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Abstract

This thesis presents new machine learning techniques for producing high energy
astronomy survey catalogues. A novel source detector is developed for application to
images from the INTEGRAL satellite. This source detector utilises convolutional
neural networks (CNNs) to confidently identify genuine astrophysical sources whilst
rejecting instrumental artefacts. This CNN-based source detector is substantially faster
than previous methods, enabling the search for sources on shorter timescales than
older techniques used in the production of previous INTEGRAL catalogues. The new
capabilities afforded by the CNN source detector resulted in a 5% increase in sources
found from the same dataset used to produce the previous INTEGRAL catalogue.

A Bayesian source combination technique is also presented that rapidly and reliably
combines excess detections into a list of distinct sources. This method is superior to
previous approaches because it requires no human intervention, and thus is less prone
to human bias. It also is insensitive to the order in which excesses are presented to the
algorithm, thereby providing consistent source catalogues regardless of how new
detections are included.

Finally, a burst detection tool built with long short-term memory (LSTM) networks is
presented. This burst detector reliably detects outbursts in simulated data sets (where
the ground truth is known) with the same accuracy as previous tools but operating at
substantially faster speeds. The burst detector demonstrates potential for applying
reliable burst detection to massive data sets like those expected to be produced by the
next generation of high energy surveys.

Overall, this thesis presents a powerful set of tools that could transform the way high
energy astronomy surveys operate. Whilst this thesis demonstrates the advantages of
using these tools for catalogue production, they have potential applications in
real-time survey operations such as followup triggers after real-time outburst
detection. Tools like those presented here will be vital for high energy astrophysics in
the era of big data.

http://www.southampton.ac.uk
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Chapter 1

Introduction

High energy astrophysics is a rich and rapidly evolving sub-field of astrophysics that
focuses on astrophysical phenomena involving particles with exceptionally high
energy that produce photons in the X-ray and gamma-ray region of the
electromagnetic spectrum. The expansive volume of data gathered by modern high
energy astrophysics instruments has presented an urgent need for the simultaneous
development of computational methods that can keep pace with the imminent torrent
of new data. This thesis presents work on advanced computational techniques,
particularly utilising machine learning (ML) applied to data gathered by the
INTEGRAL satellite (see Figure 1.1).

FIGURE 1.1: The INTEGRAL spacecraft... in space!



2 Chapter 1. Introduction

1.1 High Energy Astrophysics

Thanks to the current generation of space telescopes with survey capabilities, the sky
in the hard X-ray/soft gamma-ray band (approximately 10keV-1MeV energy1) has
shown itself to be both well-populated and highly variable. The sources in the hard
X-ray sky display a huge dynamic range, and are thus detectable on many different
timescales. While the brightest sources can be detected in a single observation, the
faintest sources may require 1000s of images to be co-added.

A variety of interesting astrophysical sources demonstrate variability in this band, and
INTEGRAL has played an important role in observing these. Accreting compact
objects (neutron stars, black holes. or white dwarfs) form a substantial component of
known variable X-ray sources. Low mass X-ray binaries (LMXBs) and high-mass
X-ray binaries (HMXBs) have a central neutron star or black hole which accretes
material from a donor star, and these systemsare distinguished by the mass of their
companion star. Accreting white dwarfs comprise a variety of transient binary
systems, including cataclysmic variable (CV) systems, as well as classical and
recurrent novae systems. These accreting binary systems comprise Galactic X-ray
sources, but a variety of extragalactic sources also exhibit transient X-ray emission.
This includes supernovae, the explosive death of massive stars; active galactic nuclei,
accreting supermassive black holes at the centre of distant galaxies; gamma-ray bursts,
the violent merger of binary neutron stars; and gravitational wave binaries which emit
X-rays and gamam-rays in the coalescence of neutron star - black hole binaries. These
systems provide a broad range of interesting sources that have been the focus of
INTEGRAL observations.

LMXBs are known to have rare “superburst” events due to long and energetic
thermonuclear shell flashes on neutron stars, and INTEGRAL observations have
helped constrain the possible fuel and ignition condition for these flashes. HMXBs
show a wide variety of variability on a broad range of timescales, and regular
monitoring with facilities like INTEGRAL contribute to observations of behaviours
such as giant flares from pulsars and cyclotron line emission. The new class of
supergiant fast X-ray transients (SFXTs) was confidently established by INTEGRAL
observations, which continue to lead towards a better understanding of whether these
arise from a magnetised stellar wind with fractal structure from OB-supergiant stars.
Highly absorbed persistent HMXBs have also been examined in greater detail thanks
to INTEGRAL observations. INTEGRAL data is also ideally suited to help identify
keV counterparts for very high energy TeV events detected by gamma ray satellites or
atmospheric Cherenkov telescopes. In addition to these Galactic X-ray transients
targeted by Galactic Plane observations, these data also serendipitously sample the

1High energy astrophysics also encompasses the soft X-ray energy range covering approximately 1eV-
10keV
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pseudo-isotropic populations such as CVs and extragalactic sources like AGNs (see
Chapter 2 for a detailed discussion of astrophysical sources).

Surveys in the hard X-ray/soft gamma-ray band are normally carried out using coded
aperture telescopes that provide a good sensitivity across a wide field of view
(typically > 100 deg2), and as such allow frequent returns to the same sky region,
producing rich datasets with information in both spatial and temporal dimensions.
However, the analysis of data from coded aperture telescopes is not trivial, as it is an
indirect imaging method and thus separation of sources from background noise or
artefacts becomes exceptionally challenging. In addition to these challenges, current
techniques for source detection are expensive in human and computational time
which can limit how small an observational timescale we can feasibly search on.

Catalogues generated from astronomical surveys facilitate crucial research efforts such
as population studies and the opportunity to identify new (especially transient)
sources or more examples of rare sources. The techniques employed to generate
high-energy astrophysics catalogues are no longer adequate as they do not scale well
to the ever increasing datasets. For example, ‘Catalog of 1000 orbits’ (cat1000) (Bird et
al., 2016) is an all-sky, soft gamma-ray source catalogue which uses data from
INTEGRAL’s first 1000 orbits. cat1000 took the INTEGRAL/IBIS survey team 2.5
years to produce and as INTEGRAL has now exceeded 2500 orbits, and the data from
other such surveys is ever increasing. As surveys, like cat1000, are not simple pipeline
processing tasks that can be easily scaled up, the ’cost’ and lack of scalability comes in
when human decision and intervention are needed. There is a clear need for
automated techniques that can scale with the data when it exceeds the capacity to be
processed manually. Deploying ML methods may help to understand the basis for
decisions and interventions as well as make the problem tractable with less bias and
inconsistency for larger datasets.

1.2 Machine Learning

With the ever-increasing volume of data generated by modern astronomical facilities,
computational tools for handling and intelligently evaluating that data are vital for the
successful realisation of the scientific potential of these facilities. Machine learning
promises to be a transformative tool in that endeavour as it can capture complex
physical relationships within datasets without requiring explicit parameterisation of
those relationships.

Machine learning is an artificial intelligence that learns from examples or data. It
involves using algorithms and statistical models to analyse and identify patterns in
data and then using those patterns to make predictions or decisions about new,
unseen data.
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Machine learning can tackle a wide range of problems in various fields, including:

• Image and speech recognition: Machine learning algorithms can classify and
recognise images (LeCun et al., 2015), videos, and speech (Hannun et al., 2014).
For example, facial recognition systems (Taigman et al., 2014), voice assistants
(Hinton et al., 2012), and self-driving cars (Bojarski et al., 2016) use machine
learning to identify and interpret images and speech.

• Natural language processing: Machine learning algorithms can be used to
understand and process human language (see, e.g., Vaswani et al., 2017), which
includes tasks such as sentiment analysis (Socher et al., 2013), language
translation (Sutskever et al., 2014), and text summarisation.

• Fraud detection: Machine learning algorithms can detect fraudulent activity,
such as credit card fraud (Varmedja et al., 2019), insurance fraud (Aslam et al.,
2022), and cyber attacks (Aljabri et al., 2021). By analysing large volumes of data,
machine learning algorithms can identify patterns and anomalies that indicate
fraudulent behaviour (Elliott et al., 2019).

• Recommendation systems: Machine learning algorithms can analyse user
behaviour and make personalised recommendations (Rendle, 2010) which
include applications such as movie and music recommendations (Hu et al.,
2008), e-commerce product recommendations(Alves et al., 2019), and social
media content recommendations (Gairola et al., 2017).

• Financial analysis: Machine learning algorithms can analyse financial data,
including stock prices (Selvin et al., 2017), market trends (Rouf et al., 2021), and
consumer behaviour (Lee et al., 2021) which allows for more accurate
predictions and informed decision-making (Bao et al., 2017).

• Medical diagnosis: Machine learning algorithms can analyse medical data,
including patient records (Alghamdi et al., 2017), medical images (Shen et al.,
2017), and genetic data (Yue and Wang, 2018), which allows for more accurate
diagnoses and personalised treatment plans.

Machine learning can also be used for time series analysis and forecasting. Here are
some examples of how machine learning can be used for time series analysis:

• Financial time series analysis: Machine learning algorithms can analyse financial
time series data, including stock prices (Jiang et al., 2017), foreign exchange rates
(Tsuji, 2022), and commodity prices, which includes trend analysis, volatility
prediction, and trading signal generation (Amin, 2020).
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• Energy forecasting: Machine learning algorithms can forecast energy demand
and supply, including electricity demand, renewable energy production, and oil
and gas production (Liu et al., 2023), which can help energy companies optimise
their operations and plan for future investments (Singh et al., 2017).

• Health monitoring: Machine learning algorithms can monitor health data over
time, including vital signs (Liu et al., 2014), medical records (Alghamdi et al.,
2017), and biometric data, which includes tasks such as disease prediction
(Mohan et al., 2019), medication adherence (Son et al., 2010), and personalised
treatment plans (Miotto et al., 2016).

• Sales forecasting: Machine learning algorithms can be used to forecast sales for
businesses, including retail sales, e-commerce sales, and restaurant sales which
can help companies to plan inventory, optimise staffing, and forecast revenue
(see Pavlyshenko, 2019, for a review).

• Climate modelling: Machine learning algorithms can analyse climate data,
including temperature, precipitation, and atmospheric conditions, which
includes weather forecasting (Dueben and Bauer, 2018), climate modelling
(Kashinath et al., 2021), and natural disaster prediction tasks (Choi et al., 2018).

As seen in the above list Machine Learning comes in a variety of models which each
have their own distinct features that favour application to particular computational
problems. Machine Learning applications developed in this work focus on two
distinct problems: image classification for identification of genuine sources in
astrophysical imaging data, and time series data analysis for identification of periods
of outburst in light curves.

One very popular flavour of machine learning utilised heavily in astronomy is a
convolutional neural network (CNN). CNNs are particularly well-suited for
application to imaging data, as they apply convolutions that help reveal key structure
in the data. Another type of machine learning algorithm that is gaining traction is a
long short-term memory (LSTM), a kind of recurrent neural network (RNN) that is
excellent for characterising time series data and is becoming popular in astronomy
applications.

1.3 This work: machine learning for high energy astrophysics
surveys

This thesis presents three new tools for finding and characterising astrophysical
sources in INTEGRAL data, making particular use of machine learning (ML) to
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streamline and automate the process. These tools are: a CNN-driven source detector, a
Bayesian source matching algorithm, and a LSTM-driven burst detector.

CNN Source Detector: A CNN was trained on data from the INTEGRAL/ISGRI
telescope to create a source detection tool that is more sensitive than previous
methods, whilst taking less time to apply to the data and reducing the human
subjectivity involved in the process. This new CNN-based approach utilises all five
INTEGRAL energy bands used to create the survey simultaneously – not only does
this improve the accuracy and allow the network to detect sources at a lower flux
threshold, it also speeds up the entire source detection and labelling process as when a
search is performed on a sky map it results in a single detection for each astrophysical
source instead of one from each energy band. The speed on which the CNN can be
applied to the entire dataset allows inspection on a smaller timescale than previously
feasible, meaning sources can be detected that only appear in a single observation but
fall below the detection threshold in all-sky maps stacked from images spanning a
longer time-scale. Looking on smaller time-scales is extremely useful for detecting
faint and transient sources which are often the most particular and most interesting to
study, as these can reveal new astrophysical mechanisms not previously observed.

Bayesian Source Merging: In addition to the CNN a method based on Bayesian
reasoning was used which improved how detections from multiple observations were
merged into unique sources. This method calculates a Bayesian likelihood of two
sources being the same, for every pair of detections in the catalogue, then uses this
likelihood to merge detections into unique sources. One main advantage of this
approach is that the results are invariant to the order in which detections are
presented to the algorithm, as compared to source merging algorithms which start
with a catalogue of known sources.

LSTM Burst Detector: A prototype ML driven burst detector has been developed which
is designed to detect and characterise all outbursts for new and known transient
sources. The burst detector uses a specific type of recurrent neural network called a
long-short term memory network (LSTM) – a powerful kind of recurrent neural
network (RNN) that is ideally suited for application to time-series data. RNNs
generally are well-suited for analysing time-ordered data, but while traditional RNNs
have limited “memory” (they are less influenced by older data) LSTMs have a
mechanism for retaining key information from older data. This makes it possible to
not only detect important events but also to classify these events and also employ
prediction capabilities allowing for time-series forecasting. The LSTM model is also
exceptionally fast – orders of magnitude faster than previous burst-finding methods –
allowing large volumes of data to searched very quickly.

Collectively the ML-driven approaches presented in this thesis form an exceptionally
powerful toolkit for addressing the major issues expected in future surveys. This
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thesis is organised as follows. Chapter 2 presents the high energy astronomy
background that motivated the development of these tools, whilst Chapter 3
introduces the fundamental machine learning approaches used to address these
problems and other such problems in astronomy. Chapter 4 presents the CNN-based
source detector developed to identify flux excesses in INTEGRAL ISGRI images.
Chapter 5 describes the Bayesian approach for merging excesses found by the source
detector, and presents the outcomes for the final source catalogue produced with these
new tools. Chapter 6 introduces the new LSTM-based burst detector tool used to
identify burst-like activity in combined INTEGRAL+Swift light curves. Finally,
Chapter 7 presents the conclusions from this thesis and a view towards its potential
impact for future astronomy surveys. Parts of Chapters 4 and 5 have been published in
Lepingwell et al. (2022), and Chapter 6 forms most of a paper planned for submission.
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Chapter 2

Background: High Energy
Astrophysics

The field of astrophysics known as “high energy” examines the far reaches of our
galaxy and the cosmos. Extreme densities and temperatures, high velocities,
enormous magnetic fields, and strong gravity pose persistent challenges to our
understanding of the behaviour of matter in extreme environments such as black
holes, neutron stars, exploding supernovae, and relativistically moving jets. Active
Galactic Nuclei, pulsars, supernovae, and gamma-ray bursts all produce strange
energetic phenomena, and understanding these extreme environments is crucial to
making sense of them. The quality of data and the sophistication of modelling in
high-energy astrophysics are both increasing at an unprecedented rate and a rare
convergence of simultaneous observations from ground and space-based telescopes
spanning the entire electromagnetic spectrum (see Figure 2.1) over the next few years
is anticipated, including the JVLA (radio and sub-millimeter), ALMA (radio and
sub-millimeter), Hubble/JWST (optical/infrared), Chandra, Swift, NuStar (X-rays),
INTEGRAL and Fermi (gamma-rays), and HESS/MAGIC (multi-TeV gamma-rays).

High energy astrophysics is one of the most active subfields of astrophysics today. It
focuses on astrophysical phenomena that involve particles of “high energy”, which in
turn produce X-ray and gamma-ray photons, such as accreting super-massive and
stellar-size black holes and numerous neutron star species. More generally, these
astrophysical phenomena emit non-thermal photons outside of the traditional optical
wavelengths. Studying non-thermal emissions in the universe makes it possible to
reveal the portion of the universe that is not in a steady state, typically originating in
violent environments near compact objects such as neutron stars and black holes of
varying sizes. In addition to emitting broad-band non-thermal electromagnetic
radiation, it is believed that these objects also emit signals outside the electromagnetic
spectrum. These signals comprise cosmic rays, neutrinos, and gravitational waves.
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FIGURE 2.1: Overview of the electromagnetic spectrum, illustrating characteristic fre-
quency, energy, and wavelength scale of each region of the EM spectrum. Regions of
sensitivity of high energy astronomy experiments including INTEGRAL and XMM-

Newton are highlighted. (Source: ESA website)

With the operation of numerous space and ground-based observational facilities, the
field of high-energy astrophysics has flourished in recent decades.

In this chapter, the fundamental principles underlying the production and interaction
of high-energy photons in the hard X-ray and soft gamma-ray regimes are laid out
and discussed. In addition, the characteristics of sources that are known to emit at
these high energies are discussed specifically in relation to X-ray binaries. Some
history and background into Astrophysical surveys is also presented focusing on the
INTEGRAL mission and how data collected from there is used in this thesis.

2.1 X-ray and Gamma-ray astronomy

X-ray astronomers frequently study phenomena which occur at the end of the stellar
lifetimes – supernova explosions, neutron stars, and stellar black holes – and also
investigate extra-galactic objects such as radio galaxies, Seyfert galaxies, quasars with
accreting supermassive black holes in their centres and clusters of galaxies, the largest
physical formations of our universe. Stars and galaxies can also be studied with
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FIGURE 2.2: The exposure of existing and upcoming X-ray and gamma-ray instru-
ments, from Boddy et al. (2022).

modern X-ray telescopes, and even comets and planets in the solar system have been
observed in X-rays.

The last few decades of X-ray astronomy have provided the field with ample
opportunities for observing compact X-ray sources (white dwarfs, neutron stars, black
holes) and transient events, which have given great insight into the to different
populations of galactic binary systems, such as low- and high-mass X-ray binaries,
cataclysmic variables, symbiotic systems. A graphical overview of X-ray and
gamma-ray facilities and their coverage is shown in Figure 2.2

Over 10,000 times more energetic than photons of visible light, gamma rays are the
most powerful form of electromagnetic radiation. They can be produced by solar
eruptions, supernovae, neutron stars, black holes, and active galaxies. Gamma-ray
astronomy typically is studying the energy range from 500 keV to more than 1 TeV, as
this spans over seven orders of magnitude, a wide variety of detectors are used to
study smaller sub-ranges. The atmosphere of Earth absorbs the vast majority of
gamma rays and X-rays. Therefore, high-altitude balloons and satellites are the usual
observation platforms for both energy ranges.

2.2 Physical Mechanisms for Producing X-ray and Gamma-ray
Emission

X-rays wavelengths range from 0.01 to 10 nanometers (3 × 1016 Hz to 3 × 1019 Hz),
which corresponds to energies between 100 eV and 100 keV. X-ray wavelengths are
shorter than UV wavelengths and longer than gamma wavelengths. In recent decades,
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FIGURE 2.3: Comparison of some key X-ray matter interactions: in the photoelectric
effect, a photon is fully absorbed and liberates a bound electron; in Compton scattering
a photon scatters off an electron an imparts some of its energy to the electron. (Source:

ASTRA Lab, University of Antwerp)

the distinction between X-rays and gamma rays has become more complex. X-rays are
generally emitted by electrons outside the nucleus, while gamma rays are emitted by
the nucleus, per the currently accepted definition. The way in which X- and
gamma-rays are produced and interact is directly related to the ways in which they
can be detected and what the implications are for the physical systems which generate
them. There are three key processes in which they interact with matter: the
photoelectric effect; Compton scattering; pair production. Which process is dominant
is dependent upon the energy of the incoming photon and the atomic number, Z, of
the material in which it is interacting. At low-energies of X-rays the photoelectric
absorption dominates and at higher energies Compton scattering dominates. These
mechanisms are illustrated in Figure 2.3 and described in greater detail as follows.

2.2.1 The photoelectric effect

A photon interacts with an atom-bound electron during the photoelectric effect. The
photon’s energy is transferred to the electron, ejecting it from the atom, the incident
photon completely dissipates, and the atom emits an energetic photoelectron from one
of its bound shells. If the photon energy, hν, is greater than the electron’s binding
energy, Ebind, then the additional energy is transferred to the electron in the form of
kinetic energy, Eu with:

Eu = hν − Ebind (2.1)

This process is illustrated in the left side of Figure 2.3.
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FIGURE 2.4: Compton scattering: a photon imparts some of its energy to an electron:
energy and momentum conservation define the energy of the scattered photon and

electron. (Source: HyperPhysics at GSU)

2.2.2 Compton Scattering

Compton scattering takes place when a photon of high energy scatters off a free
electron. As shown in Figure 2.4, when a photon scatters off an electron, it transfers
energy and momentum to the electron.

The energy of the scattered photon, E, is calculated using the principles of
conservation of energy and momentum. The Compton scattering cross section is
determined by the “Klein-Nishina formula”, which reduces to the Thomson
cross-section for low photon energies where conventional electron scattering is
observed.

During inverse Compton scattering, it is also possible for high-energy electrons to
transfer energy to photons. In this instance, an energetic electron scatters a photon. In
the case of a group of particles with multiple scatterings, the up-scattered photon has
an energy of γE where γ is the electron Lorentz factor and E is the photon’s initial
energy.

2.2.3 Pair production

At the highest energies, a gamma-ray’s energy can be converted into a
particle-antiparticle pair and annihilated completely. To conserve momentum, the
interaction typically occurs in the Coulomb field of a nucleus. The most common
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particle-antiparticle produced is an electron and positron, which requires a photon of
gamma-ray energy greater than 1.02 MeV. Any surplus energy is transferred in the
form of the particles’ kinetic energy. At energies above 10 MeV, pair production
predominates over photoelectric and Compton effects. The positron will eventually
collide with an electron and destroy it, releasing gamma-rays.

2.2.4 Blackbody emission

Blackbody emission of an object is the source of both hard X-rays and soft
gamma-rays, which are generated by thermal processes. Wien’s displacement law
allows us to determine the frequency at which the Planck law has the highest specific
intensity. This is given by:

ν = T · 5.879 × 1010K−1Hz (2.2)

In order for the maximum intensity of a blackbody to exceed 20 keV, temperatures
exceeding 5 × 107 K are required.These temperatures can be found in the accretion
discs of stellar mass black holes and neutron stars.

2.2.5 De-excitation (line emission)

The de-excitation of nuclei results in the emission of gamma-rays. The prototypical
example is the radioactive decay of unstable isotopes. However, collisions with
energetic particles, such as cosmic rays, can also excite nuclei. As the rays emitted
depend on the type of nucleus and the level of excitation, this results in line emission,
which is used to determine the abundance of isotopes.

Electron de-excitation in high mass atoms is also a key mechanism for the production
of X-rays in astrophysical sources. In hot accretion disks, the Fe Kα line is frequently
observed and can be used to infer the dynamics of these systems. In supernova
remnants, X-ray line emission from heavy elements can be used to infer the structure
and composition of the supernova material.

2.2.6 Synchrotron radiation

By accelerating relativistic electrons using magnetic fields, synchrotron radiation is
produced. As an electron moves through a magnetic field, it encounters a force
perpendicular to its motion and consequently changes its direction. As a result of the
electron’s acceleration, it emits electromagnetic radiation.The frequency of the
radiation is solely determined by the electron’s energy, E, the strength of the magnetic
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FIGURE 2.5: Observed spectral energy distribution of the Crab Nebula, with model fit
including synchrotron radiation and SSC components (Zabalza, 2015)

field, B, and the direction of motion relative to the magnetic field. In a collection of
particles with isotropic motion, only the field strength and the energy spectrum of the
electrons are significant. The average photon energy scales as BE2. The synchrotron
spectrum is dependent on the assumed power-law energy spectrum of the electrons. If
the magnetic field is aligned, the synchrotron radiation that results will be polarised.

Synchrotron radiation in most astrophysical systems peaks at radio wavelengths.
These radio photons then often interact with the energetic electrons that produced
them and have their energies boosted to X-ray and gamma-ray energies by inverse
Compton scattering. This process is referred to as synchrotron self-Compton (SSC),
and an example spectrum with SSC is shown in Figure 2.5.

2.2.7 Bremsstrahlung

Bremsstrahlung, also known as “braking radiation,” arises when a charged particle
travels through an electric field, such as an ion’s Coulomb field. Since the rate of
energy loss is proportional to m−2, electrons are the predominant emission source. As
the electron travels through the electric field of the ion, it is accelerated and
consequently emits radiation.

Thermal Bremsstrahlung is the radiation spectrum emitted in the presence of an
electric field by a body of electrons in thermal equilibrium. The higher the
temperature, the faster the electrons move and the greater the energy of the photons
emitted. Gamma-rays require temperatures on the order of 108 K to be produced. The
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spectrum is flat and has a cut-off at an energy of E ∼ kT. Consequently, the plasma
temperature can be measured by locating the cut-off.

2.2.8 Accretion

In galactic and extragalactic systems, the action of matter accreting onto a compact
object is the primary source of energy for high-energy emission. Accretion is the
addition of material to an object over time. The origin of material transfer depends on
the system in question; for instance, in some X-ray binaries, the companion star fills
the Roche-lobe, and material is transferred from it to the compact object through the
inner Lagrangian point. The same physical laws govern the release of energy in each
of these systems regardless of the origin of the accreting material. As matter falls onto
a dense object, gravitational potential energy is released and becomes available as
accretion energy. For a compact object with mass Mx and radius Rx, the energy
released by the accretion of a mass m can be calculated as follows:

Eacc =
GMxm

Rx
(2.3)

If matter is continuously added over time, then luminosity attributable to accretion is
determined by the following formula:

Lacc =
GMx

Rx

dm
dt

(2.4)

By heating the material within the accretion disc, gravitational potential energy is
released as matter is accreted. The efficiency of the accretion process can be
determined by comparing the total amount of energy possessed by the matter.
Efficiency may be expressed as:

η =
GMx

Rxc2 (2.5)

The Eddington limit is an additional limitation on the energy emitted through
accretion. The scattering of photons by matter exerts a force on the matter, despite the
fact that this force is typically very small. This radiation pressure is proportional to the
radiation field flux that is incident.

F =
σT L

4πR2c
(2.6)
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Therefore, large fluxes have a noticeable effect on the matter they traverse. Accretion
will cease if the force of radiation pressure exceeds that of gravitational attraction.
This luminosity is known as the Eddington luminosity, and it is calculated as follows:

Ledd =
4πGMxmpc

σT
= 1.3 × 1033M/M⊙ erg s−1 (2.7)

where σT is the Thomson scattering cross section, mp is the mass of a proton, Mx is the
mass of the compact object. Additionally, the spectrum resulting from the accretion
process can be estimated.

If the disc is optically thick it is expected the radiation will reach thermal equilibrium
with the material of the disc, and the source would radiate as a black body with a
temperature of Tbb. If optically thin, the radiation would escape without further
interaction, and the characteristic radiation temperature would be that of the
gravitational potential if each proton-electron pair were directly converted into
thermal radiation.

For a neutron star or black hole system, it is expected accretion disc photons will have
energies in the keV range, and a white dwarf system would have photon energies in
the eV range.

2.3 Galactic Sources

Our Galaxy contains the brightest and most persistent high energy sources known
(owing to the fact they are the nearest sources); most of the X-ray emitters are binary
stars that produce their radiation through accretion onto a neutron star or black hole.
There are two types of X-ray binaries: those with a high mass and those with a low
mass companion. However, other source types, such as cataclysmic variables (CVs)
and supernova remnants (Córdova, 1995) SNRs) , have been observed to emit in the
hard X-ray/ gamma-ray band. The gamma ray emission is a sign of the non-thermal
processes at work in these systems, which allows accretion and the dynamics of
individual objects to be studied.

2.3.1 Binaries

In practice, the brightest (apparent) sources of X-ray emission in the sky are X-ray
binaries, which consist of a compact star (a white dwarf, neutron star, or black hole)
and a companion star (a brown dwarf, white dwarf, or main sequence star). Compact
stars release gravitational energy by absorbing materials transferred from companion
stars and emit radiation in the X-ray band. Many X-ray binaries within or outside of
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FIGURE 2.6: Classification of X-ray binaries. (Source: IOP Science)

the galaxy have been discovered by utilising and relying on various X-ray surveys and
optical identification. As depicted in Figure 2.6, the classification of X-ray binary
subsystems is represented by a tree diagram containing various subsystem types.
When the primary star is a neutron star or a black hole, X-ray binaries can be classified
according to the mass of their secondary star as either low-mass X-ray binaries
(LMXBs) or high-mass X-ray binaries (HMXBs, with a companion star whose mass is
greater than one solar mass).

When the primary star is a white dwarf, the X-ray system can be classified into
numerous sub-types based on the observational differences. In the majority of cases,
they belong to one type of essential X-ray source, namely cataclysmic variables (CVs).

Approximately 90 percent of X-ray sources with strong emissions in the Galaxy can be
classified as LMXBs and HMXBs. The vast disparity in mass between LMXBs and
HMXBs influences the variety of their physical characteristics. The traditional physical
and observational characteristics of these two types of X-ray binary are compared in
Table 2.1. It is worth noting that these characteristics reflect the traditional distinction
between these classes, but subtleties of their distinction are constantly evolving. For
example, some LMXBs have been found to have black holes as their central comopact
object (though as noted below they cannot exhibits Type I bursts as they lack a surface
for accreted material to accumulate).

2.3.2 Low Mass X-ray Binaries

Sco X-1 was the first point X-ray source observed (Giacconi et al., 1962), and later
determined that it was a low mass X-ray binary. Systems in which the donor star has a
mass less than 1M⊙ are considered low mass X-ray binaries (LMXBs) (Liu et al., 2001).
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FIGURE 2.7: Typical HMXBs and LMXBs with neutron star as the accretion star. In
HMXBs, the matter accreted onto the neutron stars originate from strong stellar winds
or Roche Lobe overflow that passes through Lagrangian point L1. In LMXBs, neutron
stars absorb matter via the accretion disc formed by accretion currents of Roche Lobe

overflow which passes through Lagrangian point L1. (Source: IOP Science)
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HMXBs LMXBs
X-ray spectra hard spectrum, kT ≥ 15 keV sort spectrum kT ≤ 10 keV
Type of time variability X-ray pulses, no X-ray

bursts
X-ray bursts but rarely
pulses

Accretion process Stellar winds (or Roche Lobe
overflow)

Roch Lobe overflow

Time scale of accretion 105 yr 107 − 109 yr
Accreting compact star Neutron stars (or black

holes) with strong magnetic
field

Neutron stars (or black
holes) with weak magnetic
field

Spatial distribution Galactic plane Near Galactic plane and cen-
tre

Stellar generation Young stars, age ≤ 107 yr Old stars, age ≥ 109 yr
Optical companion star O(B) stars in early phase,

M ≥ 10M⊙, brighter than X-
ray: Lopt/LX ≥ 1

Blue stars, M ≤ 10M⊙,
fainter than X-ray:
Lopt/LX ≤ 1

TABLE 2.1: Traditionally expected features of x-ray binaries (adapted from Dong,
2012)

It’s not necessary for the donor star to be a white dwarf; in fact, it can be any star with
a spectral type above A. (White et al., 1995). A star cannot produce the X-ray
luminosity seen in such systems if it has a weak wind. This high-energy outflow is
caused by material accreting from the donor star through the inner Lagrangian point
due to Roche lobe overflow. An accretion disc is formed when matter enters the
compact object through the inner Lagrangian point and spirals downwards toward it.
These compact objects become extremely luminous X-ray sources with luminosities
L ≥ 1034 erg s−1 as matter is accreted onto them. In Figure 2.7 we see a diagram of a
neutron star LMXB system.

Although most LMXBs in the Galaxy are found near the Galactic Centre (GC), a small
number have been spotted in globular clusters. The fact that these sources are found
in regions unrelated to star formation suggests that these are very old stellar systems
(White et al., 1995). The sub-solar-mass companions’ nature, in which they live for
aeons, lends credence to this. Given the age of these systems, the neutron star is
predicted to have a weak magnetic field, which is why X-ray pulsations are rarely
observed. Her X-1 and 1626-673 are two notable outliers; both are classified as LMXBs,
but also show X-ray pulsations. Typically the spectral type of the donor star or the
system’s mass function is used to determine whether or not a given system is a LMXB.
In the systems with limited X and gamma ray observations a source can be classified
an LMXB if either type 1 X-ray bursts (see Section 2.3.4 where these transient LMXBs
are described in greater detail), an orbital period of less than 12 hours or a 1-10 keV
soft spectrum with a temperature of 5-10 keV are observed. (White et al., 1995).
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2.3.3 High Mass X-ray binaries

Massive, luminous OB stars are the companion stars of HMXBs, and their lifespan is
determined by the star’s evolutionary time scale, which is on the order of 1010 yr or
less (107 yr for more massive companions). Found in the same star-forming regions in
the spiral arms and galactic plane as young stellar populations, strong stellar wind can
be generated because of the companion star’s large mass and low density in its
vicinity. The host star continues to accrete material into the Roche lobe (outer bound to
the region around a star in a binary system where orbiting material is gravitationally
bound to that star) once it is full, causing it to glow brightly in X-rays. This type of
source is accompanied by companion stars that emit strongly in the optical. The donor
star in the system is much more luminous in the optical than the X-ray source, X-ray
heating is minimal and so the optical properties of the system are dominated by the
donor star (White et al., 1995). Variation in X-ray luminosity can be explained by the
strength and rate of change in the stellar wind velocity and the separation of binaries’
constituent stars. The neutron stars in these systems are typically observed to be X-ray
pulsars. This follows from the idea that HMXBs must be young systems due to the
short life span of the OB stars. Hence, the neutron stars in these systems are expected
to be young and so have large magnetic fields. That these are young stellar systems
means that they are found in star forming regions, such as the spiral arms of the
galaxy. The donor stars are of sufficient size to have a strong stellar wind. The neutron
star’s magnetic field remains in the high-magnetic (1012 G) environment at birth
because the neutron star has not evolved over a long period and has only accreted less
matter. The accreted material moves in the direction of the magnetic field lines at the
poles of the star and is ejected as a narrow beam of radiation in the presence of a
strong magnetic field. Through the process of accretion, the neutron star gains mass
and energy, which can be seen as a pulsar. Supergiant X-ray binaries with an OB
supergiant as the secondary star (SGXBs) and Be X-ray binaries with a Be star as the
companion star are two subclasses of HMXBs distinguished by their different
observational properties, in particular the type of companion. The majority of HMXBs
belong to the first class ( 80 percent) (Kaper et al., 2004). Be systems are often seen as
transient X-ray sources whilst the supergiant systems are persistent although variable.

The classification of a system as a HMXB is typically based upon the identification of
the donor star spectral type or of the mass function of the system. However, in those
cases where there are limited observations which are in the X-ray or gamma-ray
energy regimes then the characteristic X-ray properties of traditionally identified
systems can be used to classify newly detected sources. A source may be classified as
an HMXB if it exhibits any of the following properties (White et al., 1995):

• Strong flaring and absorption variability on timescales of minutes

• Transient outbursts
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FIGURE 2.8: The diagram of orbital movements and optical variation of Be X-ray bi-
naries. (Source: IOP Science)

• X-ray pulsations

• A hard 1-10 keV spectrum with a power-law energy index of 0-1

2.3.3.1 Be X-ray Binaries

The Be X-ray binaries are the most common type of HMXB. In neutron star binaries,
the neutron star acts as the compact object while the Be star acts as the donor. As a
result of their high rotational velocity, close to the break-up speed, Be stars produce a
material ring around their equator. The emission lines that are the hallmark of Be stars
are caused by this material. Most Be X-ray systems are short-lived but extremely
intense. The orbital periods of these systems range from 12.7 to 262 days, which is
considered to be moderately eccentric (Negueruela and Coe, 2002). Analysis of the
arrival time of pulses is commonly used to determine the orbital period, a
complementary technique to optical light curve analysis. Several distinct X-ray states
can be observed in Be X-ray binaries. They might be invisible or visible at a
persistently dim luminosity L ≪ 1036 erg s−1.There are two main types of transient
behaviour seen in these systems (Negueruela, 1998). Type I outbursts are extremely
bright X-ray bursts lasting only a few seconds, with luminosities of 1036 − 1037 erg s−1.
Type II outbursts are massive X-ray bursts with luminosities greater than 1037 erg s−1

that last for a few weeks or longer. It is thought that the neutron star’s passage
through the Be circumstellar disc at periastron causes the periodicity of the type I
outbursts. As a result, the period of orbit can be calculated from the time interval
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between bursts. According to the proposed mechanism for type II outbursts, the Be
star must exhibit high levels of activity in order to eject a large amount of matter,
which then overwhelms the binary system. After receiving this massive amount of
fuel, the neutron star becomes active for a period of weeks. As the outburst wanes,
astronomers have noticed that the X-rays from Be X-ray binaries with the fastest
spinning pulsars abruptly turn off. This has been blamed on the existence of a
centrifugal barrier that prevents accretion below a critical mass accretion rate (Charles
and Seward, 1995). The force exerted on the neutron star’s magnetosphere decreases
in proportion to the mass transfer rate. Because of this, the magnetosphere grows.
This causes matter to be ejected from the magnetosphere because it enters at velocities
greater than the orbital speed at that radius.

2.3.3.2 Supergiant X-ray binaries

Super Giant X-Ray Binaries (SGXB) are a type of HMXBs. This subclass contains an
early type supergiant accreting via wind. They are bright and generally persistent and
they constitute 20 percent of the known population of HMXBs and are primarily
located within the Galaxy. These astronomical systems consist of an OB supergiant
star and either a black hole or neutron star. The source of accreting material is
typically the strong stellar wind of the donor star; however, for systems with orbital
periods 2 days, Roche-lobe overflow can also occur, leading to the formation of a
stable accretion disc around the compact object. In general, the orbital periods of these
systems are shorter than those of Be X-ray binaries, ranging from 1.4 to 41.5 days.
These orbital periods are identified through the observation of X-ray eclipses and the
analysis of pulse arrival times. If the compact object is accreting material from the
stellar wind, then the velocity of the stellar wind and the velocity of the compact
object through the material limit the amount of material available for accretion.

Bondi-Hoyle accretion can be applied to supergiant X-ray binary stars if the stellar
wind is assumed to be a uniform density material. The compact object will accrete
material within a specified radius, rcrit. For a compact object of mass Mx, this radius is:

rcrit =
2GMdon

v2 (2.8)

where v is the velocity of the object, and Mdon is the mass of the donor star.

Stellar winds are not homogeneous and uniform which results in large variations in
the observed X-ray fluxes of HMXBs, resulting from both the variation in available
accreting material and the variation in the absorption material density. This makes
HMXBs a useful instrument for measuring stellar wind properties. In the case of
eclipsing systems, the X-ray source can also serve as a probe of the supergiant donor
star’s atmosphere (Clark et al., 1994).
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FIGURE 2.9: Spin-period (Ps) versus binary period (Pb) diagram (“Corbet diagram”)
for HMXBs. The different classes are distinguished by colour and symbol shape:
SFXTs, disc-fed (sgDF) supergiant binaries (including ultra-luminous X-ray sources
(ULXs)), wind-fed (sgWF) supergiant binaries, as well as Be X-ray Binaries (BeXRB).
The vertical line indicates the binary period at which a 20R⊙, 22M⊙ supergiant fills
its Roche lobe. Below the blue lines quasi-spherical accretion from the stellar wind for
two different dipole magnetic field strengths B is inhibited by the centrifugal barrier,

assuming a wind speed of 800 km/s (from Kretschmar et al., 2019)
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The INTEGRAL mission detected new SGXBs with slow, weakly magnetised neutron
star as companion (Sguera et al., 2006). These SGXBs are highly absorbed and display
a mixture of persistent and variable emission. This subclass of SGXB is characterised
by fast transient behaviour and have been dubbed Supergiant Fast X–ray Transients
(SFXTs) – these objects are one of the most spectacular discoveries obtained by the
INTEGRAL satellite. Their X–ray emission, characterised by short (typically lasting
around 100-10,000 s) bright X–ray flares, is produced by a compact object (mostly a
neutron star, given that X–ray pulsations have been detected in about a half of the
members of the class), transiently accreting matter directly from the strong wind of the
blue supergiant companion, although the mechanism producing the transient X–ray
emission is still not fully understood.

INTEGRAL has also played a crucial role in the detection and characterisation of
highly-absorbed persistent HMXBs (Manousakis and Walter, 2011). These systems
generally have short orbital periods and long spin periods, and are characterised by
strong and persistent soft X-ray absorption. INTEGRAL has been vital for establishing
the orbital characteristics of these systems through timing analysis, and characterising
the nature and extent of the absorbing material in these systems.

2.3.4 Transient Emissions

Type I X-ray bursts were first identified in 1975 and shortly thereafter these bursts
were linked to LMXB systems and explained as thermonuclear flashes on the neutron
star’s surface. Due to their proximity and the neutron star’s extreme gravity, the
companion star’s roche-lobe overflows and hydrogen is drawn into an accretion disc
surrounding the neutron star.

This hydrogen is eventually accreted on the neutron star’s surface, where, due to the
extreme temperature and pressure, it is immediately transformed into helium. Once
the helium reaches a critical mass a thin surface layer of helium ignites reaching
temperatures of tens of millions of degrees and emitting a burst of X-rays. After the
outburst has subsided, the binary system returns temporarily to its quiescent state,
while the neutron star begins to reaccumulate the helium surface layer. The repeated
process results in repeated X-ray bursts. This process is similar to recurrent novae; the
compact object is a white dwarf that accretes a hydrogen-rich surface layer that
undergoes explosive combustion to produce the outburst. Trasient X-ray emission is
not limited to these X-ray bursts, but can also be observed in outbursts from LMXBs
and HMXBs. In LMXBs, accretion continues after a burst until the accumulated layer
of material reaches critical temperature and density to ignite a thermonuclear
runaway to trigger the next burst.
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Generally, X-ray bursts occur at regular intervals separated by hours or days. Their
durations range from a few seconds to several minutes, with the burst profile
displaying a rapid rise (0.3 to 10 seconds) followed by a slower decline (5 – 100
seconds). The rapid increase reflects the sudden increase in temperature caused by the
explosive ignition of helium, while the slower decrease results from the slower cooling
of the star’s surface. All of the aforementioned pertains to Type I X-ray bursts, which
constitute the vast majority of this type of object. Currently, only three sources have
been observed to demonstrate Type II X-ray bursts, and one of these also exhibits Type
I outbursts (van den Eijnden et al., 2022). The physical mechanisms for these burst
types are described in the sections that follow.

The burst profile distinguishes a Type II burst from a Type I burst, which is believed to
be the result of an increase in accretion rate from the companion star. Type I bursts
exhibit a rapid increase followed by a gradual decline, whereas Type II bursts begin
and end abruptly, with no gradual decay from the peak. They may also exhibit rapid
burst successions separated by a few minutes.

2.3.4.1 Type I X-ray bursts

LMXBs have demonstrated Type I X-ray bursts.The maximum intensity of the bursts
is observed between fractions of a second and ten seconds after the burst begins, and
the bursts decay in 10 seconds to minutes. During this time, 1039 ergs of X-ray energy
are typically emitted (Charles and Seward, 1995). Depending on the energy band in
which the burst is observed, its profile will appear differently. The initial rise is
concurrent across all bands, but the decay is more pronounced at higher energy
regimes.This is a characteristic of thermal X-ray emission, in which the temperature of
the burst begins high and decreases over time. When the neutron star accretes
hydrogen from the accretion disc, a layer of hydrogen accumulates on its surface.
Under the steady influence of fusion, this hydrogen layer begins to expand, forming a
layer of helium beneath the hydrogen layer. This helium layer eventually begins to
convert to carbon, but the process is rapid and unstable, resulting in a type I X-ray
burst and a thermonuclear flash on the neutron star. In 10 seconds, the surface of the
neutron star cools from an average of 30 million degrees to 15 million degrees (Charles
and Seward, 1995). The system then begins to accrete matter once more, eventually
leading to a second thermonuclear flash.

During the decay of the burst, the X-ray spectrum represents a cooling blackbody
(Swank et al., 1977). If the distance to the system is known, the radius of the neutron
star can be estimated from the flux and temperature of the blackbody emission. Using
the X-ray flux, Fx, from a type I burst at a distance d due to the blackbody emission of
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a sphere with a radius R and a temperature T Stefan’s law yields:

4πd2Fx = 4πR2σT4 (2.9)

Therefore, the radius of a neutron star can be calculated as:

R = d
(︃

Fx

σT4

)︃1/2

(2.10)

This results in a radius of 10 km for sources with reasonable distance estimates, the
typical value associated with neutron stars. A careful examination of the X-ray
spectrum during a burst reveals that the temperature of the blackbody and,
consequently, the radius change. This is explained by an initial expansion followed by
a contraction of the neutron star photosphere. Radiation pressure forces the hydrogen
layer to expand as the X-ray luminosity reaches the Eddington limit. The luminosity
can then continue to rise because the Eddington limit for helium is 1.75 times greater
(Charles and Seward, 1995). The Eddington Limit for a neutron star of mass 1.4M⊙ is
1.8 × 1038 erg s−1; therefore, the luminosity of a type I X-ray burst must not exceed this
value. Therefore, type I X-ray bursts can provide distance estimations. This is,
however, always an upper limit, as the peak flux of a burst need not have reached the
Eddington limit. Type I bursts cannot occur in LMXBs where the compact object is a
black hole because hydrogen must accumulate on a surface for them to occur. Type I
X-ray bursts are therefore conclusive proof that the compact object is a neutron star.

2.3.4.2 X-ray type II bursts

An X-ray source exhibiting rapidly repeating X-ray bursts was identified early on in
the study of X-ray bursting sources. On timescales as short as 10 seconds, bursts were
observed to recur, with the brightest bursts being 1,000 times brighter than the
faintest. Initially, this behaviour posed a threat to the thermonuclear flash model of
type I bursts, until it became apparent that it had a different origin. These bursts do
not display random behaviour. There are longer intervals between the more luminous
bursts than the less luminous ones. The X-ray spectra of these type II bursts show no
indication of a cooling blackbody. As the time-averaged emission of these bursts is
comparable to or greater than that of the persistent emission, it is believed that the
bursts are caused by a sudden release of material onto the neutron star’s surface as a
result of an unstable accretion flow. This resembles the behaviour of a relaxation
oscillator. Despite many years of observations and numerous theoretical models, the
actual cause of the bursts remains a mystery. The lack of identification of the gating
mechanism that dumps matter onto the neutron star constitutes the primary obstacle
to understanding these sources (Lewin et al., 1997). Numerous models have been
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developed to explain the rapid burster behaviour and the origin of accretion
instability.

The presence of a neutron star with a strong enough magnetic field to produce a
magnetosphere, which acts as a gate through which the accreting material must pass,
is one of the models proposed to explain the origin of these bursts (Lamb, 1977). At
the gate, accreted matter accumulates until the magnetosphere can no longer
withstand the pressure, at which point the material falls through onto the neutron star.
Explaining the correlation between burst strength and time between bursts, when a
large amount of material passes through, resulting in a bright type II burst, it takes
time for a sufficient amount of material to build up again, which explains the
relationship between burst strength and time between bursts. The accretion of matter
via a gating mechanism does not, however, prevent a layer of hydrogen from
eventually accumulating on the neutron star’s surface and causing a thermonuclear
flash. Consequently, these rapid burster sources are capable of producing both type I
and type II X-ray bursts.

2.3.4.3 X-ray pulsations

Typically, X-ray pulsations are observed from HMXBs when the compact object is a
neutron star. Due to the young age of these binary systems, neutron stars invariably
possess powerful magnetic fields. Consequently, as matter accretes onto the neutron
star, there will come a time when the magnetic field predominates; this point is the
magnetospheric radius. At this point, an accretion disc will be disrupted, and material
will begin to move along magnetic field lines. The material will reach the magnetic
poles of the neutron star, where it will generate a hot shock upon impacting the
surface. This shock is responsible for the X-ray emission in a beam. If the magnetic
axis of the neutron star is not aligned with its spin axis, then this beam will pass in and
out of our line of sight, causing us to observe pulsations.

It was discovered that the spin period, Ppulse, and orbital period, Porb, of various
HMXB system types were correlated in various ways (Corbet, 1986). This is depicted
in the Corbet diagram depicted in Figure 2.9. The accretion discs that may form in
these systems are capable of applying a torque to the neutron star and altering its spin
frequency. There is a positive correlation between the spin and orbital periods in Be
X-ray binaries. There is an anticorrelation between spin and orbital period in
supergiant systems where the donor is filling its Roche-lobe. Finally, it is observed that
all supergiants with an underfilled Roche lobe have long spin periods, but there
appears to be no correlation with orbital period. This is not surprising, as stellar wind
accreting systems have much less available angular momentum for transfer.
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FIGURE 2.10: CVs in the Gaia colour-magnitude diagram, colour coded by orbital
period, from Abril et al. (2020)

As the accretion rate increases, the angular momentum flow from the accretion
material is anticipated to increase. As a result, the pulsar is spun faster. At very low
mass accretion rates, it is believed that neutron stars lose angular momentum as
magnetic field lines that couple to the outer, slower accretion flow disc remove
angular momentum (Psaltis and Norman, 2000).

2.3.5 Cataclysmic Variables / Accreting White Dwarfs

In terms of composition, cataclysmic variables (CVs) are very similar to X-ray binaries.
The primary distinction between CVs and XRBs is that the compact object is a white
dwarf (WD), leading to the newly preferred label of “accreting white dwarfs”. In these
systems, the donor star is usually a late-type star on or close to the main sequence
whose Roche-lobe is being filled. Typically, these systems have extremely close
separations, with orbital periods ranging from 80 minutes to a few hours (Córdova,
1995). Figure 2.10 shows the location of known CVs in the colour-magnitude diagram
from Gaia, illustrating the variety of donor stars and orbital periods (Abril et al., 2020).
CVs exhibit a vast array of behaviours that are mainly controlled by the rate of mass
transfer from the donor and the magnetic moment of the WD.
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It has been observed that all classes of CVs emit X-rays, although the properties of the
emission vary between classes (see, e.g., Mukai, 2017, for a review). For WDs with a
magnetic field of less than 104 Gauss, the system is nonmagnetic. In these systems, as
in the case of LMXBs, the donor star fills its Roche-lobe and an accretion disc forms
around the WD. The magnetic field has minimal influence on the accretion flow. For
low accretion rates through the disc, the disc temperature and viscosity are too low to
transfer mass through the disc at the same rate as it arrives. Consequently, the disc
serves as a gas reservoir (Kuulkers et al., 2004).

When the disc reaches the critical density, it becomes optically thick, gets hot, and
rapidly transfers mass to the surface of the WD. This causes Dwarf Nova explosions
that can last weeks. In magnetic systems, the magnetic field is strong enough to
disrupt the donor accretion flow. Polars have around 106 Gauss magnetic fields, and
the rotation of the WD is phase-locked with the binary system (Córdova, 1995)
Consequently, material flows from the donor star to the WD along the field lines.

In the case of Intermediate Polars, the WD spins faster than the orbital period of the
binary, and a partial accretion disc may form. Variations in their mass accretion rates
are reflected in the luminosities of both types of magnetic CVs. It is believed that
nearly all CVs build up a layer of hydrogen on their surface, which eventually
undergoes thermonuclear runaway and results in a Classical Nova explosion. In some
binary systems this process repeats itself resulting in Recurrent Novae. Similar to the
type I X-ray bursts observed in LMXBs, this process produces radioactive isotopes
with distinctive gamma-ray line signatures.

2.4 Extragalactic sources

Besides all of the galactic X-ray sources there are numerous sources of high energy
emission which are external to the Galaxy.

2.4.1 Supernovae

Supernova explosions are the most energetic stellar phenomena known, with an
average energy output of 1051 erg. The majority of this energy is released as kinetic
energy, with initial velocities between 10,000 and 15,000 km s−1 (Charles and Seward,
1995). This material’s propagation causes the ejected material and surrounding
medium to reach extremely high temperatures, resulting in X-ray emission.
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2.4.1.1 Type Ia Supernovae

All Type Ia supernovae exhibit nearly identical light curves, indicating a similar
progenitor star and mechanism. They are found in binary systems containing a white
dwarf. The WD accumulates matter until the electron degeneracy pressure can no
longer support its mass. The collapse raises the core’s temperature to the point where
carbon and oxygen begin to fuse. This causes an explosive wave to propagate through
the WD, shattering it. Numerous tonnes of radioactive substances, including 56Ni, are
produced in the supernova explosion, and this has been observationally confirmed
with gamma ray nuclear decay lines detected by INTEGRAL (Churazov et al., 2015).
X-ray emission from Type Ia supernovae is traditionally not expected, but may arise if
there is a substantial amount of circumstellar material. To date, no X-rays have been
detected from unambiguous Typa Ia, but have been detected from SN2012ca
(Bochenek et al., 2018) which is unclear as to whether it is a Type Ia supernova or a
core collapse supernova. It is worth noting that Galactic (and Magellanic Cloud)
supernova remnants from very old supernovae do emit X-rays from electron
de-excitation in heavy elements (e.g. Fe).

2.4.1.2 Type II Supernovae

Type II supernovae reach their maximum luminosity more slowly and are typically
less bright than Type Ia supernovae. There appear to be more variations in the light
curves of these systems, indicating a progenitor with greater individuality. The optical
spectra are dominated by broad hydrogen emission lines, indicating that these
supernovae originate from young, massive stars with hydrogen-rich envelopes
(Charles and Seward, 1995). The star is typically a red giant or supergiant and has
undergone multiple levels of fusion, with Fe at its core, surrounded by Si, which is
surrounded by lighter and lighter elements. Eventually, the core reaches a pressure at
which the Fe begins to decay into lighter nuclei, lowering the core’s pressure and
causing it to contract. This decrease in pressure eventually causes the core to collapse
due to its own gravity, a phenomenon known as a runaway effect. The energy release
generates an outward-propagating shock wave that rips the star apart.

X-ray emission has been detected in numerous Type II supernovae, and arises from
shock emission from dense circumstellar material surrounding the exploding star.
Figure 2.11 (from Quirola-Vásquez et al., 2019) shows the X-ray light curves for
numerous Type II supernovae, which can be used to place constraints on the dying
star’s circumstellar material. Galactic remnants of ancient Type II supernovae (e.g., the
Crab and Cas A) also emit X-rays via electron de-excitation, as do some of their
compact remnants (e.g., the Crab pulsar).
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FIGURE 2.11: X-ray light curves (covering 0.5-10 keV) of Type II supernovae (from
Quirola-Vásquez et al., 2019).

2.4.2 Active Galactic Nuclei

Active Galactic Nuclei (AGN) are extremely luminous and variable galaxies in which
a significant amount of energy is released from the galactic nucleus. It is believed that
the source of this emission is the accretion of matter onto a supermassive (108M⊙)
black hole in the centre of the galaxy. Seyfert galaxies, Quasars, Blazars, and radio
galaxies are among the many AGN subclasses that have been derived based on their
optical and radio properties. There are two classifications for Seyfert galaxies: type 1
and type 2. Seyfert galaxies exhibit optical emission lines with widths of one thousand
kilometres per second. In addition, Seyfert 1 galaxies display broad lines with widths
10,000 km s-1 (Antonucci, 1993). Quasar optical spectra are very similar to those of
Seyfert galaxies, indicating a common emission mechanism; in fact, a distant, bright
Seyfert galaxy would appear to be a quasar (Charles and Seward, 1995). In contrast,
the spectra of blazars are completely devoid of optical features.

Looking at these objects in the high energy band reveals a unique set of characteristics.
Seyfert galaxies are observed to emit the majority of their high energy emission up to
100 keV, indicating that the source of this emission is most likely thermal processes
and providing insight into the AGN’s physical environment. Quasars can be
significantly brighter at higher energies and are primarily detected at energies greater
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FIGURE 2.12: The unified model of Active Galactic Nuclei (AGNs). Credit: Beckmann
and Shrader (2012)

than 100 MeV. It is believed that the source of this emission is a powerful jet visible
along our line of sight to the AGN. In the case of Blazars, it is believed that we are
looking directly down the AGN jet, resulting in the jet emission dominating what we
observe.

It has been proposed that the properties of each AGN class are a result of observing the
same object from different vantage points, despite the fact that each class appears to be
observationally distinct (Antonucci, 1993). This concept is represented graphically in
Figure 2.12. Thus, it is believed that all AGN are composed of a supermassive black
hole surrounded by an accretion disc and a hot corona. Existing beyond this is a cold
molecular torus of material. When viewed through the molecular torus, the object
appears to be a Seyfert 2, but when viewed directly down the jet, it appears to be a
Blazar. If there is no jet in the system, the source will appear radio silent.
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FIGURE 2.13: X-ray emission (purple) for several galaxy clusters observed by Chandra
(Source: Chandra photo album at chandra.harvard.edu).

2.4.3 Galaxy Clusters

Galaxy clusters vary in size from a few to several thousand galaxies. These galaxies
are gravitationally bound, and the space between them is filled with extremely hot
gas. This gas has temperatures greater than 107 Kelvin and emits diffuse high-energy
radiation (Westmore, 2002). The gas emits a thermal Bremsstrahlung spectrum with
kT ranging from 1 to 10 keV (see examples in Figure 2.13). Several clusters have
demonstrated an excess of emission at energies greater than 20 keV. There are two
possible explanations for this excess: the inverse Compton scattering of cosmic
microwave background photons and the presence of an active galactic nucleus within
the cluster (Sarazin, 1986).



2.4. Extragalactic sources 35

2.4.4 Gamma-Ray Bursts

Gamma-ray bursts (GRBs) are transient events that are incredibly bright and brief.
When a GRB explodes, it is brighter than the entire gamma-ray sky. The duration of a
GRB ranges from milliseconds to minutes, and its light curve and spectrum are unique
for each event. They were initially discovered by the Vela-B military satellites in the
1960s and were not well understood until recently. The BATSE experiment aboard the
Compton Gamma-ray Observatory made the first significant breakthrough in
determining the origins of these sources. BATSE was an all-sky monitor whose
primary scientific objective was to detect and locate GRBs (Fishman et al., 1985).

The distribution of the bursts across the sky was found to be isotropic regardless of the
selection criteria. This indicated that GRBs originated outside the galaxy. BeppoSAX’s
1997 detection of X-ray afterglows, which lasted for weeks after the initial burst, was
another significant advance (Piro et al., 1995). Observations of X-ray afterglows have
enabled the identification of more precise source positions and optical band
follow-ups. Since then, the host galaxies of GRBs have been detected. GRB origins are
still not completely understood. Nonetheless, two fundamental theoretical models
exist to explain these objects. The first scenario involves the collision of two compact
objects, such as a neutron star and a black hole. This event is believed to release
sufficient energy to account for the observed GRB properties. The second example is a
hyper-nova. This is the collapse of a colossal star, which leads to the formation of a
black hole. Recent studies have identified the characteristics of supernovae in the
optical afterglows of GRBs, making this an excellent candidate for GRBs.

The use of multiple astronomical observatories to gather information about the
universe is becoming increasingly important. It is anticipated that a number of
well-known astrophysical sources will also emit other types of ’messengers’ in
addition to photons. These ’messengers’ include cosmic rays, gravitational waves, and
neutrinos; bringing more information in addition to that which is carried by
electromagnetic radiation. Together, they help to draw a complete phenomenological
picture of a number of astrophysical events and measure key cosmological
parameters. It is widely considered that multi-messenger astronomy is the only
method that will be capable of shedding light on a number of fundamental facets of
both physics and cosmology. The most recent groundbreaking discoveries of a
gravitational wave source associated with a short gamma-ray burst and of a neutrino
event found to be spatially consistent with a flaring blazar have already demonstrated
the major role that high-energy sources will play in multi-messenger observations.
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2.5 Introduction to Astrophysics surveys

An astronomy survey is a map or image of a portion of the sky (or the entire sky) for
which there is no particular observation target. Alternatively, an astronomy survey
may consist of a collection of images, spectra, or other observations of objects with a
shared kind or characteristic. Due to instrumentation restrictions, electromagnetic
spectrum surveys are frequently limited to a single band; however, multiwavelength
surveys can be conducted by employing numerous detectors, each sensitive to a
distinct bandwidth. Generally, surveys have been conducted as part of the
development of astronomy catalogues. They may also look for ephemeral
astronomical phenomena. They frequently employ wide-field astrographs. An
astronomy catalogue is a list or tabulation of celestial objects, often grouped together
because they share a common type, morphology, origin, technique of detection, or
method of discovery. Astronomical catalogues are usually the outcome of an
astronomical survey of some kind.

