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Abstract—Collaborative resource scheduling between edge ter-
minals and cloud centers is regarded as a promising means of
effectively completing computing tasks and enhancing quality of
service. In this paper, to further improve the achievable perfor-
mance, the edge cloud resource scheduling (ECRS) problem is
transformed into a multi-objective Markov decision process based
on task dependency and features extraction. A multi-objective
ECRS model is proposed by considering the task completion
time, cost, energy consumption and system reliability as the
four objectives. Furthermore, a hybrid approach based on deep
reinforcement learning (DRL) and multi-objective optimization
are employed in our work. Specifically, DRL preprocesses the
workflow, and a multi-objective optimization method strives to
find the Pareto-optimal workflow scheduling decision. Various
experiments are performed on three real data sets with different
numbers of tasks. The results obtained demonstrate that the
proposed hybrid DRL and multi-objective optimization design
outperforms existing design approaches.

Index Terms—Edge cloud resource scheduling, deep reinforce-
ment learning, multi-objective optimization, Markov decision
process.

I. INTRODUCTION

W ITH the rapid development of information technology,
traditional cloud computing mode needs to gather a

large amount of data to be processed in the cloud data center
[1]. This not only imposes a long delay and wastes existing
resources, but also places a huge burden on the cross-domain
link bandwidth [2]. The devices of mobile edge computing
(MEC) are usually deployed at the edge of the cloud and
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close to end-users with the characteristics of distributed, low-
delay and continuous operation. Limited by the computing
ability of MEC devices, the quality of service (QoS) often
cannot meet the expectations [3], [4]. To improve the QoS for
users, the cooperation between MEC terminal and cloud to
effectively complete the computing resource scheduling will
become particularly urgent [5].

Recently, researchers have carried out extensive investigation
on the edge cloud resource scheduling (ECRS) problem. For
the risk-aware energy scheduling problem in microgrid edge
computing, Munir et al. [6] designed a deep reinforcement
learning (DRL) method for the multi-agent random game
based on Nash equilibrium to minimize the expected residual
energy of the MEC network. Ning et al. [7] constructed
a three-layer DRL architecture for Internet of vehicles to
minimize the overall power consumption. Mao et al. [8] de-
scribed a joint unmanned aerial vehicle position optimization
and resource scheduling method in space-air-ground integrated
networks with mixed cloud-edge computing to minimize the
maximum computing delay between edge devices. Rui et al.
[9] showed an emergency task allocation mechanism based on
the comprehensive reputation and regional prediction model in
the ECRS environment to solve the emergency task allocation
problem in intelligent network maintenance. It can be seen
that machine learning method is regarded as an important tool
for dealing with various ECRS problems [10], [11].

However, due to poor robustness and design constraints of
scheduling rules, it is very challenging for these machine
learning methods to obtain the global or local optimal solutions
under the large-scale ECRS environment [12], [13]. The
performance of these methods are often insufficiently good,
particularly in dynamic ECRS environments [14]. Meanwhile,
meta-heuristic algorithms have gradually been used to address
various ECRS problems, because of their fast convergence,
high accuracy and low complexity [15]. Qin et al. [16] applied
a hybrid collaborative multi-objective fruit-fly optimization
algorithm to optimize both the execution time and cost for
scheduling workflow in cloud environment. Li et al. [17]
proposed a multi-swarm co-evolution-based hybrid intelligent
optimization algorithm for multiple-workflow scheduling to
minimize the total cost while meeting the deadline constraint
of each workflow in the cloud. Xiao et al. [18] designed a co-
evolutionary hyper-heuristic framework to minimize the com-
pletion time of the workflow scheduling problem, where the
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task and resource selection rules are automatically learned by
a co-evolutionary genetic algorithm. Therefore, meta-heuristic
algorithm is another important tool for researcher to deal with
challenging ECRS problems.

For any ECRS problem, there are various factors to be
considered, and moreover these different factors interact with
each other. During resource scheduling, the virtualization char-
acteristic nature of the ECRS environment means that user may
not be able to identify whether the provided computing service
is a malicious service or not, which affects the reliability of
the whole scheduling system [19]. On the other hand, the total
execution time of tasks directly affects the energy consumption
and the operation cost of edge cloud service provider. Edge
cloud service provider will try to avoid idle machines and
reduce the cost and energy waste [6]. Therefore, the factors
affecting the ECRS problem, including the task makespan
time, cost, energy consumption and system reliability, need
to be considered jointly in order to achieve a satisfactory
result. Thus the ECRS problem is inherently a multi-objective
optimization problem (MoOP).

Traditional computing mode transfers the data to the cloud
center for centralized processing by the cloud data center,
which can no longer meet the needs of today’s enterprises and
organizations [20]. By placing storage, computing, intelligent
data analysis and other work on the edge, an ECRS system
can reduce response delay and bandwidth cost, alleviate the
pressure on cloud, and provide cloud services, such as whole
network scheduling and distributing computing power [21].
With the deepening of the research on the ECRS problem,
various ECRS applications have also appeared in practice
[22]. For example, in intelligent transportation, edge clusters
are deployed in various regions to collect vehicle and road
information [23]. The data are recorded in real time and trans-
mitted to the cloud computing center. The cloud computing
center conducts analysis and processing on the data transmitted
from the regional edge clusters, perceives the overall road
traffic situation, and forms an overall scheduling mechanism
through big data integration. Then, the cloud data center
issues instructions to each edge cluster for overall regulation
and control to provide road information to users in advance,
avoid road congestion, reduce the probability of accidents,
and provide more convenient services for travel [7], [24]. In
smart home, MEC nodes can collect the operation and energy
consumption information of various home terminal devices
and focus on the cloud data center control records, so that
users can conveniently understand the operation of real-time
terminal equipment and access previous data [25].

