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A T M O S P H E R I C  S C I E N C E

Improved simulation of 19th- and 20th-century  
North Atlantic hurricane frequency after correcting 
historical sea surface temperatures
Duo Chan1*, Gabriel A. Vecchi2, Wenchang Yang2, Peter Huybers1

Confidence in dynamical and statistical hurricane prediction is rooted in the skillful reproduction of hurricane 
frequency using sea surface temperature (SST) patterns, but an ensemble of high-resolution atmospheric simula-
tion extending to the 1880s indicates model-data disagreements that exceed those expected from documented 
uncertainties. We apply recently developed corrections for biases in historical SSTs that lead to revisions in tropical 
to subtropical SST gradients by ±0.1°C. Revised atmospheric simulations have 20% adjustments in the decadal 
variations of hurricane frequency and become more consistent with observations. The improved simulation skill 
from revised SST estimates not only supports the utility of high-resolution atmospheric models for hurricane pro-
jections but also highlights the need for accurate estimates of past and future patterns of SST changes.

INTRODUCTION
Changes in Atlantic hurricane activity as a consequence of anthro-
pogenic climate variations remain uncertain (1, 2) but could have 
major societal implications (3, 4). Historic records show substantial 
multidecadal variations in Atlantic hurricane activity (5) that covary 
with sea surface temperature (SST) differences between the Atlantic 
main development region and the remainder of the tropics (5, 6). 
Both statistical (5, 7, 8) and dynamical models (9, 10) are skillful in 
reproducing variations in observational estimates of hurricane frequency 
over recent decades. This covariation supports an interpretation that 
SST variations are a proxy for variations in the thermodynamic po-
tential for hurricane genesis associated with the temperature differ-
ence between the surface and tropical tropopause, as well as large-scale 
circulation changes influencing hurricane activity (11–13).

When extended to cover the late 19th century and the full 20th 
century with commonly used reconstructions of SSTs, however, 
models fail to capture the amplitude of multidecadal variations in 
reconstructed hurricane counts. For example, statistical models (5) 
based on tropical SST differences in HadISST1 (14) predict hurri-
cane activity that is 17% weaker over 1885–1899 and 16% stronger 
over 1930–1955 than observational estimates (5, 8).

Discrepancies in the long-term relationship between reconstructed 
and modeled Atlantic hurricane counts may arise for a variety of 
reasons. These discrepancies could reflect errors in historical hurricane 
reconstructions. For example, before the satellite era, hurricane re-
constructions must be corrected for missed events, a process that is 
inevitably uncertain (5, 7). The classification of hurricanes can be 
uncertain on account of errors in maximum wind speed estimates 
(15). Model-data discrepancies may also reflect an inadequacy of 
using SST variations alone to recover past hurricane activity. For 
example, upper-level atmospheric conditions have the potential to 
evolve independently of SSTs (8, 16). Recent simulations also indi-
cate that global hurricane frequency decreases with increasing CO2 
independent of an SST influence (17–19).

An additional possibility is that errors in SST estimates corrupt 
past simulation skill. All widely used estimates of historical SST 
variability depend on in situ observations compiled under the Inter-
national Comprehensive Ocean-Atmosphere Data Set (ICOADS) 
(20–22). These data require corrections to account for temporal and 
spatial inhomogeneity in available measurements (23–25). Before 
the 1980s, data come largely from measurements made using buckets, 
comprising 40% of observations between 1942 and 1981 and 95% of 
observations before 1942 (26). Bucket temperatures are estimated 
to be, on average, biased cool by 0.4°C over the early 20th century 
(26, 27), foremost because of cooling from wind-induced evapora-
tion (23). Other biases are also present, however, such as those asso-
ciated with heating from solar absorption (27, 28). The degree to which 
cooling and heating influence temperature measurements variously 
depends on the design of a bucket and measurement protocols.

Lack of metadata by which to make specific corrections has ne-
cessitated simplifying assumptions regarding the spatial and tem-
poral structure of bucket biases. For example, HadISST1 uses globally 
uniform and linear weights to represent a transition from wooden 
buckets to less insulated canvas buckets (14). Correctly diagnosing 
the spatial and temporal evolution of these biases, however, is im-
portant because hurricanes and other climate phenomena are sensi-
tive to patterns of tropical SST changes (13, 29–31).