2.5.1 Data Products

The main deliverables of all astrophysics surveys are data products which can be
utilised for scientific analyses. These products begin with low-level data products like
images, which in turn can be used to produce higher level data products like mosaic
images, spectra, and light curves. High-level products like source catalogues can also
be produced from the lower level data products. The production of these products
and their uses are described below.

Images: Astronomical images present flux (and typically also flux error) as a function
of position on the sky. Astronomical imaging instruments typically collect raw flux in
many pixels on a distributed detector, and these raw flux values are processed to
correct for instrument sensitivity. For focusing telescopes the position on the detector
is directly related to position on the sky, but for coded aperture masks telescopes the
flux received on the detector is related to the ’shadow’ of the coded aperture mask (see
for example INTEGRAL described in the next section). An example INTEGRAL image
is shown in Figure 2.14.

Spectra: Spectra present specific flux (flux per unit energy / frequency / wavelength)
as a function of photon energy for a single source. For detectors that can measure the
energy of a detected photon, this consists of counting photons in each energy bin at a
fixed point on the sky, and correcting for any instrument sensitivity versus energy.
Object spectra are extremely useful because they can be directly compared to models
for physical mechanisms that produce a spectrum for a source. An example spectrum
using both ISGRI and SPI on INTEGRAL is shown in Figure 2.15.
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SPI onboard INTEGRAL. From Wilms et al. (2004)

Light Curves: Light curves are the flux of the same source as a function of time. These
are produced by collecting flux measurements for the same source across images
taken at different times (once you make sure it’s the same source). Light curves are
useful for comparison to models that predict how a source’s flux should evolve, and
also for analysing patterns of emission that can reveal characteristic timescales of a
system (e.g. accreting binary systems). An example INTEGRAL light curve for the
2015 outburst of V404 Cyg is show in Figure 2.16.

Catalogues: catalogues are a higher level data product produced by astrophysics
surveys built on low-level image products. Spatial and temporal searches are applied
to the images to measure properties of sources in the images for inclusion in the
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FIGURE 2.16: Light curve of V404 Cyg 2015 outburst. From Natalucci et al. (2015)

catalogue. Typical source properties included in catalogue are source position, flux,
error (or significance), and potentially source classification.

2.5.2 Background to HE surveys

Since the beginning of X-ray astronomy, numerous X-ray surveys have been
successfully carried out to discover new types of X-ray emitters and investigate the
nature of the Cosmic X-Ray Background.

The first ever all-sky survey was carried out by Uhuru, also known as the Small
Astronomical Satellite 1 (SAS-1); it had a sensitivity of 103 times the Crab intensity
and contained 339 X-ray sources with observed energy between 2 and 6 keV (Forman
et al., 1978). One of the most prevalent types of discovered objects was a binary star
system, followed by supernova remnants, Seyfert galaxies, and clusters of galaxies.

Detailed investigations of the cosmic X-ray sky were conducted by Markert et al.
(1979) using the MIT 1–40 keV X-ray detectors aboard the OSO 7 satellite from
October 1971 to May 1973. The authors identified the intensity limits or upper bounds
for 3rd Uhuru and OSO 7 listed sources in multiple energy bands, one of which being
the 15–40 keV range, making this the first major hard X-ray catalogue (Giacconi et al.,
1974; Markert et al., 1976, 1977).
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The first attempt to survey the sky at MeV energy range (26 - 1200 keV) was
accomplished with the Sky Survey Instrument aboard Ariel V during 1974 -1979 (Coe
et al., 1982). This survey also discovered the first galaxy LogN-LogS relation at
energies above 100 keV.

Skinner et al. (1987) produced the first observations of the Galactic Center in
high-energy X-rays up to 30 keV by utilising a coded mask X-ray telescope launched
on the Spacelab 2 mission.

An all-sky survey in the hard X-ray band (2.8 to 30 keV) was carried out with the
assistance of the BeppoSAX Wide Field Camera (Jager et al., 1997), which observed
twenty-one transients in the galactic centre region and more than fifty transients and
recurring sources along the galaxy’s plane.

Levine et al. (1984) published the findings of the first comprehensive analysis of X-ray
sources at high X-ray energy (13–180 keV) that was conducted across the whole sky,
which were derived from data that was acquired between August 1977 and January
1979 by the UCSD/MIT Hard X-Ray and Low-Energy Gamma-Ray Instrument A4
aboard the HEAO 1 satellite. The survey includes 72 sources with flux sensitivities
between 10 and 15 mCrab.

TTM/COMIS, a coded-mask imaging spectrometer, was mounted on the Kvant
module of the MIR orbiting station in 1989 and used to take observations of the
Galactic Center region (Sunyaev et al., 1991b; Sunyaev, 1991). In order to ascertain the
component of these sources that is responsible for the emission of hard X-rays, several
measurements of galactic sources were carried out (Sunyaev et al., 1989, 1991a;
Kaniovsky et al., 1997; Borkous et al., 1997).

Hard X-ray observations of the Large Magellanic Cloud (LMC) were also obtained
with the TTM/COMIS instrument. These observations included monitoring and
spectral observations of LMC X–1, LMC X–2, LMC X–3, LMC X–4, and PSR 0540-693.
These observations were obtained at energies ranging from 2–30 keV. A database of 67
X-ray sources with a confidence level of greater than four was published. These X-ray
sources were observed by the TTM/COMIS telescope between 1988 and 1998
(Emelyanov et al., 2000).

Between 1990 and 1992, the ART-P coded-mask telescope aboard the KVANT
observatory made observations of more than 400 sky fields spanning an energy range
of 2.5–60 keV (Sunyaev et al., 1990).

Pavlinsky et al. (1994) surveyed the GC using a 5x5 detector array (Art-P/Granat) and
found it possible to detect 12-point X-ray sources with a sensitivity of 1 mCrab in the
3-17 keV energy range.
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At higher energies, the SIGMA telescope aboard GRANAT could observe more than a
fourth of the sky with a sensitivity greater than 100 mCrab between 1990 to 1998
(Revnivtsev et al., 2004). The SIGMA telescope (Paul et al., 1991) made it possible to
recreate the first images of the hard X-ray sky with an angular resolution of 15 deg in
the energy range of 35-1300 keV, which was accomplished using the SIGMA telescope
and identified 37 hard X-ray sources with energy ranging from 40 to 100 keV
(Revnivtsev et al., 2004).

2.6 Hard X-ray surveys in the 2000s

During the 2000s, significant progress was made in this field due to the launch of two
space-based X-ray telescopes: INTEGRAL and Swift.

INTEGRAL was launched in 2002 and is specifically designed for hard X-ray imaging
and spectroscopy. It has a large field of view and high sensitivity to hard X-rays,
making it ideal for studying various sources, including active galactic nuclei, binary
stars, and supernova remnants.

The Swift satellite was launched in 2004 and is primarily designed to study GRBs, the
most luminous explosions in the universe. It also has the capability to perform X-ray
surveys of the sky, allowing astronomers to study a wide range of high-energy
astronomical sources.

One notable survey performed by INTEGRAL is the Swift/INTEGRAL All-Sky Hard
X-ray Survey (SIX), described in a paper by Bottacini et al. (2012). This survey used
data from the Swift and INTEGRAL satellites to perform a deep, wide-field survey of
the hard X-ray sky. The survey covered an energy range of 20-100 keV. It was able to
detect more than 100 previously unknown hard X-ray sources, providing a wealth of
new information on high-energy astronomical objects.

2.6.1 INTEGRAL

The European Space Agency’s (ESA) International Gamma-Ray Astrophysics
Laboratory (INTEGRAL) was launched in 2002 and has performed over 20 years of
observations in the energy range five keV to 10 MeV. It has a complement of three
primary high-energy instruments: the SPectrometer on INTEGRAL (SPI), the Joint
European X-ray Monitor (JEM-X), and the Imager on Board INTEGRAL (IBIS). IBIS
comprises the INTEGRAL Soft Gamma Ray Imager (ISGRI) and Pixellated Imaging
CaeSium Iodide Telescope (PICsIT) detectors surrounded by an active veto.
IBIS/ISGRI uses a tungsten-coded mask to determine source astrometry through
de-convolution of the mask pattern (shadow) projected onto the detectors.
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FIGURE 2.17: The INTEGRAL spacecraft with its four scientific instruments: IN-
TEGRAL spacecraft model The gamma-ray spectrometer SPI, The gamma-ray im-
ager IBIS, The two X-ray monitors JEM-X, and the optical monitoring camera OMC.

(Source: ESA)

The IBIS telescope (Ubertini et al., 2003) is the most suitable device on board
INTEGRAL for imaging surveys in the hard X-ray range. This device has the optimal
field of view, sensitivity, and angular resolution for a rapid wide-angle scan of the sky,
which is optimised with the scientific objective of regularly monitoring a large portion
of the Galactic plane and discovering the majority of expected transient sources,
whose existence was predicted by X-ray missions such as BeppoSAX and RXTE
operating in the 1990s at lower energies and coarser spatial resolutions. ISGRI
(INTEGRAL Soft Gamma Ray Imager; Lebrun et al., 2003) is a low-energy detector
layer comprised of a pixelated 128 × 128 CdTe solid-state detector that sees the sky
through a coded aperture mask. IBIS/ISGRI produces images of the sky with an
FWHM resolution of 12 arcmin over a 28 × 28 degree field of view and a working
energy range of 15 to 1000 keV. In addition to ISGRI, IBIS is also equipped with the
Pixellated Imaging Caesium Iodide Telescope (PICsIT Labanti et al., 2003) which is
sensitive to a higher energy range of 175 keV to 20 MeV. This thesis focuses on data
obtained by IBIS/ISGRI.

The IBIS telescope employs coded-aperture imaging. Because gamma-rays cannot be
deflected like lower energy photons, taking images of the gamma rays requires a
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FIGURE 2.18: Demonstration of how coded masks can be used for source localisation
by using source shadows on the detector. (Source: Schultz et al., 2009)

different approach. Coded aperture masks achieve this using a distinct pattern of
material that blocks gamma rays, so that gamma ray light from a source produces a
shadow in the pattern of the mask. This enables source localisation (see Figure 2.18).
The coded mask pattern for INTEGRAL is shown in Figure 2.19.

The IBIS telescope incorporates a very large fully-coded FOV of 9 × 9 deg (all source
radiation is controlled by the mask) and a partially-coded FOV of 28 × 28 deg as a
result of its coded-aperture design (only a fraction of source flux is modulated by the
mask). In addition, the “dithering” pattern around the nominal target position, a
controlled and systematic spacecraft dithering manoeuvre introduced to minimise
systematic effects due to spatial and temporal background variations in the
spectrometer’s (SPI) detectors, results in a sky coverage that is even more extensive.
The effective latitude coverage of the Galactic plane is |b| ≤ 17.5 due to the
combination of the normal 5 × 5 dithering grid and multiple INTEGRAL pointings
made possible through the approved Guest Observer Program at the Galactic X-ray
sources (see Krivonos et al., 2012). Consequently, INTEGRAL is able to do
time-resolved mapping of the Galactic plane on a scale of one year. This makes it
possible to take snapshots of the entire Galaxy in hard X-rays, which is not possible
with grazing X-ray telescopes with a small field of view.

The IBIS telescope’s energy response to X-rays with energy over 20 keV enables the
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FIGURE 2.19: Drawing depicting the final coded-mask pattern used for the Imager
on-board the INTEGRAL Satellite (IBIS). (Source: ESA)

detection of extremely obscured objects rendering the INTEGRAL/IBIS Galaxy survey
independent of line-of-sight X-ray photon attenuation. The ISGRI detector of
INTEGRAL/IBIS can offer a census of Galactic X-ray emitters with more than 100 keV
energy. (Bazzano et al., 2006; Krivonos et al., 2015)

The timescale of one INTEGRAL revolution (orbit) is around 3 days, and would
consist of approximately 100 Science Windows (ScW). A ScW is a basic piece of
INTEGRAL data which is either a pointing or a slew. A pointing is a period during
which the spacecraft axis pointing direction remains stable. Due to the dithering
strategy of INTEGRAL, the nominal pointing duration is of order of 2 ks. A slew is a
period during which the spacecraft is maneuvered from one stable position to another,
i.e. moving from one pointing to the next. INTEGRAL will continuously follow one
dithering pattern throughout one observation unless scientific requirements exist to
observe sources over a longer exposure period, in this case the dithering modes can be
switched off allowing INTEGRAL to be in staring mode. An observation group is a
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number of ScWs used in the data analysis. During the scientific analysis, all the ScWs
belonging to the same observation are grouped together to form an Observation
Group (OG). Images can be created at a ScW level, or they can be stacked together to
create a mosaic image. This can be done for several ScWs, whole revolutions, or for
bigger OG groups.

2.6.2 INTEGRAL Surveys

INTEGRAL was guaranteed observations of the Galactic Plane to locate transient
sources and conduct time-resolved mapping of the galactic plane (Winkler, 2001)
during the mission’s first years, which resulted in the first deep survey of the Galactic
Plane, listing 100 known and ten new X-ray sources. During the first year of
observations, INTEGRAL’s ability to detect novel transient sources was demonstrated
for four months when ten new sources were discovered.

Deep surveys of the Galactic centre region were also conducted; sixty sources with a
flux exceeding 1.5 mCrab were identified, including two sources detected for the first
time at energies greater than 20 keV, highlighting the remarkable capability of the
INTEGRAL telescopes to create sensitive sky maps (Revnivtsev et al., 2004).

Then INTEGRAL hard X-ray cartography of the Galactic Plane was extended by
thorough investigations of the Sagittarius spiral arm (Molkov et al., 2004), announcing
the detection of 28 X-ray sources with a flux level exceeding 1.4 mCrab, including
three new sources.

In 2005, further observations on the Galactic Plane (Revnivtsev et al., 2006) observed
47 hard X-ray sources in total, 15 of which were new. The classifications of the sources
were 12 AGN and 11 and 6 galactic binary systems with high-mass and low-mass
optical companions.

Monitoring the source activity in the vicinity of the Galactic bulge began in 2005,
which provided a comprehensive analysis of a homogenous (hard) X-ray sample of 76
sources in the Galactic bulge area from data gathered in the 1.5 years of the
programme and was demonstrated that nearly all Galactic bulge sources are variable
whilst identifying six new hard X-ray sources (Kuulkers et al., 2007).

INTEGRAL observations of the Cassiopeia region spanning 1.6 Ms revealed 11
sources with energies more than 20 keV (Den Hartog et al., 2006).

The first systematic study of hard X-ray sources found with the IBIS telescope, based
on 5 Ms of total exposure time, as a result of ongoing observations and, subsequently,
fast increasing exposure duration, was published by Bird et al. (2004). CAT1 listed 120
sources (28 unidentified objects) detected with a sensitivity of 1 mCrab in the energy
range of 20 to 100 keV.
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FIGURE 2.20: Evolution of source type and number through the five INTEGRAL
IBIS/ISGRI catalogues produced to date (Source: HEASS proposal 2022, PI: Angela

Malizia).

The second INTEGRAL/IBIS/ISGRI catalogue (Bird et al., 2006) with 10 Ms of total
exposure time consisting of 209 sources - 25 percent of new sources.

A third INTEGRAL survey, an all-sky study based on more than 40 Ms of INTEGRAL
exposure, found more than 400 high-energy sources in the energy range 17 - 100 keV,
including both transients and faint persistent objects, as seen on time-averaged maps.
(Bird et al., 2007).

The first IBIS catalogue generated using alternate sky reconstruction algorithms
(Krivonos et al., 2007) contains 403 objects, 316 of which above a 5 detection threshold
on the time-averaged map of the sky, with the remaining items detected in various
exposure subsamples. Using an improved method of sky image reconstruction for the
IBIS telescope to conduct the (at the time) most sensitive survey of the Galaxy above
20 keV - contains 521 objects, 449 of which exceed a 5 detection threshold on the
time-averaged sky map, and 53 of which were spotted during distinct observation
periods. 262 of the detected sources are galactic, while 221 are extragalactic (Krivonos
et al., 2007).

The fourth catalogue of soft gamma-ray sources obtained with IBIS/ISGRI based on
70 Ms of high-quality observations made during the first five and a half years of the
mission and public observations with more than 700 high-energy sources found in the
17 100 keV energy range (Bird et al., 2010). This work carefully analysed IBIS data
using the most recent official OSA software and source detection methods paying
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particular attention to optimising the identification of common transient sources in
order to detect both transients and faint persistent objects that can only be revealed
with long exposure times.

An all-sky catalogue of sources based on IBIS data during the initial one thousand
orbits of INTEGRAL which contained 110 Ms of public scientific observations with a
focus on the Galactic Plane and extragalactic deep exposures presented 939 sources
detected in the 17 100 keV energy band that surpass a 4.5 significance level with 120
new sources (Bird et al., 2016). The evolution of source types and counts through these
INTEGRAL catalogues is illustrated in Figure 2.20.

An INTEGRAL Galactic Plane study based on nine years of observations (Krivonos
et al., 2012), the catlog contains a total of 72 hard X-ray sources identified at S/N > 4,7
that were previously unknown to INTEGRAL surveys.

Krivonos et al. (2015) presented an INTEGRAL all-sky study at energies exceeding 100
keV with greatly increased exposure time. The catalogue of discovered sources
contains 132 objects - dominated by 97 hard X-ray sources of Galactic origin (mostly
Low-Mass X-ray Binaries and High-Mass X-ray Binaries – LMXBs and HMXBs, 83 in
total) compared to the extragalactic source population, which is composed of 35
AGNs.

The most recent INTEGRAL survey is INTEGRAL/IBIS 17-yr hard X-ray all-sky
survey, providing flux information from 17 to 290 keV and the catalogue includes 929
objects, 890 of which exceed a detection threshold of 4.5 sigma. (Krivonos et al., 2022)

In addition to imaging surveys and catalogues, INTEGRAL has also produced a
continuous stream of transient detections via the INTEGRAL Burst Alert System
(IBAS, Mereghetti et al., 2003). The automated software in IBAS was designed to
provide automated alerts with precise localisations (4 arcminutes) to the high energy
community within tens of seconds of the detection of GRBs with IBIS/ISGRI. When
first introduced, IBAS was a marked improvement over the speed and localisation
capabilities of previous facilities, and typically produces 5-10 GRB detections each
year.

2.6.3 Swift

The Swift satellite (Gehrels et al., 2004), launched in 2004, is a multi-wavelength
observatory designed primarily to study GRBs. It has three main instruments
onboard: the Burst Alert Telescope (BAT, Barthelmy et al., 2005), the X-Ray Telescope
(XRT, Burrows et al., 2005), and the UV/Optical Telescope (UVOT, Roming et al.,
2005). The BAT instrument is sensitive to gamma-rays and X-rays and is used to detect
GRBs in real-time. Once a GRB is detected, the satellite can rapidly repoint to observe
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the afterglow with the XRT and UVOT instruments. This allows astronomers to study
the evolution of GRBs and their afterglows, providing valuable information on the
physics of these powerful explosions (see, e.g., Berger, 2014, for a review). In addition
to GRB observations, Swift also performs X-ray sky surveys. For example, the
Swift/BAT Hard X-ray Survey (Baumgartner et al., 2013) is a deep, all-sky survey in
the hard X-ray band (14-195 keV) that provides a comprehensive view of the
high-energy sky. The survey has detected over a thousand new X-ray sources. It has
been used to study a variety of astronomical objects, including active galactic nuclei,
binary stars, and supernova remnants.

The Swift satellite orbits the Earth in a sun-synchronous, low-Earth orbit. This means
it follows a nearly polar orbit that keeps the same local time of day as it passes over a
given point on the Earth. This allows the satellite to observe the same region of the sky
at the same time of day, making it easier to perform long-term monitoring of
astronomical objects. The orbit of Swift has a period of about 96 minutes and an
altitude of about 500 km, which provides it with a good balance between observing
time and exposure to the Earth’s radiation environment. The satellite is equipped with
a pointing system that allows it to rapidly repoint to new targets within about 90
seconds, making it highly efficient for observing fast-evolving astronomical events,
such as GRBs. The data generated by the Swift satellite is diverse and includes X-ray,
ultraviolet, and optical observations, as well as gamma-ray burst detections. X-ray
and ultraviolet data are used to study X-ray sources’ spectral and temporal properties.
In contrast, optical data is used to study the afterglows of GRBs and the properties of
their host galaxies. The gamma-ray burst data is used to study the properties of these
powerful explosions, including their energetics, spectra, and temporal evolution.

The Burst Alert Telescope (BAT) on the Swift satellite is a coded-mask imaging
instrument designed to detect GRBs and perform follow-up observations in the X-ray
and ultraviolet bands. The BAT instrument has a wide field of view (about 1/6 of the
sky) and a large energy range (15-150 keV), making it well-suited for the study of
high-energy astronomical objects. Figure 2.21 shows the arrangement of the BAT
detector and its coded mask which utilises a random pattern (Barthelmy et al., 2005).

The BAT data reduction process involves several steps to convert the raw data into
scientifically useful information. The first step is to perform event extraction, in which
individual gamma-ray photons are identified and their arrival times and energies are
recorded. Next, a mask-weighting algorithm is applied to the data to correct for the
effects of the coded mask and to reconstruct an image of the sky. This image is then
processed to identify sources and to perform source characterisation, including source
position, flux, and spectrum.

In the case of GRB detections, the BAT data is used to trigger an alert to the
astronomical community, allowing follow-up observations to be performed with other
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FIGURE 2.21: Diagram of Swift BAT instrument and its coded mask. (Source:
nasa.gov)

telescopes. The BAT data is also used to study the properties of GRBs, including their
temporal and spectral evolution, energetics, and spectral lags.

Overall, the data reduction process for the BAT instrument on the Swift satellite is a
crucial step in converting the raw data into scientifically useful information. The
resulting data is used to study a wide range of high-energy astronomical objects and
to advance our understanding of the universe and the processes that drive it.

2.6.4 The SIX Survey

One of the first surveys to combine hard X-ray data from Swift and INTEGRAL was
the Swift – INTEGRAL X-ray (SIX) survey (Bottacini et al., 2012).

The SIX survey performed a careful reprocessing of data from both Swift and
INTEGRAL to obtain sky maps that combined all available observations. The sky
maps from the two instruments were then combined by resampling and
cross-calibrating them, with careful attention paid to interpolation during the
resampling. The final combined mosaic achieved greater sensitivity than the
individual surveys and covered an area of over 6000 square degrees.
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FIGURE 2.22: INTEGRAL Exposure maps (Source: Bird et al., 2016)

This survey identified 113 sources of various types including AGN, blazars, X-ray
galaxies and galaxy clusters and some Galactic X-ray sources. This facilitated
measurement of X-ray source density distribution (the log N − log S relation),
obscured AGN fractions (versus both luminosity and redshift), and the AGN X-ray
luminosity function.

2.6.5 cat1000

‘Catalog of 1000 orbits’ (hereafter cat1000, Bird et al., 2016), is an all-sky, soft
gamma-ray source catalogue which uses data from INTEGRAL’s first 1000 orbits. This
survey had a total exposure time of approximately 3.5 years and included 939 sources
– the exposure map for cat1000 is shown in Figure 2.22. This catalogue used a
light-curve based method to search for transient events, but did not attempt to search
for sources on the shortest timescales due to the size of the dataset that would have
created. The shortest timescale mapped corresponded to the ∼3 day orbit of
INTEGRAL.

The data for cat1000 was taken from all publicly available data from revolution
number 12 to revolution 1000, unless flagged as Bad Time Intervals (when known data
errors make the data unusable). This amounted to approx. 73000 ScWs. Pipeline
processing was done by using the standard OSA software (Goldwurm et al., 2003) and
includes all the processing of the data up to and including generating sky images for
each individual ScW. These images were created in 5 energy bands
(17-30,30-60,18-60,20-40 and 20-100 keV).

A reference catalogue is created, this can be considered as the ’prior’ knowledge of the
data. This is a catalogue of the sources that have been previously detected by
INTEGRAL and is used in the pipeline processing for image processing. To calculate
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detector noise, each ScW image is sigma clipped (which removes the sources) and the
RMS is calculated. This allows any ScWs that have a low image quality (below a
certain sigma threshold) to be removed (for example, ScWs that were collected during
high solar activity or soon after a perigee passage). Also staring data is removed at
this stage as these exhibit much higher systematic noise than dithering observations -
this left 67000 ScWs.

The next stage is to create the mosaic images. This process statistically averages the
ScWs images and can be used to create all-sky maps, or maps of specific regions of the
sky. Maps were created on different time-scales, e.g. for a whole revolution, part of a
revolution or whole-archive timescales. In total, for cat1000, 60 all-sky maps (and
variants) and over 19000 revolution maps were constructed and searched (Bird et al.,
2016).

The mosaic maps were then searched for potential sources using two different
algorithms. From this an initial candidate list was made by iteratively merging the
excess lists from each map to the reference catalogue. Any new potential sources were
then added to a base list if they had a detection threshold above a certain number (4.5
sigma for whole-archive and 6 sigma for a revolution map). At the end of the process
these were manually inspected.

Light curves (LC) were then made for every candidate source in five energy bands.
Using what is known as the ’bursticity method’ (Bird et al., 2016), the sources were
searched for variable source emission. This method allows optimisation of detection of
any known or suspected sources that are present on timescales longer than single ScW.

Finally a final source list is created, this is done manually by domain experts. This task
is the most time intensive and where the vast majority biases get included. A number
of steps are performed to minimise the possibility of false catalogue entries. Firstly
each source is manually inspected by a number of domain experts. They inspect each
source’s point spread function (PSF) shape, consistency across multiple energy bands,
and the significance of the source relative to the local noise levels in the map. There
must be unanimous agreement before a potential source is declared a true source.

Figure 2.23 shows the catalogue process which historically has taken on average
around 18 months (though this increases as the data volume increases), and many of
the tasks require skilled domain experts spending many hours to manually check and
classify objects. For missions like INTEGRAL this is just tenable, but for the
next-generation telescopes many of these tasks will need to be redesigned and
automated. Another disadvantage of the current method is that of human bias which
can only be partly addressed by blind voting and “citizen science”. As well as
removing human subjectivity, ML methods would allow published catalogues to be
pre-filtered to a lesser degree and labelled with meta-data that will allow the datasets
to be re-used in unanticipated ways. Three areas where machine learning can be
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FIGURE 2.23: Flowchart showing ISGRI data catalogue processing pipeline Bird et al.
(2016).

applied to streamline the catalogue process are in source detection, source
classification and outlier detection.

The techniques employed to generate ISGRI catalogues (such as cat1000) are no longer
adequate as they do not scale well to the ever increasing dataset. cat1000 took 9
domain experts to spend 2.5 years to produce and as INTEGRAL has now exceeded
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2500 orbits there is a clear need to improve the techniques and tools used. This
motivated the development of the tools presented in this thesis.
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Chapter 3

Background: Machine Learning in
Astronomy

Currently, astronomy is dependent on humans to play the main role in data analysis,
interpretation, and classification of celestial objects, but this will be unsustainable for
the huge volume of data collected from the next generation of telescopes. These
massive datasets have huge potential to generate new knowledge and understanding
but being able to make full use of the data and extract the important information will
require the data to be processed computationally.

As astronomy enters the big data era, the field is seeing a rapid rise in the volume and
complexity of data and will continue to do so as technological advances continue to
allow for the production of ever more powerful detectors, telescopes, and computers.
The raw data harvested will have the potential to form massive multi-temporal and
multi-wavelength datasets of high level data products, so long as the astronomy
community can harness the correct tools that allow us the efficient handling of such
large and complex data sets. Current techniques for exploiting large datasets in
astronomy are already becoming inadequate in dealing with the continually
increasing volume of data that is produced, this will only become exacerbated as the
next generation of telescopes are launched.

Future instruments will increase the number of observed objects and associated
measured properties by more than an order of magnitude. Figure 3.1 illustrates how
data volumes in astronomy surveys have grown over the past few decades and are
poised to grow substantially more in the future. For example, every image taken by
the LSST will be several Gigabytes in size. Every night more than 10 Terabytes of data
will be collected, which will accumulate to 60 Petabytes of data over its lifetime (LSST
Science Collaboration et al., 2009). The Cherenkov Telescope Array (CTA, Actis et al.,
2011) will be an array of over 100 telescopes designed to observe Cherenkov radiation
from particle showers produced in the upper atmosphere by the passage of high
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energy photons and cosmic rays. When fully operational, the CTA is predicted to
produce 27 Petabytes of data per year (Arrabito and Bregeon, 2020). The Square
Kilometer Array (SKA, Dewdney et al., 2009) will consist of over 100,000 radio
antennas in Australia (SKA-Low) and 200 radio telescopes in South Africa (SKA-Mid).
The Australian site alone is expected to produce 8 terabits of raw data per second
(according to SKA mission site: skao.int) and expects to archive over 300 Petabytes of
data per year.

To keep up with this accelerated growth, astronomers are beginning to look to
automated methods to detect, characterise, and classify astronomical objects, and
many machine learning algorithms can be applied to a variety of tasks in this pursuit.
Machine Learning (ML) provides computers with the ability to learn without being
explicitly programmed (Samuel, 1969). ML algorithms, when applied correctly, are
excellent tools for finding patterns in data. Not only do ML techniques allow larger
datasets to be analysed quickly, but they also have the potential to remove the
problem of human bias and, if applied well, can even outperform humans at certain
tasks (LeCun et al., 2015).