In addition, each task in an ECRS system can be split into
multiple dependent subtasks [26]. These subtasks should be
assigned to appropriate edge computing nodes. The goal of
ECRS is to fully consider the dependencies between tasks in
the scheduling decision-making process and build a multi-task
and multi-user collaborative scheduling service, which requires
comprehensive consideration of task completion time, cost, en-
ergy consumption and system reliability [27]. Executing tasks
under a reliable ECRS system can complete the collaborative

scheduling of tasks faster with better QoS, and avoids link
interruption. By contrast, lack of available service capacity or
low task execution of collaborative tasks may be caused by
unreliable virtual machines, which cannot meet the needs of
tasks, and further lead to additional overhead caused by link
reconstruction transmission [28].

In this paper, edge-cloud collaborative computing mode is
adopted for task computing. By combining the advantages
of the both computing modes, it can enhance the QoS and
experience of service (EoS) for users as well as improve
the efficiency of resource scheduling. We aim to reduce the
resource waste caused by the uneven allocation of computing
resources, and avoid the situation of the backlog in some edge
servers due to intensive task requests while other edge servers
being relatively idle. Hence, we tackle the task processing
timeliness demand lag caused by scheduling tasks to the
cloud computing center, in order to obtain a reliable energy-
saving and efficient scheduling decision-making scheme that
can effectively weigh the factors affecting the ECRS problem.
The contributions of our work are given as follows.

• We transform the ECRS problem into a multi-objective
Markov decision process (MDP) based on task depen-
dency and ECRS feature extraction. To describe this pro-
cess, we establish a multi-objective ECRS optimization
model that comprehensively considers the makespan time,
cost, energy consumption and system reliability of the
ECRS system.

• In order to effectively solve the constructed ECRS model,
we design a hybrid optimization method by combining
DRL and meta heuristic algorithm. Specifically, the deep
Q network (DQN) [12], [24] is employed for workflow
preprocessing. We add dynamic factors into the MDP
to help improving the robustness and efficiency of the
algorithm. Moreover, the improved multi-objective evo-
lutionary algorithm (MoEA) [16] is used for optimization.
For the preprocessed workflow, the MoEA strives to find
excellent solutions that balance convergence and diversity
(CaD), and pushes the final solution set to the Pareto-
optimal front (PF) [29], [30].

• The experiments are performed on three real data sets
with different task numbers. First, the performance com-
parison of different workflow preprocessing methods is
investigated for the MoEA-ECRS. Then the experiments
are performed to compare different algorithms with the
same pre-processing workflow mode. In addition, the
performance boxes of different algorithms are located
on different objectives for the specific workflows that
have undergone DQN preprocessing operations. The ex-
perimental results show that the proposed MoEA-ECRS
outperforms other MoEA approaches.

The rest of the paper is organized as follows. Section II
introduces the problem description and defines the system
objective function. The proposed hybrid optimization approach
for solving the ECRS design is detailed in Section III. The
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Fig. 1. ECRS network and directed acyclic graph (DAG) with workflow, where ECVM stands for edge cloud virtual machine

simulation experiments are presented in Section IV. The paper
is concluded in Section V.

II. PROBLEM FORMULATION AND OBJECTIVE FUNCTION

In this section, we first discuss the problem description, and
then define the system’s objective function, which includes
the makespan time, cost, energy consumption and system
reliability. The ECRS network model is illustrated in Fig. 1.

A. Problem Description

When an edge server faces a surge of requests, the computing
tasks may be aggregated to cause access congestion because of
the limited bandwidth and computing resources. Consequently,
the data link is overloaded to form a routing hotspot. Once the
load exceeds the critical value, the MEC service distribution
capacity will decline exponentially, eventually triggering the
avalanche effect that leads to the network disaster [28]. Based
on the cooperation between the terminal and the edge cloud,
the ECRS system can effectively complete the computing
resource scheduling, to alleviate the task aggregation caused
access congestion and improve the network QoS [15].

As shown in Fig. 1, wireless access points, edge servers,
cloud servers and edge devices jointly organize and form
an ECRS network [31]. Edge devices are computing nodes
in the edge-cloud domain. To enhance the computing power
of the ECRS system, the ECRS center can schedule the
computing tasks by matching the needs of each computing task
with the computing power of each edge computing node. To
intuitively understand the resource scheduling process of edge
cloud, the scheduling process can be regarded as a directed
acyclic graph (DAG) workflow composed of edge node set
E =

{
ei, j | i , j, i, j ∈ {1, 2, · · · , NE }

}
and edge node task set

Task = {Task1,Task2, · · · ,Taskn}, where, ei, j denotes the

output data size of the computing task from node Task i to
Task j , NE is the number of edge nodes, and n is the number
of tasks. In particular, the notation ei, j means that task Task i
is the parent task of task Task j , and Task j is the child task
of task Task i . It is necessary to consider the interdependence
between tasks when making resource scheduling decisions,
and ei, j = 0 indicates that the two tasks, Task i and Task j ,
are independent.

Users expect to receive cost-effective service from the ECRS,
i.e., users favour high QoS with the least cost. For the ECRS
provider, only by meeting the needs of users can it get more
benefits. Shorter task execution time and better task processing
performance are obviously preferred by both users and ECRS
providers, which however is usually accompanied by higher
costs per unit time [32]. Therefore, the cost is another common
concern of users and service providers. Additionally, to ensure
the sustainable operation of the system, energy consumption
needs to be considered. Moreover, when the equipment fails,
the edge terminal may not be able to process the computing
task in time, resulting in computing failure and serious re-
liability problem. Hence, the system reliability factor of the
edge device node and/or cloud node should also be taken into
account during the construction of the ECRS model, so as to
ensure the high-quality resource scheduling.

B. Objective Function

As discussed previously, the performance of an ECRS network
depends on multiple factors, and the main objectives in ECRS
design include the makespan time, cost consumption, energy
consumption and system reliability.

