Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructures
Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructures
Generalized high-fidelity closed-form formulae have been developed to predict the shear modulus of hexagonal graphene-like monolayer nanostructures and nano-heterostructures based on a physically insightful analytical approach. Hexagonal nano-structural forms (top view) are common for nanomaterials with monoplanar (such as graphene and hBN) and multiplanar (such as stanene and MoS2) configurations. However, a single-layer nanomaterial may not possess a particular property adequately, or multiple desired properties simultaneously. Recently, a new trend has emerged to develop nano-heterostructures by assembling multiple monolayers of different nanostructures to achieve various tunable desired properties simultaneously. Shear modulus assumes an important role in characterizing the applicability of different two-dimensional nanomaterials and heterostructures in various nanoelectromechanical systems such as determining the resonance frequency of vibration modes involving torsion, wrinkling and rippling behavior of two-dimensional materials. We have developed mechanics-based closed-form formulae for the shear modulus of monolayer nanostructures and multi-layer nano-heterostructures. New results of shear modulus are presented for different classes of nanostructures (graphene, hBN, stanene and MoS2) and nano-heterostructures (graphene-hBN, graphene-MoS2, graphene-stanene and stanene-MoS2), which are categorized on the basis of fundamental structural configurations. The numerical values of shear modulus are compared with the results from the scientific literature (as available) and separate molecular dynamics simulations, wherein a good agreement is noticed. The proposed analytical expressions will enable the scientific community to efficiently evaluate shear modulus of a wide range of nanostructures and nanoheterostructures.
5280-5294
Mukhopadhyay, T.
2ae18ab0-7477-40ac-ae22-76face7be475
Mahata, A.
1af2dde8-0a7a-453c-824f-aac24d25af50
Adhikari, S.
82960baf-916c-496e-aa85-fc7de09a1626
Asle Zaeem, M.
6133a728-343f-4d54-94c9-84e9f7d79c45
21 March 2018
Mukhopadhyay, T.
2ae18ab0-7477-40ac-ae22-76face7be475
Mahata, A.
1af2dde8-0a7a-453c-824f-aac24d25af50
Adhikari, S.
82960baf-916c-496e-aa85-fc7de09a1626
Asle Zaeem, M.
6133a728-343f-4d54-94c9-84e9f7d79c45
Mukhopadhyay, T., Mahata, A., Adhikari, S. and Asle Zaeem, M.
(2018)
Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructures.
Nanoscale, 10 (11), .
(doi:10.1039/c7nr07261a).
Abstract
Generalized high-fidelity closed-form formulae have been developed to predict the shear modulus of hexagonal graphene-like monolayer nanostructures and nano-heterostructures based on a physically insightful analytical approach. Hexagonal nano-structural forms (top view) are common for nanomaterials with monoplanar (such as graphene and hBN) and multiplanar (such as stanene and MoS2) configurations. However, a single-layer nanomaterial may not possess a particular property adequately, or multiple desired properties simultaneously. Recently, a new trend has emerged to develop nano-heterostructures by assembling multiple monolayers of different nanostructures to achieve various tunable desired properties simultaneously. Shear modulus assumes an important role in characterizing the applicability of different two-dimensional nanomaterials and heterostructures in various nanoelectromechanical systems such as determining the resonance frequency of vibration modes involving torsion, wrinkling and rippling behavior of two-dimensional materials. We have developed mechanics-based closed-form formulae for the shear modulus of monolayer nanostructures and multi-layer nano-heterostructures. New results of shear modulus are presented for different classes of nanostructures (graphene, hBN, stanene and MoS2) and nano-heterostructures (graphene-hBN, graphene-MoS2, graphene-stanene and stanene-MoS2), which are categorized on the basis of fundamental structural configurations. The numerical values of shear modulus are compared with the results from the scientific literature (as available) and separate molecular dynamics simulations, wherein a good agreement is noticed. The proposed analytical expressions will enable the scientific community to efficiently evaluate shear modulus of a wide range of nanostructures and nanoheterostructures.
This record has no associated files available for download.
More information
Published date: 21 March 2018
Additional Information:
Funding Information:
TM acknowledges the financial support from Swansea University through the Zienkiewicz scholarship. SA acknowledges the financial support from Ser Cymru National Research Network (NRN) under grant no. NRN102.
Publisher Copyright:
© 2018 The Royal Society of Chemistry.
Identifiers
Local EPrints ID: 483555
URI: http://eprints.soton.ac.uk/id/eprint/483555
ISSN: 2040-3364
PURE UUID: ee79e6ad-e93b-444d-8c31-87b5111176d1
Catalogue record
Date deposited: 01 Nov 2023 18:00
Last modified: 06 Jun 2024 02:16
Export record
Altmetrics
Contributors
Author:
T. Mukhopadhyay
Author:
A. Mahata
Author:
S. Adhikari
Author:
M. Asle Zaeem
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics