approximated 9

by an error function [9]10

2( )

0.18

0

5
( )

2

x n

y n e d





−

=  , (23)211

2 For other error functions with different nonlinearities, the 2GD-FxLMS can still work well 

with a suitable constraint. 
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which is depicted in Fig. 10 (c). Due to lim
𝑥→±∞

𝑦(𝑛) = ±0.75 , this error function will truncate1

the signal whose amplitude is above 0.75. The sampling frequency 𝑓𝑠 is 10 kHz, and the 2

reference signal 𝑥(𝑛) is 0.32 sin(0.1𝜋𝑛). 3

4

Fig. 10. The impulse response of the (a) primary path, and (b) secondary path, of a real ANC 5

system, and (c) output value vs. the input value of the amplifier TDA2003.6

In the simulation, the FXLMS, rescaling, and the 2GD-FXLMS algorithms have been deployed 7

to cancel the noise disturbance. As the FXLMS algorithm did not restrict the output signal, the 8

amplitude of the output signal quickly exceeded the constraint, as shown in Fig. 11 (a). The 9

large output signal overdrives the amplifier, which causes the amplifier to distort the output 10

signal and hence, generates significant distortions and harmonics in the residual error, as shown 11

in Fig. 12 (b). In this case, the noise disturbance far exceeds the maximum signal of the 12

secondary source, which results in a high residual error that pushed the filter weights 13

increasingly beyond the limit. The harmonics of the residual error also increased and finally 14

exceeded the power of the disturbance noise, pushing the total harmonic distortion (THD) to15

−17.4 dB (13.5 %). Even though the FXLMS algorithm reduced the noise disturbance by 16
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23 dB, this came at the expense of increased harmonic distortions (e.g., 3rd harmonic distortion 1

increased to 83 dB). Note that the power of the disturbance is just 83 dB as shown in Fig. 122

(a).3

4

The leaky algorithm even with a large leaky factor 𝛾 = 2 failed to restrict the output signal 5

within the constraint. Although the leaky FXLMS algorithm achieved an attenuation of 12 dB, 6

as shown in Fig. 12 (c), its final output signal is slightly above the constraint, which resulted 7

in obvious distortion in the residual error with a THD of −18.6 dB (11.7%). 8

The rescaling algorithm successfully confines the output signal within the output constraints,9

as illustrated in Fig. 11 (c). Its spectrum of the residual error after convergence is shown in 10

Fig. 12(d). Despite the noise disturbance decreasing by 12 dB, some harmonics still exists in 11

the residual error with a THD of −34.4 dB (1.9%).12

Similar to the rescaling algorithm, the 2GD-FXLMS effectively restricts the output signal, as 13

shown in Fig. 11 (d). Although its noise reduction is just 12 dB, only a minor third harmonic 14

is observed in the residual error signal, as shown in Fig. 12 (e), and further exemplified by the 15

low THD of −55 dB (0.2%). Its distribution ratio of two gradient directions shown in Fig. 1216

(f) indicates that the algorithm spends 9.8 % of the time on restricting the output signal by 17

using the second gradient direction. Therefore, this simulation highlights the capabilities of the 18

2GD-FXLMS algorithm in constraining the output signal, as well as in prohibiting the 19

nonlinearity due to saturation in the ANC system.20
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1

Fig. 11. The output signal of the (a) FXLMS algorithm, (b) leaky FXLMS algorithm, (c) 2

rescaling algorithm, and (d) the 2GD-FXLMS algorithm, all as a function of the number of 3

iterations.4
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1

Fig. 12. The spectrum of the error signal for a real ANC system, (a) without control, (b) with 2

FXLMS algorithm, (c) with leaky FXLMS algorithm, (d) with the rescaling algorithm, and (e) 3

with the 2GD-FXLMS algorithm, all as a function of normalized frequency. The distribution 4

ratio of two gradient directions in 2GD-FXLMS algorithm is shown in (f).5

6

7
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6. Discussion and Conclusion1

This paper proposes a new adaptive algorithm with output constraint for practical active noise 2

control systems. The new algorithm, the two-gradient direction FXLMS (2GD-FXLMS) 3

algorithm, uses two gradient directions to update the weights of the control filter. When the 4

output signal violates the constraint, the adaptive algorithm switches the weight update5

direction to reduce the power of the output signal. 6

Compared to other output constraint algorithms, the 2GD-FXLMS algorithm has the same 7

order of computational complexity as the conventional FXLMS algorithm. In addition, it has a 8

stricter output constraint, which can restrict the instantaneous amplitude and average power of 9

the output signal at the same time. Therefore, it can be applied to mobile devices and portable 10

equipment, where the output power of actuator and computation power of the processor is 11

limited. 12

The proposed approach 1) prevents the actuator from being overdriven; 2) prohibits13

nonlinearity due to saturation; 3) improves the system stability and sound quality after the noise 14

reduction. Simulations conducted with measured transfer responses of a real setup15

demonstrated its effectiveness in confining the system output under a specific power constraint, 16

over other output constraint algorithms.17

However, the overall performance of the 2GD-FXLMS algorithm is also influenced by its two 18

steps. Hence, it would be more interesting and meaningful to carry out the further study on the 19

steps of the 2GD-FXLMS in detail. Furthermore, the advantage of the 2GD-FXLMS algorithm20

in computational complexity also shows its promising usage in the multichannel ANC 21

applications. 22

23
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7.1 Appendix A: Proof of optimal solution existence1

To solve the objective Eq. (6), we first construct a slack variable 𝜃2,2

2 2 ( )g = − w . (A1)3

Next, we define a Lagrangian function based on Eq. (6) and slack variable as defined in 4

Eq. (A1) as5

2 2( , , ) ( ) [ ( ) ],L J g    = + + −w w w (A2)6

where 𝜆 (𝜆 ∈ ℝ) is the Lagrangian factor. By using the Lagrangian necessary conditions [53], 7

Eq. (A2) is differentiated with respect to 𝐰(𝑛), 𝜆 and 𝜃, respectively, and equated to 0.8

( , , ) ( ) ( )
0;

L J g 


  
= + =

  

w w w

w w w
(A3)9

2 2( , , )
( ) 0;

L
g

 






= + − =



w
w (A4)10

( , , )
2 0.