1) Makespan time (Obj1): The server is usually deployed
near the task to be calculated, and the end time of each task is
determined by the size of the task and the processing speed of
the server to which the task is assigned. The makespan time
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of all the tasks in an ECRS system is determined by the end
time of the task with the longest end time completed by the
server in the process of resource scheduling [16]. Hence, the
makespan time Rt,l of the server in the l-th edge cloud virtual
machine (ECVM) of the ECRS is defined as

Obj1 ,Rt,l = max
i∈Task

TEnd (Task i, ESl) , (1)

where TEnd (Task i, ESl) denotes the end time of the i-th task
Task i on the l-th server ESl .

2) Cost (Obj2): The cost of the ECRS is jointly determined
by the rental server cost per unit time and the resources
for the scheduling and execution times [12]. The resource of
scheduling time for a pair of tasks is calculated as

TSi, j =

{
0, if two tasks in same server,
ei, j
bw , otherwise,

(2)

where bw indicates the network bandwidth. Then the corre-
sponding scheduling cost for the ECRS is expressed as

Cost1 =
n∑

i, j∈Task

TSi, j · Mony1, (3)

where Mony1 is the price of data transfer. The execution time
of task Task i on server ESl is defined by

∆Tl =TEnd (Task i, ESl) − TStart (Task i, ESl) , (4)

where TStart (Task i, ESl) is the start time of task Task i on
server ESl . The execution cost of the ECRS is given by

Cost2 =
NES∑
l=1

n∑
i∈Task

∆Tl · Xi,l · Mony2,l, (5)

Xi,l =

{
1, if Task i on ESl,
0, otherwise, (6)

where NES is the number of servers, and Mony2,l is the price
of server ESl . Thus the cost of the whole ECRS is given by

Obj2 ,RC = Cost1 + Cost2. (7)

3) Energy consumption (Obj3): In the running process of
the ECRS, edge cloud service providers consume energy to
provide services. Similar to [33], we will not consider the
energy consumption when the server is idle. The energy
consumption of the whole ECRS system in the working state
can be described as follows

Obj3 ,RE =

NES∑
l=1

δ · ∆Tl, (8)

where δ is the energy consumption coefficient [33].

4) System reliability (Obj4): Server’s computing services are
usually hidden, and the user will not participate in the specific
process of task processing after sending the computing task
request. Therefore, it may be unclear whether the server
provides users with reliable computing resources to meet the
required QoS. This uncertain computing process may also lead
to longer makespan time and more energy consumption. Also
it is impossible to avoid that the server provider will provide

users with the services not meeting users’ needs or to rule out
malicious services. Therefore, the reliability evaluation of the
ECRS system plays an important role in ensuring the tasks
being properly and efficiently executed.

In general, the occurrence of failure can be modeled as a
Poisson distribution [34]. Therefore, the probability that task
Task i is performed correctly in server ESl is calculated using
the exponential distribution. Assuming that the failures of
servers are independent, the reliability performance of the
whole ECRS system can be calculated according to

Obj4 ,RS =

NES∏
l=1

e−λl ·∆Tl , (9)

where λl > 0 is the failure coefficient of server ESl .

III. PROPOSED DESIGN ALGORITHM

Our proposed hybrid optimization framework includes the pre-
treatment procedure and the MoEA-ECRS optimization. The
pretreatment procedure involves DQN, MDP and pretreatment
operations, while the MoEA-ECRS optimization is specified
by the mating selection, environment selection and overall
optimization process. We end this section by analyze the
complexity of this hybrid optimization framework.

A. Pretreatment Procedure

1) DQN: DQN combines deep learning and reinforcement
learning to realize an end-to-end revolutionary algorithm from
perception to action, which mainly includes function value
approximation (FVA) and neural network, and it adopts the
method of target network and empirical feedback for training.
To alleviate the instability and other problems associated with
nonlinear feedback networks, DQN makes three improvements
to the traditional Q-learning algorithm [12], [31].

1.a) DQN uses experience replay in the training process to
process the transferred samples online. At each time t, it stores
the transferred samples obtained by the agent interacting with
the environment in the playback memory unit. During training,
a small batch of transfer samples are randomly selected each
time, and the stochastic gradient descent (SGD) algorithm is
used to update the network parameters. When training the deep
network, independent samples by random sampling are used
to reduce the problem caused by correlated samples, thereby
improving the stability of the algorithm [12].

1.b) In addition to use an evaluation network for the current
FVA, another target network is employed to generate the target
Q value. The evaluation network and the target network have
the same network structure but different parameters. These
network parameters are updated by minimizing the mean
square error between the current and target Q values. After the
target value network, the target Q value remains unchanged
for a period of time, reducing the correlation between the
current Q value and the target Q value to a certain extent
and improving the algorithm’s stability.
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1.c) By limiting the reward value and error term to within
certain interval, DQN ensures that the Q value and the gradient
value are in a reasonable range, and hence improves the
stability of the algorithm.

2) MDP: MDP is a mathematical model that simulates the
randomness strategy and return of agent action in the environ-
ment [26]. It is expressed as a five tuple {S, A,Q, R, γ}. Here,
S and A are the state and action sets, respectively. Q is the
state transition function, with Q(st, at ) denoting the Q-value
function obtained when the state changes from st to st+1 at
time t+1 after the action at is executed at time t. R is the
immediate return function, with R(st, at ) denoting the return
value obtained when the action at is executed in the state st .
The discount factor γ ∈ [0, 1] is used to weigh the importance
of long-term and immediate returns. It is worth noting that
γ = 0 means that only the immediate return is considered,
while γ=1 indicates that the long-term return is as important
as the immediate return [31]. For the ECRS problem, each
state in S is usually defined as a task matching matrix. In
the action space A, each action describes the task sequence
number of the corresponding state in S. The MDP model of
the ECRS problem is defined as follows [23], [26], [35].

2.a) The state space is composed of different states s, which
is a dynamic matrix. The state s is represented by a one-
dimensional array. The subscript of s represents the task
sequence number, and the value of s represents the virtual
machine sequence number. At each decision step, the state of
workflow scheduling is defined as the input for training. And,
the definition of state space can reflect the execution of tasks
and the state of servers. At the current time, each server load
and the load standard deviation are included in the state space.

