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Abstract—Multi-channel signals captured by spatially sepa-
rated sensors often contain a high level of data redundancy.
A compact signal representation enables more efficient storage
and processing, which has been exploited for data compression,
noise reduction, and speech and image coding. This paper focuses
on the compact representation of speech signals acquired by
spherical microphone arrays. A polynomial matrix eigenvalue
decomposition (PEVD) can spatially decorrelate signals over a
range of time lags and is known to achieve optimum multi-
channel data compaction. However, the complexity of PEVD
algorithms scales at best cubically with the number of channel
signals, e.g., the number of microphones comprised in a spherical
array used for processing. In contrast, the spherical harmonic
transform (SHT) provides a compact spatial representation of
the 3-dimensional sound field measured by spherical microphone
arrays, referred to as eigenbeam signals, at a cost that rises
only quadratically with the number of microphones. Yet, the
SHT’s spatially orthogonal basis functions cannot completely
decorrelate sound field components over a range of time lags.
In this work, we propose to exploit the compact representation
offered by the SHT to reduce the number of channels used
for subsequent PEVD processing. In the proposed framework
for signal representation, we show that the diagonality factor
improves by up to 7 dB over the microphone signal representation
with a significantly lower computation cost. Moreover, when
applying this framework to speech enhancement and source
separation, the proposed method improves metrics known as
short-time objective intelligibility (STOI) and source-to-distortion
ratio (SDR) by up to 0.2 and 20 dB, respectively.

Index Terms—Data compaction, polynomial matrix eigenvalue
decomposition, speech enhancement, spherical harmonics, source
separation.

I. INTRODUCTION

IN multi-channel signal processing involving spatially sep-
arated sensors, the received signals often contain a high

level of data redundancy. Many compact signal representation
techniques such as subband coding have been developed to
improve storage and processing efficiency [1]. The processing
of these compacted signals offers computational advantages
and has been widely used for data compression [2], noise
reduction [3], and speech and image coding [4], [5]. This
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work focuses on the compact representation of speech signals
measured by spherical microphone arrays.

A data-adaptive signal representation using an infinite-
order principal component filterbank (PCFB) has been shown
to be optimal in terms of the mean-square error in signal
reconstruction and the coding gain in data compression [6].
A PCFB generally requires a frequency-dependent switching
of channels [2], whereby the switching function is not analytic
and therefore cannot be well approximated with a finite degree
PCFB [7], [8]. If the order of the PCFB is constrained to zero-
th order, the Karhunen-Loève transform (KLT), i.e. an eigen-
value decomposition (EVD), gives the optimal solution [6].

An alternative approach uses polynomial matrices, which
can simultaneously capture the correlations in space, time and
frequency and is, therefore, appropriate for modelling multi-
channel broadband signals [9]. The processing of polynomial
matrices has motivated the development of polynomial matrix
eigenvalue decomposition (PEVD) algorithms in the z-domain
based on the second-order sequential best rotation (SBR2) [10]
and sequential matrix diagonalization (SMD) [11], [12], and
those in the discrete Fourier transform (DFT)-domain [13],
[14]. Unlike the KLT, the PEVD can mutually decorrelate
signals for all lags [11]; this strong decorrelation together with
spectral majorization of the decorrelated sequences guarantees
optimality in the coding gain sense [2] Thus, the PEVD
presents a solution for a finite order PCFB. The PEVD has also
been found useful in multi-channel broadband applications
such as source separation [15], source identification [16],
localization [17], adaptive beamforming [18] and voice activity
detection [19], [20].

The use of the PEVD for speech enhancement has been
proposed in [21] for arbitrary arrays. It has been shown to
improve noise reduction metrics, dereverberation measures,
speech intelligibility and speech quality scores in diverse
acoustic environments without introducing noticeable artifacts.
This is due to the fact that PEVD algorithms [10]–[12] —
while using z-domain notation— operate in the time domain,
and therefore maintain spectral coherence of the signals being
processed. However, the computational complexity of such
PEVD algorithms scales at best cubically with the number
of signals used for processing [22].

Spherical array processing [23], [24] has gained significant
attention owing to its applicability to hearing aids, sound field
decomposition and reproduction for personal sound zones,
augmented and virtual reality [25]–[27], and robot audition
[28]. The microphone array in these applications is commonly
modelled as a spherical array along a rigid sphere. Spherical
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microphone arrays enable a compact spatial representation of
the sound field in the spherical harmonic (SH) domain using
eigenbeam signals. Because the eigenbeam signals are com-
puted using only the array geometry and are decoupled from
the sensor arrangements, the beam pattern can be designed to
be rotationally invariant, non-data-adaptive, and independent
of the number of microphones, making the processing scalable
[29]. This is why beamforming using spherical arrays [29]–
[31] has been proposed for speech enhancement [32], [33],
localization and tracking [34]–[36].

A 3D sound field can be perfectly represented by an infinite
number of spatially orthogonal SHs (of infinite order) [24].
In practice, a finite number of microphones limiting the SH
order leads to an approximate representation such that it is
generally not possible to reconstruct 3D sound fields with high
spatial accuracy. Further, reverberation arising from multi-
paths in enclosed spaces causes target source components in
eigenbeam signals from different directions to arrive at other
times [37]. Consequently, the spherical harmonic transform
(SHT) cannot decorrelate a reverberant sound field for non-
zero time delays [25].

In this current manuscript, the representation of microphone
signals on a spherical array using SH is first compared to
a PEVD representation. This will demonstrate the inability
of SH to capture temporal correlations, and the challenge of
scaling with the number of signals used for PEVD processing.
We then propose to combine both approaches by applying
a PEVD to a subset of eigenbeam signals generated from
preprocessing by a SHT. This capitalizes on the compact and
scalable representation offered by SH, and also exploits the
ability of the PEVD to strongly decorrelate signals, i.e., to
generate outputs that are mutually decorrelated at all lags.
We propose a unified general processing framework to incor-
porate the spherical microphone array processing motivated
by signal compression and representations. We substantiate
the motivations using theoretical analysis and experimental
validations between the various signal representations, and
demonstrate how the current proposed framework based on
signal representations can be used for specific applications
including blind speech enhancement and informed source sep-
aration using target source directions based on our preliminary
studies in [38] and [39]. Therefore, in supplement to the
earlier studies, the novel contributions of this paper are (i)
the comparison of different representations of multi-channel
signals from a spherical microphone array signals using the
SHT, KLT, and PEVD, (ii) the proposed framework that
relates the microphone signals, eigenbeams and beamformer
outputs through a compression matrix, (iii) the use of a PEVD
to combine eigenbeams and beamformer outputs under the
proposed framework, and (iv) the application of the proposed
approach for speech enhancement and source separation.