A recently developed method allows for identifying systematic 
offsets among groups of ships and improved corrections of regional 
biases resulting from their uneven spatial and temporal sampling of 
SST (32). This method involves pairing nearby measurements from 
distinct groups and estimating systematic offsets using a linear 
mixed-effect (LME) model. Application of the method to version 3.0 
of ICOADS (22) results in the detection of highly significant offsets 
(P<0.05) between nations and data collecting groups (32). Physical 
and historical evidence supports the validity of estimated groupwise 
offsets. Groupwise SST offsets have variously been found to arise as 
a consequence of truncation of observations during digitization, 
misclassifying engine room intake measurements as bucket SSTs, or 
as a result of buckets having different thermal insulation properties 
or remaining longer on ship deck before measurement (33,  34). 
Correcting for groupwise offsets leads to SST adjustments ranging 
between ±0.5°C for monthly 5° × 5° ocean grids and results in more 
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homogeneous patterns of warming over the early 20th century that 
are in better agreement with surface air temperature data from coastal 
weather stations (33). Moreover, groupwise adjustments also remove 
a significant but otherwise unexplained warm anomaly during 
World War II (35), bringing instrumental SST estimates into con-
sistency with coastal and island station records (36) as well as ma-
rine proxies of SST (37).

Here, we explore whether biases in historical SST estimates are a 
major limiting factor in the ability of models to reproduce historical 
North Atlantic hurricane frequency and whether model-data dis-
crepancies in SST-based predictions of historical hurricanes indicate 
a need to account for additional processes in models. To answer 
these questions, we perform a series of SST-forced atmospheric 
model simulations using the National Oceanic and Atmospheric 
Administration–Geophysical Fluid Dynamics Laboratory (NOAA- 
GFDL) High-Resolution Atmospheric Model (HiRAM) (9) and a 
25-km version of the NOAA-GFDL Atmospheric Model version 2.5 
(AM2.5) (38). These models skillfully simulate many aspects of the 
climatology of tropical cyclones (TCs) (9, 39) and are also skillful in 
reproducing the interannual variability of North Atlantic hurricane 
frequency in the satellite era, when high-frequency SST variability is 
well observed (fig. S1). We first use HadISST1 (14) to obtain an 
eight-member simulation ensemble (five from HiRAM and three from 
AM2.5) that is used as a control. We then obtain a second ensemble 
of simulations using a version of HadISST1 that is revised to ac-
count for groupwise bucket corrections and that is referred to as 
HadISST1b. See Materials and Methods for more details of group-
wise SST adjustments and high-resolution atmospheric simulations.

RESULTS
Simulations prescribed with HadISST1 show only weak trends in 
North Atlantic hurricanes over the full interval (Fig. 1A and fig. S2A) 
but have clear decadal variations that are generally in phase with 
observational hurricane reconstructions (Fig. 1A). Similar to find-
ings using statistical models (5, 8), simulated hurricane counts are 
lower in the late 19th century and higher in the middle 20th century 
(Fig. 1A), resulting in a significant model-data discrepancy. For ex-
ample, during 1885–1899, simulations using HadISST1 yield, on 
average, 7.0±0.4 (2 SDs) hurricanes per year, a value that is 17% less 
(P = 0.06) than the value of 8.4±1.4 from the observational estimates 
(Fig. 1D). On the other hand, during 1930–1959, the simulated count 
averages 8.4±0.3 hurricanes per year, which is 22% higher (P <0.01) 
than the observational value of 6.9±0.9. Uncertainties are reported 
as two standard errors if not otherwise specified. The error estimate 
for HadISST1-based simulations only includes atmospheric intrinsic 
variability, ϵi, uncertainties due to perturbing model’s initial condi-
tions. The error of observational hurricane frequency estimates accounts 
for both atmospheric intrinsic variability, ϵi, and reconstruction er-
ror, ϵo, summed in quadrature. It is necessary to consider ϵi in both 
simulation and observation because they are independent. Signifi-
cance is evaluated using a two-sided z test and reported using P values; 
values smaller than 0.01 are reported as P<0.01. See Materials and 
Methods for further details regarding uncertainty estimates.