A broad variety of ML techniques were explored for the scientific objectives of this
thesis. The outcomes of these explorations are presented in great detail in Chapter 4,
where the superior performance of deep learning algorithms is demonstrated thereby
justifying their selection for the applications achieved in this thesis.

3.1 Introduction to Foundational Concepts in Machine
Learning

3.1.1 Definition of Machine Learning

Machine learning (ML) is a subset of the broader field of artificial intelligence (AI). AI
encompasses all computing capabilities designed to mimic the decision-making ability
of humans. This can include rule-based systems, problem solving and pattern
recognition, as well as machine learning approaches including deep learning. ML
specifically refers to AI applications which utilise algorithms that allow a computer to
learn from and make decisions based on data. Specifically, ML uses statistical
techniques to learn patterns in data and encode them in a model which can be used to
make predictions for new unseen data. Whilst AI refers to the broader goal of
simulating human-like intelligence, ML specifically focuses on the development of
algorithms that can learn from data to achieve this goal.

Deep Learning is an even more focused subset of ML comprising neural networks
with three or more layers, and is meant to mimic the learning behaviour of the human
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FIGURE 3.1: Representative curves of growth for data volumes
in astronomy experiments for historical surveys (top:, from MAST
https://www.cosmos.esa.int/web/machine-learning-group/why-use-ml-
in-astronomy-) and planned surveys (bottom, from Rosa et al. 2020,

https://doi.org/10.1590/0001-3765202020200861)
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brain. A neural network is a computational model inspired by human neural
networks, and it contains processing elements known as ”neurons” organised into
layers. Neurons transmit information between one another in a similar style as human
neurons, with information being received from neurons in upstream layers then
processed by neurons before being passed to neurons in the downstream layers. Deep
learning neural networks typically have an input layer that receives data, one or more
hidden layers that performs calculations on the data and learns the underlying data
relationships, and an output layer that produces the final model prediction.

3.1.2 Terms and Concepts in ML

ML models universally process a set of input data composed of numerous ”features”
to compute an estimation of the desired output of the model, its ”prediction”. The
canonical ML dataset typically used as a training example is the UCI Iris dataset
(Fisher, 1988), which uses properties of iris flowers as inputs to models that predict the
category of iris (See Figure 3.2). In ML models, features are measurable quantities that
describe input data, so for example in the iris dataset the features are the length and
width of the petals and sepals of the irises. Features can be continuous such as the iris
part dimensions, or discrete (categorical) such as real-world applications that might
process data containing day of the week for time series data (an ordinal feature where
adjacent categories have meaning) or geographical data like country (where adjacency
in name or even location might not be meaningful for the target model).

Model outputs, or ”predictions”, also are either continuous or categorical: ML models
that produce a continuous predicted variable are known as regression models, whilst
models that produce a discrete categorical prediction are known as classification
models. In classification models, the different possible predicted categories are called
”classes”, and in the iris dataset example the classes are the three possible categories
of iris plant. A regression model might attempt to predict a continuous variable, so for
example in the iris dataset a model could be trained to predict sepal length from sepal
width and petal width and length.

ML models learn how to make more accurate predictions by undergoing a ”training”
process where data is presented to the model and it the model ”learns” how to make
better predictions through the use of sophisticated algorithms. A detailed description
of ML model training approaches is provided in Section 3.3, but fundamentally ML
models learn by evaluating the merit of predictions from subtly different weights on
input features. For example in the iris dataset, if a simple linear model was used to
predict iris classes from the four input features and its performance evaluated by
measuring the fraction of correct predictions (”accuracy”), an ML model would use
the difference in accuracy for different linear weights to learn how to adjust those
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FIGURE 3.2: Scatter plot of features of members of the iris dataset, colour-coded by
iris category (Source: wikimedia commons)

weights to achieve a more accurate prediction. This process is repeated until an
optimal performance is achieved.

3.2 Applications of Machine Learning in Astronomy

3.2.1 Supervised Classification

Like all ML algorithms, supervised learning algorithms typically have model
hyperparameters. Hyperparameters are values that control the learning process and
determine the values of model parameters the algorithm learns, and these
hyperparameter values can be tuned or optimised. The algorithm uses
hyperparameters while learning; they are not part of the resulting model. After the
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FIGURE 3.3: General workflow diagram of machine learning algorithms (Source:
Basavaraju et al., 2020)

learning process, the model parameters are estimated or learned, constituting the
model itself. The parameters are the values an algorithm can change independently as
it learns and these values, and by extension the model’s performance, are directly
impacted by how the hyperparameters are tuned.

Setting the model hyperparameters is an important part of the training stage of
supervised learning. Before training begins, the labelled dataset is split into three
subsets: training, validation and testing. The training set is used to train and make the
model learn the hidden features/patterns in the data, as initially the model is fit to the
training set. Then the validation set is used to validate our model performance during
training, allowing for unbiased evaluation of the model’s performance. Not only can
this stage be used to tune the hyperparameters but also to avoid overfitting.
Overfitting occurs when a classifier models the training data too well but has not
learned to generalise, so does not perform well on new data. This happens when a
model over-trains on the detail and noise in the input data rather than being able to
generalise and be applied to unseen new data and make accurate predictions. Finally,
the test set is used to test the model after training, providing an unbiased final model
performance by the trained model predicting the target variable of this unseen data
and can be used to compare performances of different supervised learning algorithms.
This workflow is summarised graphically in Figure 3.3.

The performance of supervised algorithms strongly depends on the input dataset. The
majority of supervised ML algorithms are sensitive to the number of features in the
training set and what is referred to as “the curse of dimensionality” arises when
analysing data in high-dimensional spaces resulting in the feature selection being a
crucial element of the process.

Classification assigns new data objects (which could be observations, sources, light
curves etc) into pre-defined classes. This is done by using a training set, which
consists of observations where the class is known and then training a computer
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program with this data. Binary classification deals with problems where there are only
two classes than can be assigned (e.g., star-galaxy classification), and multi class
classification when there are more than two classes (e.g., astrophysical transient
classification). It can be imagined that the input space is separated into distinct areas,
known as decision regions, with decision boundaries being the borders of these
regions. The data is known as being linearly separable when decision boundaries
allow for all the data to be perfectly split into their respective classes.

Presented below is a brief description of some supervised classification algorithms.

3.2.1.1 Discriminant Analysis

Discriminant analysis is well understood and simple to implement with a number of
variants. Linear Discriminant Analysis and and Quadratic Discriminant Analysis are
two types of ML classifiers that produce linear and quadratic decision boundaries
respectively. They use linear or quadratic combinations of the input variables to
model the degree to which data points belong to the target classes. It can then make
predictions on new input data depending on where the new data point sits in the
feature space in relation to the decision boundaries. These two techniques are
relatively simple and can therefore be unsuitable if there are nonlinear and complex
interactions between the variables (Feigelson and Babu, 2012). Discriminant analysis
has been applied to astronomy problems such as the classification of Gaia eclipsing
binary and multiple systems (Ferrari et al., 2015), morphological classification of
galaxies (Süveges et al., 2017), and prediction of solar flares (Leka et al., 2023).

3.2.1.2 Naive Bayes

Naive Bayes is one of the simplest methods of ML classification (Ripley, 1996) and is
based on Bayes’ theorem, and is used in applications such as spam filtering and
sentiment prediction. This algorithm takes the naive assumption of class conditional
independence, essentially assuming that the presence of a feature in a class is
unrelated to the presence of any other feature. This assumption allows for a small
computation time, but also limits the performance of the classifier in more complex
datasets as conditional independence is seldom true for problems in the real world.
Although generally, it is incorrect to assume the independence between variables,
Naive Bayes algorithms have been shown to work well for many datasets. Naive
Bayes has been used in morphological galaxy classification (Bazell and Aha, 2001;
Vavilova et al., 2021), classifying X-ray Sources (Broos et al., 2011; Tranin et al., 2022),
estimating photometric redshifts (Carrasco Kind and Brunner, 2014) and classification
of variable objects and transients (Mahabal et al., 2009).
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3.2.1.3 K-Nearest Neighbour

K-Nearest Neighbour (KNN) is a simple classifier and it is most suited to be applied to
data when there is minimal or no prior knowledge about the distribution. In KNN an
object is assigned a class by calculating the majority vote of its K nearest neighbours in
the multidimensional parameter space and then assigning that class (James et al., 2013)

It is possible to weight the voting by the proximity of the neighbours. This would
mean the very nearest neighbour are more influential, contributing more than
neighbours that are further away. KNN has the advantage that it can work well with
non-linear data, it is simple to use and there is no separate training phase (model
training and final classification are simultaneous). It is important to choose a K that is
large enough to avoid over-fitting but also small enough to avoid oversimplifying the
distribution. KNN can be computationally intensive in large datasets as all the data
points need to be examined in order to decide which points are the nearest
neighbours. KNN has been used in solar flare forecasting (Li et al., 2007), galaxy
density estimation (Ferdosi et al., 2011), quasar-star classification (Peng et al., 2013),
and classification of black holes and neutron stars (de Beurs et al., 2022, see Figure 3.4).

FIGURE 3.4: An example of KNN classification of black holes and neutron stars
(Source: de Beurs et al., 2022).

3.2.1.4 Support Vector Machine

Support Vector Machines (SVM) are more straight forward to apply to binary
classification problems. A SVM works by finding the hyperplane in the feature space
that allows all data points to be kept separate from all the other class types by making
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the separation as large as possible. If there is no hyperplane that separates the data
points, then this method can be used to form a soft margin, which is a hyperplane that
separates as many of the data points into their respective classes as possible while
minimising the distance of the misclassified points (Bishop, 2006). SVM can be used
with the kernel trick (Schoölkopf and Smola, 2002) which projects the data onto a
higher-dimensional feature space which makes the data more sparse and allows a
well-separated hyperplane to be found and produces a non-linear classifier. SVMs can
take a long time to train and it can be hard to incorporate domain knowledge, it is
sometimes also hard to extend this method to problems with more than two classes.
SVMs have been used in photometric redshift estimation (Jones and Singal, 2016),
prediction of solar flares (Tamayo et al., 2016), prediction of instability timescales of
compact planetary systems (Kurcz et al., 2016), source classification (Hui and Gao,
2015), blazar classificataion (Arsioli and Dedin, 2020) and star-galaxy separation (see
Figure 3.5 from Małek et al., 2013; Raboonik et al., 2016; Wang et al., 2022).

FIGURE 3.5: An example of SVMs being used to perform star-galaxy separation
(Source: Małek et al., 2013).

3.2.1.5 Decision Trees

Decision Trees build models in the form of a tree structure. This method can be
applied to both regression and classification problems, but here it will be discussed in
the context of classification (Breiman et al., 1984). A Decision Trees is incrementally
constructed by using recursive binary partitioning to divide up the feature space,
breaking down the data into increasingly smaller subgroups. This results in layers of
nodes that form the tree structure (Esposito et al., 1997). Decision Trees are simple and
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powerful classifiers. They work well even when the feature space is complicated, and
generally yield results with very small bias. On the downside, Decision Trees produce
results with high variance. Making small changes to the features in the training set can
produce tree structures that vary a lot. This is a product of the hierarchical nature of
the Decision Trees, in other words making a small difference in the highest nodes of a
tree can then have the knock-on effect of large changes to the structure as we move
further down the tree. To overcome these problems, there are ensemble methods that
can be used. Bootstrap aggregation (Hothorn and Lausen, 2003), or bagging is one
method and is the basis for a technique called Random Forest (RF Liaw and Wiener,
2002). Another is boosting where multiple Decision Trees are made and whose
combined performance is significantly better than that of any of one the single
Decision Trees (Dietterich, 2000). Even so, simple decision tree models have been
impactful in astronomy, such as their use in star-galaxy classification (see Figure 3.6
from Vasconcellos et al., 2011).

FIGURE 3.6: An example of decision tree being used to perform star-galaxy classifica-
tion in SDSS data (Source: Vasconcellos et al., 2011)

3.2.1.6 Random Forest

A Random Forest is constructed from many Decision Trees. Classification of a new
object occurs by evaluating the output of each Decision Tree in the Random Forest.
Each tree will assign a class to the input variable (”votes” for that class). The Random
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Forest then makes a final classification based on which class has achieved the most
votes from all the trees in the Random Forest. Random Forests are very popular in
Astronomy because they can handle thousands of input variables, but are relatively
easy to understand and build. Random Forests can be trained to classify data from a
particular mission and then applied to new data as it comes in. Additionally, Random
Forests have the potential to estimate which variables (or features) are important
when classifying by counting the fraction of branches that depend on each feature.
Random Forests have been used in photometric classification of supernovae (Dai et al.,
2017; Richards et al., 2012), redshift estimation (Dai et al., 2017), source classification
(Richards et al., 2012; Lo et al., 2014; Fotopoulou et al., 2016; Jayasinghe et al., 2018;
Mistry et al., 2022), photometric lightcurve classification (Möller et al., 2016; Zaidi and
Narayan, 2016), star-galaxy classification (Clarke et al., 2020), transiting planet
classification (Jenkins et al., 2013; Schanche et al., 2019), source identification (Scaringi
et al., 2008) and automated artifact rejection (Luther et al., 2016).

3.2.1.7 Boosted Decision Trees

Boosted Decision Trees are an ensemble approach to ML. Boosting aggregates simple
rules to create a predictive model. In this method many weak learners are used, which
on their own only perform marginally better than chance, but they can then be boosted
to improve performance. A sequence of simple Decision Trees can be created, and
then over each iteration the training observations can be reassigned a weight so that
any misclassified data points are given greater influence when the next weak learner is
created. This effectively means the algorithm pays more attention to the most difficult
to classify points, which overall improves the performance of every subsequent
decision tree. Boosted Decision Trees have been used in signal detection (Vinciguerra
et al., 2017; IceCube Collaboration et al., 2016), photometric redshift estimation (Beck
et al., 2016; Wolf et al., 2016), to predict the stability of planetary systems (Tamayo
et al., 2016), star-galaxy classification (Golob et al., 2021), and object classification
(Lochner et al., 2016; Sevilla-Noarbe and Etayo-Sotos, 2015; Sahakyan et al., 2023)

3.2.1.8 Artificial Neural Networks

Artificial neural networks (ANN), which are loosely inspired by the structure and
workings of a biological brain are increasingly popular in astronomy. They are made
up of a group of interconnected nodes, each of which processes the data that it
receives and then passes this information on to other nodes via weighted connections.
ANNs are a non-linear statistical data modelling tool, which may be used to model
complex relationships between a set of inputs and outputs.
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If we look at just one artificial neuron, we can see it has multiple inputs and one
output. The individual neuron will fire if its output is above a certain threshold. If we
connect neurons into a network, then the resulting structures can learn very complex
hypotheses. ANNs have been used in signal detection (Vinciguerra et al., 2017), object
classification (Bass and Borne, 2016; Salvetti, 2016; Mukund et al., 2016; Charnock and
Moss, 2016) as also illustrated in Figure 3.7 (from de Dios Rojas Olvera et al., 2021),
photometric redshift estimations (Oyaizu et al., 2008; Bilicki et al., 2018), galaxy
morphology (Kuminski and Shamir, 2016), source detection (Dong, 2012), stellar
cluster characterisation (Cantat-Gaudin et al., 2020) and is also used in the Source
Extractor (SExtractor) software (Bertin and Arnouts, 1996).

FIGURE 3.7: An example model architecture that utilises artificial neural networks to
perform classify objects from a large optical survey as stars, galaxies, or QSOs (de Dios

Rojas Olvera et al., 2021).

3.2.2 Unsupervised Classification

Unsupervised machine learning is a type of machine learning in which the training
data are not labelled and the algorithm is not provided with any guidance or feedback
on the correct output for a given input (Ghahramani, 2004). Instead, the goal of
unsupervised learning is to discover patterns or structures in the data that can be used
to classify or cluster the data points into different groups.

Unsupervised learning has been used in a variety of applications in astronomy,
including the classification and clustering of astronomical objects such as stars,
galaxies, and quasars (Clarke et al., 2020). For example, unsupervised learning
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algorithms have been used to identify patterns in the distribution of stars in the Milky
Way galaxy, to classify different types of galaxies based on their properties, and to
identify clusters of quasars in large astronomical surveys (Ethiraj and Bolla, 2022;
Mahalakshmi et al., 2022; Logan and Fotopoulou, 2020).

Unsupervised learning algorithms have also been used to extract features or patterns
from astronomical data that domain experts may miss. For example, unsupervised
learning algorithms have been used to identify features in the spectra of astronomical
objects that can be used to classify them or to measure their physical properties
(Fraix-Burnet et al., 2021; Garcia-Dias et al., 2018).

3.2.2.1 K-means

K-means clustering is a type of unsupervised machine learning algorithm that is used
to partition a dataset into a specified number (k) of clusters (Lloyd, 1982; MacQueen,
1965). The algorithm works by iteratively assigning each data point to the cluster with
the nearest mean, and then re-computing the means of the clusters based on the newly
assigned data points. This process is repeated until the assignments of data points to
clusters converge, at which point the clusters are considered to be stable.

K-means clustering has been used in a many of applications in astronomy, including
the classification of astronomical objects such as stars, galaxies, and quasars. For
example, k-means clustering has been used to identify patterns in the distribution of
stars in the Milky Way galaxy, to classify different types of galaxies based on their
properties, to identify clusters of quasars in large astronomical surveys (Turner et al.,
2019; Ordovás-Pascual and Sánchez Almeida, 2014; Kyrychenko and Kolomiyets,
2021; Wagstaff and Laidler, 2005) and to classify stellar spectra (Garcia-Dias et al.,
2018).

K-means clustering has also been used to extract features or patterns from
astronomical data that may not be immediately apparent to the human eye. For
example, k-means clustering has been used to identify features in the spectra of
astronomical objects that can be used to classify them or to measure their physical
properties (Sánchez Almeida et al., 2010).

Overall, k-means clustering has proven to be a useful tool for the analysis of
astronomical data, and it has the potential to enable the discovery of new patterns and
relationships in the universe that may not have been previously known.
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3.3 Fundamentals of Machine Learning

3.3.1 Varieties of Machine Learning Models

ML comes in three flavours: supervised, unsupervised, and reinforcement learning.
The type of learning that is suitable will depend on the type of problem being
undertaken, and if the use of prior information can be incorporated fully, partially or
not at all. Most astronomy uses of ML employ supervised learning when datasets
consist of input variables (X) and an output variable (Y). The aim is to obtain an
approximation of the mapping function (Y = f (X)), so the model can be applied to
previously-unseen data and predict the target variable with high accuracy.

In practice, this means a labelled training set is required where each data point will
have a number of attributes, individual measurable properties, or characteristics
(features) with a known target property. An ML algorithm can then be applied to the
dataset which will learn the mapping function from the input to the output. The aim
of this type of ML is to try to compute a very accurate approximation of the mapping
function so that it can be used with new input data to predict new output data
(Kotsiantis et al., 2007).

Supervised learning problems are either regression or classification problems; the
difference between the two types is that the dependent attribute is numerical for
regression and categorical for classification. In regression models, the output variable
is a real or continuous value, and the algorithms model the relationship between the
input variables and the output variable to be able to predict output values for new
inputs.In classification models, the output variable is typically a most likely category –
a discrete value from a finite list – but could also be a set of probabilities for each
category. Classification models attempt to draw some conclusions from observed
values and, if given a set of one or more input variables, will try to predict the value of
one or more output labels.

Supervised learning models are constructed according to the input dataset, allowing
supervised learning algorithms to approximate very complex non-linear relations in
the models, allowing for better accuracy and performance compared to traditional
methods that typically adopt a parametric approach to data modelling.

Unsupervised ML does not require a training set, there are only features and no target.
Unsupervised learning algorithms allow for complex relationships that exist in the
dataset to be discovered, without labels provided by an expert. This allows for the
data to be processed by the ML algorithms without prejudice, presumptions or
preconceptions. However, important and useful information might be left out and this
potentially presents a greater challenge for unsupervised approaches. This type of ML
can be used for clustering and dimensionality reduction, and anomaly detection – in
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general trying to simplify complex data by allowing a model to find underlying
patterns. The aim here is to create a model based on the inherent structure of the data
and, as there is no training set, the ML algorithms are free to find potentially
previously unseen patterns and structure and assign target labels, unlike in supervised
ML where the target labels are already provided (Gentleman and Carey, 2008).

Semi-supervised methods fall somewhere between the previous two methods. They
are typically employed where labelled data is relatively expensive to obtain. Although
they can be more involved and challenging to use, they do allow for some prior
information to be added to the algorithm whilst also allowing the freedom to interpret
the data objectively and help draw useful conclusions (Zhu and Goldberg, 2009).

Reinforcement learning (Sutton et al., 1998) is a machine learning technique that trains
an artificial agent to make a sequence of decisions in a dynamic environment. The
agent receives feedback in the form of rewards or penalties for each action taken, and
its goal is to maximise its long-term cumulative reward (Watkins and Dayan, 1992).
The reinforcement learning framework includes an agent, environment, and reward
function. The agent is responsible for taking actions in the environment, and the
environment provides feedback on the agent’s actions. The reward function maps the
agent’s actions to a scalar value, the reward or penalty the agent receives for taking
that action in the environment. The agent learns to make optimal decisions by
exploring the environment and updating its policy based on the received rewards.
This process is called ”trial-and-error” learning because the agent tries different
actions to see which one yields the highest reward. Over time, the agent learns to
make better decisions using the experience gained from previous trials (see, e.g.,
Mnih et al., 2013; Silver et al., 2016).

Reinforcement learning has been used in several applications in astronomy and
astrophysics. One example is the use of reinforcement learning to optimise the
pointing of telescopes (Naghib et al., 2019). Telescopes need to be pointed accurately
at specific targets in the sky, and the accuracy of the pointing depends on various
factors, such as weather conditions, telescope mechanics, and the target’s movement.
Reinforcement learning algorithms can be used to learn the optimal pointing strategy
by considering these various factors and maximising the reward, which can be
defined as the amount of light collected by the telescope. Another example is the use
of reinforcement learning to detect gravitational waves.

In Astronomy, the datasets these algorithms are applied to will contain objects such as
stars or galaxies and the associated features, the input variables, are measured
properties, such as spectra or light- curves. An example of a classification task would
be the algorithm predicting output variables of either “star” or “quasar” where the
objects spectra was the input variable. Whereas an example of regression would be the
algorithm estimating a redshift value.
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3.3.2 Model construction and performance

The development and evaluation of a machine learning model involves training,
validation, and testing. The training comprises learning the model’s parameters
(weights) using a training dataset. A validation dataset is used to adjust the model’s
hyperparameters, such as the learning rate and the regularisation coefficient, as part of
the validation phase. The testing technique involves evaluating the performance of
the final model with a fixed hyperparameter using an independent test dataset (Hastie
et al., 2009). In practice, where there are limitations on dataset size there is usually a
trade-off between estimation accuracy in the training phase and testing accuracy
depending on how the dataset is split.

Quantitative performance metrics are numerical values that are used to evaluate the
performance of a machine learning model. These metrics can be used to compare
different models or to compare the performance of a single model under different
conditions. Some common quantitative performance metrics include accuracy,
precision, recall, and F1 score. These metrics are commonly used in classification
tasks, although they can also be applied to other types of tasks such as regression or
clustering.

Accuracy is the proportion of correct predictions made by the model out of all the
predictions made. It is calculated as the number of correct predictions divided by the
total number of predictions. Precision is the proportion of positive predictions that are
actually correct. It is calculated as the number of true positive predictions divided by
the sum of true positive and false positive predictions. Recall is the proportion of
positive cases that were correctly predicted. It is calculated as the number of true
positive predictions divided by the sum of true positive and false negative predictions.
F1 score is a metric that combines precision and recall. It is calculated as the harmonic
mean of precision and recall, with a higher score indicating a better balance between
the two. The F1 score is often used as a single metric to compare the performance of
different models, as it takes into account both the precision and recall of the model.

A confusion matrix, as shown in figure 3.8, is a table that is used to visualise the
performance of a machine learning model on a classification task (Devroye et al.,
2013). The rows of the table represent the actual classes, and the columns represent the
predicted classes. The entries in the table show the number of samples that were
predicted to belong to each class. The diagonal elements of the confusion matrix
represent the number of samples that were correctly classified, and the off-diagonal
elements represent the number of samples that were misclassified. The confusion
matrix can be used to compute various performance metrics, such as precision, recall,
and F1 score.
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FIGURE 3.8: Confusion matrix and evaluation metrics for two-class classification
(Jeppesen et al., 2019)

3.4 Machine Learning Techniques Applied in Astronomy

3.4.1 Signal and Object Detection

Being able to detect and analyse signals quickly and efficiently is an important task for
an astronomer. It is often required that follow-up observations, particularly in other
wavebands that can paint a clearer picture of the source’s nature, need to occur on
very short time scales in order to be able to produce the best scientific results. Some
areas where signal detection is essential are transient events, variable sources,
gravitational wave signals as well as in the fields of space science and planetary
exploration and environmental monitoring. Often the first stage in classification of
astronomical objects is detecting if an object is present above a particular
signal-to-noise ratio (SNR). In many of these cases it is essential to process the data
quickly to allow rapid discovery, but even today this can be computationally
intensive, so a challenge for future datasets will be to perform this task automatically,
accurately and quickly. Machine learning techniques are already being used in signal
detection, including using ANNs for source detection in images (Bertin and Arnouts,
1996), and gravitational wave signal classification in time series data (Vinciguerra
et al., 2017). These methods will become essential when the next generations missions
begin to deliver data.
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3.4.2 Object Classification

Classifying astronomical objects is an important initial stage in the scientific process.
By placing objects into different classes it enables us to make generalisations about the
classes and also allows us to state hypotheses and to make comparisons with models.
It also allows quick identification of rare or new objects for follow-up observations
optimised to account for object classes. The next generation of telescope will require
more automated techniques to search a single or combined database for particular
classes of interesting or rare objects. Also ML methods can be used to classify new
objects automatically; ML classifiers can be constructed using data from old missions
or from an earlier stage in the mission and used as training sets, and then the classifier
can be applied to new data to automatically determine what class an object is.
Astronomers are already using several ML methods to perform object classification,
including:

• Solar flare classification with SVMs (Raboonik et al., 2016)

• Classification of high-energy (X-ray and gamma-ray) sources using Naive Bayes
(Broos et al., 2011), random forests (Scaringi et al., 2008; Lo et al., 2014), or ANNs
(Salvetti, 2016)

• Classification of optical transients, including variable stars and supernovae,
using decision trees (Mahabal et al., 2009), boosted decision trees (Lochner et al.,
2016), random forests (Bass and Borne, 2016), and deep neural networks
(Charnock and Moss, 2016)

• Quasar-star classification with SVMs and KNN (Peng et al., 2013)

• Photometric redshift template selection with random forests (Fotopoulou et al.,
2016)

• Eclipsing binary light curve classification with LDA and RF (Süveges et al., 2017)

• Gravitational wave signal classification with ANNs (Mukund et al., 2016)

Though individual results vary, these classification methods show high accuracy
(typically 90-95% successful classification) and completeness.

3.4.3 Star-Galaxy Separation

Almost all stars are unresolved in photometric datasets and so appear as point sources
because of their relatively small size compared to the distance between us. Other
sources such as supernova and quasars for example, are also seen as point sources,
whereas galaxies are further away but generally subtend a larger angle so appear to us
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as extended sources. Due to this, it is an important task for astronomers to be able to
categorise what objects are by the separation of photometric catalogues into stars,
galaxies and other astrophysical objects. Already work has been done to automate this
process as the number of sources in a typical survey is already large. For example,
Sevilla-Noarbe and Etayo-Sotos (2015) use boosted decision trees for star-galaxy
separation to achieve star impurity levels less than 1% in their galaxy sample.

3.4.4 Galaxy Morphology

Galaxies can be classified by their morphology, which is grouping them by their size,
shape or visual appearance. The most well known galaxy morphological classification
scheme is the Hubble sequence - which broadly puts galaxies into four classes,
ellipticals, lenticulars, spirals and irregulars. ML classifiers can be usefully applied
here. Using supervised methods features can be extracted from the images of galaxies
with known morphology and used to build classifiers which can then be applied to
new data. Ferrari et al. (2015) used linear discriminant analysis to achieve greater than
90% successful morphological classifications, and Bazell and Aha (2001) used both
naive bayes and ANNs to classify morphology of galaxies. Unsupervised methods can
also be applied to datasets where the initial distribution of classes is unknown.

There has also been use of what has come to be known as citizen science, particularly
made popular by Galaxy Zoo (Lintott et al., 2008). This is where members of the
general public can view images of different galaxies and assign them to particular
classes. This labels the images which then can be used to form a training set to build
ML classifiers. The full final sample of citizen-science-labelled galaxy morphologies
have allowed Galaxy Zoo to build ML classifiers that achieve optical galaxy
morphological classification with 97% accuracy (Domı́nguez Sánchez et al., 2018) and
radio galaxy classification with greater than 90% accuracy (Wu et al., 2019).

3.4.5 Time Series

Time series analysis looks at an ordered sequence of values of a variable at time
intervals. In an astronomy context this could mean investigating periodic processes
such as orbital and rotational times of astrophysical objects, or exploring transient
data related to supernovae, gamma-ray bursts and other sources from detection,
identification and classification or looking at stochastic processes relating to accreting
systems such a neutron stars and black holes. ML classification of light curves (LC)
can be used in astronomical time series analysis. A LC is a graph showing the
variation in the light received over a period of time from an object. They can aid the
rapid detection and discovery of events in real time, which then allows quick
decisions to be made about which objects are to be followed up for detailed study.
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Some work in supernova classification using time series photometric data has
employed random forests (Zaidi and Narayan, 2016) and boosted decision trees
(Möller et al., 2016) achieving 95% purity.