The paper first provides an exposition of the problem in
Section II. Section III reviews and theoretically analyses the
processing and signal representation afforded by SHT and
PEVD for spherical microphone arrays. The proposed ap-
proach to combine SHT and PEVD is presented in Section IV
and subsequently used for speech enhancement and source
separation in Section V. Results are summarised in Section

VI, experimentally validating our analysis. Conclusions are
drawn in Section VII.

II. PROBLEM FORMULATION AND OVERVIEW

A. Signal Model

The noisy and reverberant speech signals arriving at the q-th
microphone on the spherical array at sample index n, are

xq(n) =

P∑
p=1

hp,q(n) ∗ sp(n) + vq(n), q = 1, . . . , Q , (1)

where hp,q(n) is the time-invariant room impulse response
(RIR) from the p-th source to the q-th microphone, sp(n) is
the p-th source signal, vq(n) is the additive noise assumed
uncorrelated with the speech component, and ∗ denotes the
linear convolution operator. The model in (1) accounts for P
sources contributing to Q microphone signals. The data vector
of the microphone signals is x(n) =

[
x1(n), . . . , xQ(n)

]T

with v(n) similarly defined, whereby [·]T denotes the transpose
operator.

To express the microphone signals in terms of the array
geometry explicitly, (1) can be written as x(n, rq), where
rq = (r, θq, ϕq) is expressed in spherical polar coordinates,
r is the radius of the sphere, θq and ϕq respectively, are the
elevation and azimuth angles of the q-th microphone from the
array centre measured downwards from the z-axis and from
the x-axis towards the y-axis. Accordingly, the data vector is
x(n, r) =

[
x(n, r1), . . . , x(n, rQ)

]T
.

B. Challenge

The number of sources, P , is generally much smaller than
the number of microphones, Q. Therefore, this work aims
to find a compact signal representation of the microphone
signals x(n) by taking into account the spatial, spectral and
temporal information simultaneously using a transformation
G(n) ∈ RP×Q such that yp(n) =

∑Q
q=1 gp,q(n) ∗ xq(n),

where y(n) = [y1(n), . . . , yP (n)]
T is maximally compact

and gp,q(n) is the (p, q)th element in G(n). While G(n) is
ideally square and unitary, i.e., P = Q, it is more efficient to
process P principal components for P < Q in practice when
the remaining (Q − P ) processed signals have small energy
compared to the P principal components. The assumption is
that the mixture of P linearly independent signals in x(n) can
be compacted into P non-zero components in the processed
outputs yp(n), p = 1, . . . , P . These signals are mutually
orthogonalized by G(n); as such, they do not necessarily align
with the original source signals but can permit a reduction
in dimensionality together with a potential diagonalization of
the signal covariance matrix. This can facilitate more efficient
processing for applications such as signal enhancement or the
separation of sources.
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III. MULTI-CHANNEL ARRAY PROCESSING

A. Spherical Harmonic Transform (SHT)

The real-valued SHT of the spatially sampled sound field is
approximated by [31]

χ
(m)
ℓ (n) =

Q∑
q=1

αqx(n, rq)Υ
(m)
ℓ (rq) , (2)

where αq is the quadrature weight for the q-th microphone
and χ

(m)
ℓ (n) is the ℓ-th order, m-th degree time-domain

eigenbeam. The latter is associated with the real-valued SH
basis function, Υ(m)

ℓ (rq), defined as

Υ
(m)
ℓ (r) =


√
2(−1)mℑ{Y (|m|)

ℓ (r)} m < 0

Y 0
ℓ (r) m = 0 ,√
2(−1)mℜ{Y (m)

ℓ (r)} m > 0

(3)

based on the complex-valued SH basis expressed as

Y
(m)
ℓ (r) =

√
(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
P

(m)
ℓ (cos θ)ejmϕ , (4)

where P (m)
ℓ (·) is the associated Legendre function, |·| denotes

modulus, and ℜ{·} and ℑ{·} extract the real and imaginary
parts of a complex number. The coefficients χ

(m)
ℓ (n) are

also called eigenbeams because SH are eigen-solutions of the
wave equation in spherical coordinates [24], [29], [40]–[42].
Because of the completeness and orthogonality properties of
SH, any function in Hilbert space comprising the set of all
square integrable functions on the unit sphere can be expressed
as a weighted combination of SHs using [24]

x(n, rq) ≈
L∑
ℓ=0

ℓ∑
m=−ℓ

χ
(m)
ℓ (n)Υ

(m)
ℓ (rq) . (5)

Equality in (5), and therefore an alias-free representation, is
achieved if Q ≥ (L + 1)2, where L is the maximum SH
order of the sound field. In practice, a finite order SHT leads
to a small approximation error; with a sufficient number of
microphones, this error — and hence the inequality in (5) —
is negligible for typical applications.

Dropping the sample index n for brevity, the vector of
eigenbeams is χ = [χ

(0)
0 , χ

(−1)
1 , χ

(0)
1 , . . . , χ

(L)
L ]T ∈ R(L+1)2 ,

with elements arranged in ascending SH order and degree.
More compactly,

χ = ΥT diag(α)x(n, r) (6)

is written in matrix-vector form, where

Υ =


Υ

(0)
0 (r1), . . . , Υ

(L)
L (r1)

...
. . .

...
Υ

(0)
0 (rQ) . . . Υ

(L)
L (rQ)

 ∈ RQ×(L+1)2 , (7)

and diag(α) creates a diagonal matrix from the vector of
microphone weights, α =

[
α1, . . . , αQ

]T
.

The generation of L = (L+1)2 eigenbeams using all micro-
phone signals in (2) is also called an eigen-beamformer [29],
[42]. Modal beamforming, or the judicious linear combination

of the eigenbeams (see Section V for elaboration), produces a
beam pattern directed at a desired source direction using

ψ(n) =

L∑
ℓ=0

ℓ∑
m=−ℓ

w
(m)
ℓ χ

(m)
ℓ (n) , (8)

where w
(m)
ℓ is the beamformer weight associated with

χ
(m)
ℓ (n). In vectorial form, ψ(n) = wTχ, where w =[
w

(0)
0 , w

(−1)
1 , w

(0)
1 , . . . , w

(L)
L

]T
. With P different combina-

tions of weights, the beamformer can generate P outputs

ψ = WTχ , (9)

where ψ =
[
ψ1, . . . , ψP

]T
, W =

[
w1, . . . ,wP

]
and wp

contains the set of weights associated with ψp, p = 1, . . . ,P.
Ideally, the selected beams should mainly contain the target
source signal while minimizing any unwanted signals.