Groupwise bucket SST adjustments lead to changes in patterns 
of SSTs that are sustained over decades (Fig. 2). Here, we focus on a 
relative pattern of SST defined as the difference between SST aver-
aged over the North Atlantic main development region (20° to 80°W, 
10° to 25°N) and the entire tropical ocean, referred to as relative 

SST (RSST) (8). RSST covaries with North Atlantic hurricane fre-
quency (8, 13). RSST also covaries with the Atlantic Multidecadal 
Oscillation (AMO) index (40), although we focus on RSST because 
simulated hurricanes have a higher correlation with RSST than the 
AMO (figs. S4 and S5). Over 1885–1920, adjustments of SST data 
coming from Germany, the Netherlands, and a group of data re-
ferred to as deck number 156 because its nationality is unknown 
make the main development region 0.10°±0.05°C warmer relative 
to the rest of the tropics (Fig. 2A). Between 1930 and 1960, British 
and German SST adjustments result in colder SSTs in the Atlantic 
main development region, whereas Japanese and Dutch SST ad-
justments give warmer SSTs in the tropical Indian Ocean and the 
western Pacific, leading to a decrease in RSST by −0.05°±0.03°C 
(Fig.  2B). Bucket SST adjustments after the 1960s have a smaller 
magnitude because bucket measurements make up a smaller frac-
tion of total measurements.

A

B

C

D

Fig. 1. Observed and simulated Atlantic hurricane counts. (A) Simulations us-
ing HadISST1 give lower hurricane counts in the late 19th century than observa-
tional estimates and higher counts in the mid-20th century. (B) Simulated and 
observed hurricane counts become consistent using HadISST1b, which includes 
groupwise bucket SST adjustments. (C) Difference in hurricane counts between 
simulations using HadISST1 and HadISST1b [(B) minus (A)]. Uncertainties are for 
atmospheric intrinsic variability and uncertainties in hurricane adjustments (added 
in quadrature, gray shading, 95% CI), atmospheric intrinsic variability (blue shad-
ing, 95% CI), and atmospheric intrinsic variability and uncertainties arising from 
uncertain SST adjustments (added in quadrature, red shading, 95% CI). Curves in 
(A) to (C) are 15-year running averages, with the initial (1878–1884) and final 
(2012–2018) 7 years truncated. (D) Mean hurricane counts over active and inactive 
periods where uncertainties (vertical bars, 95% CI) correspond to those in (A) and 
(B). Shown results combine five members of HiRAM runs and three members of 
AM2.5 runs, but an improvement in the skill of hurricane simulations is also found 
using the ensemble from either model (fig. S3).
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Changes in RSST associated with groupwise bucket adjustments 
are of comparable magnitude with internal and forced variations. 
Internal multidecadal variability in RSST simulated by 14 Coupled 
Model Intercomparison Project Phase 5 (CMIP5) models (41) has 
an SD of 0.11°C. Furthermore, changes in RSST during 2081–2100 
relative to 1986–2005 climatology average only −0.02°C in the RCP4.5 
ensemble, and changes in individual CMIP5 models used in an en-
semble range from −0.34° to 0.40°C. The fact that biases and un-
certainties in historical large-scale tropical SST patterns are of a 
magnitude similar to internal and forced variations has not previ-
ously been recognized.

Revising SSTs from HadISST1 to HadISST1b increases simulat-
ed Atlantic hurricane activity in the late 19th century and decreases 
activity in the middle 20th century (Fig. 1C). Changes in simulated 
hurricane count are consistent with changes in RSSTs and bring 
simulated hurricane activity into better alignment with historical ob-
servations (Figs. 1B and 3). Note that the uncertainty of HadISST1b- 
based simulations (Fig. 1B) contains not only atmospheric intrinsic 
variability but also errors associated with uncertain groupwise SST 
adjustments. Because of limited computing power, we estimate un-
certainties associated with SST errors by converting perturbations 
in the RSST index to expected variations in hurricane counts. Spe-
cifically, we take an ensemble of random groupwise SST adjustments 
and scale each according to the sensitivity of hurricane counts to 
RSSTs. The sensitivity is estimated by regressing simulated hurricane 
counts against RSSTs at annual resolution (fig. S4). For the active 
period during 1885–1899, the simulated count increases from 7.0 ± 0.4 
hurricanes per year when using HadISST1 to 8.2 ± 0.6 when using 
HadISST1b (Fig. 1D). Such an increase (P<0.01) is equivalent to an 
18% fractional change relative to the climatological value of 6.6 hur-
ricanes per year. HadISST1b-based hurricane count is statistically 

consistent with the observational estimate of 8.4 ± 1.4 hurricanes per 
year (Fig. 1D). During the next active period, between 1930 and 1959, 
the simulated count decreases from 8.4 ± 0.3 hurricanes per year 
when using HadISST1 to 7.6 ± 0.3 when using HadISST1b, where 
the latter is, again, consistent with the observed value of 6.9 ± 0.9 
hurricanes per year.