2.b) The action is defined as an integer variable. For each task,
we need to determine which server is used to execute it. All
servers consist of action space. When the action of assigning
the i-th task to the j-th virtual machine is executed, the integer
variable j is assigned to the i-th value in the state s array.

2.c) Immediate return is usually defined as sparse function,
i.e., non-zero return is obtained only in a small number of
cases. This return function should reflect the makespan time,
cost, energy consumption and system reliability factors. And it
should reflect the quality of the solution that transitions from
the current state to the next state after taking actions.

The return function rt is defined as

rt =
4∑

m=1

Objm(st ) −Objm(st+1)

Objm(st+1)
, (10)

where Objm(st ) denotes the value of objective function Objm
at st . The target value function Ft is calculated according to

Ft =rt + γmax
a∈A

Q (st+1, a) . (11)

Ft −Q (st, a) is the deviation between the target value and the
Q value at decision step t.

3) Pretreatment Operations: Recall that the evaluation net-
work and the target network have the same network structure.

Algorithm 1: DQN Pretreatment Operations
Input: Workflow with number of tasks n;
Output: Workflow after pretreatment with optimized ω1
and ω2;
Initialization: Set maximum episodes Nepisode, set training
set size B, set number of steps that ω2 remains unchanged
h;
Begin:

Initialize workflow state space and related parameters;
While number of episodes < Nepisode do

Updating the ranking task list;
For each task in the task list do

Generate random variable pro ∈ [0, 1];

at =

{
arg max

a∈A
Q (st, a|ω1) , if pro ∈ [0, ξ];

randomly selected, if pro ∈ (ξ, 1];
Obtain the next state st+1 and reward rt ;
qt = Q(st, at |ω1);
Store {st, at, qt, rt, st+1} in experience reply pool;
Randomly select B data from the pool for training;
If Task i is last task

Ft = rt ;
Else

Ft = rt + γmax
a∈A

Q (st+1, a|ω2);
End If;
Calculate loss function L(ω1) = E

[
(Ft − qt )2

]
;

Employ the SGD method to update ω1;
Copy the value of ω1 to ω2 every h step;

End For;
End While;

End.

Let ω1 and ω2 be the Q-value parameters of the evaluation
network and the objective function parameters of the target
network, respectively [12]. For a workflow, the updating
ranking is used to generate a task list [36]. At the current
state, tasks should be selected according to the order of the
tasks list. Then an action is determined for this task. When
the action is completed, the corresponding reward is obtained
and the environmental information is updated to the next state.
The pseudo code of the DQN pretreatment operations is listed
in Algorithm 1, where an episode refers to a complete circle
of allocating all the tasks in a workflow, ξ is a probability
threshold, and E[·] denotes the average operator.

B. MoEA-ECRS

Owing to their ability to deal with multiple conflicting ob-
jectives, MoEAs are widely applied to various MoOPs [30],
[37], [38]. In particular, hpaEA [39] is proved to obtain good
performance and provide excellent decision-making schemes.
However, hpaEA still has room for improvement in obtaining
solutions with better CaD. To obtain a better decision solution,
an improved MoEA based on hpaEA is described in this
paper. In our algorithm, two important selection operations
are included, mating selection and environment selection. In
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this subsection, we specify these two selection processes and
then summarize the operations of our proposed MoEA-ECRS.

1) Mating Selection: The main purpose of mating selection is
to generate more individuals with balanced CaD. According to
[39], a good evolutionary direction needs to be guided by the
excellent solutions in the population. For the problem with m
objectives, a solution is referred to as an excellent solution if
there exist m different elements in its adjacent solution set and
its objective vector is positioned below the hyperplane formed
by its adjacent solution set [40], [41]. The steps of identifying
the excellent solution are as follows.

1.a) An empty set is initialized to record the excellent solu-
tion. With the help of nondominated sorting mechanism, the
population is sorted hierarchically, and all the solutions of the
first layer are normalized.

1.b) An empty set is initialized to record the objective vector
of the adjacent solutions of each solution in the first layer.

1.c) Find the adjacent solution of each solution and record the
corresponding objective vector.

1.d) For each solution, find its adjacent solutions set with m
different elements.

Then, we judge whether a solution is below the hyperplane
formed by its adjacent solution set. If so, the solution is
regarded as an excellent solution and it is added to the
population. If not, the solution is not an excellent solution and
it is discarded. After all the excellent solutions are found and
added to the population, the environment selection mechanism
is triggered to select the other solutions.

2) Environment selection: The main purpose of environment
selection is also to maintain good CaD as well as alleviate
the decline in the selection pressure due to the increase of
nondominated solutions in the later stage of iteration. Based
on the mating selection principle and definition of excellent
solutions, some ‘temporary’ excellent solutions have been
selected as the final decision solutions. There are two situations
regarding the results of the mating selection.

First, if the number of the solutions has met or even exceeded
the required number, the environment selection can be used as
an auxiliary pruning mechanism to effectively delete redundant
solutions, while retaining the remaining excellent solutions.
On the other hand, if the number of the solution has not met
the required number, the environment selection operation plays
an important role in selecting more solutions with good CaD
conditions.

To ensure that the remaining solutions with better CaD charac-
teristics are selected, an evaluation metric is naturally required.
Hypervolume (HV) is widely employed to measure the CaD of
solution x [42]. Let Zr =

(
Zr

1 , · · · , Zr
m

)
be the reference point

set in the objective space, where m is the number of objectives.
Let fi(x) denote the i-th fitness value of solution x, which
is dominated by all the Pareto-optimal objective vectors, and[

fi(x), Zr
i

]
denote the hypercube, which can be constructed

with the reference point Zr
i and the solution value fi(x) as two

diagonal corners of the hypercube. Further let PF? denote the
approximation set of solutions x [42]. Then, the HV metric
of the approximate front-surface solutions in PF? and the
reference point set Zr can be computed as follows

HV
(
PF?