B. Polynomial Matrix Eigenvalue Decomposition

The PEVD approach considers the space-time covariance
matrix [10], parameterized by a time lag τ , which is defined
as

Rxx(τ) = E{x(n)xT(n− τ)} , (10)

where E{·} is the expectation operator over n. Each element,
rp,q(τ), is computed using the cross-correlation sequence
between the p-th and q-th microphone signals. Therefore,
Rxx(τ) contains auto- and cross-correlations on its diagonals
and off-diagonals, respectively.

Classical subspace-based approaches for narrowband signals
typically consider a special case of (10) by evaluating Rxx(τ)
only at τ = 0. The received signals are then decorrelated using
an EVD. The resulting instantaneous spatial covariance matrix,
Rxx(0), does not fully capture the second-order statistics
of the sensor signals, and has been shown to be not fully
adequate for broadband signals such as speech [17], [21],
which naturally exhibit temporal correlations especially in
reverberant environments. Consequently, the proposed PEVD
approach considers the decorrelation of speech signals over a
range of discrete time lags. Accordingly, the concatenation
of the covariance matrices in (10) for all values of τ ∈
{−N, . . . , N} can be represented by a 3D-tensor of dimension
Q×Q× (2N + 1).

Speech signals are typically processed in the short-time
Fourier transform domain. However, this approach divides
the broadband into multiple narrowband signals, ignoring the
spectral coherence or correlation that exists between different
DFT bins, and neglecting phase coherence across bands [43],
[44]. As an alternative representation, the z-transform of (10),

Rxx(z) = Z{Rxx(τ)} =
∞∑

τ=−∞
Rxx(τ)z

−τ , (11)

or Rxx(τ) � Rxx(z), is a para-Hermitian Laurent poly-
nomial matrix satisfying Rxx(z) = RP

xx(z) = RH
xx(1/z

∗),
where [·]∗, [·]H and [·]P are the complex conjugate, Hermitian
and para-Hermitian operators. The PEVD of (11) is [10]

Rxx(z) ≈ Ux(z)Λx(z)U
P
x(z), (12)
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where the columns of Ux(z) are the eigenvectors and the
elements on the diagonal matrix Λx(z) are the eigenvalues.
To compute (12), iterative approaches based on the SBR2
[10] and the SMD [11], [12] families of algorithms have
been proposed, which are proven to converge, and encourage
spectral majorization such that the eigenvalues in Λx(z) are
strictly ordered on the unit circle. The decomposition in (12)
holds with equality for an analytic Rxx(z) with analytic
factors Ux(z) and Λx(z), which in most cases are infinite
Laurent series [45]. Analyticity implies that an arbitrarily close
approximation by Laurent polynomials in (12) is possible with
a sufficiently large order of factors [46].

At each iteration, the SBR2 PEVD algorithm [10] first
searches for the off-diagonal element with the largest mag-
nitude. If its magnitude exceeds a predefined threshold, a
delay polynomial matrix is applied to bring the element to
the z0 plane. A unitary matrix, which is designed to zero
out the element, is applied to the entire polynomial matrix. A
trimming procedure [10] is also used to keep the polynomial
order compact. The algorithm terminates when the magnitudes
of all off-diagonal elements fall below a pre-set threshold, or
when a user-defined maximum number of iterations is reached.

C. Comparison of Signal Representations

The theoretically optimal compaction filter G(n), whose
coding gain is guaranteed by its strong decorrelation and
spectral majorization properties [2], [7], is allowed to have
infinite order and is also the principal component filter bank
used for data compression [2]. These principal components
could then be extracted for speech enhancement and source
separation, where the signals of interest reside. For a spherical
array geometry, the two practical designs of G(n) include the
SHT and the PEVD. The SHT provides a compact spatial
representation of the 3D sound field sampled by microphones
on a spherical array while the PEVD can compactly represent
space-time information in the signal eigenspace.

1) Analysis of Signal Representations: In noisy, reverberant
environments, each microphone signal on a spherical array
comprises the combination of many delayed and attenuated
versions of the speech signal due to multi-path propagation.
Consequently, microphone signals are highly correlated in
space and time, as evident from a non-diagonalized space-
time covariance matrix. The PEVD can diagonalize the space-
time covariance matrix. Strong decorrelated signals can be
obtained using the polynomial eigenvectors as filters. Selecting
only the subspaces corresponding to polynomial eigenvalues
of significant magnitude leads to a signal representation based
on the PEVD that uses fewer signals than the number of
microphone signals. When there are P independent, spatially
separate sources, the ideal PEVD is expected to generate P
out of Q non-zero outputs; while these outputs very likely do
not match the source signals, a compaction of the data is still
achieved.

For a spherical array, the SHT decomposes a 3D sound
field using spatially orthogonal basis functions to generate the
eigenbeam signals. Due to multi-paths, sound field compo-
nents in different eigenbeams exhibit temporal correlations.

Consequently, an EVD or KLT, which is typically applied to
the spatial covariance matrix R(0), only removes instanta-
neous correlations i.e., at time lag τ = 0, and is insufficient
for processing (10). Instead, the PEVD can be used to achieve
better compression and complete diagonalization across a
range of time lags, as will be illustrated in Section VI-C.

2) Measures of Signal Representation Quality: An instru-
mental measure of compactness is the coding gain γ, which
is the ratio between the arithmetic and geometric mean of the
variances of the elements in y(n), computed using [1], [7],

γ =
1
N tr{Ryy(0)}

det{Ryy(0)}
1
N

, (13)

where tr{·} and det{·} compute the trace and determinant of
a matrix. Ideally, G(n) should be a para-unitary or lossless
filterbank, such that the total powers of x(n) and y(n) remain
the same. In this case, for y(n) to attain maximum coding
gain, two conditions must be satisfied [47]:

1) strong decorrelation, such that E{yi(n)yj(n− τ)} = 0,
∀τ, i ̸= j, i.e., the elements of y(n) are decorrelated for
all lags τ ;

2) spectral majorization such that for all normalized angu-
lar frequencies Ω,

Syi−1yi−1(e
jΩ) ≥ Syiyi(ejΩ), i = 2, . . . , Q, (14)

where Syiyi(e
jΩ) is the power spectral density of yi(n).