3.4.6 Photometric Redshifts

It is known that each chemical element emits photons at specific wavelengths and
these are seen as either absorption or emission lines in the spectra of astronomical
objects. By observing the position of these lines, we can tell which elements are present
in a source. In astronomy, a phenomena known as cosmological redshift occurs, which
sees these spectral lines moved towards the red end of the spectrum. The wavelength
at which the radiation is originally emitted is lengthened as it travels through our
expanding universe. Astronomers are able to determine how far away distant objects
are by measuring this wavelength expansion. High resolution spectroscopy is the
most reliable approach to measure redshift, but is observationally expensive
compared to broadband photometry. Reliable measurements of redshift from imaging
data covering a few different wavebands, known as photometric redshifts, is a more
desirable option for obtaining redshifts for large quantities of sources.

During recent years, additional work done has been done using photometric data to
estimate redshift. There is much more photometric data available than spectral data,
so although photometric redshifts are less accurate, they allow for much larger sample
sizes for statistical studies. Astronomers have been using a variety of ML to determine
photometric redshifts for galaxies including Naive Bayes (Carrasco Kind and Brunner,
2014), SVMs (Jones and Singal, 2016), KNN (Beck et al., 2016), and boosted decision
trees and ANNs (Wolf et al., 2016). These methods have shown great success in
estimating photometric redshifts for normal galaxies with errors in ∆z/(1 + z) of
order 0.01 − 0.03. In active galactic nuclei and quasars, it can be a more difficult task to
estimate photometric redshift, as bright and broad emission lines dominate the
sources spectra. ML techniques have been applied to this area to solve this problem,
such as a CNN-based approach (Pasquet-Itam and Pasquet, 2018) that yields quasar
redshift accuracy of 0.3 (for redshifts up to around z = 6).

3.4.7 Outliers

One of the greatest desires of astronomers is to discover and learn about unusual, rare
or unknown types of astronomical objects or phenomena. One way of finding said
objects is to detect and identify outliers as they often provide useful information. An
outlier can be described as an observation that deviates so much from other
observations so that it arouses suspicions that it is generated by a different mechanism
(Hawkins, 1980). Outliers are often ignored, considered noise or removed from
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datasets, but these objects could lead to the discovery of totally unexpected new
classes of objects. As well as the potential to discover new types of objects, outlier
detection is also useful in enabling good data analysis. Outliers in data can impact
results and distort the statistical significance of a sample. Therefore developing
rigorous methods to identify outliers and what impact they have on results is an
important task in large scale datasets (Garg and Kalai, 2016). Astronomers have
employed a variety of techniques to find outliers: unsupervised random forests to
detect unusual galaxies (Baron and Poznanski, 2017) or stellar systems (Reis et al.,
2018); unusual quasar selection using self-organising maps (Meusinger et al., 2012);
anomalous stellar system identification in Kepler data using unsupervised random
forests coupled to manifold-learning algorithms (Martı́nez-Galarza et al., 2021); and
unusual optical transient identification using a combination of unsupervised random
forests, a KNN-based density approach, Gaussian mixture models, and support vector
machines (Malanchev et al., 2021).

3.4.8 Limitations of ML in astro

Despite their utility in various astronomical activities, many Machine Learning
techniques were not created for noisy and incomplete astronomical datasets. In
particular, measurable features usually contain a wide range of uncertainty values,
and these uncertainties are frequently disregarded during model training. In actuality,
the performance of Machine Learning algorithms is heavily dependent on the
signal-to-noise ratio of the objects in the sample, and a model designed for a dataset
with specific noise characteristics will fail when applied to a dataset with different
noise characteristics. In addition, whereas in computer vision the labels provided to
the algorithm are regarded as “ground truth” (for example, the categorisation of cats
and dogs in photographs), in astronomy the labels may be ambiguous. For example,
in a classification task of “authentic” versus “fake” in transient detection on multiple
images (Bloom et al., 2012) the labels in the training set are taken from the manual
categorisation of scientists and citizen-scientists. Some may regard a certain event to
be “authentic,” while others may label it “fake.” In addition, labels inside the training
set may be the output of a different algorithm that generates labels accompanied by
uncertainty. Similarly, the bulk of Machine Learning algorithms ignore such
uncertainty.

Recently a modified Random Forest was deployed to account for measurement
(feature) and class uncertainty (Reis et al., 2018). The Probabilistic Random Forest
method considers features and labels as random variables rather than deterministic
values, with each random variable represented by a probability distribution function
whose mean is the reported measurement and whose variance is the stated
uncertainty. Tests indicated that the Probabilistic Random Forest outperforms the
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traditional Random Forest when applied to datasets with varied noise levels, with up
to a 10 percent improvement in classification accuracy when using noisy features and
a 30 percent improvement when using noisy labels. Probabilistic Random Forest
accommodates missing values in the data naturally and outperforms Random Forest
when applied to a dataset with distinct noise characteristics in the training and test
sets.

When applying supervised learning algorithms to astronomical datasets, uncertainty
treatment, transfer of information, and interpretability of the resulting models are the
major challenges. As previously stated, the majority of supervised learning algorithms
are not built for astronomical data; they implicitly assume that all the dataset’s
features are of a comparable quality and that the provided labels can be considered
ground truth (Baron, 2019). However, astronomical records are noisy and insufficient,
and the designations provided by human professionals are frequently confusing.
Therefore, supervised learning techniques function best when applied to datasets with
a high signal-to-noise ratio or stable noise characteristics. The efficiency of supervised
learning algorithms is largely dependent on the noise characteristics of the objects in
the sample; hence, an algorithm trained on a dataset with particular noise
characteristics will not generalise to a similar dataset with other noise characteristics.
Consequently, it is essential to tweak existing tools and build new algorithms that
account for data uncertainty during model development. In addition, these
algorithms must provide prediction uncertainties based on the intrinsic properties of
the sample items and their respective measurement uncertainties.

The second hurdle when applying supervised learning algorithms to astronomical
datasets is the transfer of knowledge. In other words, an algorithm trained on a
particular survey with a particular instrument, cadence, and object targeting selection
will typically fail to generalise to a different instrument with different characteristics,
even if the object’s intrinsic properties are comparable in both the surveys.
Consequently, machine learning algorithms are deployed largely to finished surveys
and infrequently to ongoing polls that have not yet amassed sufficient labelled data.

Knowledge transfer is of particular significance when searching for uncommon
phenomena where supervised learning methods trained on simulated data cannot
generalise effectively to real datasets. This challenge can be overcome through transfer
learning strategies (see, e.g., Weiss et al., 2016, for a review). Although these methods
are discussed in computer science literature, they are rarely employed in astronomy.
The interpretation of the resulting models is the third problem related with the use of
supervised learning techniques to astronomical datasets. Even though supervised
learning algorithms provide an extraordinarily flexible and versatile framework for
the building of complex decision functions, beating conventional algorithms in
classification and regression tasks, the resulting models are typically challenging to



3.4. Machine Learning Techniques Applied in Astronomy 75

analyse. Thus, it is not always possible to comprehend what the model has learned
and why it reaches particular results.

Typically, as scientists, we wish to comprehend the created model and the
decision-making procedure, as this understanding can teach us something new about
the underlying physics. This challenge is especially significant for cutting-edge deep
learning systems, which have been shown to succeed in a variety of tasks. As we
continue to develop more advanced classification and regression tools, it is essential
that we also develop methods for understanding their outcomes. Interpreting the
results and comparing multiple unsupervised learning methods are the most
challenging components of applying unsupervised learning algorithms to
astronomical datasets. Because unsupervised learning algorithms frequently optimise
an internal cost function that does not necessarily correspond with our scientific
motivation, and because these algorithms are not trained according to a definition of
“ground truth”, their results may lead to incorrect interpretations of trends and
patterns in our datasets. Numerous cutting-edge algorithms are modular, allowing us
to construct a cost function more suited to the current task. Consequently, it is
essential to develop cost functions that better fit with our scientific goals. Analysing
and comparing the outputs of an unsupervised learning algorithm with those of other
algorithms still requires domain expertise; the process cannot be automated.
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Chapter 4

A deep learning approach to source
detection in hard X-ray surveys

Thanks to the current generation of space telescopes with survey capabilities, the sky
in the hard X-ray / soft gamma-ray band (approximately 10keV-1MeV energy) has
shown itself to be both well-populated and highly variable. Surveys in this band are
normally carried out using coded aperture telescopes that provide a good sensitivity
across a wide field of view (typically > 100 square degrees), and as such allow
frequent returns to the same sky region, producing rich datasets with information in
both spatial and temporal dimensions.

However, the analysis of data from coded aperture telescopes is not trivial, as it is an
indirect imaging method and sky images can contain systematic noise as a result of an
imperfect instrument model, and also when an adequate description of the source
distribution cannot be determined, as is sometimes the case in crowded regions where
sources cannot be fully resolved. The sources in the hard X-ray sky display a huge
dynamic range, and are thus detectable on many different timescales. While the
brightest sources can be detected in a single observation, the faintest sources may
require 1000s of images to be co-added. More recent surveys (Bird et al., 2010, 2016)
have searched for ways to detect sources on all timescales in an efficient way, but these
are generally expensive in operator effort, and as the data from such surveys is ever
increasing, there is a need for automated techniques that can scale with the data when
it exceeds the capacity to be processed manually.

This chapter presents a new method to efficiently search for excesses in sky maps that
may also contain systematic artefacts of the imaging process. Following on from this,
the next chapter presents how to intelligently combine lists of excesses found in
multiple maps. These maps may be generated in different energy bands, in different
sky orientations, or at different times - but all may be considered potential information
concerning each putative source. Due to the dynamic range across the source
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population, a bright persistent source may be detected 1000s of times in individual
observations (as well as in any co-added maps) whereas information on a fainter
source may be determined from just co-added images. Conversely a bright transient
may be seen in just a few observations, and be completely undetectable in a co-added
image mosaic. The challenge is to combine all the excess detections into a coherent
source catalogue, suppressing statistical noise in the presence of systematic effects,
efficiently and without introducing the subjective biases that human intervention can
produce.

Specifically in this chapter, images produced by the INTEGRAL/IBIS telescope in the
∼18-100 keV band are used (though it is worth noting that the low energy sensitivity
limit for IBIS/ISGRI has degraded over time to now approximately 25 keV), but the
methods would be equally applicable to the Swift/BAT telescope images as well as
other instruments.

As previously discussed both the Swift/BAT and INTEGRAL/IBIS use coded
aperture masks to create images of the X-rays that are detected as already described.
In Swift/BAT, the coded mask is made up of a grid of 52,960 square apertures, each of
which is 4.1 mm on a side. The detector is made up of a grid of 32,768 individual
detectors, each of which measures 4 mm by 4 mm. The resulting images have a
resolution of ∼22 arcminutes (∼0.37 degrees) (Barthelmy et al., 2005).

In INTEGRAL/IBIS, the coded mask is made up of a pattern of 16384 square
apertures, each of which is 3.7 mm on a side. The IBIS/ISGRI detector is made up of a
grid of 4096 individual detectors, each of which measures 4.5 mm by 4.5 mm. The
resulting images have a resolution of ∼12 arcminutes (∼0.2 degrees) (Ubertini et al.,
2003).

There are other instruments that also use coded aperture masks to create X-ray
images, such as the All-Sky Monitor (ASM, Levine et al., 1996) on board the Rossi
X-ray Timing Explorer (RXTE). These instruments have similar technical data
relationships to Swift/BAT and INTEGRAL/IBIS, but they also have some differences
in their designs and resolutions.

These similarities mean it is possible to apply the method presented in this chapter to
these different instruments, although the differences mean that retraining of the
method presented in this chapter with data from the individual missions would have
to occur.

This chapter introduces new tools that have been developed using deep learning
techniques to improve how multiple IBIS/ISGRI maps are searched for sources. First
the specific dataset for this analysis will be introduced, along with a brief description
of previous methods for source detection. A description of early tests exploring
different ML models follows, where traditional methods are compared to a more
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modern and more effective deep learning model. The final architecture of the deep
learning method and the training process are then discussed, including how the test
and training set were generated. A comparison of this new method to the source
detection tools used in producing recent catalogues can be found at the conclusion of
the next chapter, where the crucial technique of excess merging for final catalogue
production is described.

4.1 How were sources identified in previous catalogues?

Cat1000 used both the standard astronomy package SExtractor (Bertin and Arnouts,
1996) and a custom-made piece of software called peakfind to detect sources in stacked
ISGRI maps. This chapter presents a new tool using a deep learning technique –
specifically, a convolutional neural network (CNN) – to search ISGRI maps to detect
sources. Cat1000 used a custom-built piece of software called megamerge to combine
the detections found in multiple maps. This thesis presents a new method using
Bayesian matching (Budavári and Szalay, 2008) that removes some of the bias that was
inherently part of the megamerge process (see Chapter 5). Together source detection
and excess merging form the key steps for survey catalogue production, and this
section presents further detail on source detection approaches for cat1000.

In cat1000 approximately 67000 ScWs were used to create stacked maps using a
purpose-built image mosaic tool which was developed to statistically average the
images from multiple input maps. This allowed all-sky maps (these all-sky maps have
a pixel size of 2.4 arcminutes) to be created from a large number of input ScWs (recall
Figure 2.23 from Chapter 2 shows the entire cat1000 process from the ScW images to
the final sources list). Mosaics were constructed for five energy bands
(17-30,30-60,18-60,20-40 and 20-100 keV) and in four sky projections: centred on the
Galactic Center, on the Galactic anti-center, north Galactic polar and south Galactic
polar. These projections were chosen in order to reduce PSF distortion which impedes
the source detection algorithms used.

60 all-sky maps and over 19000 revolution maps were constructed and searched for
flux excesses indicating an astrophysical source to produce an initial excess list. Two
different techniques were used to search the mosaics maps, the standard SExtractor
tool, and peakfind which takes into account the varying levels of systematic
background. SExtractor has sophisticated algorithms for pre-filtering the image to
enhance detection of specific PSFs, and is capable of de-blending some complex source
regions, both of which are important for ISGRI maps. However, it does not work so
well with local variations in systematic noise levels, which are a feature of the ISGRI
maps. peakfind uses a recursive search around the peak position to detect excesses,
maintaining some de-blending capability but performing only limited tests on the
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shape of the PSF detected. The main benefit of peakfind is that it performs a local
assessment of the image noise and assesses excesses relative to that local background.
As such it is much less vulnerable to over-detection in noisy areas of the maps.

The use of multiple excess detection algorithms was valuable in cat1000 production as
the different methods used could be compared and an excess appearing in both lists
could be treated with higher confidence. However the different underlying
approaches meant that all excesses still needed manual checking as complex regions
were often interpreted differently by the two algorithms, and this was a natural path
for operator bias to be introduced.

During cat1000 production, both SExtractor and peakfind had to be run on a large
number of maps in five individual energy bands, for different sky projections and on
different timescales - revolution level, observation sequences and whole-archive.
Although the performance of the methods was similar, the time taken for this and the
subsequent combination of the excesses found in these maps was substantial because
this complex task placed a high demand on both computing and human resources.

For future catalogues, it is hoped that new techniques can be developed to make this
task more tractable - and indeed extend it to the ScW timescale data which had not
been attempted for previous catalogues. The use of HEALPix (Hierarchical Equal
Area isoLatitude Pixelation) based maps will reduce the number of sky projections
needed, and an image search that combines multiple energy bands will not only save
time but may also provide a more robust detection as the energy bands are not
completely independent and it is expected that a source appearing in one energy band
to appear in some, but not necessarily all, others. Such combination logic was part of
the manual inspection of the excesses, and an automated method which took the same
approach should be less vulnerable to random image noise. Unfortunately this is still
not fool-proof, as systematic noise and ghost sources appear at the same position in
every energy band. In principle, an automated method could also recognise sensible
ratios of flux in different energy bands as the typical X-ray source spectra give rise to
fairly predictable flux ratios across the energy bands.

These complex requirements naturally motivate the exploration of machine learning
models for source detection. In the sections that follow, the results of initial
exploration of traditional ML methods will be presented and compared to the more
promising results achieved with deep learning.

4.2 Preliminary exploration of ML models

Several different machine learning algorithms were explored and their performances
measured whilst trying to ascertain which would he most effective in developing a
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source detector. During this exploration stage, a small subset of the dataset, revolution
60, was used. This revolution is generally accepted amongst the INTEGRAL
collaboration as a good example of high-quality data suitable for testing new analysis
techniques. The data were tested with both traditional ML approaches (Section 4.2.1)
and deep learning techniques (Section 4.2.2). A final architecture based on CNNs was
selected for deployment on the full INTEGRAL/ISGRI dataset and is described in
greater detail in the section that follows (Section 4.3).

4.2.1 Machine Learning Methods

For initial exploration of ML methods, ScW images were broken down into 11x11
pixel windows and a domain expert was asked to suggest several features that could
be extracted from the windows to enable the algorithms to classify if a source was
present. This window size, which corresponds to roughly 26 arminutes across, was
chosen to be large enough to contain a typical source but small compared to the
average distance between adjacent sources.

The first feature was generated by fitting a 2D Gaussian over a 11x11 pixel window.
The peak of the Gaussian was calculated to a sub-pixel level and then the maximum
amplitude was calculated. The second feature was local std from the intensity maps.
The third feature was the maximum value taken from the significance map in the
11x11 window.

A training set was created by first using the OSA generated source list to determine
what the pixel coordinates were for each known source in the revoultion. A process
called sigma clipping was then used. This had the effect of removing the sources from
the image, and produced a masked array where anything above a certain threshold
was excluded. This allows the local noise to be calculated on the intensity maps. The
other features were extracted for each source, which were: (i) the peak flux for a
gaussian fit to the flux profile, (ii) the hardness ratio (20-40 keV compared to 60-100
keV) of the source, and (iii) its galactic coordinates. Then examples of non-sources
were generated - everything else in the image that is not an actual source. This ranges
from zero-valued areas to noise and other excesses in the images that are not sources.
The mask-array that was generated in the initial sigma clipping stage was used as this
had already removed all the sources. Then a sliding 11x11 pixel window, was moved
over each image extracting the same features as for the sources. 70 percent of both the
sources and the non-sources were used for the training set, and the remaining 30
percent were held back to be used to test the classifier’s performance.

Using the training set, six classifiers were built: Linear Discriminant Analysis, KNN,
Decision Trees, Random Forest, a BDT and an ensemble classifier called RUSBoost
(Random Under Sampling Seiffert et al., 2010). RUSBoost works very well when
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FIGURE 4.1: Images of sources in rev 1786 from OSA (top left) compared to locations
(pixel coordinates) of sources from from three ML methods: Random Forest (top right),

RUSBoost (bottom left) and KNN (bottom right).

dealing with imbalanced datasets. This means some classes in the training data have
fewer members than others. In this case there are many more examples of non-sources
than sources. The algorithm takes N (the number of members in the class with the
fewest members in the training data) as the basic unit for sampling. Classes with more
members are under-sampled by taking only N observations of each class. In other
words, if there are K classes, then, for each weak learner in the ensemble, RUSBoost
takes a subset of the data with N observations from each of the K classes. The boosting
procedure follows the procedure in AdaBoostM2 (Eibl and Pfeiffer, 2005) for
reweighting and constructing the ensemble.

As Table 4.1 shows, several of the classifiers performed well (Decision Tree, Random
Forest and RUSboost) on the test data. For RUSBoost this is most probably to do with
the fact it works extremely well on unbalanced datasets. RUSboost only misclassified
four of the sources, and on further inspection, these sources were only present in a
single ScW, so would be very weak sources. Decision Tree methods often work well
when dealing with classification problems and in this case works well as the data was
non-linearly separable. This maybe why linear discriminate analysis had the lowest
performance as it works best when the data can be linearly separated. NRT data for
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LDA - Training Set Ground Truth Source Ground Truth Background
Predicted Source 123 207
Predicted Background 176 50169

LDA - Test Set Ground Truth Source Ground Truth Background
Predicted Source 65 84
Predicted Background 63 21506

kNN - Training Set Ground Truth Source Ground Truth Background
Predicted Source 299 19
Predicted Background 0 50357

kNN - Test Set Ground Truth Source Ground Truth Background
Predicted Source 126 12
Predicted Background 2 21578

DT - Training Set Ground Truth Source Ground Truth Background
Predicted Source 299 18
Predicted Background 0 50358

DT - Test Set Ground Truth Source Ground Truth Background
Predicted Source 123 6
Predicted Background 5 21584

abKD - Training Set Ground Truth Source Ground Truth Background
Predicted Source 299 633
Predicted Background 0 49743

abKD - Test Set Ground Truth Source Ground Truth Background
Predicted Source 122 286
Predicted Background 6 21304

RUSBoost - Train. Set Ground Truth Source Ground Truth Background
Predicted Source 295 8
Predicted Background 4 50368

RUSBoost - Test Set Ground Truth Source Ground Truth Background
Predicted Source 124 6
Predicted Background 4 21584

RF - Training Set Ground Truth Source Ground Truth Background
Predicted Source 299 4
Predicted Background 0 50372

RF - Test Set Ground Truth Source Ground Truth Background
Predicted Source 123 4
Predicted Background 5 21586

TABLE 4.1: Confusion matrices for various classifiers applied to ISGRI sources and
background, for both training and test sets.



84 Chapter 4. A deep learning approach to source detection in hard X-ray surveys

revolution 1786 (the recent revolution at time of this early analysis) was then
download and run through some classifiers. Random Forest and RUSBoost performed
very well, and identified all the OSA software sources. Figure 4.1 shows this and the
result for KNN is also included as a comparison. Although for this example (only
using revolution 60) our dataset was fairly small, both Random Forest and RUSBoost
can deal with much larger datasets.

4.2.2 Deep Learning Method

4.2.2.1 Convolutional Neural Networks

Convolutional neural networks (CNN) developed in recent years are most commonly
applied in the field of image processing because they perform well at dealing with
image recognition and classifications tasks and are considered to be one of the leading
techniques in the field (LeCun et al., 1995). In the absence of domain knowledge they
can work well with raw features; a CNN automatically learns the underlying features
required to detect when a source is present (Schmidhuber, 2015). These distinct
advantages make a CNN the ideal choice for source detection in high energy
astronomy images. A CNN is a supervised method and thus requires a training set to
be run through a CNN many times, adjusting the CNN’s parameters using
backpropagation to minimise a loss function (LeCun et al., 1988).

In image classification, pixels that are near each other are quite likely to be more
related than two pixels that are further away. This means that the pixels’ proximity to
one another is an important factor whilst classifying and CNNs specifically take
advantage of this fact (LeCun et al., 2015). In a standard neural network, every pixel is
linked to every single neuron, in the case of image classification this added
computational load makes training more difficult and resulting models are often less
accurate. A CNN removes a lot of these less significant connections, and makes the
image processing computationally manageable through filtering the connections by
proximity. In a given layer, rather than linking every input to every neuron, CNNs
restrict the connections intentionally so that any one neuron accepts the inputs only
from a small subsection of the previous layer. Therefore, each neuron is responsible
for processing only a certain portion of an image. Combined with effective training
methods for deep layer networks this provides a powerful approach.

As demonstrated in Figure 4.2 an image in a CNN is passed through a combination of
successive layers:

• Convolutional layer: here the filters can be thought of as feature identifiers.
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FIGURE 4.2: This image shows a typical architecture of a CNN, including the input
layer, convolutional layers, pooling layers, fully connected layers, and output layer

(Yamashita et al., 2018).

• Nonlinear layer: the CNN uses ReLu (negative inputs are zeroed) (Hahnloser
et al., 2000). This allows the network to approximate arbitrary functions by
introducing non-linearities. (Nair and Hinton, 2010)

• Max Pooling layer: this down-samples the input, thereby increasing the network’s
efficiency and allowing the network to train quicker (Nagi et al., 2011)

• Fully connected layers: neurons in a fully connected layer have connections to all
activations in the previous layer. The CNN can then use a softmax activation
function to produce the final output: a probability of the input being a source
and not a source (and ensure a partition of unity) (Bishop, 2006).

• Categorical crossentropy : This is a loss function that is used in multi-class
classification tasks where an example can only belong to two or more label
classes, and the model must decide which one. It computes the loss between the
labels and predictions. (Zhang and Sabuncu, 2018).

A CNN is a very powerful and efficient model which, unlike some other machine
learning methods, performs automatic feature extraction. The network picks out the
important features in an image in order for it to make highly accurate classifications.
In fact CNNs can outperform humans in image classification due to the networks’
ability to pick out underlying patterns and structures that domain experts can be
unaware existed (LeCun et al., 2015).
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4.2.2.2 CNN results

A CNN was trained using examples of sources and background extracted in 11 × 11
pixel windows from 3 channels (intensity, significance and exposure maps) in the
energy band 18-60 keV. It was important when selecting these examples that the
sources included had a very high confidence of their detection and classification. This
was to try and keep any human biases out of the network. The sources that were used
were all from INTEGRAL’s 60th revolution. This revolution included 106 ScW and
occurred in 2003, allowing plenty of time for followup observations and further
analysis to have been undertaken.

A dataset with examples of sources and background in 11 × 11 pixel window was
generated; this size was picked as it was large enough to contain the whole source, but
not too large that other sources would be in the window. The windows were then split
into a training set (70%) and a test set (30%). The test set would not be used in training
the CNN but would be used to produce a measure of the network’s perform.

The dataset was very unbalanced, there were many more examples of background
(71,966) than of sources (427). In ML, an unbalanced dataset is one in which the
number of examples in each class is significantly different from the others. For
example, a dataset for a binary classification problem might have 90% of the examples
in one class and only 10% in the other. This is a common problem in real-world
applications where certain classes might be much rarer than others.

When dealing with an unbalanced dataset, it’s important to use an appropriate loss
function to train the model. The choice of loss function can have a significant impact
on the model’s ability to learn the minority class. One common approach is to use a
loss function that is inversely proportional to the class priors, which reflects the
relative importance of each class in the dataset (He et al., 2008). This method was used
in this scenario to stop the network just classifying everything as background and still
producing a high performance percentage.

Fundamentally this is an image classification task where the CNN learns the features
which separate a window containing a source from the background. The training set
is run through CNN many times adjusting the CNN’s parameters to minimise a loss
function. The window is passed through a series of layers as already described.

Once the network was fully trained, a 11 × 11 pixel window could be moved across an
entire astronomical image which could contain many sources. Figure 4.3 shows how
the network takes the input window image, passes it through a series of convolution,
nonlinear activation (ReLu), pooling (downsampling), and fully-connected layers and
then returns an output for each window, with the assumption that each window
contains only one source. The network was trained using 50376 examples of
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1

Inputs:
11x11 pixel windows

3 channels: 
Intensity, significance and exposure

Convolutional layer 1:
8 filters: 4x4

Plus ReLu

Convolutional layer 2:
16 filters: 3x3

Plus ReLu

Max Pooling 2x2

Max Pooling 2 x 2 

Outputs from 
convolutional layer 1

Outputs from 
convolutional layer 2 

Fully 
connected 
layersSoftmax

Output: 0 = non source 
1 = source

FIGURE 4.3: The architecture of the source detector CNN. This shows how a 11 × 11
pixel window with a source present is processed through the CNN resulting in its

detection.
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TABLE 4.2: A selection of the different CNN architectures tried when producing the
ISGRI source detector

CNN

Number

Convolution
layer 1

Max

Pooling

Convolution

layer 2

Max
Pooling

1 10 filters 4x4 2x2 5 filters 3x3 2x2
2 8 filters 3x3 2x2 8 filters 3x3 2x2
3 32 filters 4x4 2x2 16 filters 3x3 2x2
4 16 filters 3x3 2x2 8 filters 3x3 2x2
5 15 filters 4x4 2x2 8 filters 3x3 2x2

background and 299 examples of sources. A test set of unseen data consisted of 21560
background examples and 128 source examples.

The preliminary results, as seen in Table 4.3, show this CNN has excellent
performance and indicates that this CNN could not only decrease the time taken to
detect sources in the maps, but could also remove the human bias which is sometime
seen in the decision making process of source detection.

As previously discussed CNNs are excellent tools at finding the underlying features in
images which allow the network to classify with a high accuracy. Other methods were
tried, such as random forest, boosted decision trees (RUSBoost) and other traditional
ML methods. Although they were quicker to train, they did not perform as well (see
results from Section 4.2.1). All these methods performed reasonably well on finding
the sources, although they struggled on the noise that the OSA software had labelled
as sources and these methods also picked these examples out as sources too. As seen
in Table 4.5 the CNN performed well on not misclassifying noise as sources.

One of the challenges of observing X-rays is that they are difficult to focus, as they are
absorbed and scattered by the materials they pass through. This can lead to the
formation of ”ghosts” in the images produced by the telescope. Ghosts are faint,
blurred copies of the real sources that are shifted and distorted from their true
positions as seen in Figure 4.4.

The cause of ghosts in IBIS/ISGRI images is related to the way the telescope is
designed and its coded mask. The X-rays that pass through the mask create an image
on the detector, which is then reconstructed using a mathematical algorithm called
deconvolution. However, the deconvolution process is complicated by the fact that the
X-rays are scattered and absorbed by the materials they pass through, causing
distortions in the image. These distortions can create ghost images of the real sources,
which are shifted and blurred versions of the original source. Additional ghosts are
caused by the physical structures (screws and glue) affixing the mask to its support
structure, which results in ghosts when not accounted for in the mask model
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Arch. 1 - Training Set Ground Truth Source Ground Truth Background
Predicted Source 297 4
Predicted Background 2 50372

Arch. 1 - Test Set Ground Truth Source Ground Truth Background
Predicted Source 123 8
Predicted Background 5 21582

Arch. 2 - Training Set Ground Truth Source Ground Truth Background
Predicted Source 298 3
Predicted Background 1 50373

Arch. 2 - Test Set Ground Truth Source Ground Truth Background
Predicted Source 126 1
Predicted Background 2 21589

Arch. 3 - Training Set Ground Truth Source Ground Truth Background
Predicted Source 299 0
Predicted Background 0 50376

Arch. 3 - Test Set Ground Truth Source Ground Truth Background
Predicted Source 125 2
Predicted Background 3 21588

Arch. 4 - Training Set Ground Truth Source Ground Truth Background
Predicted Source 298 1
Predicted Background 1 50375

Arch. 4 - Test Set Ground Truth Source Ground Truth Background
Predicted Source 127 2
Predicted Background 1 21588

Arch. 5 - Training Set Ground Truth Source Ground Truth Background
Predicted Source 298 1
Predicted Background 1 50375

Arch. 5 - Test Set Ground Truth Source Ground Truth Background
Predicted Source 127 4
Predicted Background 1 21586

TABLE 4.3: Confusion matrices for different CNN architectures
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FIGURE 4.4: A sky image of a 2.7 ks observation of the bright source Crab Nebula
(spanning ∼25◦). The source is in the center of the fov. The most significant ghosts are

located in a grid of a ∼10.7◦ around the source (Krivonos et al., 2010).