L  





= =



w
(A5)11

Next, the gradient of the cost function is given by12

2

2

' ' '

( )
| ( ) ( ) ( ) ( ) |

( )

[ ( ) 2 ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )]

2 2 ( ),

T

T

o

T T T

o

dx x x

J
E d n n n n

n

E d n d n n n
n

n n n n n

n

 
 = −  


            = −



              +

            = − +

w
w X s

w w

w X
w

w X s s X w

P w

s

R

(A6)13

where the vector 𝐏𝑑𝑥′ is  𝐸[𝑑(𝑛)𝐗(𝑛)𝐬], and the vector 𝐑𝑥′𝑥′ is 𝐸[𝐗(𝑛)𝐬𝐬𝑇𝐗𝑇(𝑛)]. The input 14

signal matrix, of order 𝑀 × 𝐿 , is stated as 𝐗(𝑛) = [𝐱(𝑛), 𝐱(𝑛 − 1), … , 𝐱(𝑛 − 𝐿 + 1)]. The 15
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coefficient vector is 𝒔 = [𝑠0, 𝑠1, … , 𝑠𝐿−1]𝑇, where 𝑠𝑙 is the 𝑙th coefficient of the secondary path 1

𝑆(𝑧). The gradient of the output constraint can be written as2

( )
( ) ( ) ( ) ( )

( )

2 ( ) ( ) ( )

2 ( ).

T T

T

xx

g
E n n n n

n

E n n n

n

 
 =   

            =  

           =

w
w x x w

w w

x x w

R w

(A7)3

By substituting Eqs. (A6) and (A7) into Eqs. (A3), (A4) and (A5), the final Lagrangian factor 4

is obtained:5

' ' '

2
0,

T T

o dx o x x o
o or



−
=   

w P w R w
(A8)6

where 𝐰𝑜 is the final optimal solution of the objective function in Eq. (6). If 𝜆𝑜 ≠ 0, Eq. (A8)7

can be rewritten as8

2

2

2

2

{ ( ) ( ) ( ) ( ) ( ) ( ) ( ) }

{ ' ( )[ ( ) ' ( )

[ ( ) ( )] [

]

)
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o o

E d n n n

E y n d n E y n
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






−
=

−
     =

 
 

    
−

=

w X s w X s s X w

, (A9)9

where 𝑦𝑜
′(𝑛) = 𝐰𝑜

𝑇𝑿(𝑛)𝐬(𝑛). As the final anti-noise 𝑦𝑜
′(𝑛) has the same phase with 𝑑(𝑛)10

(residual error 𝑒(𝑛) = 𝑑(𝑛) − 𝑦′(𝑛)), and that the amplitude of 𝑑(𝑛) is greater than 𝑦𝑜
′(𝑛), the11

expectation 𝐸[𝑦𝑜
′(𝑛)𝑑(𝑛)] − 𝐸[𝑦𝑜

′(𝑛)2] will become greater than 0. Hence, the range of 12

Lagrangian factor should be:13

0.o  (A10)14

Rearranging Eqs. (A3), (A4), (A5), and (A10) yields15
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2
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(A11)1

Equation (A11) satisfies the Kuhn-Tucker stationary conditions, which is the necessary 2

condition for Eq. (6) to have an optimal solution [42]. Because the reference signal x(n) 3

inherently incorporates measurement noise, the Hessian matrixes of 𝐽(𝐰) and 𝑔(𝐰) exist and 4

are positive definite for every 𝑤(𝑛) ∈ ℝ , and hence they are strictly convex on 𝒘(𝑛) . 5

Therefore, Eq. (6) has only one optimal solution. The optimal solution can be derived from6

Eq. (A11) as:7

( )
1

' ' '.o o xx x x dx
−

= +w R R P (A12)8

9

7.2 Appendix B: Minimum mean square error (MMSE) of the adaptive algorithm with 10

output constraint11

Since the error signal 𝑒(𝑛) of and active control system is given by 12

1

0

( ) ( ) ( ) ( )
L

T

l

l

e n d n s n l n l
−

=

= − − − w x . (B1)13

The mean square error can be expressed as14

2
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(B2)15

Also, if 𝜆𝑜 ≠ 0, the third term of Eq. (A11) can be rewritten as 16
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When the 𝐰(𝑛) = 𝐰𝑜, the second term in Eq. (B2) can be expanded to2

' ' '

T T T

o dx o o xx o o x x o= +w P w R w w R w , (B4)3

and the third term in Eq. (B2) can be derived as4
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Substituting Eqs. (B3), (B4), and (B5) into Eq. (B2), the minimal mean square error should be 6
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From Eq. (A10), we can figure out that 𝜆𝑜 has a non-negative value. If  𝜆𝑜 equals to 0, Eq. (B6)8

will become9

1
2 2 2
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( )
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l

J E d n s 
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