Both conditions are met by PEVD algorithms such as SBR2
and SMD, where strong decorrelation, and in case of SBR2
also spectral majorization [48], are proven to be enforced.

The quality of the signal representation can be quantified
by the reconstruction error ε, expressed as a percentage, using

ε =

∑Q
q=1(x̂(n, rq)− x(n, rq))2∑Q

q=1(x(n, rq))
2

× 100% , (15)

that is, the total squared error between the received x and
reconstructed microphone signals x̂, normalized by the total
energy of the signals in Q microphones. The reconstructed
microphone signals x̂(n) are computed using (5) for SHT and
x̂(n) =

∑
k,ν Ux(k)U

T
x(k − ν)x(n− ν) for the PEVD.

Since with iterative PEVD algorithms, the diagonalization
in (12) is only approximate, similarly to [10], we define the
total on- and off-diagonal energies Eon and Eoff in the ideally
diagonalized eigenvalue term S[τ ] ≈ Λx(τ) as

Eon ≜
∑
∀τ

Q∑
i=1

|sii(τ)|2, Eoff ≜
∑
∀τ

∥S[τ ]∥2F − Eon , (16)

where sii[τ ] is the i-th diagonal element of S[τ ], and ∥ · ∥F
is the Frobenius norm. Using (16), the diagonality factor δ,
which measures the level of diagonalization of a matrix S[τ ],
is defined as

δ = 5 log10

(
Eon

Eoff

)
, (17)

expressed in dB. The unusual scaling by 5 accounts for the
fact that the terms of S[τ ] in (17) are already of a quadratic
nature [7]. The lower and upper bounds, 0 ≤ Eon/Eoff <∞,
correspond to the case when only the off-diagonal elements
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x(n, r1)

x(n, rQ)

...

Real-valued
Spherical

Harmonics
Transform

(SHT)

χ
(0)
0 (n)

...
χ
(L)
L (n)

Eigenbeam
Selection
Algorithm
W ∈ RL×P

ψ1(n)
...
ψP(n)

Polynomial
Matrix

Eigenvalue
Decomposition

(PEVD)

y1(n)
...
yP(n)

Q microphones L eigenbeams P outputs P signals

Fig. 1: Block diagram of the proposed method which uses combinations of eigenbeams for PEVD processing.

are non-zero and the case when the polynomial matrix is fully
diagonalized, respectively.

IV. PEVD IN THE SPHERICAL HARMONIC DOMAIN

A. Motivation for Proposed Approach

While PEVD addresses the optimum coding gain problem in
multi-channel systems [7], it is data-dependent and, in practice,
likely to face numerical difficulties for a large number of
sensors, Q [49], as is the case with the spherical microphone
array here. The space-time covariance matrix in (11), on which
the PEVD operates, contains Q2(2N + 1) elements and give
rise to a computational complexity that is at least O(Q3N) due
to matrix multiplications applied to every lag [22]. Hence, it
will be computationally advantageous to reduce the number
of channels Q if the accuracy of the signal representation is
not significantly affected.

In contrast to the PEVD, the SHT scales well w.r.t. the
spatial dimension. The normalized truncation or approximation
error depends only on the product between wavenumber k and
radius r [29], [30]. Particularly for a desired truncated SH or-
der L, the product L = kr gives a normalized truncation error
of roughly 4% for all values of kr, which is sufficient for most
practical applications [50]. Further, for a sufficiently large SH
order L, instead of using Q microphones, a lower dimension
of L eigenbeams can be used to represent the sound field. In
terms of compaction, particularly for sound sources arriving at
the spherical microphone array from well-defined directions,
the SHT outputs can be linearly combined via beamforming
to further compact the source’s power, and is therefore widely
regarded as a tool for dimensionality reduction of spherical
microphone array data [25], [51], [52]. This compaction is
difficult to assess via the coding gain, since the SHT is not a
unitary transform or otherwise norm-preserving. We can state,
though, that the SHT is sub-optimal w.r.t. the coding gain in
(13), as it only operates instantaneously. Consequently, it does
not target decorrelation over a range of time lags and cannot
remove correlations for other noise types and reverberation
exhibiting temporal correlations.

With a view to combine the benefits of SHT and PEVD, we
propose to utilize a preprocessor comprising the SHT together
with a beamformer prior to applying a PEVD. This preproces-
sor performs a spatial decomposition, with the aim of com-
pacting as much energy as possible into as few outputs as nec-
essary while exploiting the benefits of modal beamforming in
terms of scalability and efficiency. Note that when the source
directions are unknown and beamforming is not performed,
the signal-independent SHT, which has a low computational

complexity, performs a dimensionality reduction. Regardless,
the SHT preprocessor reduces the number of signals used in
the PEVD and significantly reduces the complexity compared
to the PEVD-only approach in Section III-B. Our method is
summarized in Fig. 1 and Algorithm 1.

B. Proposed Algorithm

Assuming stationarity, the space-time covariance matrix of
the modal beamformer outputs ψ(n) can be computed using

Rψψ(τ) = E{ψ(n)ψT(n− τ)} . (18)

Using (2) and (9), the z-transform of (18), Z{Rψψ(τ)}, is

Rψψ(z) = WTRχχ(z)W

= WTΥTdiag(α)Rxx(z)diag(α)ΥW

= CTRxx(z)C , (19)

where Rχχ(z) � Rχχ(τ) is the space-time covariance
matrix of the eigenbeam signals. The compression matrix
C = diag(α)ΥW depends on the microphone weights α,
eigenbeam weights W, and the SH order, L. The design and
impact of C will be discussed in Section V.

In practice, (18) can be estimated with bias using

Rψψ(τ) ≈
1

T

T−1∑
n=0

ψ(n)ψT(n− τ) , (20)

where T is the frame size and (19) is approximated by

Rψψ(z) ≈
W∑

τ=−W
Rψψ(τ)z

−τ . (21)

The estimation error incurred in (20) depends on both the
ground truth Rψψ(τ) and frame size T [53]. In turn, the time
support W , over which the estimation is performed, can be
optimized to balance truncation and estimation errors [54].