)
=vol

( ⋃
x∈PF?

[
f1(x), Zr

1
]
× · · · ×

[
fm(x), Zr

m

] )
,

(12)

where vol(·) is the Lebesgue measure, which calculates the
hypervolume of all the objectives’ hypercubes. The larger
the HV value is, the more favourable the approximation
set is. The iteration procedure of the environment selection
continues until the number of the selected solutions reaches
the population size.

3) MoEA-ECRS Optimization Operation: The main function
of MOEA-ECRS optimization operations is to coordinate
mating selection and environment selection, so as to obtain
solutions with good CaD. For the workflow after pretreatment,
the MOEA-ECRS strives to allocate more evolutionary efforts
on the excellent solutions in the current population by mating
selection, enabling better solutions in terms of convergence
being generated. Once the excellent solutions are determined,
the environment selection mechanism is triggered to balance
CaD. The excellent solutions are selected preferentially to
strengthen the selection pressure.

More specifically, the excellent solution set D contains K
individuals, which is initially set to D = ∅. To build a mating
pool, the N − K solutions are randomly selected from the
current population P of N individuals, which are combined
with all the K excellent solutions of the previous generation.
The new offspring are produced in the combined population
by using simulated binary crossover (SBX) and polynomial
mutation (PM) operations [43], [44]. The dominating solutions
according to the dominating relationship are eliminated from
the combined parent and offspring population. Then the mating
selection and environment selection are triggered in turn.
Under the coordination of the two selection operations, the
final solution set is pushed to the Pareto-optimal front (PF).
The evolution cycle continues until the stopping condition is
reached. The pseudo code of the MOEA-ECRS optimization
operations are described in Algorithm 2.

4) Summary of Proposed Design: Our MoEA-ECRS design
is presented in Algorithm 3. The DQN pre-processing of the
ECRS problem is a sequential decision problem that maps
the tasks to the corresponding servers, i.e., an MDP [12].
In each decision step, the agent selects the action in the
current state and obtains a reward value, which is used to
evaluate the quality of the action. After completing a decision
step, the agent enters the next state. Through the continuous
interaction between the agent and the environment as well as
the continuous learning on feedback information, a series of
optimal strategies are obtained, to optimally pre-process the
workflow. Then as discussed in this subsection, the MoEA-
ECRS undertakes the next optimization. The mating selection
and environment selection mechanisms ensure that the final de-
cision solutions with good CaD are obtained. In particular, the
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Algorithm 2: MoEA-ECRS optimization operations
Input: Workflow after pretreatment;
Output: Selected population P;
Initialization: Set maximum number of iterations Imax;
Begin:

Initialize populations P with N individuals, excellent
solution set D with K individuals, reference vectors
and related parameters;
While number of iterations < Imax do

Updating ranking task list;
For Each task in task list do

Randomly select N − K solutions from current
population P to form D∗;
P = D ∪D∗;
Generate offspring Q from parent P by employing
SBX and PM;
P∗ = P ∪ Q;
Remove dominated solutions in P∗ to update
combined population P∗;
G,V = ∅; /* Mating selection */
[F1, F2, · · · ] = Nondominated sorting(P∗);
Take F1 layer solution in P∗ and store it in G:
G = P∗

(F1);
Find and store objective vector of adjacent
solutions of G to V;
Determine in turn whether solution in G is
excellent solution;
Add excellent solutions to excellent solution set D
to update D to K individuals;
If K < N /* Environment selection */

Computing HV values of residual population
individuals;
Select N − K candidate solutions D∗ with better
HV values;
P = D ∪D∗;

Else
Computing HV values of all individuals in D;
Remove K − N solutions of D∗ with lowest HV
values;
P = D − D∗;

End If;
End While;

End.

Algorithm 3: MoEA-ECRS algorithm design
Input: Workflow;
Output: Selected population P;
Begin:

Initialize related parameters;
Call Algorithm 1 to perform DQN pretreatment;
Call Algorithm 2 to do MoEA-ECRS optimization;
Obtain selected population P;

End.

proposed MoEA-ECRS optimization has obvious advantages
in overcoming the decline of selection pressure in the later
stage of population evolution, which ensures that the decision
solution obtained is as close as possible to the PF.

C. Complexity Analysis

The computational cost of our design comes from two sources,
the DQN preprocessing and the MoEA-ECRS optimization.
To provide a more intuitive description, the computational
complexity is listed in Table I.

1) For a workflow with n tasks, the DQN generates a solution
in Nepisode episodes, and the computational complexity of the
DQN preprocessing operations can be shown to be on the order
of nN2

episode, denoted as O
(
nN2

episode

)
[12].

2) As for the MoEA-ECRS optimization operations, the so-
lution set is generated in Imax evolutionary iterations, and its
computational cost occurs in generating offspring operation,
mating selection and environment selection for each task.

2.1) Since we have population size N and m objectives,
the computational complexity of employing SBX and PM
operation to generate offspring is on the order of O

(
mN2) , and

the complexity for the nondominated sorting of the mating se-
lection is O

(
mN2) [44], while the complexity of normalizing

the solutions is O(mN). Thus the computational complexity
of generating offspring is on the order of O

(
mN + 2mN2) .

2.2) In the process of selecting excellent solutions, finding
objective vectors of the adjacent solutions for all solutions im-
poses the complexity O

(
mN log N

)
, and since it takes O

(
m3)

to obtain the parameters of a hyperplane, the complexity of
identifying the adjacent solutions is O

(
m3N

)
[39]. In addition,

it costs O
(
mN2) to select and add excellent solutions to

the excellent solution set. Hence the complexity of mating
selection is on the order of O

(
m3N + mN log N + mN2) .

2.3) In environment selection, it costs O
(
mN2) to calculate

the HV value, and the computational complexity of selecting
a solution from the ordered HV values is O

(
mN2) [39]. Thus

the complexity of environment selection is O
(
2mN2) .