Ghosts have the same PSF and surrounding features as real sources. A ghost can only
be recognised as such by studying the context of the whole image and looking for the
expected pattern of ghosts (which are at least 10.7 degrees away). In INTEGRAL’s
case, extensive use of the prior catalogue is used to choose between ambiguous ghost
positions (Krivonos et al., 2010).

4.3 Final ML Model for Source Detector

In the previous section, the merits of different ML approaches to source detection were
investigated. Traditional ML techniques were outperformed by a deep learning model
utilising 3 input channels: exposure map plus flux and significance from a single
energy band. The final source detector architecture evolved from this initial
proof-of-concept model to include 11 channels: flux and significance from five energy
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FIGURE 4.5: The top image shows an ISGRI mosaic significance map (spanning ap-
proximately 10 degrees) for revolution 1839 with an exposure time of 57.6 ks created
using the standard OSA software (Goldwurm et al., 2003). The bottom image was
produced by using the CNN. Each 11× 11 pixel window was passed through the clas-
sifier. Sources detected are in red. OSA detects some noise as sources, which the CNN
does not. The CNN does not detect IGR J12415-5750 although this was only a marginal

detection in OSA.
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FIGURE 4.6: The architecture of the final source detector CNN. The CNN uses two
convolutional layers with kernels of various sizes, followed by a multi-layer percep-
tron and softmax function to determine final classification of the image as containing
a source or not. A visual representation of the CNN applied to an example image is

presented in Figure 4.7.

bands (17-30,30-60,18-60,20-40 and 20-100 keV), as well as the exposure map. This
model was the basis of final source detector, whose development and deployment on
INTEGRAL data is presented in this section.

4.3.1 Training the CNN

The CNN was trained using ∼25,000 examples of both sources and background
extracted in 11 × 11 pixel windows from 11 channels: intensity and significance across
five energy bands (17-30, 30-60, 18-60, 20-40 and 20-100 keV), plus the exposure map.
All the images from the five energy bands are stacked and sent through the network at
once. This allows the CNN to be able to see a whole spectrum of information about
the source at once. The exposure map was also included as an 11th channel. This gives
the CNN information about how near to the centre of the map a window is as in an
ISGRI ScW image, as the centre of the image has the highest exposure and the edges of
the map the least. The training and test data for this final CNN architecture was
intentionally chosen to have an even balance of sources and background to avoid the
complications of imbalanced training sets encountered in the early models that were
tested (Sections 4.2.1 and 4.2.2.2).

Once the network was fully trained, a 11 × 11 pixel window could be moved across an
entire ISGRI ScW image which could contain many sources. Figure 4.7 shows how the
network takes the input window image, passes it through a series of convolution,
nonlinear activation (ReLu), pooling (downsampling), and fully-connected layers and
then returns an output for each window, with the assumption that each window
contains only one source. In all but the galactic centre, sources are sparse enough that
there exists a very low chance of detecting more than one in a 11 × 11 pixel window.

To generate the training set ∼200 ScWs (∼a fifth of the ScWs in cat1000) were used and
in each ScW the results file generated from the IBIS pipeline (Goldwurm et al., 2003)
was used to select any sources that were present with a significance of over 5 sigma.
Any machine learning model trained on a human-labelled dataset could potentially
learn the biases of the labeller. The IBIS pipeline uses The General Reference Catalog
as the master table listing all known high-energy sources of relevance to INTEGRAL.
These objects are all those that have been detected by INTEGRAL or that are known to
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Training Set Ground Truth Source Ground Truth Background
Predicted Source 17289 0
Predicted Background 2 17291

Test Set Ground Truth Source Ground Truth Background
Predicted Source 7408 0
Predicted Background 2 7410

TABLE 4.4: Confusion matrices for datasets used to train and test the final CNN. Cor-
rectly classified sources dominate over misclassifications.

be brighter than 1 mCrab in the 1 keV to 10 MeV band. The objects in the catalogue
were compiled from several sources to ensure confidence in the validity of these
training examples and that any individuals’ bias would have limited impact.

For every source a random window of background was also selected to include in the
training set. The resulting training set contained ∼ 25,000 examples of source and
background. 70 percent of this was used to train the CNN while 30 percent was left
out of the training processes and used as a test set to measure performance.

4.3.2 CNN architecture

Several CNN networks were trained with different architectures with the aim of
designing the simplest architecture as possible without effecting the network’s
performance. It was found that by increasing the number of filters and layers from the
architecture chosen and shown in Figure 4.6 there was no improvement in
performance but when the number of filters was reduced there was a noticeable
change in performance. For example a network with six filters in the first
convolutional layers and 14 in the second convolutional layer found 6 false negatives
and 4 false positives when applied across the test set, this is in contrast to just 2 false
negative and no false positives from the final network. Figure 4.7 breaks down the
final network layer by layer and illustrates how an 11x11 pixel window that includes a
source would be passed through the network.

4.3.3 CNN Testing and Performance

Table 4.4 shows the confusion matrices for the CNN for both the training and the test
set. From all these 11x11 pixel windows none of the background sources were
classified incorrectly and only 4 sources were not detected.

Another five CNNs were also trained with the same architecture, with similar
performances, each using a different fifth of the ScWs used in cat1000. This was to
ensure a stable network had been produced that would have a similar high level of
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FIGURE 4.7: The architecture of the source detector CNN, which shows how a 11 × 11
pixel window with a source present is processed through the CNN resulting in its
detection. The first convolutional layer applies eight 4x4 filters to the pixels windows
from each of the 11 energy bands producing the feature map shown. A max pooling
layer and ReLu function applied to these maps produce the eight outputs from the
first convolutional layer shown as the centre row of images. The next convolutional
layer applies a similar sequence of processing, as do any subsequent layers in a CNN.
The outputs from the convolutional layers are passed through a multilayer perceptron
and a softmax function to decide the final classification of the image as containing a

source or not.
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performance regardless of which ScW were used in the training stage and that the
model was not overfitting.

The CNN takes ∼ 6 hours to train using Keras with a TensorFlow backend on a
NVIDIA TITAN Xp with 12 gigabits of RAM and took ∼1 day to apply to the whole
cat1000 dataset. This is significantly faster than the process in cat1000: running
peakfind and SExtractor on the mosaic maps took days, then manual source inspection
took weeks or months. Similarity of the final source catalogues from the CNN method
and cat1000 is assessed in the following chapter.

4.4 Summary and Next Steps

This chapter presented the development of a source detection tool for INTEGRAL
data using deep learning with CNNs. The rationale for choosing this model was
presented, along with a comparison of the performance of deep learning models to
that of traditional ML approaches. It was found that the CNN outperformed the older
methods, so the CNN was expanded to include inputs from multiple INTEGRAL
energy bands. Additionally, the model architecture was tuned to achieve optimal
performance with the minimal model complexity.

With this rapid and reliable source detection tool in hand, it is possible to search
through substantial volumes of INTEGRAL data. Specifically, this tool now facilitates
the ability to search at the shortest possible observational timescales, the ScW level. As
will be shown in the next chapter, this has the advantage of being able to find sources
that are bright in very few ScWs and might be washed out in co-added image stacks.
Additionally, this allows variable sources in crowded fields to be detected separately
in any images where not all sources are bright.

The ability to search images at the shortest timescales does present the additional
challenge of identifying which excesses arise from the same astrophysical source. This
is a nontrivial problem that increases in complexity as data volumes increase. To
address this problem, a Bayesian excess merging process was employed, and this is
the focus of the following chapter.
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Chapter 5

A Bayesian approach to merging
excesses in hard X-ray surveys

Whilst the source detector presented in the previous chapter is excellent at finding
sources in individual images, substantial work must follow to reduce a list of
detections across numerous images into a single unique source list. Excess merging is
a common requirement in astronomy, particularly in the areas of catalogue matching
and time domain studies.

Multi-wavelength studies offer a powerful tool for constraining physical processes in
astronomical sources. This has been substantially more accessible due to the
availability of a broad array of publicly released source catalogues from major surveys
covering large portions of the sky (e.g. SDSS; York et al., 2000) or deep views into
smaller regions of sky (e.g. Hubble Deep / Ultra-Deep Fields). These rich survey
catalogues motivate the need to match catalogues in a systematically reliable fashion,
giving rise to sophisticated approaches for merging catalogues using probabilistic
reasoning (e.g., Budavári and Szalay, 2008; Nguyen et al., 2022).

Source matching is particularly crucial for time domain studies where telescopes
return to the same part of the sky on numerous visits. This has been a common
strategy for transient searches and variability studies, including the Galactic Plane
Scan (GPS) and Galactic bulge monitoring program using INTEGRAL. Additionally,
many large surveys now adopt the strategy of repeated visits to the same part of the
sky as a method for achieving greater sensitivity to faint sources (e.g. the Rubin
Observatory, formerly LSST; LSST Science Collaboration et al., 2009). Matching of
sources in individual images in such surveys enables rich time domain analyses, but
again requires a robust approaches for source association.

These astrophysical research objectives motivate the need to develop a reliable tool for
associating disparate detections arising from the same astrophysical source. Such a
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technique should ideally be symmetric, i.e. not sensitive to the order in which
catalogues are introduced to the merging process. Additionally, the approach should
use probabilistic reasoning rather than simple cuts in order to disentangle potentially
ambiguous matches. Toward that end, this chapter presents the development and
testing of a new excess merging tool founded in Bayesian reasoning which allows the
final compilation of a unique source catalogue from the excesses identified with the
CNN source detector.

5.1 Previous approaches to excess merging: megamerge

In cat1000, excesses were merged using a custom built algorithm called megamerge that
iteratively merged the excess lists from each map into a base list which took the
cleaning catalog (only the sources in the ISGRI reference catalog that had been
previously detected by IBIS) as a starting point. It should be noted that SExtractor and
peakfind were applied to each of the five energy bands individually, meaning
megamerge was needed to merge detections across the five bands. This illustrates an
additional advantage of the CNN source detector, as it identifies a single excess using
all five energy bands simultaneously.

The first drawback from using megamerge was that it used the reference catalog as a
starting point for the merging, so it added a bias into the process. This would be
compounded when the source was originally discovered by INTEGRAL. A further
problem was that the result was dependent upon the order in which the excesses to
merge were presented to the algorithm. New excesses were presented to the merging
algorithm and a decision on whether to merge with an existing excess in the database
was made purely on position - on whether the two excesses fell within a given merge
radius. The ‘catalog’ position of the excess would be updated if the newly merged
excess had higher significance than those previously used - the point source location
accuracy of a coded mask imager depends strongly on the detection significance. The
inherent risk though was that a strong new detection at the limit of the merger radius
could not only “steal” an existing detection but also cause its coordinates to change.
Clearly the order in which the excesses were presented could have a significant
influence on the outcome of the process. No attempt was made to optimise or mitigate
this during cat1000 production, so as a result significant effort was required to check
results manually.

The megamerge algorithm made no use of pre-existing information (beyond the
position) to decide if two sources separated by the merger limit were likely matches.
As a simple example, two 50-sigma excesses separated by 8’ were very unlikely to be
the same source, but would be erroneously merged by megamerge. On the other hand,
two 4.5-sigma excesses separated by 8’ could be the same source, since the point
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source location accuracy at 50σ and 5σ were ∼0.5’ and ∼5’, respectively (Scaringi
et al., 2010).

As a result of these limitations, and concerns over how robust the outcome was, it was
decided there was an urgent need for a better approach to merging the source lists.

5.2 Bayesian excess merging approach

This section introduces the final method for merging excesses in INTEGRAL
catalogues founded on Bayesian reasoning and built on the methods developed by
Budavári and Szalay (2008) and Rosen et al. (2016). Section 5.2.1 presents a very brief
review of Bayes’ Theorem to motivate its application to astronomical object pair
matching presented in Section 5.2.2. Finally, the way this Bayesian match probability
is applied to the full INTEGRAL excess list is described in Section 5.2.3.

5.2.1 Introduction to Bayesian reasoning

Bayesian reasoning is a method to calculate the likelihood of an event by
incorporating prior knowledge about other conditions or features that impact the
probability of that event. This approach is founded on application of Bayes’ Theorem:

P (A|B) = P (B|A) P(A)

P(B)
(5.1)

where the key elements of the equation are:

• P (A|B) – the probability of event A given that we have observed event B, this is
known as the posterior and is the targeted probability (or probability
distribution) that is to calculated

• P (B|A) – the probability of event B given that we have observed event A, this is
known as the likelihood and captures knowledge of the dependent relationship
of B on A

• P(A) – the global probability that A has occurred amongst all possible scenarios,
this is the prior that captures the global belief that A will occur

• P(B) – similar to the prior this is the global probability that B will occur amongst
all possible scenarios, and is sometimes referred to as evidence

Bayes’ Theorem can be demonstrated with a simple easily understood example.
Suppose two coins are flipped and it is known that one of the coins landed as heads,
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what is the probability that both coins landed as heads? Let the Bayesian terms for this
problem be explicitly defined as:

• A is the event of both coins landing as heads

• B is the event of at least one coin landing as heads (which is known to be true)

Without prior knowledge of the outcomes of the coin flips, there are four possible
results: heads-heads, heads-tails, tails-heads, tails-tails. One can then calculate the
three components of the right hand side of Bayes’ Theorem:

• P(A) is the probability that two coins have been flipped and both landed as
heads – this is 1/4

• P(B) is the probability that two coins have been flipped and at least one has
landed as heads – this is 3/4

• P (B|A) is the probablity that at least one coin lands heads (B) given that it was
observed that both coins landed as heads (A) – this is 1

Placing these values into Bayes’ Theorem shows:

P (A|B) = 1 × 1/4
3/4

=
1
3

(5.2)

This makes intuitive sense: there are four possible scenarios for flipping two coins and
if it is known that at least one coin has landed heads then the one case with no heads
can be eliminated, leaving three equally possible scenarios for which only one meets
the desired outcome of both coins being heads.

This simple example illustrates the power of Bayesian reasoning: by incorporating all
prior knowledge about events that affect the event of interest, a more accurate
probablity of the event of interest happening can be calculated. For this work, the goal
is to determine the probability that two excesses found in INTEGRAL data arise from
the same astrophysical source.

5.2.2 Matching astronomical sources using Bayesian reasoning

The primary objective of this work is to determine a set of unique sources from a set of
excesses detected by the CNN source detector. The foundation of the technique here
begins by establishing the Bayesian probability that two excesses arise from the same
astrophysical sources, and this section describes in detail the mathematics behind that
calculation.
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Following Budavári and Szalay (2008) let there be two excesses with measured
positions on the sky x1 and x2 with positional uncertainties σ1 and σ2 (it is assumed
that this uncertainty has no directionality). Let the following events (in the Bayesian
sense) be defined as:

• H – the hypothesis that the two observed excesses arise from the same source

• K – the complementary hypothesis that the two observed excesses arise from
different sources

• D – the event that the two excesses have been observed

Bayesian reasoning will be used then to determine the target probability P (H|D)

which is the (posterior) probability that both excesses arise from the same source (i.e.,
the hypothesis H) given the observed locations and uncertainties of the excesses (i.e.,
the data D).

Because H and K are complementary hypotheses (the excesses must either be from the
same source or from different ones), the total probability from these two must sum to
one:

P(H) + P(K) = 1 (5.3)

as must the posterior probabilities:

P (H|D) + P (K|D) = 1 (5.4)

This equation can be rearranged then as:

P (H|D)

[︃
1 +

P (K|D)

P (H|D)

]︃
= 1 (5.5)

meaning it will be useful to calculate the relative probability of the two hypotheses
given the observed data. This can be further re-arranged by invoking Bayes’ Theorem
for the two posteriors:

P (H|D) =
P (D|H) P(H)

P(D)
(5.6)

P (K|D) =
P (D|K) P(K)

P(D)
(5.7)

⇒ P (H|D)

P (K|D)
=

P (D|H) P(H)

P (D|K) P(K)
(5.8)

Finally, combining Equations 5.8, 5.5 and 5.3 results in a new expression for the
posterior probability of the two excesses arising from the same source:

P (H|D) =

[︃
1 +

1 − P(H)

B · P(H)

]︃−1

(5.9)
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which now depends only on the “Bayes factor” B ≡ P(D|H)/P(D|K) introduced as
the ratio of posterior probabilities of the data given the two hypotheses, and P(H)

which is the probability of two observations arising from the same source with no data
to constrain the hypothesis. Both of these terms are examined in more detail as
follows.

First P(H), the probability of two excesses arising from the same source when no data
is available to constrain those excesses, can be estimated as the pure probability of any
two excesses from two observations arising from the same source. Suppose two
observations detect N1 and N2 excesses, respectively, and it is known that N∗ sources
appear in both sets. Then the probability of any one excess chosen from N∗ giving rise
to the one source out of N1 from the first observation and the one source out of N2

from the second observation is:

p0 ≡ P(H) =
N∗

N1N2
(5.10)

where this probability is now labelled p0 following the convention introduced in
Rosen et al. (2016) and adopted by Lepingwell et al. (2022).

Next it is necessary to derive the Bayes factor B ≡ P(D|H)/P(D|K), the ratio of
posterior probability of the data (the two observed excess locations and uncertainties)
arising from the same source to the probability of the data coming from different
sources. Whilst a more rigorous derivation of this factor can be found in Budavári and
Szalay (2008), this can be understood as the estimation found by treating the locations
and errors as Gaussian probability distributions. Under this assumption the Bayes
factor becomes:

B =
2

σ2
1 + σ2

2
exp

[︃
− ψ2

2(σ2
1 + σ2

2 )

]︃
(5.11)

where ψ is the angular separation between the excess locations.

5.2.3 Final method for merging INTEGRAL excesses

The final approach for merging INTEGRAL excesses was a new tool built on the
method used by XMM (Rosen et al., 2016) and further developed to work on ISGRI
data. This method first merges individual excesses into unique sources using the
Bayesian probability approach described above in Section 5.2.2 before matching the
merged point to a source in the reference catalogue. This removes the bias noted with
the method employed in cat1000 (megamerge) as the reference catalogue is no longer
being used as a starting point and the order the excesses are presented to the algorithm
are now irrelevant as it uses Bayesian probability to decide which order to merge in.

First the algorithm searches for any pairs of ScW detections that are less than 8
arcminutes away. Any detections found within the same ScW are excluded from this
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matching process as they will be different sources. Each pair has a Bayesian match
probability (pmatch) assigned to it using Equation 5.13 (derived in Section 5.2.2) where
σ1 and σ2 are the position error radii of each detection in the pair (radians), ψ is the
angular separation between the pair, po = N∗/N1N2 where N1 and N2 are the number
of objects in the sky based on the surface densities in the two fields. Each N value is
derived from the number of detections in the two observations and then scaled to the
whole sky and N∗ is the number of objects common between them.

pmatch =

[︃
1 +

1 − p0

B · p0

]︃−1

(5.12)

B =
2

σ2
1 + σ2

2
exp−

[︃
ψ2

2(σ2
1 + σ2

2 )

]︃
(5.13)

This allows the algorithm to make a first cut and remove any pairs with pmatch < 0.5
then determine the order to match the detections. This cut on pmatch is important for
rejecting poor matches, as the number of good matches goes into calculation of a
goodness of cluster that is used to set the order for final excess merging.

For each excess, a goodness of cluster (GoC) is calculated as the ratio of the number of
good matches it has with other excesses to the area of its positional error. This GoC is
useful because it prioritises the detections that have the smallest error radius and most
amount of pair matches. As noted by Rosen et al. (2016), this means the merging order
begins with excesses that lie at the centre of a group of detections, which are most
likely to be associated with a genuine unique source. The algorithm sorts the excesses
in order of ascending GoC and iterates down the list. For each excess the algorithm
sorts that excess’s matching pairs in ascending order. The algorithm then progresses
down this GoC-sorted list to merge sources by assigning a common source ID to
sources matched in a pair. The process concludes when each cluster has a unique
source ID. A visual representation of this process can be seen in the flowchart shown
in Figure 5.1.
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ScW detections

For each ScW detection find all other matching 
detections within a 8 arcminutes. Each one of these is a 

‘pair’

Computes a Bayesian match probability (pmatch)for 
each pair

Any pairs with a pmatch < 0.5 are discarded

Computed a goodness-of-cluster (GoC) for each ScW
detection

This is the number of matches a detections has with 
other detections, normalised by the area of its error 

circle radius. 

The list is then sorted by GoC.

The algorithm then works down the GoC sorted list 
and for each detection, the other detections that it 

forms pairs with are sorted by pmatch

The pairs are then merged into points assigned a 
unique source ID:

• If both detections have previously been allocated 
to a unique source ID and already have the same 

source id, then nothing is done. 
• If only one has a source id, the other gets the

• same source id
• If neither have a source id, they both get allocated 

a new source id.
• If they have different source ids, nothing is done, 

but a confusion flag is added. This would need to 
be  manually checked.  

The process is then repeated with the merged points 
and the reference catalog.

FIGURE 5.1: A flowchart showing how the BM algorithm works.
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5.3 Performance

To measure the performance of the new Bayesian matching tool, it was applied to the
cat1000 dataset and compared to results when the traditional tools were applied. This
section discusses the outputs from each method and how they compare. A list of
detections was also provided to domain experts for manual inspection. A detailed
inspection was also applied to the galactic centre as the most difficult region to
catalogue in cat1000.

It is important to note that comparisons between this work and cat1000, while
instructive, are not meant to be direct comparisons of exactly parallel approaches.
Indeed, the ScW-based search used here is ideal for finding significant transient events
on small timescales and strong persistent sources, while weaker persistent sources are
better suited for discovery in stacked images such as those analysed for cat1000.

5.3.1 Method Comparison

Each of the three source detection methods was applied across the entire dataset to
generate an excess list. While peakfind and SExtractor were applied to each energy
band separately, the CNN source detector utilised the five bands simultaneously. Thus
the CNN finds about 1/5 as many excesses as peakfind, which makes similar
judgements about the PSF as the CNN (SExtractor does not perform as well in this
regard). These three excess lists were then passed through both merging methods to
generate a list of merged sources. Table 5.1 breaks down each method and shows how
many cat1000 sources were found and also how many sources were found that were
not included in cat1000. Not only do the new CNN and Bayesian matching methods
recover more sources, but figure 5.2 shows how these methods have a lower flux
threshold compared to the traditional tools. Overall the CNN can detect sources at a
lower flux than the other two methods.

All of the methods presented here find fewer sources than the full cat1000 due to the
fact they are being applied on single ScW images, whereas cat1000 was applied to
stacked images. These stacked images were ideal for finding faint persistent sources,
which is not possible on a ScW level. ScW-level analysis finds bright persistent sources or
fainter transient sources, and the CNN performed best at finding such sources missed in
cat1000.

It is noteworthy that 25 sources that were not included in cat1000 were found using
the new CNN and Bayesian matching methods. These sources were presented to
domain experts that were part of the cat1000 survey team for them to manually inspect
the sources and provide an evaluation of the performance of the CNN. Out of the 25
sources the domain experts agreed that all but two were genuine sources. These two
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FIGURE 5.2: Histograms showing the proportion of cat1000 sources found (blue) vs
not found (red) and their fluxes in cat1000 for every combination of the three source
detection techniques and the two merging techniques. While other source detection
approaches produce a detection efficiency that decreases (generally) monotonically as
source brightness decreases, our method is able to detect fainter sources by leveraging
the subtler source signatures captured by the CNN. These sources can have exception-
ally low average fluxes (0.1 mCrab) in the stacked images used for cat1000, but will be

bright enough in some ScW images to be detected using these methods.

sources were both found in the noisy borders of the ISGRI images which exist due to
the coded-mask of the instrument. A member of the survey team would reject this on
manual inspection but due to the localised nature of the CNN it would have been hard
for the CNN to have picked these out as noise. To avoid this problem in the future, the
CNN could either be just applied to a small section of the ScW image that avoided this
area, or these detections could be flagged for manual inspection. While the addition of
the exposure map as the 11th channel significantly reduces this effect, it does not
entirely remove all artefacts from the extreme edges of the image. The 23 genuine new
sources will be presented in a forthcoming analysis by the INTEGRAL team.

5.3.2 Blended Sources and Galactic Centre

22 of the sources in cat1000 were labelled as blended, in other words their positions
were considered unreliable due to nearby sources within the angular resolution of the
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KS	1741-293

1A	1742-294

1E	1749.7-2942

GRS	1741.9-2859

J17456-2901b

IGR	J17468-2902

FIGURE 5.3: Stacked INTEGRAL/IBIS image of the Galactic Centre (top), and coor-
dinate plot (bottom) of science window detections of a specific source (magenta) and
final merged source locations for its neighbours (coloured triangles), with the ISGRI

resolution shown in grey.

telescope. In some cases there was ambiguity in the identification of what appeared as
one source, whereas other pairs of sources showed clear extension beyond a single
point source. All cases were subject to lengthy visual inspection to determine their
best representation in the final catalogue. In addition to simple blended pairs, 13
sources in the crowded Galactic Centre region were also listed as blended - in this case
the true determination of the emitters was impossible due to the crowded and highly
variable nature of the region. Some of these regions may prove useful test cases to
understand if the Bayesian matching method is better able to untangle these complex
regions, but unfortunately all of the blended sources in cat1000 are faint, with
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persistent fluxes below 10 mCrab. Nevertheless, some pairs are of sources that are
variable in nature, so de-blending may be possible as precise positions with small
uncertainties can be obtained from science windows during which the sources are
bright. As the CNN method used here searches for sources at the ScW-level, it
frequently recover sources that may appear blended in a stacked image (see
Figure 5.3). If the point source location is sufficiently robust, these sources should not
be merged during subsequent analysis.

5.4 Conclusion and prospects for generating future catalogues

The CNN-based approach to source detection in IBIS/ISGRI has yielded several key
advantages. Firstly, this method utilises all five energy bands simultaneously – not
only does this improve the accuracy and allow the network to detect sources at a
lower flux threshold, it also speeds up the merging process as it results in a single
excess for each astrophysical source instead of one from each energy band. Secondly,
the speed on which the CNN can be applied to the entire dataset makes it possible
now to look on a ScW timescale and detect sources that only appear in a single ScW
but fall below the detection threshold in all-sky maps stacked from images spanning a
revolution time-scale. Finally, the CNN-driven approach removes human biases from
the source detection process, making the list of sources here more impartial than
previous approaches.

Bayesian matching recovers marginally more sources than megamerge - but has the
“right” set of answers (i.e., agnostic to where the excesses come from) and has
removed a bias from the process by not using the reference catalogue as a starting
point. Another limitation removed is that the order in which excesses are presented to
the algorithm no longer impacts the end result.

Looking on a ScW level allows the detection of sources that have outbursts on smaller
timescales than previous studies of the IBIS/ISGRI dataset. This approach also helps
to resolve the emission from the GC - detection at ScW level is easier to do than with
stacked images as sources are not all “on” at the same time.

The combination of the CNN and Bayesian matching produces a very accurate
merged list of detections with very few detections needing to be manually checked -
compared to the old method which took 2.5 years for 9 people to manually check each
source for inclusion into the catalogue.

If these tools are to be applied to generate future catalogues this work would need to
be extended to include revolution maps and all-sky maps, enabling the source
detector to find the weak persistent sources that are not detected at a high enough
significance in a single ScW. When the ScW images are stacked currently using a
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mosaic tool, the point spread functions (PSF) of the sources become distorted and the
CNN’s performance may drop when applied to these images. One way to overcome
this would be to use HEALPix, which produces a subdivision of a spherical surface in
which each pixel covers the same surface area as every other pixel. This would
maintain the PSF of the sources and allow the CNN to be used in order to detect
sources in stacked images, although care would need to be taken to maintain the same
resolution.

One possible setback of this method is that because the CNN looks on a local 11x11
pixel window it does not know how noisy the entire map is. In most cases this should
not be a shortcoming, as the local noise level will be more important for informing the
CNN of the likelihood of a source being present. However there are some isolated
cases where the global noise map is useful. When domain experts make a decision
about a source the “flatness” of the map is taken into account. In addition to this, two
false positives were still detected in the extremities of the partially coded FOV,
although such excesses would normally be suppressed by the low exposure in that
area. This problem could be overcome by not applying the CNN in the border region
of the ScW maps, or a flag applied to any detections in this area for a manual inspect.

The newly developed source detection and merging method is reliable, scalable,
removes need for continuous human intervention and eliminates some of the human
subjectively that previously existed. This will be ideal for application to help generate
future ISGRI catalogues.
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Chapter 6

Detecting outbursts in hard X-ray
light curves using deep learning

Many X-ray sources are transient in nature and the ability to automatically detect
when a source is in outburst would be a useful tool for providing a more
comprehensive view of outburst behaviour in these sources. Similarly, a tool which
can find a single period of intense emission within an otherwise extended period of
quiescence would enable detection of otherwise elusive transient events. All the
sources in the X-ray sky show a degree of variability in their flux, although the
magnetically-powered pulsars (such as the Crab pulsar) come close to being constant
emitters - the Crab is used as a calibration standard and the flux unit of ’1 Crab’ is
used extensively 1. Astronomers classify sources as ’persistent’ - meaning they are
visible most of the time when observed, or ’transient’ - meaning they are usually
below the threshold of detectability, but then become visible during times of increased
emission. However, these simplistic definitions are based on detectability rather than
the intrinsic source behaviour - a source which shows flares of emission above
persistent lower-level quiescent emission would be ’persistent’ if nearby and hence
detectable in quiescence, while it would be ’transient’ if moved to a greater distance
such that only the peak emission were detectable. Furthermore, sources classified as
transient in one waveband may be persistent in others or demonstrate different
emission mechanisms, or could be found as persistent sources with the availability of
more sensitive instrumentation. A clear example of this is the group of ’burst-only’
sources seen by BeppoSAX (In’t Zand et al., 1999; Cornelisse et al., 2004), which are
seen as persistent emitters (with flares of stronger emission) by INTEGRAL.