Model skill in reproducing the decadal variability of historical 
Atlantic hurricane counts increases significantly when using HadISST1b. 
Model misfit is quantified using the root mean square error (RMSE) 
between 15-year running average observed and simulated hurricane 
counts. RMSE decreases from 1.06 hurricanes per year when using 
HadISST1 to 0.82 when using HadISST1b (Table 1). This decrease 
in RMSE is significant (P = 0.03) as assessed using a one-sided test 
against a null hypothesis that SST adjustments have no skill (Fig. 4A). 
The effect of unskillful SST adjustments is represented using a null 
distribution constructed by randomly permuting the mean differ-
ence between HadISST1- and HadISST1b-based simulations 10,000 
times. The squared Pearson’s correlation (r2) between observed and 
simulated counts increases from 0.31 when using HadISST1 to 0.50 
when using HadISST1b, an improvement that is also significant 
(P = 0.04; Fig. 4B). Results are robust to a variety of plausible alter-
ations (Table 1), including examining ensemble members from in-
dividual models instead of combining them, using a 25-year window 
for running averages instead of 15 years or calibrating models by 
multiplying simulated hurricane counts instead of shifting the thresh-
old level.

DISCUSSION
Our results reconcile the model-data discrepancy in Atlantic hurri-
cane frequency at decadal time scales and do not indicate a need for 

Fig. 2. Adjustments in the relative SST index. (A and B) Mean groupwise bucket SST adjustments incorporated in HadISST1b over 1885–1920 (A) and 1930–1949 
(B). (C) Contributions from individual nations (stacked bars) to changes in RSST (black line). Nation abbreviations are for Germany (DE), France (FR), Great Britain (GB), Japan 
(JP), the Netherlands (NL), Russia (RU), and the United States (US). Groups without nation information are combined using deck information (such as deck 155 and 156), 
where deck is an indicator of marine data collectors in ICOADS (22). Note that changes in RSSTs tend toward a lower magnitude with time because groupwise bucket 
adjustments incorporated in HadISST1b are scaled by the fraction of bucket versus other measurements in individual grid boxes.
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additional processes to be represented within models. This consist-
ency can be demonstrated using a simple model and error budget

  H = F(T ) +  ϵ  i   +  ϵ  o   +  ϵ  T    (1)

Hurricane count, H, not only is represented as a process that 
maps SSTs to expected hurricane count, F(T), but also is subject to 
additional stochastic and systematic terms, depending on whether 
counts are from observations or simulations. Observational esti-
mates, Hobs, contain errors associated with atmospheric intrinsic 
variability, ϵi, and corrections for missed hurricanes, ϵo. Simulated 
hurricane counts, Hsim, are subject to atmospheric intrinsic vari-
ability, ϵi, and SST errors, ϵT.

We first construct a null distribution of the RMSE between sim-
ulated and observed hurricane counts under the assumption that 
F(T) is equivalent between the observations and simulations and 
that ϵT is negligible. In this scenario, the RMSE expected for HadISST1 
is constructed only accounting for the ϵi and ϵo terms in Hobs − Hsim. ϵi 
is realized by drawing random time series 10,000 times from a zero- 
centered Gaussian distribution whose SD is the cross-member spread 
of hurricane counts within simulation ensembles. ϵo is also realized 
10,000 times by randomly perturbing parameters in the hurricane 
adjustment algorithm (5). The null distribution of RMSE for HadISST1 
gives a 95% confidence interval (CI) ranging from 0.43 to 0.93 hur-
ricanes per year (Fig. 5A), whereas the actual difference between 
simulated and observed counts using HadISST1 has an RMSE of 1.06 
hurricanes per year. Such a result gives the appearance that improve-
ments in climate models or a reevaluation of errors in historical 
hurricane counts are required.

A revised null distribution based on HadISST1b reconciles the 
model-data discrepancy in two ways. First, the null distribution for 
HadISST1b additionally includes SST uncertainty, ϵT, in recognition 
of the fact that groupwise SST adjustments are correlated across space 
and time and only partially cancel under averaging. Accounting for 
ϵT widens the 95% CI of the null distribution to 0.44 to 0.96 hurri-
canes per year. Second, systematic errors in simulated hurricanes 
associated with SST biases are reduced, with the RMSE between ob-
servations and HadISST1b-based simulations decreasing to 0.82 hur-
ricanes per year (Fig. 5B). As a result, the HadISST1b RMSE estimate 
is consistent with known error sources, supporting the accuracy of 
the current generation of models with respect to predicting changes 
in hurricane activity.