Therefore, for each task and one evolutionary iteration, the
computational complexity of generating offspring operation,
mating selection and environment selection is on the order
of O

(
mN

(
1 + m2 + log N + 5N

) )
. Consequently, the compu-

tational complexity of the MoEA-ECRS optimization is on the
order of O

(
mnImaxN

(
1 + m2 + log N + 5N

) )
.

3) The total computational complexity of our proposed
DQN-MoEA-ECRS design is therefore on the order of
O

(
nN2

episode + mnImaxN
(
1 + m2 + log N + 5N

) )
.

IV. SIMULATION EXPERIMENTS

It is complicated and cost-high to evaluate the algorithm
performance in the real edge-cloud environment. We perform
extensive simulation experiments to evaluate our proposed



8

TABLE I
COMPUTATIONAL COMPLEXITY

Operations Name Complexity

DQN preprocessing O
(
nN2

episode

)
MoEA-ECRS
Optimization
Operations

Generating
Offspring
Operation

O
(
mN + 2mN2)

Mating
Selection O

(
m3N + mN log N + mN2)

Environment
Selection O

(
2mN2)

MoEA-ECRS Optimization O
(
mnImaxN

(
1 + m2 + log N + 5N

) )
DQN-aided MoEA-ECRS design. WorkflowSim is the simu-
lation toolkit extended from CloudSim, which can be utilized
to simulate an edge-cloud workflow scheduling environment
accurately and used in our work.

A. Simulation System

1) ECRS system specifications: We construct an edge–cloud
system consisting of six edge servers and four cloud servers.
The simulated ECRS system’s key parameters, including the
task attributes and the infrastructure parameters [12], [14],
[33], are listed in Table II.

TABLE II
ECRS SYSTEM PARAMETERS

Description Value
Task size 60000 to 120000

Number of tasks 50 to 100
Number of cloud server 4
Number of edge servers 6

Calculation speed of cloud server [1.5, 3.5] × 106

Calculation speed of edge server [0.8, 1.5] × 106

Energy consumption factor 10−20

Failure coefficient [0.3, 1]
Price of data transfer 0.01

Price of server [0.06, 0.24]
Network bandwidth 10000

2) Data sets: To create a realistic simulation environment,
three real-world workflow datasets, Montage, Cybershake and
Inspiral [12], are used in our simulation experiments. These
workflows have different numbers of tasks and similar task
structures. Different tasks are set in different types of work-
flows in the experiments. Each workflow is specified by task
length, task input and output data size, and DAG structure.

3) Benchmarks and algorithmic parameters: To demonstrate
the effectiveness of the DQN preprocessing in our DQN-
MoEA-ECRS design, we test two other preprocessing meth-
ods, the heterogeneous earliest-finish-time (HEFT) algorithm
[45], [46] and random method by combining them with
the proposed MoEA-ECRS optimization to form the HEFT-
MoEA-ECRS and random-MoEA-ECRS designs. Moreover,
three advanced designs, the dynamic constrained NSGA-III
(DCNSGA-III) [47], Pareto front shape estimation based evo-
lutionary algorithm (PeEA) [48] and adaptive reference vector-
guided evolutionary algorithm (RVEA) with improved growing

neural gas (RVEA-iGNG) [41], are adopted as the benchmarks
for the comparison with our proposed MoEA-ECRS design.

For a fair comparison, all the original parameter settings are
employed for the involved algorithms, as these algorithmic
parameters have been shown to achieve the best performance.
The default algorithmic parameters used in the simulation
experiments are listed in Table III.

TABLE III
DEFAULT ALGORITHMIC PARAMETERS

Description Value
Discount factor γ = 0.9

Network parameter update steps h = 10
Threshold value ξ = 0.9

Replay memory size 106

Minebatch size B = 128
Number of episodes Nepisode = 10000

Crossover probability 1
Mutation probability 0.1

Population size N = 240
Number of evolutions Imax = 10000

Number of independent runs 20

B. Simulation Results

The characteristics of the true PF are not known a priori, and
they are hard to capture. Also, the effective areas may be
disconnected, irregular or more sophisticated, and it is hard
to fit them in a specific model. To tackle this problem, the PF
which results from the union of the PFs of all the methods is
considered as the true PF [49].

1) Comparison of different workflow preprocessing methods:
To investigate the impact of workflow preprocessing on the
achievable performance of the MoEA-ECRS design, we com-
pare three workflow preprocessing methods, the HEFT, the
random method and the proposed DQN based preprocessing.
Table IV compares the HV metric performance achieved by
the HEFT-MoEA-ECRS, Random-MoEA-ECRS and DQN-
MoEA-ECRS on Montage, Cybershake and Inspiral test work-
flows, where the results are obtained by averaging over 20
independent simulations and presented as mean (standard
deviation). The boldfaced value in each row of Table IV
indicates the best performance, i.e., the highest HV value.
Furthermore, we apply Friedman statistical test [39] to test
the statistical significance of the different results obtained by
different methods. Specifically, we use the symbols ‘+’, ‘−’
and ‘≈’ to indicate whether the result obtained by a different
preprocessing method is significantly ‘superior’, ‘inferior’, or
‘similar’ to that obtained by the DQN-MoEA-ECRS using
Friedman statistical test with a significance level 0.05.