Different x-ray sources undergo outburst on different time scales. In X-ray binaries
with a neutron star as the central compact object, gas from a nearby companion star

1However recent studies have shown significant long-term changes in the Crab’s flux (see, e.g., Jour-
dain and Roques, 2020).
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can accrete onto the neutron star until a critical condition triggers a thermonuclear
runaway. Such thermonuclear bursts are observed as brief, bright flashes of X-ray
emission that last for seconds to hours and repeat on a timescale of hours to months.
Be/X-ray binaries (BeX) are a class of HMXB binaries that consist of a Be star and a
neutron star. The variability time scales in BeX range from seconds to years.

The hard X-ray sky is intrinsically variable on a large range of timescales from 1s
(short Gamma Ray Bursts, type 1 bursts from Neutron Stars) to 100d (X-ray novae,
Type 2 bursts from Be-XRBs). Localising outbursts in lightcurves makes it possible to
automatically highlight the most interesting and transient behaviour of sources. Not
only would this give insight into the nature of the sources, their outbursts and aid in
the classification of the object, but it could yield information on such parameters as the
sources’ periodicity. As well as applying a burst detector tool to lightcurves of known
sources, this method could be extended and applied to every point on the sky
allowing the detection and exploration of new transient objects. This would be useful
in detecting sources that are missed when searching stacked maps or mosaics for
sources. For example, a source may not be detected in stack maps if it had been in
outburst in the early mission but not later in the mission: as more data accumulates
when the source was not in outburst, its detection in stacked maps becomes of lower
and lower significance. Having a robust method to search lightcurves for bursts
would allow the recoverery of these sources.

At present a source’s light curve is investigated by manually inspecting it for unusual
activity or by calculating its “bursticity”. Domain experts in this field find it difficult
to define exactly what an outburst is. Attempts have been made to describe how
‘bursty’ a source is (e.g. tags included in cat1000; Bird et al., 2016); by measuring a
source’s bursticity the approach was designed to determine if the source becomes
detectable on shorter timescales than the whole dataset. If the source is normally “off”
then the mean flux is reduced by adding more null observations, and a source that is
bright for a short time can become undetectable. Sources that have multiple outbursts
on top of detectable quiescent emission will have a bursticity of around 1. Although
bursticity is a useful tool it does not tell us how many bursts have been detected in a
source or the duration of these bursts. Brute force methods can be applied to answer
these questions, but they can take many hours and can also produce inaccurate
results. As each hard X-ray source behaves differently, there is no “normal” behaviour
for a source. Due to this fact, what is actually of interest in each source’s lightcurve is
when the source is behaving unusually or anomalously.

This Chapter presents a new approach to detecting outbursts in hard X-ray light
curves using deep learning. Specifically, a burst detector that employs a Long
Short-Term Memory (LSTM) network is developed that operates substantially faster
than previous approaches. The burst detector is trained and tested on simulated light
curves, and applied to select test cases of INTEGRAL+BAT light curves.
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6.1 Current process for burst detection: “bursticity”.

The previous method for detecting bursts in INTEGRAL light curves involved
calculating a bespoke metric entitled “bursticity”. Light curves for each source were
generated in the 18-60 keV band on ScW time sampling. A variable-sized time
window was scanned along each source light curve, with the window length being
varied from short timescales (0.5 days, ∼ 10 ScW) to the longest possible (i.e. the full
light curve duration). All points within each window are used to calculate a
significance (flux divided by error), and the maximum significance (and its associated
time window) are recorded, along with the significance across the whole light curve.
Bursticity is then defined as the ratio of this maximum significance to the significance
for the whole light curve.

This definition means a persistent source should have bursticity of 1, as the greatest
significance for a persistent source comes from combining all the data points in the
light curve. Any source with bursticity above 1 must have some subset of its light
curve where the observations are of higher significance than the entire light curve,
likely due to a sharp increase in flux due to an outburst. One limitation of this method
is that multiple repeated bursts would not have their significances combined to make
an even higher bursticity, however this is a robust way to find sources with
intermittent high significance which would be expected for a burst.

This bursticity method was highly impactful in the previous search for sources in
cat1000 (Bird et al., 2016), aiding in the discovery of around 100 sources that would
have otherwise been missed. The method additionally identifies the time interval for
maximum bursticity, a key property of the source variability. The cat1000 burst
analysis also produced mosaic maps on the timescale of maximum significance,
enabling precise determination of key source properties such as its position by
combining the highest significance observations to minimise measurement errors.

6.2 Dataset

The initial dataset intended to be analysed with the new burst detector consisted of
the 18-60 keV IBIS/ISGRI light curves for sources identified in cat1000. Each light
curve has flux values extracted from ScW-level ISGRI flux maps at the candidate
source position covering the first 1500 orbits of INTEGRAL. In general these ISGRI
light curves consist of numerous groups of consecutive ScW data points, which are
separated in time by the 20-minute ScW duration, with groups of data points
separated by long gaps of a few to ten days.
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To provide more comprehensive temporal coverage, the ISGRI observations are also
augmented by fluxes from the Swift BAT daily light curve data. These fluxes are the
daily average (and respective error) flux for the source in bins of one day. As such,
these BAT flux points have a broader range of sensitivities depending on the effective
observing time for the source.

The ISGRI-only light curves can be useful for directly testing the performance of the
new burst detector as compared to the previous approach used for cat1000. In most
cases the BAT data is helpful for filling in observational gaps which can reveal some
outburst activity that might be otherwise missed with only ISGRI data (see, e.g.,
1A0535+262 in the lower panel of Figure 6.1). Whilst BAT provides good temporal
coverage, the ISGRI data are generally more sensitive and so enable detection of
outburst activity that might fall below the BAT detection threshold. This balanced
dataset forms the main sample of light curves intended to be analysed with the new
burst detector.

6.3 Clustering (unsupervised)

One of the earliest attempts that was made to explore burst detection techniques
involved unsupervised learning where light curves were broken into sub-sequences
and a clustering algorithm applied to look for groups with similar features. This
approach was intended to separate quiescent segments of light curves from those
segments containing burst-like activity.

This method requires choosing a window size and stride (separation between
subsequent window starts) size, so allows the algorithm to decide what is an anomaly.
A sliding window of size 50 data points was used so as to compare with the current
software (’bursticity’) as this is the window size it uses. Each one of these 50 points of
the light curve was projected into a 50-dimensional space and then the window was
moved along (with a stride of 10) and this was repeated for the whole lightcurve. Each
point in this space represents a subsequence of the lightcurve. Similar segments will
cluster together. The middle of each cluster (the centroid - this can be considered the
average of the cluster) will provide some measure of the prototypical lightcurve
pattern that all those segments are specific instances of. The cluster centroids provide
us with a set of “normal” lightcurve segments.

Then the algorithm tries to use the set of “normal” segments to reconstruct a set of
data to be tested. If the data is similar in shape to the original lightcurve, it will be able
to manage a good reconstruction. However, if the data contains some abnormal shape,
it will not be able to reconstruct it using our normal shape library, and it will get a
reconstruction error. This error will indicate an anomaly.
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FIGURE 6.1: Example (real) light curves including ISGRI and BAT daily flux measure-
ments.

As INTEGRAL is not always observing all areas of the sky there are gaps in the
lightcurves. These gaps were removed (i.e. lightcurves are presented to this algorithm
as a sequence of fluxes without time labels), but a suitable size of sliding window and
stride were selected to ensure that the algorithm would not be confused with parts of
the lightcurve that may have a big gap in observation times. As the fluxes from ISGRI
have error bars, sometimes very large ones, significance light curves were used as the
significance is just the ratio of the flux with its error. This approach is illustrated in
Figure 6.2.

This approach had some key advantages: it was insensitive to gaps in the light curve,
and also did not require an explicitly labeled dataset for training. However, this
method is not robust to poorer quality data where bursts may have substantial
overlap with noise. In these cases, removing temporal gaps can be disadvantageous
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FIGURE 6.2: Outlier detection tests for ISGRI light curve of 1A0535+262. Top: full light
curve, Middle: significance light curve with gaps removed, Bottom: significance light

curve classified by outlier detection (outliers shown as red triangles).
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because that temporal evolution of flux contains a key signal that is washed out.
Though it might be possible to fill temporal gaps with data from other instruments
(e.g., BAT data used in the later analyses of this chapter), this would produce a
heterogeneous dataset that is not well suited to a clustering approach. For these
reasons it was decided that outlier detection would not be a suitable approach for
burst detection on the full dataset.

6.4 Supervised classification

Outburst detection in light curves could also be approached as a time-series
classification problem. Time series classification uses supervised machine learning to
analyse multiple labelled classes of time series data and then predict or classify the
class that a previously unlabelled time-series belongs to. Specifically, this problem
involves training a classifier on a large sample of light curves that either have a burst
or do not have a burst, and applying that classifier to a new light curve to determine
whether a burst is present.

Similarly to the source detector CNN, supervised time series classification in all of the
data needs a class label for all of the training data. Another challenge with real-world
data collection is that the lengths of the samples in a time series are typically different,
which can be problematic for some classifiers. Gaps in the data, or data values that are
null, are also not handled well by most time series classification algorithms.

6.4.1 Long Short Term Memory

Recurrent neural networks (RNN)/long short term memory (LSTM; Hochreiter and
Schmidhuber, 1997) networks have been seen to be be particularly useful for learning
sequences containing longer term patterns of unknown length, due to their ability to
maintain long term memory. Recurrent hidden layers can be stacked to form networks
that allow the learning of higher level temporal features.

A RNN is a type of artificial neural network which uses sequential data or time series
data and they are often applied to ordinal or temporal problems, such as language
translation, natural language processing, speech recognition, and image captioning
(Rumelhart et al., 1985). Similarly to CNNs, RNNs need to be supplied with training
data although they differ by having a “memory”; they take information from previous
inputs which influences the current input and output. Unlike traditional deep neural
networks RNNs presume the output of recurrent neural networks depend on the prior
elements within the sequence.
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FIGURE 6.3: The LSTM unit is composed of a forget gate, an output gate, and an input
gate. The yellow circle depicts the sigmoid activation function, whereas the pink circle
depicts a tanh activation function. The “x” and “+” symbols are the element-wise

multiplication and addition operator (Rengasamy et al., 2020).

RNNs suffer from short-term memory, which in practise means sequences over a
certain length find it difficult to carry information from earlier time steps to later ones.
Also during back propagation, RNNs suffer from the vanishing gradient problem,
meaning if a layer gets a small gradient update then it will stop learning. This is
usually seen in earlier layers of the network resulting in the network “forgetting”
what it had previously seen in longer sequences.

The benefit of using LSTMs (Hochreiter and Schmidhuber, 1997) for sequence
classification is that they can learn from the raw time series data directly, and in turn
do not require domain expertise to manually engineer input features. The model can
learn an internal representation of the time series data and ideally achieve comparable
performance to models fit on a version of the dataset with engineered features
(Hochreiter and Schmidhuber, 1997).

A LSTM network includes at least one LSTM cell. LSTM cells are designed to retain
information for extended periods, making them well-suited for tasks requiring the
model to remember past events. As shown in figure 6.3 LSTM cells have three gates
(input, output, and forget gates) that control the flow of information into and out of
the cell, as well as an internal state, called the cell state (Lu and Salem, 2017). The
gates and cell state allow LSTM cells to selectively remember or forget information
from the past, making them more effective at modelling long-term dependencies than
other types of RNNs (Schäfer et al., 2006).
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FIGURE 6.4: Architecture diagram of simple LSTM network for classification

In a typical LSTM model, the LSTM cells are stacked on top of each other, and the
output of one cell is fed as input to the next cell. The final output of the LSTM layer is
then fed into a fully connected layer and a softmax output layer to produce the final
predictions.

As we have previously stated, LSTMs are a robust artificial neural network for
classifying, processing and predicting time series data inspired by recurrent neural
networks (RNN). LSTMs are particularly well-suited to time series classification tasks
Korstanje (2021). A typical LSTM architecture for time series classification consists of
one or more LSTM cells followed by a fully connected layer and a softmax output
layer as seen in Figure 6.4.

When an LSTM is used for classification, the general process starts with the sequence
input flow into the LSTM layer; then, it goes through the fully connected layer and
softmax layer. Finally, the process ends with the classification layer to assign the class
label. The LSTM layer is the core unit of the whole process. The architecture diagram
of an LSTM layer is demonstrated in Figure 6.5. The key idea of LSTM is the previous
cell state, and the current sequence of time steps is used to compute the current output
and update the current cell state (Karim et al., 2017).

In an LSTM layer (Figure 6.5), there are the learning weights W, recurrent weights R,
and the bias b. At each time step t, the LSTM network processes the input vector xt

and the hidden state from the previous time step ht−1 to update the current hidden
state ht. The calculation of the current hidden state ht is done through the following
processes:

• The forget gate ft: decides what information to discard from the previous
memory cell state ct−1. It is computed using a sigmoid activation function (σ)
applied to a linear combination of the previous hidden state ht−1 and the current
input xt. ft = σ(W f ht−1 + W f xt + b f )
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FIGURE 6.5: Architecture diagram of LSTM layer

• The input gate it: decides what new information to add to the current memory
cell state ct. It is computed using a sigmoid activation function applied to a
linear combination of the previous hidden state ht−1 and the current input xt.
it = σ(Wiht−1 + Wixt + bi)

• The memory cell state ct: stores information from the current and previous time
steps. It is updated using the previous memory cell state ct−1, the forget gate ft,
and the input gate it with a tanh activation function.
ct = ftct−1 + it tanh(Wcht−1 + Wcxt + bc)

• The output gate ot: decides what information to output and use for the
prediction. It is computed using a sigmoid activation function applied to a linear
combination of the current hidden state ht−1 and the current input xt.
ot = σ(Woht−1 + Woxt + bo)

• The current hidden state ht: is the output of the LSTM at time step t. It is
computed using the memory cell state ct and the output gate ot with a tanh
activation function. ht = ot tanh(ct)

In a classification task, the input sequence is processed one time step at a time, and the
LSTM gates continuously update the memory cell state. The final hidden state of the
LSTM is then used to make a prediction using a fully connected layer with a softmax
activation function. The prediction is a probability distribution over the possible
classes, and the class with the highest probability is considered the final prediction
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FIGURE 6.6: Representative FRED (Fast Rise Exponential Decay) burst flux profile:
the burst flux rises quickly in a time trise to a peak flux Fpeak (at time tpeak) then decays

exponentially with a characteristic decay time of t f all .

p = so f tmax(Wpht + bp) where p is the predicted probability distribution, Wpht is the
weight matrix connecting the final hidden state ht to the prediction, and bp is the bias
term.

6.4.2 Simulated Bursts

Supervised learning requires a very large reliably-labelled training dataset, which
would require an untenable amount of expert human time to label such a large real
dataset. Thus it was decided that simulated light curves containing bursts should be
used to train and assess the potential performance of the model. In addition to
providing a large training set, simulated bursts enable us to have a ground truth for
training the model.

6.4.2.1 Properties of Simulated Bursts

The type of bursts generated in these simulations are what are commonly referred to
as “FRED”s – Fast Rise Exponential Decay. The shape of a FRED and its key
parameters are illustrated in Figure 6.6: the burst has a rapid linear rise on a timescale
of trise to a peak flux fpeak and then decays exponentially with a characteristic decay
timescale tdecay. To be explicit the decaying flux goes like exp (−t/tdecay) where t = 0 is
the time of peak flux. The range of values for these three parameters used in the
simulations is shown in Table 6.1.
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Parameter Range
trise 0.01 – 2 days
t f all 1 – 100 days
Fpeak 0.1 – 100 mCrab

TABLE 6.1: Range of FRED parameters in simulated bursts (values chosen from uni-
form distribution in this range).

It is worth noting that not all X-ray bursts will take on a FRED shape, and the decision
to model all simulated bursts as FREDs is not intended to represent all possible X-ray
burst shapes. Instead, this was chosen as a sensible starting point for training a model
to identify bursts whose shape was known (and could be simply parametrised).
Inclusion of diverse burst shapes is an intended goal for future development of the
burst detector.

The final goal of the simulated bursts is to produce simulated equivalents of real
(noisy and perhaps sparsely sampled) light curves. This was done in two steps: first
simulate a “perfect” light curve, then use it to simulate what a real instrument would
have observed from it. The former task is described here whilst the latter task is
described in the next subsection.

A simulated light curve can have one or several bursts in it. Each light curve consists
of flux values and associated time values spanning the duration of the real light
curves (about 3000 days). In practice the time values are an array on intervals of 0.001
days, much shorter than ISGRI ScW separations, and flux values start at zero and
increase when a simulated burst is added to the light curve. Each bursty light curve
gets a random number of bursts drawn uniformly between 1 and 8 bursts, with the
time of peak flux chosen randomly from all available time values and FRED
parameters chosen uniformly from the ranges shown in Table 6.1 A few example
simulated “perfect” light curves are shown in Figure 6.7.

6.4.2.2 Mimicking Real Observations

Once simulated “perfect” light curves were generated, there was then the need to
simulate what real observations of this “perfect” light curve would look like. This
means simulating the observational gaps like those in real ISGRI light curves, and
simulating the noise as seen by the instrument. For most sources, ISGRI observations
were augmented with the Swift BAT daily flux light curves, meaning each light curve
is a combination of ISGRI and BAT observation dates.

Each final simulated light curve had time sampling drawn from the sample of
observed light curves, i.e. a random source was chosen from the list of known ISGRI
sources and the simulated light curve used the time sampling of that source. The flux
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FIGURE 6.7: Examples of “perfect” light curves produced in the simulations (grey)
with peak time for each burst highlighted (red vertical lines).
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values for those times were then calculated by interpolating the over-sampled
“perfect” light curve.

Errors for the simulated fluxes were calculated as follows. First a relationship between
flux and error was examined for each instrument (ISGRI and BAT). A simple second
order polynomial relationship was fitted between all log error and log flux values for
each instrument, enabling the calculation of flux error for each simulated flux value.
With this error value in hand, a random noise value was calculated and added to the
“perfect” flux value for each epoch thus yielding the final simulated flux. Some
examples of simulated light curves with real noise and observing gaps are shown in
Figure 6.8.

6.4.3 Training and validating the burst detector model

Windowing the data: With both real and simulated light curves in hand, the model
data format needed to be established to look for bursts in real data using a model
trained on the simulated light curves. It was decided to train a model that would take
as input flux and error values covering a window period twindow and uniformly
sampled on a timescale of 20 minutes (one standard ScW duration). These
evenly-sampled values were calculated by interpolating a light curve on the window
time values, where for each light curve numerous windows were evaluated in steps of
tstep typically 10% of the window size twindow (for example, with a 500-day window the
data would have windows stepped by 50 days).

Setting the training set: The training set for the model was generated by applying this
windowing process to the simulated light curves. Each window was then assigned a
label depending on whether a burst was present in the window. For this analysis, a
label of “1” meant the peak of a burst was inside the window whilst a label of “0”
meant no burst peak was present, even if a significant fraction of the exponential
decay of the burst is present.

6.4.4 Model Architecture

When designing a LSTM network typically one would consider the number of LSTM
cells and the size of the fully connected layer and also the input and output
dimensions of the LSTM cells. There is no fixed rule for how many LSTM layers that
can be used in a time series classification model. The different numbers of layers can
be experimented with to see how the model performance is affected. One
consideration is the complexity of the time series data and the task. If the data is
relatively simple and the task is straightforward, a single LSTM layer may be
sufficient. On the other hand, if the data is very complex or the task is more difficult,
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FIGURE 6.8: Examples of simulated light curves with realistic noise and gaps.
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multiple LSTM layers may be needed to achieve a good performance (Pascanu et al.,
2013).

A stacked LSTM is a deep learning model composed of multiple LSTM layers stacked
on top of each other. The output of one layer is fed as input to the next layer. This
allows the model to capture and process more complex and higher-level features from
the input sequence (Hermans and Schrauwen, 2013). A stacked LSTM improves the
ability of a deep learning model to capture and process complex relationships in input
sequences. Some reasons for using a stacked LSTM include (Shinde et al., 2021):

• Handle long-term dependencies: Each LSTM layer can capture dependencies
between elements in the input sequence that are separated by a large distance,
allowing the model to handle long-term dependencies.

• Increase model capacity: Adding more LSTM layers to the model increases its
capacity to learn and process complex relationships, allowing it to perform
better on difficult tasks.

• Reduce overfitting: By stacking multiple LSTM layers, the model is able to learn
more abstract and high-level features from the input, reducing overfitting to the
training data.

• Handle high-dimensional input: Stacking multiple LSTM layers allows the
model to process high-dimensional input data by gradually reducing the
dimensionality through each layer.

In addition to the number of layers, the number of LSTM cells in each layer can be
altered. The number of cells can affect the model’s ability to remember past
information, which can be important for time series data.

Graves et al. (2013) introduced Stacked LSTMs or Deep LSTMs in an application of
LSTMs to speech recognition, outperforming a benchmark on a difficult standard
problem. It was discovered that the depth of the network was more important than
the number of memory cells in a given layer. Stacking LSTMs is now a reliable method
for solving complex time series problems.

This motivated the exploration of different LSTM network architectures to achieve a
model that could suitably capture the complexity of the light curve data. Figure 6.9
shows the final architecture for the LSTM network used in this work, which uses
stacked LSTMs followed by a multi-layer perceptron for final light curve classification.
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FIGURE 6.9: LSTM burst detector final architecture. The network consists of two LSTM
layers, with 100 LSTM cells, then a multi-layer perceptron.

6.4.5 Validating model on simulated data

To establish the burst detector’s performance as a proof of concept, its model
parameters were refined by training and testing on simulated data for a variety of
window sizes.

Model Training: Model training was performed by simulating 10,000 light curves
containing a single burst with duration chosen randomly from the range listed above,
with the integrated signal-to-noise of the burst chosen randomly between 3 and 9. In
practice, the relationship between flux and error from ISGRI data was used along with
the burst duration and sampling to set the peak flux of the burst for the chosen
signal-to-noise. For a given window size W, segments of the simulated light curves
were isolated (after re-sampling to a uniform time sampling as mentioned above)
including the burst peak and labelled as 1. The training set was augmented with an
equal number of samples of non-burst windows drawn from 2,000 light curves with
zero flux but realistic noise and temporal sampling, and labelled these as 0. A model
was trained with the above architecture for 1000 epochs, and retained both the final
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trained model and a checkpointed version from when the loss function was
minimised.

Model Testing: The model was tested for each window size W on a set of 10,000
simulated light curves as follows. First, the light curves were re-sampled to a common
uniform time sampling, then used a running window of width w and step size
s = w/5 (e.g. the 10-day window model was applied to windows of width w = 10 for
every step of size s = 2) to collect windows of the light curve to be fed into the model.
Windows where the model detected a burst (where it assigned label of 1 to the
window) were collected into unique ranges by grouping overlapping windows. An
example run of the burst detector on a simulated light curve is demonstrated in
Figure 6.10, where the windows the LSTM flags as containing bursts are highlighted
in purple. The success of the model was determined in two parts:

• Fraction of bursts found: did one of the regions labelled by the model as
containing a burst contain the actual (simulated) burst peak?

• Rate of false positives: did the model label a range of the light curve as having a
burst when there wasn’t one?

Performance: Our LSTM models ran at substantially faster speeds than the bursticity
method. Whilst bursticity took nearly four days to run on the full set of 10,000
simulated light curves, each of our models took approximately two hours to run on
the same dataset. This run time was consistent across the four models, which makes
sense as the product of the number of data points and number of windows analysed
by the LSTM was the same for each model. It is worth noting that the run time for
bursticity does have some dependence on the minimum and maximum burst
durations allowed. Additionally, each LSTM took roughly five minutes to train on our
GPU, whilst bursticity requires no training time. These performance figures
correspond to being run on the same GPU-capable machine, and demonstrate how
GPU-accelerated deep learning models can result in a substantial improvement in
computation time.

Results: For this exercise four models were trained with window sizes of w =10, 25,
50, and 100 days. The fractions of found bursts as a function of signal-to-noise for
these four models were compared to that of bursticity, and plot the results in
Figure 6.11. It can be seen that the proof-of-concept LSTM-driven burst detector
performs comparably, or better, at all signal-to-noise values. Completeness at low
signal-to-noise improves as the window size increases, but as shown below this comes
at the expense of more false detections.

Another important check to perform is to determine whether the burst detector is
capable of finding bursts whose duration is shorter than its window size. Figure 6.12
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FIGURE 6.10: Example results of running our burst detector (in this case, the w =
25 days window size model) on a simulated light curve. The raw light curve is shown
in grey, the peak of the simulated burst is highlighted by the vertical red line, and
windows where the burst detector found a burst are shown as (partially transparent)

purple regions. In this instance the burst detector reliably finds the burst.

shows a narrow simulated burst (t f all = 5 days) run through all four window sizes –
the burst detector successfully finds the burst peak in all four cases.

Figure 6.13 shows the fraction of light curves for which a false positive detection
occurred, again as a function of signal-to-noise for the four models for our different
window sizes. There is very little dependence of false detection fraction on
signal-to-noise of the burst, as would be expected if the burst detector is finding false
bursts in regions of pure noise. The fraction of false detections becomes significant as
the window size increases to 50 days or higher. Specifically, the 50-day window model
suffers from false detections in roughly 25% of light curves, whilst the 100-day
window model has false detections in 60% of light curves. It is unclear what drives
this increase in false detections, particularly given its lack of dependence on
signal-to-noise, but ultimately it indicates the broader windows have a higher
likelihood of being mistaken as containing a burst. Thus the increased detection
success at low signal-to-noise comes at the expense of increased false detections at all
signal-to-noise values.
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FIGURE 6.11: Fraction of simulated light curves where the ground truth burst was
successfully detected. Results from the four LSTM models with different window

sizes are shown, as well as the traditional “bursticity” method.

Actual Negative Actual Positive
Model Negative 6937 63
Model Positive 5 6995

TABLE 6.2: Confusion matrix for training set for 10-day window LSTM burst detector.

Actual Negative Actual Positive
Model Negative 2963 37
Model Positive 6 2994

TABLE 6.3: Confusion matrix for test set for 10-day window LSTM burst detector.

Tables 6.2 and 6.3 present the confusion matrix for the 10-day window burst detector
model. As can be seen, the model performs very well overall, with only 1%
mis-classifications. The consistent performance in training and test datasets gives
reassurance that the model has not been over-fitted.

Results for light curves without bursts (false positive rates): The LSTM burst
detector was applied to 2000 light curves with no bursts but realistic noise and time
sampling (as described above). The LSTM was very successful at rejecting these noisy
light curves: a burst was identified in 0 cases for the 10-day LSTM, 0 cases for the
25-day LSTM, 4 cases (0.2%) for the 50-day LSTM, and 1 case (0.05%) for the 100-day
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FIGURE 6.12: Representative test of whether the LSTM burst detector is capable of
finding extremely narrow bursts (narrower than the search window). Here the same
narrow burst (with t f all = 5 days) was tested on all four window size models, and it

can be seen that the burst can be successfully found by the LSTM burst detector.

Actual Negative Actual Positive
Model Negative 6981 19
Model Positive 0 7000

TABLE 6.4: Confusion matrix for training set for 25-day window LSTM burst detector.

Actual Negative Actual Positive
Model Negative 2987 13
Model Positive 0 3000

TABLE 6.5: Confusion matrix for test set for 25-day window LSTM burst detector.

Actual Negative Actual Positive
Model Negative 6997 3
Model Positive 0 7000

TABLE 6.6: Confusion matrix for training set for 50-day window LSTM burst detector.

Actual Negative Actual Positive
Model Negative 2997 3
Model Positive 0 3000

TABLE 6.7: Confusion matrix for test set for 50-day window LSTM burst detector.
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FIGURE 6.13: Fraction of simulated light curves with a region of the light curve that
doesn’t contain the actual burst peak erroneously flagged by our burst detector as
containing a burst. This is plotted as a function of the burst peak signal-to-noise for

the four models with different window sizes.

Actual Negative Actual Positive
Model Negative 6988 12
Model Positive 0 7000

TABLE 6.8: Confusion matrix for training set for 100-day window LSTM burst detec-
tor.

Actual Negative Actual Positive
Model Negative 2994 6
Model Positive 0 3000

TABLE 6.9: Confusion matrix for test set for 100-day window LSTM burst detector.
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LSTM burst detector models, respectively. This makes sense (and is statistically
consistent with results from the confusion matrices) as the LSTM was explicitly
trained to reject purely noisy light curves.

In contrast, the previous burst finding method “bursticity” found a significant burst in
these same noisy (burst-free) light curves about 2.5% of the time (with little
dependence on the light curve duration). This makes sense because bursticity is
looking for increased significance in a given window, which will always occur in at
least some cases of pure noise. The LSTM, however, has been trained to reject these
cases where the remainder of the light curve is inconsistent with an actual burst.

While the LSTM burst detector does a better job of rejecting purely noisy light curves,
it does still show some false detections in other regions of the simulated light curves
that contain bursts. This is undoubtedly a result of the training set presented to the
burst detector, which has labelled burst peaks and pure noise. A more diverse training
set with other regions of bursty light curves would likely improve this by helping the
model learn how to identify regions with nonzero average flux but not a burst.

6.4.6 Initial tests on real light curves

Finally, the LSTM burst detector was tested on the actual light curves of select known
sources from cat1000 to assess its readiness for application to real data.