A

B

C

Fig. 3. Maps of hurricane track density. (A) Climatological hurricane track density 
averaged over 1885–1920 and eight members based on HadISST1. The Atlantic main 
development region is highlighted by a black box. (B) Ensemble-mean changes in 
simulated hurricane track density (HadISST1b- minus HadISST1-based simulations). 
Accounting for groupwise SST offsets significantly increases hurricane density in 
the North Atlantic over 1885–1920 (dots, P<0.05). (C) as (B) but for changes over 
1930–1949. The pattern of changes in hurricane density is similar using either HiRAM 
or AM2.5 runs (fig. S6). For visualization purposes, hurricane track density on 1° grid-
ding is smoothed using a nine-grid two-dimensional (2D) convolutional smoother.

Table 1. Model skill in reproducing historical North Atlantic hurricane counts. Shown statistics are squared Pearson’s correlation coefficient r2 and RMSE 
between observational and ensemble-mean of simulated hurricane counts. We explore the sensitivity of results by investigating models of different resolutions 
(50 km HiRAM or 25 km AM2.5), turning off SST adjustments in the satellite era (splice), tracking simulated hurricanes using a threshold of 33 m/s and then 
calibrating by multiplying 1.2 (×1.2), and using smoothing windows of a different length (25 years). Statistics are for 1878–2018, but we omit an interval equal to 
half of the smoothing window from the beginning and end. Numbers in parentheses are P values of incorrectly rejecting the null hypothesis that increases in r2 
or decreases in RMSE arise from unskillful SST adjustments. 

r2(HadISST1) r2(HadISST1b) RMSE(HadISST1) RMSE(HadISST1b)

Standard 0.31 0.50 (P = 0.04) 1.06 0.82 (P = 0.03)

50 km 0.23 0.42 (P = 0.04) 1.14 0.89 (P = 0.04)

25 km 0.42 0.57 (P = 0.07) 0.97 0.78 (P = 0.05)

Splice 0.31 0.47 (P = 0.05) 1.06 0.82 (P = 0.03)

×1.2 0.30 0.52 (P = 0.02) 1.18 0.97 (P = 0.03)

25 years 0.30 0.45 (P = 0.08) 0.91 0.72 (P = 0.05)
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Beyond the consistency of the HadISST1b scenario, however, there 
appears substantial scope for further reducing discrepancies be-
tween observed and model-reproduced hurricane counts. One line 
of future research is to continue to improve historical SST estimates 
to better evaluate model-data consistency. For example, engine room 

intake measurements of SST, which are more prevalent in the second 
half of the 20th century, are potentially subject to systematic warm 
biases of several tenths of degrees Celsius associated with changes in 
sampling depth, engine room design, and conversion to hull-mounted 
sensors (24). Groupwise offsets and associated adjustments have, 
however, not yet been developed for engine room intake measure-
ments, and mismatches over more recent decades might be reduced 
by adjusting engine room intake measurements. In addition, SST 
biases associated with individual ships may also contribute substan-
tial uncertainty to regional SST patterns (42, 43). Offsets have been 
estimated and adjusted in HadISST1b after averaging ships coming 
from the same nation and data-collecting groups (33), but ships 
within the same group may have distinct SST biases that depend on 
sampling characteristics or ship design. Improvements in recon-
structions of historical SSTs and hurricane counts are also possible 
as more historical ship logs are rescued (7, 22, 24). Removing biases 
in historical SSTs and hurricane simulations may also have implica-
tions for the detection and attribution of hurricane changes that are 
still limited by the relative small signal-to-noise ratio (1).

Improvements of SSTs could also arise from improving mapping 
techniques. For example, patterns of SST variability may vary with 
time and, thereby, differ from stationary SST patterns used in most 
mapping methods. Moreover, artificial biases may be introduced 
over data-sparse regions through mapping when remaining SST bi-
ases project onto large-scale SST patterns. Understanding the influ-
ence of mapping algorithms and possible interactions with bias 
corrections also appears an important goal for future work.

Further improvements in hurricane simulations are, of course, 
also possible. Climate models could be further improved through 
better resolving the structure of hurricanes and more fully incorpo-
rating relevant physical processes and environmental factors (1, 19). 
Furthermore, processes such as mid-tropospheric humidity (44) or 
global and regional increases in TC intensity (45) could alter in a 
warming climate in ways that are not sampled in the historical re-
cord. Inability to demonstrate that variations in historical hurricane 
counts demand improvement does not preclude other physical lines 
of evidence for where opportunities exist to improve prediction, but 
does imply that observationally testing for improved skill may be 
difficult.