It can be seen from Table IV that the DQN-MoEA-ECRS
achieves the best results in the 5 cases out of the 9 cases,
and these 5 results are validated by Friedman statistical test as
significantly better than corresponding results of the other two
methods. Additionally, for the 4 cases that the DQN-MoEA-
ECRS is not the best, Friedman statistical test shows that the
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TABLE IV
PERFORMANCE COMPARISON OF MOEA-ECRS DESIGN WITH THREE DIFFERENT WORKFLOW PREPROCESSING METHODS, IN TERMS OF HV METRIC

Workflow Number of tasks HEFT-MoEA-ECRS Random-MoEA-ECRS DQN-MoEA-ECRS

Montage
50 9.9971e-1 (3.24e-5) − 9.9971e-1 (2.73e-5) − 9.9972e-1 (2.12e-5)
75 9.9984e-1 (1.89e-5) − 9.9987e-1 (1.21e-5) − 9.9988e-1 (1.15e-5)

100 9.9996e-1 (7.42e-5) ≈ 9.9997e-1 (6.45e-6) ≈ 9.9996e-1 (6.45e-6)

Cybershake
50 9.9975e-1 (9.95e-6) − 9.9979e-1 (1.53e-5) − 9.9981e-1 (1.35e-5)
75 9.9991e-1 (2.33e-5) − 9.9993e-1 (1.16e-5) ≈ 9.9992e-1 (1.37e-5)

100 9.9994e-1 (2.76e-5) − 9.9994e-1 (6.51e-5) − 9.9996e-1 (4.52e-6)

Inspiral
50 9.9991e-1 (4.65e-5) − 9.9992e-1 (2.45e-5) ≈ 9.9992e-1 (1.02e-5)
72 9.9997e-1 (6.12e-6) ≈ 9.9995e-1 (6.89e-6) − 9.9996e-1 (6.30e-6)

100 9.9997e-1 (3.54e-5) − 9.9997e-1 (1.50e-5) − 9.9998e-1 (3.82e-6)

results are statistically similar to the best HV values attained
the other two methods. Moreover, no case that the other
two methods achieve superior performance than the DQN
preprocessing. The results of Table IV therefore indicates that
the proposed DQN based preprocessing outperforms the other
two methods.

2) Comparison of different design algorithms: Next we in-
vestigate the achievable performance of different design al-
gorithms in the same DQN-based workflow preprocessing
mode. Table V compares the HV metric values attained by
the proposed MoEA-ECRS and the three benchmark designs

for Montage, Cybershake and Inspiral test workflows, in terms
of mean (standard deviation) averaging over 20 independent
experiments, where again the symbols ‘+’, ‘−’ and ‘≈ indicate
whether the results obtained by the benchmark algorithms
are significantly ‘superior’, ‘inferior’, or ‘similar’ to those
obtained by the MoEA-ECRS using Friedman statistical test
with a significance level 0.05.

It can be seen that in terms of HV metric, our MoEA-ECRS
obtains the best results in 8 out of the 9 cases. RVEA-iGNG
is the second best, as it is inferior to the MoEA-ECRS in one
case while its performance in the other 8 cases are judged
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Fig. 2. Performance comparison of different objectives by four design algorithms on Montage-DQN-100
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TABLE V
PERFORMANCE COMPARISON OF DIFFERENT DESIGN ALGORITHMS WITH SAME DQN PREPROCESSING IN TERMS OF HV METRIC

Workflow Tasks PeEA DCNSGA-III RVEA-iGNG MoEA-ECRS

Montage-DQN
50 9.9972e-1 (2.21e-5) ≈ 9.9970e-1 (2.86e-5) − 9.9971e-1 (2.92e-5) ≈ 9.9972e-1 (2.12e-5)
75 9.9987e-1 (1.68e-5) ≈ 9.9986e-1 (1.60e-5) − 9.9987e-1 (1.81e-5) ≈ 9.9988e-1 (1.15e-5)
100 9.9989e-1 (8.52e-5) − 9.9995e-1 (2.47e-5) ≈ 9.9996e-1 (7.68e-6) ≈ 9.9996e-1 (6.45e-6)

Cybershake-DQN
50 9.9978e-1 (5.71e-5) − 9.9979e-1 (3.95e-5) ≈ 9.9980e-1 (1.48e-5) ≈ 9.9981e-1 (1.35e-5)
75 9.9991e-1 (9.83e-6) − 9.9989e-1 (2.98e-5) − 9.9992e-1 (1.02e-5) ≈ 9.9992e-1 (1.37e-5)
100 9.9992e-1 (7.58e-5) − 9.9996e-1 (1.42e-5) ≈ 9.9995e-1 (5.49e-6) − 9.9996e-1 (4.52e-6)

Inspiral-DQN
50 9.9975e-1 (2.12e-4) − 9.9989e-1 (4.65e-5) − 9.9991e-1 (2.71e-5) ≈ 9.9992e-1 (1.02e-5)
72 9.9984e-1 (1.35e-4) − 9.9995e-1 (3.12e-5) − 9.9996e-1 (2.35e-5) ≈ 9.9996e-1 (6.30e-6)
100 9.9991e-1 (7.93e-5) − 9.9997e-1 (2.25e-5) − 9.9997e-1 (1.42e-5) ≈ 9.9998e-1 (3.82e-6)

to be similar to the MoEA-ECRS by Friedman test. PeEA is
the worst, as its performance are inferior to the MoEA-ECRS
in 7 cases and only similar to the MoEA-ECRS in 2 cases.
The reason for the superior performance of our MoEA-ECRS
algorithm is that it can make the whole population evolve in a
good direction driven by the coordinated operation of mating
and environment selection. Thus the MoEA-ECRS optimiza-
tion operation can slow down the decline of selection pressure
in the later stage of population evolution and balance well the
CaD of solutions in the process of population evolution, so as
to obtain a better decision-making solution for ECRS.