The PEVD of the modal beamformer outputs in (19) is

Rψψ(z) ≈ Uψ(z)Λψ(z)U
P
ψ(z) . (22)

The eigenvector filterbank, Uψ(z)� Uψ(n) is para-unitary
by construction, i.e. UP

ψ(z)Uψ(z) = Uψ(z)U
P
ψ(z) = I. Thus,

Uψ(z) can only redistribute spectral power among channels
and not change the total signal powers. The generated outputs
are also spectrally majorized and sorted in descending order
of their signal energy [10]. Consequently, in the case when the
spectrally majorized solution corresponds to the target source,
this signal can be extracted from the first output in y(n) using
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y1(n) =

K∑
k=0

uT
1(−k)ψ(n− k) , (23)

where u1(n) represents the first column of Uψ(n) and is of
order K. The filtered outputs y(n) are strongly decorrelated
due to diagonalization achieved by Ryy(z) ≈ Λψ(z).

C. Modal Beamformer Designs for Eigenbeams

The spatial dimension of Rxx(z) is Q. For a sufficiently
large SH order L, the rank of the SH basis matrix Υ is
L. Consequently, the SHT generates L eigenbeam signals
and its space-time covariance polynomial matrix, Rχχ(z) in
(19), has a spatial dimension of L. Furthermore, if prior
information such as direction-of-arrivals (DoAs) is available,
W in (19) may no longer be a square matrix, e.g., P ≤ L,
and contains modal beamformer weights as its elements. The
resulting Rψψ(z) has dimension P, thereby achieving further
compression. The design of W depends on the application,
and this will be demonstrated for speech enhancement and
source separation in Section V. Therefore, the complete pro-
posed practical design for G(n) is UT

ψ(n)C
T.

Algorithm 1 PEVD processing in the SHT domain.

Inputs: x(n) ∈ RQ, α, L,W, T,W .
χ(n)← x(n) // real-valued SHT, see (2)
ψ(n)←WTχ(n) // modal beamforming
Rψψ(τ)← E{ψ(n)ψT(n− τ)} // see (20)
Rψψ(z)← Z{Rψψ(τ)} // see z-transform (21)
Uψ(z),Λψ(z)← PEVD{Rψψ(z)} // use SMD [11]
y1(n)← filter{uT

1(n),ψ(n)} // extract target, see (23)
return y1(n).

V. APPLICATION EXAMPLES

The proposed compaction system is used for two illustra-
tive application examples. The first is a speech enhancement
application using the proposed system to enhance the signal
of a single speaker in noise, where the beamformer operates
akin to a KLT to compact energy. The second application is
source separation of two speakers. The target speaker direction
is assumed to be known to inform the construction of several
beamformers which coherently combine the target speaker but
not the second source. This enables the extraction of the target
speaker as the principal component in the PEVD stage.

A. Single Source Speech Enhancement

The problem of unsupervised speech enhancement for a
single speaker is now discussed. A significant amount of data
redundancy is expected when sampling the sound field of
a single source by several microphones at different spatial
positions. In fact, the signal subspace due to a single speech
source in Λx(z) or Λψ(z), is expected to be of rank one,
thereby suggesting an opportunity for compression. If the
direction of the source is not known, the full set of eigenbeams
generated from the SHT can be chosen up to the L-th order
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Fig. 2: Setup of the 4 m×5 m×6 m simulated room.

SH for PEVD processing. This is equivalent to using W = I,
where I ∈ RL×L is the identity matrix and C ∈ RQ×L only
depends on the SH order approximation if all microphones
are used for processing. The speech enhancement performance
using different sets of complete eigenbeam signals will be
investigated in Section VI-C3.

B. Separation of Multiple Sources

The problem of separating multiple directional sources in a
reverberant environment is next considered. Applying a PEVD
for data compaction directly to the microphone signals is
prohibitive in terms of computational complexity; further, due
to spectral majorization, the PEVD may extract a mix of signal
components that is counterproductive when performing source
separation. For this reason, we assume that the target source
direction is either known or can be estimated [55], [56], such
that only a subset of eigenbeam signals is required, and can be
further compressed by a modal beamformer. This reduces the
input dimension to the PEVD stage, and also aligns the target
signal while incoherently combining the secondary, interfering
source(s). Thus, the PEVD becomes computationally viable
and can compact the target source in its principal eigenvectors.

With P beamformer outputs for each target source, C ∈
RQ×P represents the dimensionality reduction. Consequently,
the spectrally majorized outputs generated by the PEVD en-
able the extraction of the target source in the first channel. This
process can be repeated for all sources. The source separation
performance will be demonstrated in Section VI-C4.

VI. SIMULATIONS AND RESULTS

To demonstrate the benefits of the proposed framework, first
a comparison of signal representations using theoretical and
realistic examples generated from measured data illustrates the
achievable compression and practical benefits. The proposed
framework is then used for blind speech enhancement and
informed source separation using the approaches discussed in
Section V. Listening examples are available at [57].

A. Experimental Setup

The TIMIT corpus [58] provides 16 kHz anechoic speech
signals. For each speech source, short utterances from the same
randomly selected speaker were concatenated to generate sig-
nals of 8 to 10 s duration. In experiments involving simulated
rooms, the SMIRgen tool in [59] was used to generate the
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RIRs for a 32 microphone spherical array. The room setup
is shown in Fig. 2, and the room reverberation time T60
[37] was varied between 0 s, 0.3 s and 0.7 s. Spatially and
temporally white Gaussian noise was used to simulate sensor
noise. In experiments using measured RIRs, Lecture Room 2
with T60 = 1.22 s and babble noise signals, which were
recorded using the 32-channel Eigenmike spherical array [60],
were taken from the ACE corpus [61].

In each experiment, 50 trials were conducted for which
the speech signals were varied. For each trial, each anechoic
speech signal was convolved with the RIRs before adding
noise to generate the microphone signals at a specified input
SNR using [62]. The SNR ranged from -10 dB to 20 dB.

The SMD algorithm was used to compute a PEVD using
ρ = N1/

√
q × 10−2 for the maximum off-diagonal column-

norm, where q = 32 is the number of signals used for
processing, N1 = tr{R(0)} is the total energy in those q
signals, a trim factor µ = 10−3, 500 iterations and T =W =
1600 samples. These parameters are selected following [21].
The quadrature weights α are computed using [63]. We now
describe the three tests.

1) Compression and Signal Representation Comparison:
The microphone signals were directly processed using the KLT
and PEVD. Addtionally, SHT was applied in order to gener-
ate eigenbeam signals (SHT), with subsequent processing of
eigenbeams using KLT (SHT+KLT) and PEVD (SHT+PEVD).