Accurate projections of evolving SST patterns are known to be 
critical for predicting basin-scale changes in hurricane frequency (1). 
Our major finding is that biases in historical SST patterns were a 
dominant limiting factor in the ability of models to reproduce his-
torical Atlantic hurricane counts at multidecadal time scales. Correc-
tions to SST patterns significantly improves the model’s reproduction 
skill. The remaining model-data mismatch could have arisen from 
atmospheric intrinsic variability and errors in hurricane recon-
struction. Continued improvement of historical SST and hurricane 
estimates will facilitate more accurate tests of the skill of hurricane 
simulations.

MATERIALS AND METHODS
Observed North Atlantic hurricane counts
North Atlantic hurricane observations covering 1878–2018 come 
from the Best Track Data (HURDAT2) (46). We identify hurricanes 
as tropical storms in the North Atlantic that have a maximum sus-
tained wind speed higher than 33 m/s. Annual counts of hurricanes 
in HURDAT2 are adjusted according to an estimate of missed hurricanes 

Fig. 4. Significant improvements in hurricane simulation skill. (A) Compared with 
HadISST1-based simulations, HadISST1b-based simulations show significantly lower 
RMSE (P = 0.03) and (B) higher correlation with observed hurricane counts (r2; P = 0.04). 
Differences in statistics between HadISST1b- minus HadISST1-based simulations 
(black lines) are shown. RMSE and r2 are computed between 1885 and 2011 after 
smoothing counts using a 15-year running average. Null distributions (gold shading) 
are constructed, assuming that groupwise SST adjustments to HadISST1 contain 
no skill (see Materials and Methods). Unskillful adjustment is expected to increase 
the RMSE between observed and simulated hurricanes and decrease r2 (gold 
vertical lines).

A

B

Fig. 5. Groupwise SST adjustments reconcile the model-data discrepancy in 
Atlantic hurricane frequency. (A) Atmospheric intrinsic variability (ϵi) and missed 
hurricane corrections (ϵo) are insufficient to explain the discrepancy between ob-
servational and HadISST1-based simulations (blue line). Here, the model-data dis-
crepancy is quantified using RMSE and calculated using 15-year running average 
hurricane counts between 1885 and 2011. The null distribution (shading) is recon-
structed using a Monte Carlo method by randomly realizing ϵi and ϵo for 10,000 
times (see Materials and Methods). (B) as (A) but for the discrepancy between ob-
servational and HadISST1b-based simulations (red line). Accounting for groupwise 
SST offsets decreases biases in simulated hurricanes. Meanwhile, accounting for 
additional uncertainty arising from errors in groupwise SST adjustments (ϵT) widens 
the null distribution (shading).
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before 1965 (5), which involves adding a correction factor to ob-
served hurricane counts based on sampling satellite observations using 
early ship tracks in the ICOADS (21).

The uncertainty of the hurricane correction (ϵo) takes into ac-
count the year of satellite data used, the size of hurricanes, and the 
day in a year a storm was paired with observations, which yields an 
ensemble of 27,950 adjustment time series. Because we are interested 
in decadal variability of hurricane frequency, time series are 15-year 
running average, with the uncertainty estimated by drawing random 
samples from the adjustment ensemble. Specifically, for each year, 
10,000 samples are randomly drawn from 27,950 possible values 
without replacement and under the assumption that years are inde-
pendent. After smoothing the 10,000 random realizations of possi-
ble adjustments, ϵo is estimated to have an SD of 0.37 hurricanes per 
year between 1885 and 1964. Because of increasing numbers of ship 
tracks, ϵo decreases with time, from 0.44 hurricanes per year in the 
late 19th century to 0.23 hurricanes per year in the early 1960s. Note 
that although the number of missed hurricanes in individual years 
are integers and, therefore, follow a Poisson distribution, in prac-
tice, 15-year or longer averages are well approximated by Gaussian 
distributions on account of the central limit theorem.

Historical SST estimates
We use HadISST1 (14) as the baseline SST estimate. To explore the 
implication of groupwise bucket adjustments for the simulation of 
historical hurricanes, we merge groupwise bucket adjustments with 
HadISST1 to obtain a new estimate, which we call HadISST1b. 
Groupwise adjustments are estimated in (32, 33) and account for 
systematic offsets among groups of bucket SSTs. In short, offsets are 
estimated by applying the LME model to pairs of nearby measure-
ments from distinct nation and data-collecting groups, where pairs 
are identified as the closest two measurements that are within 300 km 
and 2 days of one another. Offsets are estimated relative to the mean 
of all paired SST measurements, and regional and temporal varia-
tions in offsets for individual groups are simultaneously estimated. 
These offsets are then removed from individual SST measurements 
according to group, location, and year.