Figs. 2 to 4 compare the scheduling performance of different
algorithms, in terms of the four objectives, for the three
workflows that have undergone the DQN preprocessing with
100 tasks, respectively. We define the system failure metric
as: system failure = 1 − system reliability. Since minimizing
the system failure is equivalent to maximizing the system re-
liability, we can use the system failure as the fourth objective.
The upper and lower quartile values in the box plot, which
measure the solution distribution obtained on each objective,
can be used together with the median value to evaluate the
performance of an algorithm. Specifically, the smaller the
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Fig. 3. Performance comparison of different objectives by four design algorithms on Cybershake-DQN-100
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Fig. 4. Performance comparison of different objectives by four design algorithms on Inspiral-DQN-100

upper and lower quartiles and the smaller the median value,
the better the performance of the algorithm is.

a) Makespan time objective. Fig. 2 (a), Fig. 3 (a) and Fig. 4 (a)
depict the solution distributions of the four algorithms for the
three workflows, respectively.

a.1) Montage-DQN-100 workflow. Fig. 2 (a) shows that the
median values of the four algorithms are not significantly
different, with the median value of RVEA-iGNG slightly
higher. In terms of solution distribution, PeEA and MoEA-
ECRS are similar, which are tighter and more concentrated
than DCNSGA-III and RVEA-iGNG. Hence the performance
in terms of makespan time can be sorted as MoEA-ECRS ≈
PeEA > DCNSGA-III > RVEA-iGNG, where ‘≈’ and ‘>’
indicate ‘similar to’ and ‘better than’, respectively.

a.2) Cybershake-DQN-100 workflow. As can be seen from
Fig. 3 (a), DCNSGA-III, RVEA-iGNG and MoEA-ECRS have
similar quartile solution distributions but DCNSGA-III has
smaller median value. The reason from relaxed dominant
relationships of DCNSGA-III maintain a high proportion of
non-dominant solutions in the population, which is particularly
reflected in the completion time and energy consumption
objectives. Although the quartile solution distribution of PeEA

is tighter, it has higher median value. Therefore, we can sort
the performance in terms of makespan time as DCNSGA-III >
RVEA-iGNG ≈ MoEA-ECRS > PeEA.

a.3) Inspiral-DQN-100 workflow. By examining the distribu-
tions of upper and lower quartile solutions and comparing
the median values of the four algorithm shown in Fig. 4 (a),
their performance can be sorted according to MoEA-ECRS >
DCNSGA-III > RVEA-iGNG > PeEA.

b) Cost objective. Fig. 2 (b), Fig. 3 (b) and Fig. 4 (b) depict the
solution distributions, in terms of cost objective, for Montage-
DQN-100, Cybershake-DQN-100 and Inspiral-DQN-100, re-
spectively. It can be seen that the four algorithms have the
same performance impact on cost consumption for the three
workflows, based on their similar median values and the
similar distributions of upper and lower quartile solutions.
This may be attributed to the reference point strategy [30],
[41] adopted by these algorithms. This strategy has certain
preference in dealing with multi-modal cost function, which
may be the reason leading to this cost solution landscape.

c) Energy consumption objective. There are some outliers in
all the algorithms of Fig. 2 (c), Fig. 3 (c) and Fig. 4 (c), which
are caused by some solutions not in the upper and lower
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quartile value range. However, we can clearly observe that
the algorithms have different performance from their overall
distributions of upper and lower quartile solutions as well as
the median values.

c.1) Montage-DQN-100 workflow. Clearly, from Fig. 2 (c), the
performance of RVEA-iGNG is the poorest. The distributions
of PeEA and DCNSGA-III are similar. By carefully observing
the upper and lower quartiles values, it can be seen that MoEA-
ECRS has a slightly tighter interval than PeEA and DCNSGA-
III, which means that the solution obtained by our MoEA-
ECRS has a higher probability of obtaining a small energy
consumption. Overall the performance can be sorted according
to MoEA-ECRS ≈ PeEA ≈ DCNSGA-III > RVEA-iGNG.

c.2) Cybershake-DQN-100 workflow. According to Fig. 3 (c),
the ranking performance can be sorted according to
DCNSGA-III > MoEA-ECRS > RVEA-iGNG > PeEA.

c.3) Inspiral-DQN-100 workflow. The landscape of Fig. 4 (c) is
similar to that of Fig. 3 (c), and the performance can be sorted
according to DCNSGA-III > MoEA-ECRS > RVEA-iGNG >
PeEA.

d) System failure. Fig. 2 (d), Fig. 3 (d) and Fig. 4 (d) depict
the solution distributions, in terms of the fourth objective, for
the three workflows, respectively.

d.1) Montage-DQN-100 workflow. It can be seen clearly from
Fig. 2 (d) that the ranking performance can be sorted as
RVEA-iGNG > MoEA-ECRS > DCNSGA-III > PeEA based
on the median values.

d.2) Cybershake-DQN-100 workflow. Clearly, Fig. 3 (d)
shows that our MoEA-ECRS achieves the best performance,
and the ranking performance can be sorted according to
MoEA-ECRS > RVEA-iGNG > DCNSGA-III > PeEA.

d.3) Inspiral-DQN-100 workflow. It can be seen from Fig. 4 (d)
that our MoEA-ECRS has clearly smaller upper and lower
quartiles and median value than the other algorithms. Also
PeEA and RVEA-iGNG have similar upper and lower quartile
distribution lengths. The ranking performance can be sorted
as MoEA-ECRS > DCNSGA-III > PeEA ≈ RVEA-iGNG.

Based on the above discussion, we conclude that the results of
Figs. 2 to 4 again demonstrate the overall superior performance
of our MoEA-ECRS over the other benchmarks.

V. CONCLUSIONS

In this paper, the ECRS problem has been transformed into a
multi-objective MDP based on task dependency and ECRS
feature extraction. We have built a multi-objective ECRS
model by considering the makespan time, cost, energy con-
sumption and system reliability. To solve this multi-objective
ECRS problem, a hybrid approach based on DQN and MoEA-
ECRS has been designed, which uses the DQN to preprocess
workflow and then applies MoEA-ECRS to optimize the
workflow scheduling decision. Our MoEA-ECRS strives to
allocate more evolutionary efforts to the excellent solutions

in the current population for mating selection, enabling better
solution in terms of convergence. Once the excellent solution is
determined, the environment selection mechanism is triggered
to balance CaD. To verify the performance of our approach in
solving the multi-objective ECRS problem, experiments have
been performed on three real data sets with different task
numbers. The simulation results have shown that the DQN
preprocessing is superior than other common preprocessing
methods. More significantly, the extensive simulation results
have verified that our proposed MoEA-ECRS algorithm out-
performs the existing benchmark algorithms.
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