2) Single Source Speech Enhancement: The source was
located at Position 2 in Fig. 2. The proposed approach using
the complete set of eigenbeams for L = 1 (PEVD L1) and
L = 2 (PEVD L2) are compared against the PEVD-based al-
gorithm which uses the raw microphone signals (RAW PEVD)
[21]. Consequently, 4 and 9 eigenbeam signals are passed as
inputs to the PEVD algorithm. Eigenbeams χ(0)

0 and χ(1)
1 are

also evaluated because the former can provide some noise
reduction [24] and the latter represents a dipole directed at
the source for the simulated room. To compare the ability of
the PEVD to strongly decorrelate signals, the KLT was also
applied to the single eigenbeam χ

(0)
0 in the time-domain using

[64] (KLT{χ(0)
0 }) since spatial and temporal decorrelation are

separately achieved by using the SHT and KLT, respectively.
3) Source Separation: For each target source, P = 4

instead of 32 microphone signals were used as inputs to
the PEVD to demonstrate its effectiveness while reducing
computational complexity. The modal signals for the source at
Position 1 were χ(−1)

1 , χ
(−3)
3 , χ

(−1)
3 and the modified hyper-

cardioid (MHCARD) [39] beam directed at (π2 ,
π
2 ). For the

source at Position 2, the modal signals were χ(1)
1 , χ

(1)
3 , χ

(3)
3

and the MHCARD directed at (π2 , 0). The proposed approach
was compared against well-known approaches such as the
third-order hyper-cardioid modal beamformer optimized for
maximum directivity index (MaxDir) [29], auxiliary function-
based independent vector analysis (AuxIVA) [65], independent
low-rank matrix analysis (ILRMA) [66] and fast multi-channel
non-negative matrix factorization (MNMF) (FastMNMF) [67],
implemented in [68]. During experimentation, it was found
that the independent component analysis (ICA) and MNMF-
based algorithms did not perform well when all 32 micro-

TABLE I: RESULTS FOR CODING GAIN EXAMPLE.

Processing γ [dB]
Unprocessed microphones 0

KLT on microphones 14.6
PEVD on microphones 18.3

Eigenbeams (SHT on microphones) 10.9
KLT on Eigenbeams 14.9

PEVD on Eigenbeams 19.1
Optimal 18.7

phones were used. Therefore, signals from two microphones
closest to each source were chosen for these methods in the
following results.

B. Evaluation Metrics
To measure the quality of the signal representation, the

reconstruction error ε, coding gain γ and diagonality factor
δ, defined in Section III-C2, are computed. The PEVD com-
plexity factor β relative to Q microphones, estimated using
β = (LQ )

3, quantifies the computational savings.
Speech enhancement is popularly evaluated using segmen-

tal signal to noise ratio (SegSNR) and frequency-weighted
SegSNR (FwSegSNR) for noise reduction [69], normalized
signal-to-reverberant ratio (NSRR) and Bark spectral distortion
(BSD) for dereverberation [70], short-time objective intelli-
gibility (STOI) for speech intelligibility [71] and perceptual
evaluation of speech quality (PESQ) [72] for quality.

To evaluate the source separation performance, source-to-
distortion ratio (SDR), source-to-interferences ratio (SIR), and
source-to-artifacts ratio (SAR) are used to measure the overall
source separation ability, interference rejection and processing
artifacts, respectively [73].

The metrics are computed for the microphone signals and
the processed signals, and their difference ∆ is reported for
each measure. Positive ∆ values indicate improvements in all
measures except ∆BSD, for which a negative value implies a
reduction in spectral distortions.

C. Experiments and Discussion
1) Theoretical Example for Compression: To demonstrate

the achievable compaction of the various signal representa-
tions, a single uncorrelated source is considered, i.e., P = 1,
illuminating a spherical array with Q′ = 36 microphones, of
which initially only Q = 25 elements are utilized. The prop-
agation environment is anechoic, and the array is assumed to
be sufficiently small to not suffer from attenuation loss across
the array. Thus, the array signal can be expressed as in (1),
with h1(n) ∈ RQ consisting of fractional delay filters [74],
[75], and a normalization such that, for h1(n) � h1(z),
hP
1 (z)h1(z) = 1. With a source power of σ2

s , and spatially
and temporally uncorrelated noise of power σ2

v corrupting each
microphone, the SNR at each microphone is ρ = σ2

s/σ
2
v .

The ideal PEVD uses a para-unitary polynomial matrix
U(z) = [h1(z)H(z)]P, such that HP(z)h1(z) = 0, with
H(z) : C → CQ×(Q−1) generated via a para-unitary matrix
completion method [18]. Then, the polynomial eigenvalues are

λm(z) =

{
QS(z) + σ2

v m = 1 ,
σ2
v m > 1 ,

(24)
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Fig. 3: Variances achieved by various data compaction ap-
proaches based on (a) unprocessed microphone signals and (b)
eigenbeams produced by the SHT. Grey horizontal lines show
the upper and lower variances provided by the ideal PEVD in
(24), and the variance of the unprocessed microphone signals.

where S(z)� S(τ) and S(τ) is the auto-correlation function
of the source signal. With S(z) = σ2

s , the optimal coding gain
can be shown to take the form

γopt =
σ2
s + σ2

v
Q
√
(Qσ2

s + σ2
v)(σ

2
v)
Q−1

=
1 + ρ

Q
√
1 +Qρ

. (25)

With Q = 25 and ρ = 100, i.e. an SNR of 20 dB, γopt =
18.7 dB. A KLT, performing an optimum instantaneous spatial
decorrelation, achieves a coding gain of γKLT = 14.6 dB,
while an approximate PEVD via the SMD algorithm applied
to the microphone data yields γSMD = 18.3 dB because
of diagonalization achieved over a range of time lags. The
approximate nature of the SMD algorithm leads to a small loss
in coding gain compared to γopt shown in Table I, but pro-
vides significantly better coding gain than the KLT. Fig. 3(a)
illustrates the variances of the microphone signals, (σ2

s + σ2
v),

and the outputs of the KLT and PEVD, demonstrating the
effect of compaction with the KLT packing the source signal
into approximately six and the PEVD into approximately two
outputs before the noise floor of σ2

v is reached.
Since the SHT is generally not orthonormal, Q′ = 36

microphone signals were used to generate a reduced set of
Q = 25 eigenbeams, i.e., a 4th order SH representation. This
can be achieved by a transform matrix S ∈ RQ×Q′

, with
SST = I while noting that STS ̸= I. If the input is spa-
tially uncorrelated and x(n) = Sx′(n), then E{∥x(n)∥22} =
Q
Q′E{∥x′(n)∥22}. For spatially correlated data, such as the
above source signal, no input-output relation for the energy
can be stated: in the best case, the signal x′(n) occupies the
row space of S; in the worst case, it will lie in the nullspace of
S resulting in zero power for x(n). The reconstruction error
ϵ for 25 eigenbeams is 5.7%.