To merge groupwise bucket adjustments to HadISST1, these ad-
justments are averaged within 2° × 2° grid boxes that contain bucket 
measurements. Because HadISST1 uses SST measurements from a 
variety of methods, not only buckets, groupwise bucket adjustments 
are multiplied by the ratio of bucket to all SST measurements in 
individual grids for each month. In the North Atlantic, adjustments 
are multiplied by a fraction that averages 97% before the 1940s but 
decreases to 16% after the 1980s because of the increasing prevalence 
of engine room intake and drifter measurements. Scaled adjustment 
fields are smoothed in space using a two-dimensional (2D) convolu-
tional smoother with a spatial scale of five grid boxes, and fields are 
interpolated to global coverage using biharmonic spline interpolation, 
as encoded by Matlab’s griddata function using the V4 method. Last, 
adjustments in individual boxes are tapered to zero according to an ex-
ponential decay with an 1100-km length scale or 10° at the equator.

Note that HadISST1 made use of satellite infrared observations 
after 1982 (14). When calculating the ratio of bucket measurements 
to scale groupwise adjustments, we assume that the mass of satellite 
observations is five times of that from simultaneous buoy and drift-
er measurements. To assess the influence of this assumption, we turn 
off groupwise bucket SST adjustments after 1982 and still find ro-
bust improvements in the skill of HiRAM and AM2.5 (Table 1).

Simulating North Atlantic hurricanes using prescribed SSTs
We explore a series of SST-forced atmospheric model simulations 
using the NOAA-GFDL HiRAM and the NOAA-GFDL AM2.5 model. 
HiRAM has the finite volume cubed-sphere dynamical core at a 
global 50-km resolution (180×180 grid points on each of the cube 
faces, or C180) at 32 vertical levels (9). AM2.5 has the finite volume 
cubed-sphere dynamical core at a global 25-km resolution (360 × 360 
grid points on each of the cube faces, or C360) at 32 vertical levels 
(38). These models skillfully simulate many aspects of the climatolo-
gy of TCs (9, 39) and are widely used for process-level studies of 
cyclone dynamics (17, 47–49). Using these models, we obtain two 
ensembles of time-varying SST-forced experiments from 1871 to 2018, 
one prescribed with HadISST1 and the other with HadISST1b. Each 
ensemble consists of eight members, with five from HiRAM and 
three from AM2.5. Individual members have small perturbations in 
their initial condition. Radiative forcing changes are prescribed from 
the CMIP5 historical scenario for 1871–2004 and from the CMIP5 
RCP4.5 scenario for 2005–2018.

The tracking algorithm of tropical storms follows (50). If using 
the observational threshold of 33 m/s to identify simulated hurricanes, 
models average 5.8 hurricanes per year in the North Atlantic, where-
as HURDAT2-based reconstructions have an average value of 6.6 
hurricanes per year. We, therefore, relax the wind speed threshold 
to 31.7 m/s such that the long-term climatological hurricane counts 
in simulations equal observational reconstructions.

The spread in simulated hurricane counts across ensemble mem-
bers is used to estimate contributions from atmospheric intrinsic 
variability, ϵi. The SD of ϵi is calculated for each eight-member en-
semble using the departures from the respect ensemble mean, and 
the resulting two values are averaged, giving a value of 2.19 hurri-
canes per year. ϵi is effectively independent across years, having a 
lag-1 Pearson’s r2 of less than 0.01. It follows that the SD of ϵi for 
observed 15-year running average counts becomes  2.19 /  √ 

_
 15   , or 0.57 

hurricanes per year. Averaging over an eight-member ensemble mean 
further decreases the SD of ϵi to 0.20 hurricanes per year. Although 
hurricanes are quantized, the average is again well approximated as 
Gaussian.

Simulated hurricane counts are also subject to uncertainties in 
SST. Uncertainties in regional SST patterns are almost an order of 
magnitude larger than previously recognized (33). Because estimating 
the sensitivity of hurricane counts to arbitrary regional SST patterns 
using HiRAM or AM2.5 would be computationally prohibitive, we 
focus on the pattern associated with the June to November mean RSST 
index. RSST is defined as  1.707 + 1.388  T  MDR  ′   − 1.521  T  Trop  ′    (8), where 
  T  MDR  ′    is the average SST anomalies over the North Atlantic main 
development region (20° to 80°W, 10° to 25°N) relative to the 1982–
2005 climatology, and   T  Trop  ′    is the average SST anomaly over tropical 
ocean (30°S to 30°N). Note that the AMO index is largely collinear 
with the decadal variability of RSST, but RSST has a stronger linear 
covariance with simulated North Atlantic hurricanes (see figs. S4 
and S5 for a comparison between RSST and AMO).