As a requisite example, the 10-day window burst detector was applied to the light
curve of IGRJ17464-3213, a black hole candidate x-ray transient. Figure 6.14 shows the
LSTM applied to this light curve, with a zoomed view of some clear outburst activity
successfully identified by the LSTM burst detector. Whilst a quantitative assessment
of the burst detector’s performance is impossible with real data where the underlying
ground truth burst behaviour is inherently unknowable, such examples where experts
would universally agree the behaviour is “burst-like” are instructive for
demonstrating the burst detector’s capabilities. It is also reassuring that the burst
detector can identify clear outburst activity even though this source does not exhibit
bursts with the same shape as the simulated training set (FREDs, which would not be
expected from a source of this type). However the full duration of more extended
bursts is not entirely identified by the burst detector, indicating there still exists some
room for refinement of the burst detector if we want to use it for fully characterising
burst durations.

A full assessment of the burst detector’s ability to detect genuine outbursts in light
curve data is planned as an immediate followup objective to this work. This requires
substantial human effort to inspect and label outburst activities in the light curves, so
this is planned as part of upcoming INTEGRAL survey team efforts. However,
anecdotal evidence from light curve analyses like the one presented here show the
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FIGURE 6.14: Light curve of IGRJ17464-3213 as analysed by the LSTM burst detector.
The inset shows a zoom-in of some prominent activity (highlighted in the main plot by
the dashed black box) where outbursts are successfully detected by the burst detector.

promise of this LSTM burst detector to become a powerful tool for outburst detections
in light curves.

6.5 Case Study: SAX J1818.6-1703

SAX J1818.6-1703 is a SFXT high-mass binary detected in outburst by both SAX and
INTEGRAL missions. INTEGRAL has detected this source many times, and
established the 30-day orbital period of the binary system. Outbursts typically occur
at periastron when the neutron star encounters the supergiant stellar wind, and are
typically 1-2 days in duration. While SAX J1818.6-1703 is one of the SFXT systems
with a relatively high duty cycle, only ∼20 significant outbursts have been seen by
IBIS/ISGRI (see, e.g., Boon et al., 2016).

In this section the INTEGRAL and BAT light curve is used as a case study for testing
the timing and burst detection capabilities of the previous burst detection technique
burstfind and our new LSTM burst detector.

6.5.1 Performance of burstfind

A series of test runs have been performed with bf3 (CPU version) and bf4 (GPU
version), varying the maximum burst duration being searched. Other run parameters
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search time (s)
Max duration (d) bf3 (CPU) bf4 (GPU) bursts found

10 24 1.1 23
100 146 2.6 22

1000 6840 51.5 18
10000 9660 52 2

TABLE 6.10: Performance for CPU and GPU versions of burstfind for test light curve

used were: (a) minimum window duration = 0.05d, (b) minimum science windows =
3, (c) off-axis angle limit = 20◦, (d) residual limit = 0, (e) minimum burst significance =
5.

The SAX J1818.6-1703 test light curve contains 15580 data points. After application of
filters (in this case only the scw exposure > 100s filter as off-axis angle and residual
filters were disabled), 15525 data points remain. The overall light curve has a
detection significance of 22.3 sigma based on a mean flux of 0.335±0.015 c/s.

It can be seen that the maximum burst duration has a major effect on run-time for the
burstfind algorithm. The number of trial scw subsets considered increases rapidly as
the maximum duration increases, and hence the run-time does too. This would
encourage the user to select a short maximum duration, but unless the outbursts are
all short, this carries risk of bias. As an example, BeX binaries typically exhibit Type 1
bursts of a few days, but then occasionally a much longer (∼100d) outburst so
selecting only short bursts would not be ideal. On the other hand, the run-times for
the CPU-based code quickly become untenable for survey production where ∼5000
putative sources might need to be checked. Even selecting 1000d max duration would
imply more than 1 CPU-year. The GPU-based version overcomes this problem with a
typical speed-up of 50-100 times, and the problem becomes tractable even for larger
numbers of light curves. Another effect of the burst duration parameter that can be
seen is a sudden drop in the number of bursts identified when the maximum burst
length is too great - in this case, once the brightest outburst has been identified and
removed, the next optimised significance comes from including the whole remaining
light curve. This is related to the original purpose of burstfind - the algorithm is
designed to detect when/if a source is significantly detected, i.e. when the flux is
significantly above a zero level. It is not designed to detect when a source is
significantly above a non-zero baseline level, although in principle removing the source
mean level between each iteration could be used to improve this aspect of the
performance.

For reference, the bursts identified by the bf4 code when run with a 10-day maximum
duration is shown in Figure 6.15 below, compared to the set found by the LSTM burst
detector. It should be noted that some of the lower-significance bursts are of longer
duration (approaching the 10-day limit) and may be spurious. In practice,
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LC Fraction No. Windows Runtime (s)
1/1000 2 0.037
1/100 22 0.084
1/10 220 0.154

1 2205 0.329

TABLE 6.11: Timing of LSTM burst detector for application to different subsets of
SAXJ1818.6-1703 light curve.

bootstrapping techniques should be used to determine the true threshold level for a
light curve. The threshold will depend upon the number of trials performed, and
hence on both the length of the light curve and the analysis parameters.

6.5.2 Performance of LSTM burst detector

The search for bursts in the light curve of SAX J1818.6-170 was repeated using the new
LSTM burst detector. Specifically, the version of the burst detector with 10-day
windows was used, as this showed a low incidence of false positives and is probably
best suited for analysing this source due to its short outburst durations.

The run time for the LSTM burst detector is not dependent on any input parameters
but does depend on the volume of data presented to it. As was done above, the light
curve for the source was resampled to an even time sampling, and 10-day windows
with a stride of 2 days were generated (in total this produced ∼ 2200 windows
covering the epochs of ISGRI data and contemporaneous BAT daily fluxes). The burst
detector was run on different subsets of the resampled light curve to test its run time,
and the results are shown below in Table 6.11.

It can be seen that the timing of executing the LSTM burst detector scales
logarithmically with the volume of data presented to it. Even when presented with the
full resampled light curve (which has over 1 million data points in all the resampled
windows presented to the LSTM, a factor of nearly 100 greater than the number of
points presented to burstfind), the burst detector takes well under a second to execute.

Figure 6.15 presents the regions of found bursts from both algorithms. There are some
important details to note here: whilst burstfind is designed to isolate exact subsets of
data containing bursts, the LSTM burst finder identifies which of the 10-day
subsamples of the resampled light curve are likely to contain bursts (and overlapping
windows have been combined into unique regions with burst-like activity). This
means the minimum time region for burst-like activity is 10 days, and any time
distinct episodes of outburst occur less than 10 days apart these will appear in the
same region of burst-like activity.
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FIGURE 6.15: Burst detection algorithm comparison for the light curve of SAX J1818.6-
1703 searched by burstfind (top) and the LSTM burst detector (bottom).
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FIGURE 6.16: Same as Figure 6.15 but using only ISGRI data.
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It is worth noting that the LSTM burst detector finds nearly all of the bursts identified
by burstfind (for the combined ISGRI+BAT light curve) except two (which may be
spurious), plus additional regions of burst-like activity. Initial visual inspection
indicates most of the detected “bursts” appear legitimate, though it is difficult to
assess the model’s accuracy since the ground truth of the source’s burst activity is
unknown.

As an additional comparison, the ISGRI light curve alone was also tested with both
burst finding algorithms, and the results are printed graphically in Figure 6.16. The
results of this comparison are similar to that of the full ISGRI+BAT light curve analysis
above: the LSTM finds nearly all of the burstfind bursts, plus some additional regions
of burst-like activity. It is worth noting that the inclusion of BAT data provides
additional sampling of the light curve in times between ISGRI observations, revealing
the burst-like activity not observed by ISGRI. Conversely, the finer sampling of ISGRI
means BAT data does not reveal substantially more bursts during periods where
ISGRI observations are available.

6.6 Conclusions and next steps

This chapter presented a proof-of-concept test of a new ML-driven approach to
detecting bursts in high energy time series data. The final model settled on was one
whose core component is a LSTM which captures the temporal structure of outbursts.

It was demonstrated that the LSTM model trained on simulated bursty light curves
was successful at finding bursts and rejecting noise. The fraction of bursts that were
successfully found by our LSTM is comparable to or better than the previous method
“bursticity”. More importantly, it was found that the LSTM was able to operate
substantially faster than the bursticity approach.

This increase in burst detection speed could be transformative for the search for
transients in INTEGRAL data and potentially future missions as well. One key goal
for the legacy INTEGRAL dataset is to derive light curves at every point on the sky
through HEALpix resampling of all INTEGRAL/IBIS and Swift/BAT observations to
the same pixel grid on the sky. HEALpix provides a non-orthogonal grid with
quasi-uniform spacing across the whole sky. When map-based data is required, a
switch to HEALpix-based mapping ensures compatibility across formats, and
distortion-free maps for optimised source searching. This also ensures that instrument
specific details such as resolution and detector discretisation can be treated
appropriately for both telescopes together.

With the speed of the LSTM burst detector, it becomes feasible to search through all of
these light curves at every point on the sky. Thus it will not only be possible to find
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additional bursts in known transient sources, but also potentially feasible to find new
transients with short burst activity not previously detected. The speed of the LSTM
burst detector also means it could have applications in analysis of live on-board data
from the next generation of high energy satellites. Whilst currently outburst detection
in satellites is performed at the image level, the LSTM burst detector could potentially
facilitate outburst detection at pixel level.

This analysis has also identified some ways in which the burst detector could be
refined in the future. In some simulated light curves the LSTM burst detector labelled
additional regions of the light curve as containing a burst when it did not. This means
the burst detector succeeds at detecting real bursts and rejecting noise, but might
sometimes flag additional (false) bursts. This can be remedied by supplying a more
diverse training set that includes regions of bursty (simulated) light curves that do not
contain the burst peak. For application to live data, this will require a training set that
includes a broad range of light curve behaviours that are not classified as bursty – this
is a time consuming challenge as it requires human labelling of data, or alternatively
the ability to simulate all “expected” non-bursty light curve behaviours. Additionally,
an ideal training set would also include a suitable variety of outburst shapes in the
training sample, though this requires formal definitions of what constitutes a burst.

One additional feature planned for the burst detector is to combine results from
LSTMs with varying window sizes. In a similar spirit to the manner in which many
image classification algorithms combine convlutional kernels of multiple sizes (e.g.,
UNet), a burst detector that combines outputs from LSTMs with varying window
sizes. This not only facilitate the combination of information about temporal
behaviour on multiple timescales, but would remove any need for human selection of
model hyperparameters such as window size.

Another improvement for the burst detector could be its expansion to operate on
multi-band data. It was found for the source detector CNN that this increased the
fidelity of the source detector because the presence of the source in multiple bands.
This work starts developing the burst detector in a single band (18-60 keV) as a proof
of concept, but the INTEGRAL data is already on hand to include multiple bands. If
the analogous data from Swift/BAT can be prepared, then a multi-band burst detector
could potentially be trained in a similar way. Whilst INTEGRAL data alone can still be
sufficient to detect outbursts, it was shown above that the augmentation of Swift is
advantageous for temporal coverage in INTEGRAL gaps.

Finally, another potential future development of the burst detector could be to explore
a semi-supervised approach, particularly by treating this as an outlier detection
problem. To do so would require the labelling of a large volume of “non-burst” data
and training a model to detect data that isn’t consistent with this. One key advantage
of this approach is that it could have the potential to identify all anomalous light curve
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behaviour without having to be explicitly trained to identify it (as the LSTM was
trained to find FREDs). Once a burst has been detected, additional ML models could
be deployed to classify the burst. This sort of “all-purpose” outburst detector would
be extremely useful for both legacy datasets and future live satellite missions.
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Chapter 7

Conclusions

Next generation astronomy missions will produce orders of magnitude greater
volumes of data than current instruments. As high energy astronomy enters the era of
big data, this community needs smarter methods for data analysis to keep pace with
torrential accumulation of data. This need motivated the work in this thesis, where
new tools were presented that leverage machine learning and Bayesian reasoning to
efficiently analyse data from the INTEGRAL satellite. These tools were utilised to
efficiently produce a new catalogue for the first 1000 orbits of INTEGRAL data. This
new catalogue found 5% more sources than the catalogue produced using older
methods on the same dataset, particularly sources near the Galactic centre which were
blended in stacked images used for source detection in the previous catalogue.
Furthermore, machine learning tools substantially reduce the bias introduced by
human intervention. With such capabilities, these tools have the potential to transform
the way high energy astronomy surveys are done.

7.1 Outcomes for new high energy astrophysics survey tools

This thesis presented three new tools for efficiently producing high energy astronomy
surveys:

1. CNN source detector: A tool for detecting sources in INTEGRAL images that
utilises a convolutional neural network (CNN) to reliably identify windows
within the image that contain a genuine astrophysical source. The speed and
reliability of this tool enables searching for sources at the science window level
(individual images), recovering transient sources missed in stack image source
catalogues. The source detector also removes the need for human intervention,
consequently reducing human-induced bias.
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2. Bayesian matching: A method for combining excesses detected in individual
INTEGRAL images into a list of unique sources using Bayesian reasoning. The
most critical benefit of this method is that it operates on a full list of excesses
simultaneously and thus does not produce results dependent on the order of
excess combination.

3. Burst detector: A tool for detecting outbursts in INTEGRAL+BAT light curves
that utilises a long short-term memory (LSTM) model to capture time series
behaviour and thereby reliably identify regions of light curves containing an
outburst. This can be useful not only for source verification but also deeper
scientific investigation into source variability.

7.2 Future applications of new tools

The source detector presented here has potential to revolutionise not only future
surveys with INTEGRAL data, but also surveys produced by other instruments. The
burst detector has broad applicability in time series data, particularly light curves for
transient astrophysical sources. Both of these tools are already planned to be deployed
for a new legacy survey HEASS (Section 7.2.1). The source detector has great potential
for adaptation to future high energy astronomy missions, particularly the CTA
(Section 7.2.2) which is rapidly approaching active operations. Finally, the burst
detector could be transformative for future high energy satellite missions
(Section 7.2.3).

7.2.1 A High Energy All-Sky Survey (HEASS)

The machine learning tools for high energy survey catalogue production presented in
this thesis have already been earmarked to be integral components of a new project:
the High Energy All-Sky Survey (HEASS) – a collaboration between the University of
Southampton and INAF Bologna (including PI Dr. Angela Malizia) and INAF Roma
in Italy. HEASS will generate the most sensitive, unbiased and complete survey of the
hard X-ray sky (20-300keV) ever produced by combining over 20 years of
INTEGRAL/ISGRI images with contemporaneous Swift/BAT observations. The
legacy source catalogue for HEASS will be built with the ML source detector
presented in this thesis. Additionally, the burst detector presented here will be crucial
for the analysis of the light curves produced as part of HEASS.

The major backbone of HEASS will be the 20+ years of data collected by INTEGRAL,
which currently consists of over 2500 orbits. This full dataset will first be processed
with the latest version of the INTEGRAL software, OSA11. To make the final imaging
data products for HEASS, all INTEGRAL images will be resampled to the sample
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HEALPix-based grid on the sky. To augment and enhance this rich dataset, HEASS
will resample and cross-calibrate Swift/BAT data covering the same mission period.

With the newly processed, resampled and cross-calibrated images on hand, the CNN
source detector will then be retrained on the newly processed dataset so that it can
capture the new subtleties of the data. The catalogue produced with the CNN source
detector applied to this dataset will be transformative for high energy astronomy. The
most recent BAT survey (Oh et al., 2018) lists approximately 1600 sources – comparing
the sensitivity of that survey to the expected sensitivity of HEASS and using the
log(N)− log(S) relationship from (Bottacini et al., 2012) HEASS should yield a
catalogue of 4000 sources.

With all INTEGRAL and BAT data resampled to the same HEALPix-based map, this
will enable a creation of a light curve for every pixel on the sky. These light curves will
be ideal for inspection with the burst detector to search for outbursts – both to
determine a burst history for all known sources as well as potential discovery of new
extremely short duration outbursts formerly hidden within long periods of otherwise
quiescent emission. This effort could only be made possible by the burst detector’s
speed of execution, which facilitates the search for bursts in exceptional volumes of
data. This volume of data would be untenable for examination by slower methods
used in the past.

7.2.2 ML Source Detection in Future High Energy Surveys

Following on from the rich legacy generated with HEASS, the next natural evolution
of the source detector will be to apply it to data from other high energy missions. One
ideal candidate mission is the Cherenkov Telescope Array (CTA, Actis et al., 2011), as
it will generate volumes of data that cannot be reasonably inspected by humans and
will also have source signals with complex shapes that traditional source detection
tools (e.g., SExtractor) are not well suited for. In the next few years CTA’s data analysis
preparation will be in an advanced state and will have a substantial body of
simulations suitable for presenting to the ML source detector.

7.2.3 Live Burst Detection for High Energy Satellite Missions

The newly developed burst detector presented here has the potential to be greatly
impactful in future high energy astrophysics missions. The burst detector operates on
time series data to determine epochs when an astrophysical source is in outburst. It is
designed to automatically detect bursts without the need for human inspection. This
tool has the potential to be transformative for high energy transient astrophysics; if
suitably tuned for new missions, this burst detector could be deployed on future space
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missions to enable real-time decision making about target followup prioritisation. The
versatility of the burst detector’s deep-learning networks also means that with some
fine tuning it can be retrained to look for other interesting time-series events.

7.3 Summary

The suite of tools presented in this thesis constitute a powerful toolkit for conducting
high energy astronomy survey catalogue production. The CNN source detector can
rapidly process a large volume of imaging data to reliably detect excesses – this means
every image taken in a survey can be analysed for astrophysical sources. The Bayesian
matching approach is able to then group those detections into a list of unique sources
– these grouped excesses can then be combined to calculate average fluxes and
positions (and their uncertainties) for a final catalogue of sources. This same collection
of grouped excesses can be examined in the time domain as light curves – and these
light curves can be presented to the burst detector to identify epochs of outburst,
yielding outburst histories for each source. Combined, these tools form a
comprehensive approach for detecting sources in high energy astronomy surveys and
producing source catalogues and outburst histories. Most importantly, these tools are
fast, reliable, and can operate without human input.

These tools promise to be a powerful toolkit for application to other high energy
astronomy surveys. Some additional work is required to adapt these tools to other
surveys. The source detector CNN must be trained on labelled examples of sources
and background, as it is a supervised learning approach to image classification. The
Bayesian matching approach does not require any specific tuning for new
instruments, as it operates on the excess list produced by the source detector. The
burst detector, like the source detector, is trained in a supervised learning approach so
it requires labelled examples of bursts and quiescent periods from light curves from
the survey. It was found that this step requires particular care to prepare a training set
with a suitable variety of labelled light curves. The instrument-specific elements of the
development of these tools was a subdominant component of the work of this thesis,
so it is expected that all of these model tuning efforts are tractable for new surveys.

There already exists a wealth of potential applications of the machine learning driven
tools presented in this thesis. The next major INTEGRAL catalogue is already slated to
make use of these tools, and they will serve as vital instruments for a new survey
HEASS being conducted in collaboration between Southampton and several Italian
institutions. The source detector is well-poised to be adapted to future high energy
astronomy missions, including potentially the CTA. The burst detector can also be
adapted to detect and potentially classify different types of outbursts. In general, data
gathered from any astronomy survey can be considered a sampling of the sky in two
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spatial dimensions and one temporal dimensions (i.e., a data cube), plus potentially a
spectral dimension. The tools presented here facilitate searching in all axes of survey
parameter space: source detection in the spatial dimensions, burst detection in the
temporal, and capability to integrate spectral information into both. Most crucially
these tools are exceptionally fast and produce results with high fidelity without the
need for human intervention – this makes them ideally suited to be applied to the
torrent of data promised to be produced by the next generation of facilities as high
energy astrophysics enters the era of big data.





149

Appendix A

Appendix: CNN Sources missing
from cat1000

The following sources were detected with the CNN source detector but not in the
stacked cat1000 images:

Coordinates and source type are taken from the INTEGRAL reference catalog at
http://www.isdc.unige.ch/integral/catalog/latest/catalog.html

http://www.isdc.unige.ch/integral/catalog/latest/catalog.html
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Source Name RA DEC Description
1H 1746-370 17:50:13 -37:03:08 LMXB
1RXS J174607.8-21333 17:46:03 -21:33:27 Symbiotic star
AX J1735.8-3207 17:35:48 -32:07:12 Unclassified
AX J1739.3-2923 17:39:19 -29:23:54 Unclassified
HESS J1825-137 18:25:54 -13:47:00 Gamma-ray source
IGR J05253+6447 05:24:29 +64:44:44 AGN (Sey-2)
IGR J06074+2205 06:07:26.6 +22:05:48 HMXB (Be)
IGR J13057+2036 13:05:42.0 +20:36:00 Suspected AGN
IGR J16285-4630 16:28:27.1 -46:30:25 Unclassified
IGR J16336-4733 16:33:29.9 -47:33:33 Unclassified
IGR J16442-5548 16:44:38.2 -55:50:46 Unclassified
IGR J16582-2937 16:58:11.5 -29:37:34 Unclassified
IGR J17198-3020 17:19:48.7 -30:17:27 Unclassified
IGR J17219-1509 17:21:55.7 -15:09:40 Suspected AGN
IGR J17394-3007 17:39:26.6 -30:07:16 Unclassified
IGR J17407-2808 17:40:42.1 -28:07:26 LMXB
IGR J17461-2204 17:46:08.0 -22:03:32 Unclassified
IGR J17467-2848 17:46:43.9 -28:48:18 Unclassified
IGR J18159-3353 18:15:54.0 -33:53:00 Possible SFXT
IGR J18193-2542 18:19:17.0 -25:42:11 Unclassified
IGR J19254-3901 19:25:25.9 -39:01:44 Unclassified
IGR J19284+0107 19:28:29.6 +01:06:42 Unclassified
NGC 5899 15:15:23.6 +42:02:30 AGN (Sey-2)
RX J0137.7+5814 01:37:50.0 +58:14:11 Unclassified
Swift J1658.2-4242 16:58:12.7 -42:41:56 BH

TABLE A.1: Sources found by the CNN source detector but not included in cat1000.
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N. Schanche, A. Collier Cameron, G. Hébrard, et al. Machine-learning approaches to
exoplanet transit detection and candidate validation in wide-field ground-based
surveys. , 483(4):5534–5547, March 2019. .

J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:
85–117, 2015.

Bernhard. Schoölkopf and Alexander J. Smola. Learning with kernels : support vector
machines, regularization, optimization, and beyond. MIT Press, 2002. ISBN 0262194759.

http://arxiv.org/abs/1603.00231
http://researcher.watson.ibm.com/researcher/files/us-beygel/samuel-checkers.pdf
http://researcher.watson.ibm.com/researcher/files/us-beygel/samuel-checkers.pdf
http://onlinelibrary.wiley.com/store/10.1111/j.1365-2966.2008.13765.x/asset/j.1365-2966.2008.13765.x.pdf;jsessionid=43432E6EB5DFD5E346813CCF66F18FE3.f04t01?v=1{&}t=j1roigyd{&}s=cbae2670164aa12b2af83e3f93e78962ff158b26
http://onlinelibrary.wiley.com/store/10.1111/j.1365-2966.2008.13765.x/asset/j.1365-2966.2008.13765.x.pdf;jsessionid=43432E6EB5DFD5E346813CCF66F18FE3.f04t01?v=1{&}t=j1roigyd{&}s=cbae2670164aa12b2af83e3f93e78962ff158b26
http://onlinelibrary.wiley.com/store/10.1111/j.1365-2966.2008.13765.x/asset/j.1365-2966.2008.13765.x.pdf;jsessionid=43432E6EB5DFD5E346813CCF66F18FE3.f04t01?v=1{&}t=j1roigyd{&}s=cbae2670164aa12b2af83e3f93e78962ff158b26
http://onlinelibrary.wiley.com/store/10.1111/j.1365-2966.2008.13765.x/asset/j.1365-2966.2008.13765.x.pdf;jsessionid=43432E6EB5DFD5E346813CCF66F18FE3.f04t01?v=1{&}t=j1roigyd{&}s=cbae2670164aa12b2af83e3f93e78962ff158b26


168 REFERENCES

URL https://books.google.co.uk/books?hl=en{&}lr={&}id=

y8ORL3DWt4sC{&}oi=fnd{&}pg=PR13{&}dq=kernel+trick+support+vector+

machines{&}ots=bKAZduO3FF{&}sig=s8Nh0cSS83kayvY{_}0uL-k6{_}arKc{#}v=

onepage{&}q=kerneltricksupportvectormachines{&}f=false.

L. J. Schultz, M. S. Wallace, M. C. Galassi, et al. Hybrid coded aperture and Compton
imaging using an active mask. Nuclear Instruments and Methods in Physics Research A,
608(2):267–274, September 2009. .

C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, et al. RUSBoost: A hybrid approach to
alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics Part
A:Systems and Humans, 40(1):185–197, 2010. ISSN 10834427. . URL
http://sci2s.ugr.es/keel/pdf/algorithm/articulo/

2010-IEEETSMCpartA-RUSBoostAHybridApproachtoAlleviatingClassImbalance.

pdf.

S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, et al. Stock price prediction using
lstm, rnn and cnn-sliding window model. In 2017 international conference on advances
in computing, communications and informatics (icacci), pages 1643–1647. IEEE, 2017.

I. Sevilla-Noarbe and P. Etayo-Sotos. Effect of training characteristics on object
classification: An application using Boosted Decision Trees. Astronomy and
Computing, 11:64–72, jun 2015. ISSN 22131337. . URL
http://linkinghub.elsevier.com/retrieve/pii/S2213133715000347.

V. Sguera, A. Bazzano, A. J. Bird, et al. Unveiling supergiant fast x-ray transient
sources with integral. The Astrophysical Journal, 646(1):452, 2006.

D. Shen, G. Wu, and H.-I. Suk. Deep learning in medical image analysis. Annual review
of biomedical engineering, 19:221–248, 2017.

N. Shinde, S. Chandana, S. A. Patil, et al. Stacked lstm based wafer classification. In
2021 IEEE International Conference on Big Data (Big Data), pages 5786–5790. IEEE,
2021.

D. Silver, A. Huang, C. J. Maddison, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

S. Singh, S. Hussain, and Mohammad A. Bazaz. Short term load forecasting using
artificial neural network. In 2017 Fourth International Conference on Image Information
Processing (ICIIP), pages 1–5. IEEE, 2017.

G. K. Skinner, A. P. Willmore, C. J. Eyles, et al. Hard X-ray images of the galactic
centre. , 330(6148):544–547, December 1987. .

R. Socher, A. Perelygin, J. Wu, et al. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing, pages 1631–1642, 2013.

https://books.google.co.uk/books?hl=en{&}lr={&}id=y8ORL3DWt4sC{&}oi=fnd{&}pg=PR13{&}dq=kernel+trick+support+vector+machines{&}ots=bKAZduO3FF{&}sig=s8Nh0cSS83kayvY{_}0uL-k6{_}arKc{#}v=onepage{&}q=kernel trick support vector machines{&}f=false
https://books.google.co.uk/books?hl=en{&}lr={&}id=y8ORL3DWt4sC{&}oi=fnd{&}pg=PR13{&}dq=kernel+trick+support+vector+machines{&}ots=bKAZduO3FF{&}sig=s8Nh0cSS83kayvY{_}0uL-k6{_}arKc{#}v=onepage{&}q=kernel trick support vector machines{&}f=false
https://books.google.co.uk/books?hl=en{&}lr={&}id=y8ORL3DWt4sC{&}oi=fnd{&}pg=PR13{&}dq=kernel+trick+support+vector+machines{&}ots=bKAZduO3FF{&}sig=s8Nh0cSS83kayvY{_}0uL-k6{_}arKc{#}v=onepage{&}q=kernel trick support vector machines{&}f=false
https://books.google.co.uk/books?hl=en{&}lr={&}id=y8ORL3DWt4sC{&}oi=fnd{&}pg=PR13{&}dq=kernel+trick+support+vector+machines{&}ots=bKAZduO3FF{&}sig=s8Nh0cSS83kayvY{_}0uL-k6{_}arKc{#}v=onepage{&}q=kernel trick support vector machines{&}f=false
http://sci2s.ugr.es/keel/pdf/algorithm/articulo/2010-IEEE TSMCpartA-RUSBoost A Hybrid Approach to Alleviating Class Imbalance.pdf
http://sci2s.ugr.es/keel/pdf/algorithm/articulo/2010-IEEE TSMCpartA-RUSBoost A Hybrid Approach to Alleviating Class Imbalance.pdf
http://sci2s.ugr.es/keel/pdf/algorithm/articulo/2010-IEEE TSMCpartA-RUSBoost A Hybrid Approach to Alleviating Class Imbalance.pdf
http://linkinghub.elsevier.com/retrieve/pii/S2213133715000347


REFERENCES 169

Y.-J. Son, H.-G. Kim, E.-H. Kim, et al. Application of support vector machine for
prediction of medication adherence in heart failure patients. Healthcare informatics
research, 16(4):253–259, 2010.

R. Sunyaev. Recent Gamma-Ray Observations of the Galactic Center. In Bulletin of the
American Astronomical Society, volume 23, page 1395, September 1991.

R. Sunyaev, E. Churazov, M. R. Gilfanov, et al. X-Ray Observations of the Large
Magellanic Cloud Field by the TTM Instrument on Board the KVANT Module -
1988NOV - 1989JUN. In J. Hunt and B. Battrick, editors, Two Topics in X-Ray
Astronomy, Volume 1: X Ray Binaries. Volume 2: AGN and the X Ray Background,
volume 1 of ESA Special Publication, page 633, November 1989.

R. Sunyaev, S. Grebenev, A. Kaniovsky, et al. Hard x-rays from supernova 1987A:
results of Mir-Kvant and Granat in 1987-1990 and expectations. In Philippe
Durouchoux and Nikos Prantzos, editors, Gamma-Ray Line Astrophysics, volume 232
of American Institute of Physics Conference Series, pages 211–217, August 1991a. .

R. Sunyaev, P. Mandrou, and J. Paul. Galactic Center. , 5245:2, April 1991b.

R. A. Sunyaev, E. Churazov, V. Efremov, et al. Highlights from the KVANT mission.
Advances in Space Research, 10(2):41–46, January 1990. .

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. Advances in neural information processing systems, 27, 2014.

R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning, volume 135. MIT
press Cambridge, 1998.
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