Therefore, due to the incomplete preservation of power in
the SHT, the coding gain cannot yield a direct comparison.
Ignoring this, Table I shows that the SH signal representation
yields a coding gain of 10.9 dB over the unprocessed micro-
phone signals. A KLT or PEVD operating on the eigenbeams
increases this coding gain further. Fig. 3(b) shows that the

Fig. 4: Portion of Rxx(τ) corresponding to the first 4 signals
from the Eigenmike with Rxx(0) marked by red crosses.
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Fig. 5: First 4 principal eigenvalues in Λx(z) computed from
Rxx(z) in Fig. 4 and red crosses are the zero-lag terms.

SHT+PEVD coding gain exceeds the optimum value according
to (25), because the best-compacted signal breaks the upper
limit in (24). Importantly, though, Fig. 3(b) illustrates three
key aspects of our proposed approach: (i) without being data
adaptive, the SHT still manages to compress the signal into
approximately 12 eigenbeams; (ii) processing this reduced
set of eigenbeams further by a KLT or PEVD yields similar
compression when compared to the results in Fig. 3(a); thus,
(iii) particularly the PEVD can operate on a significantly
reduced spatial dimension and therefore at a much reduced
computational cost after SHT preprocessing.

2) Signal Representation Example Using Measured Data:
To compare the signal representation of speech signals cap-
tured by spherical microphone arrays in practice, an illustrative
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Fig. 6: Rχχ(z) of eigenbeams for L = 1 computed using
signals that generate Fig. 4. Red crosses are the zero-lag terms.
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Fig. 7: Λψ(z) of eigenbeam signals in Fig. 6 and red crosses
represent the zero-lag terms.

example is generated using RIRs and 10 dB babble noise mea-
sured by the 32-element Eigenmike in ACE Lecture Room 2.
A portion of the space-time covariance matrix corresponding
to the first 4 microphones in Fig. 4 shows that correlations exist
at non-zero lags. The PEVD is used to generate outputs which
are spatially decorrelated over a range of time lags, resulting in
a space-time covariance matrix equivalent to Λx(z) in Fig. 5.

With Q = 32 microphones, the sound field can be approxi-
mated up to SH order 4. Note that in the theoretical example
of compression achieved by different signal representations
in Section VI-C1, the number of channels before and after
processing is the same, i.e. 25 channels. Practical microphone
arrays like the Eigenmike, however, are usually spatially over-

TABLE II: SIGNAL REPRESENTATION USING SHT FOR
10 DB BABBLE NOISE LECTURE ROOM EXAMPLE IN FIG. 4.

L L Complexity, β Error, ε(%) δ [dB] γ [dB]
0 1 - 31.7 - -
1 4 0.002 13.3 5.16 3.03
2 9 0.022 8.4 5.00 5.89
3 16 0.125 5.4 4.93 7.03
4 25 0.477 2.3 4.87 7.16
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Fig. 8: Diagonality factor improvement for (a) white noise in
simulated room with T60 = 0.3 s and (b) babble noise in ACE
Lecture Room 2.

sampled as they use more microphones than (L + 1)2, rep-
resented by an over-determined non-square (tall) compression
matrix C ∈ RQ×(L+1)2 .

While the complexity β increases with L, the reconstruction
error ϵ and coding gain γ generally decrease as seen in
Table II. For this example, even with L = 2, ε is 8.4%,
indicating that 9 eigenbeams can capture most of the spatial
information. This suggests that the raw microphone signals
may be highly redundant, and that the SHT can offer a
significant level of compression for an order-limited sound
field. For a small number of L signals, β is also significantly
lower and is omitted for L = 1 since the PEVD is a multi-
channel algorithm. For reference, applying PEVD on L = 25
eigenbeams yields coding gain γ = 31.5 dB.

When L increases from 1 to 4, δ reduces from 5.16 dB to
4.87 dB indicating that there is a decrease in the on-diagonal
energy Eon relative to the off-diagonal energy Eoff , i.e., the
matrix for larger L is less diagonal. This is expected because
most higher-order eigenbeams do not contain the target speech
component and will not exhibit correlations between many
pairs of eigenbeam signals. Some higher-order eigenbeams,
however, may exhibit temporal correlations with lower-order
eigenbeams pointing in the same direction, as seen from the
peaks between χ(0)

0 (n) and L = 1 in Fig. 6 occurring at τ ̸= 0.
Since SH are spatially orthogonal, the eigenbeams may be
instantaneously decorrelated, as shown by the red crosses in
Fig. 6. To reduce the correlations between eigenbeams across
the range of τ , a PEVD is used and leads to Λχ(z) in Fig. 7.

The diagonality factor δ defined in Section III-C2 is com-
puted and compared with the processed signals for 50 trials.
The results for white noise in the simulated room and babble
noise in Lecture Room 2 are shown in Fig. 8. In both cases
the difference in diagonality, ∆δ is highest by up to 22 dB for
the PEVD-based methods because PEVD can diagonalize the
space-time covariance matrix over a range of time lags. At
-10 dB SNR, however, the proposed SHD+PEVD improves
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diagonalization by 7 dB over PEVD using the microphone
signals directly. SHD processing alone provides a substantial
improvement in diagonalization by up to 12 dB in ∆δ.

While a different time segment is used in each trial for
the recorded babble noise, the speakers generating the babble
noise are seated in the same positions and the noise signals
are not perfectly diffuse. Therefore, SHT, which performs a
spatial decomposition, can be an advantageous preprocessing
step and performs more consistently, i.e., a larger improvement
in the mean of SHT+PEVD than the PEVD in Fig. 8(b), and a
smaller variance for SHT+PEVD in babble noise in Fig. 8(b)
than the white noise scenario in Fig. 8(a).

3) Single Source Speech Enhancement: Table III(a) com-
pares the speech enhancement performance for a single ex-
ample using the methods presented in Section VI-A2. In
this simulated setup, the PEVD-based algorithms perform
similarly, with PEVD L2 performing best in most metrics.
PEVD L1 gives a greater improvement in ∆FwSegSNR and
∆BSD by 5.72 dB and -1.68 dB compared to RAW PEVD,
which uses all microphone signals directly. After PEVD L2,
the χ(1)

1 (n) eigenbeam directed at the source gives the best
∆STOI. Applying the KLT to χ(0)

0 (n) improves all measures
except for ∆STOI.

Speech enhancement performance for 50 Monte-Carlo trials
in the simulated room is shown in Fig. 9. Across all mea-
sures and SNRs, the PEVD-based algorithms (RAW PEVD,
PEVD L1, PEVD L2) are ranked first or second after
KLT{χ(0)

0 (n)}, which is optimal for white noise, or the
χ
(1)
1 (n) eigenbeam, which is pointing directly at the source.

The two PEVD-based algorithms perform comparably well,
even though different numbers of channels are used for pro-
cessing. This shows that processing the eigenbeams instead
of the raw microphone signals for speech enhancement is
effective and computationally advantageous, and is without
the need of DoA information.

When recorded signals from the ACE corpus are used,
Fig. 10 shows that RAW PEVD provides the greatest im-
provement across all metrics for SNR≥ 0 dB and is closely
followed by PEVD L2 and PEVD L1 even without using
any DoA information. The χ

(0)
0 (n) eigenbeam shows some

improvement and the use of KLT does not offer further
improvement, and may even introduce processing artifacts
when the noise is not white. This can be seen from a slight
reduction in ∆STOI and ∆PESQ in Fig. 10(c) and Fig. 10(d)
for babble noise. The χ

(1)
1 (n) eigenbeam does not perform

well because it is not directly pointing at the source and may
only pick up weaker reverberant components along with noise.

At -10 dB SNR, the PEVD algorithms which use the
eigenbeams, PEVD L1 and PEVD L2, perform better than
RAW PEVD. In very noisy environments, the generated
eigenbeams take advantage of the noise reduction offered
by the signal independent SH domain processing, which is
not available to RAW PEVD. At other SNRs, they perform
comparably even though PEVD L1 and PEVD L2 use 4 and
9 channels respectively compared to the 32 channels used in
the RAW PEVD approach.
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Fig. 9: Speech enhancement results for white noise in a
simulated room with T60 = 0.3 s.
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Fig. 10: Speech enhancement results for babble noise in ACE
Lecture Room 2 with T60 = 1.22 s.
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TABLE III: SPEECH ENHANCEMENT AND SOURCE SEPARATION RESULTS FOR A SINGLE EXAMPLE USING OUR APPROACH.

(a) SPEECH ENHANCEMENT OF SMIRGEN IN 0 DB WHITE NOISE.

Algorithm ∆FwSegSNR ∆STOI ∆PESQ ∆NSRR ∆BSD

χ
(0)
0 4.86 dB 0.055 0.42 7.69 dB -1.53 dB

KLT{χ(0)
0 } 5.56 dB 0.054 0.51 10.8 dB -1.65 dB

χ
(1)
1 0.89 dB 0.122 0.44 1.08 dB -0.65 dB

PEVD L1 5.72 dB 0.110 0.47 7.98 dB -1.68 dB
PEVD L2 5.92 dB 0.125 0.51 7.78 dB -1.71 dB
RAW PEVD 5.59 dB 0.119 0.49 8.13 dB -1.62 dB

(b) SOURCE SEPARATION OF 1 FEMALE SPEAKER FOR 2 FE-
MALE SPEAKERS IN AN ANECHOIC SCENARIO.

Algorithm ∆SDR ∆SIR ∆SAR ∆STOI ∆PESQ
AuxIVA 17.7 dB 25.3 dB 11.4 dB 0.21 1.05

FastMNMF 20.6 dB 35.2 dB 13.8 dB 0.21 1.28
ILRMA 19.5 dB 31.3 dB 12.8 dB 0.21 1.21

MHCARD 16.9 dB 17.8 dB 13.4 dB 0.21 0.93
PEVD 21.8 dB 25.3 dB 16.4 dB 0.24 1.39
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Fig. 11: Source separation results in anechoic room.
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Fig. 12: Source separation results in room with T60 = 0.7 s.

4) Separation of Multiple Sources: Table III(b) summa-
rizes the results for a scenario involving the separation of 2
female speakers in an anechoic room. FastMNMF provides
greatest ∆SIR of 35.2 dB and is closely followed by ILRMA,
AuxIVA and PEVD. PEVD outperforms other algorithms in
∆SDR, ∆SAR, ∆STOI and ∆PESQ by 21.75 dB, 16.38 dB,
0.237 and 1.39, respectively because it does not introduce
processing artifacts. This is also observed in the listening

examples [57] which further indicate that non-target speech
signals are attenuated but remain intelligible.

These findings are also observed in Fig. 11 for 50 trials
involving source spearation with two female speakers: F1 and
F2, male and female speakers: M and F, a single speaker and
localized fan noise: S and FAN using the setup in Fig. 2. When
different source types are used in an anechoic room, the source
separation of the PEVD is comparable with FastMNMF and
ILRMA and is better than AuxIVA in the majority of cases.

Results for the room with T60 = 0.7 s in Fig. 12 indicates
that the PEVD is comparable to ICA-based and MNMF-based
methods in ∆SDR, worse in ∆SIR but best in ∆SAR and
∆STOI in most cases. For the S and FAN scenario, PEVD
performs better in SDR and SAR for both sources as it does
not rely on source density functions which may not model
fan noise well. Listening examples in [57] further support
the observations that the PEVD does not introduce distortions
because SMD is a time-domain method which preserves
spectral coherence. We have previously demonstrated that it
achieves a good compaction, resulting in good performance in
the above applications.

VII. CONCLUSION

For a spherical microphone array, signal representations
using SHT, KLT and PEVD are compared. While the PEVD
achieves close to optimum signal compaction, it is computa-
tionally expensive. In contrast, the SHT achieves sub-optimal
data compaction, but is data-invariant and scales well with
the number of microphones. Therefore, using the PEVD to
spatially decorrelate signals over a range of time shifts while
managing computational complexity, we propose to combine
the SHT and PEVD approaches. We first apply the SHT
and obtain a number of eigenbeams that is smaller than the
number of input signals. If DoA information is available,
further computational complexity saving is expected with even
fewer beamformed signals for PEVD processing.

The proposed framework for signal representation demon-
strates that the diagonality factor improves on average by 7 dB
over microphone signal representations. When exploiting the
framework for speech enhancement and source separation, the
method improves STOI and SDR by up to 0.2 and 20 dB,
respectively. Informal listening examples also indicate that the
method does not introduce any audible artifacts [57].
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