We use an ensemble of HadISST1b realizations to estimate un-
certainty in RSSTs and the two atmospheric model ensembles to 
estimate the sensitivity of hurricane counts to RSSTs. An SD error 
associated with ϵRSST of 0.02°C is estimated from a 20-member 
ensemble of HadISST1b realizations that are randomly perturbed 
according to uncertainties in groupwise bucket adjustments. Ensemble- 
averaged hurricane counts in simulations with HadISST1b and 
HadISST1 are regressed against their respective variations in RSST, 

D
ow

nloaded from
 https://w

w
w

.science.org on O
ctober 27, 2023



Chan et al., Sci. Adv. 2021; 7 : eabg6931     25 June 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 8

giving a sensitivity of 7.30 ± 0.35 hurricanes per year per degree 
Celsius (2 SDs; see fig. S4). Our best estimate of the error in hurricane 
counts arising from uncertain SSTs, 7.30 × ϵRSST = ϵT, therefore, im-
plies SDs between 0.23 hurricanes per year in the late 19th century 
and 0.07 hurricanes per year in the 1980s. Note that the persistence 
of groupwise SST errors makes their contribution to hurricane 
count uncertainty comparable in magnitude to atmospheric effects 
at decadal time scales. Sampling and random SST errors (27), on the 
other hand, cancel under regional and temporal averaging, and 
their contribution to 15-year smoothed RSST errors is only 0.01°C 
in SD. We, therefore, only account for uncertainties associated with 
groupwise SST adjustments.

Comparison with CMIP5 simulations
We compare the magnitude of historical SST adjustments with in-
ternal variability and the range of projected changes in CMIP5 sim-
ulation. Specifically, we use 8674 years of preindustrial simulations 
from 14 models to estimate the range of internal RSST variability at 
decadal time scales. For each pi-control simulation, RSSTs are first 
calculated from detrended SSTs (“tos” in CMIP5 outputs) averaged 
over June to November, and then smoothed using a 15-year running 
window. An SD of decadal variability (0.11°C) in CMIP5 RSSTs is 
calculated after concatenating 15-year smoothed RSSTs across CMIP5 
models. We also use the “r1i1p1” member of historical and RCP4.5 
runs from 17 CMIP5 models to estimate the distribution of projected 
changes in RSSTs. We quantify changes as the difference in un-
smoothed RSSTs between 2081–2100 and 1986–2005. The 17 CMIP5 
models are chosen to be consistent with (51) and are ACCESS1.0, 
ACCESS1.3, CanESM2, CCSM4, CMCC-CM, CSIRO Mk3.6.0, GFDL- 
CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H*, GISS-E2-R*, 
HadGEM2-CC, HadGEM2-ES, MIROC-ESM, MIROC-ESM-CHEM*, 
MPI-ESM-LR, and NorESM1-M. Marker “*” indicates that the tos 
output from preindustrial runs is not available for these models. If 
we include all 37 CMIP5 models available, the SD of internal vari-
ability remains similar (0.10°C); changes in the RCP4.5 scenario 
have a wider range of −1.24° to 0.40°C compared with the −0.35° to 
0.40°C range when using 17 models.

Significance test of improvements in model’s skill
The significance of increases in model’s reproduction skill, as mea-
sured by RMSE or squared cross-correlation (r2), is assessed using a 
one-sided test against a null distribution, assuming that groupwise 
SST adjustments have no skill. The null distribution is realized us-
ing a Monte Carlo technique whereby the ensemble-mean difference 
between HadISST1- and HadISST1b-based simulations is permuted 
using 10-year blocks and then smoothed to mimic the effect of ran-
domized SST adjustments. Changes in RMSE and r2 obtained when 
introducing randomized SST adjustments are calculated from a to-
tal of 10,000 random realizations to construct the null hypothesis. 
The expected change is positive for RMSE and negative for r2 be-
cause introducing perturbations having no skill will generally in-
crease noise in reconstructions.

Model-data mismatches arising from known sources 
of uncertainties
We use a Monte Carlo method to obtain a null distribution of RMSE 
that could have arisen from atmospheric intrinsic variability, ϵi, sim 
and ϵi, obs, hurricane adjustment errors, ϵo, and errors in SST patterns, 
ϵT (Fig. 5). The null distribution is calculated from 10,000 randomly 

realized time series of respective errors. Specifically, ϵi, sim and ϵi, obs 
are realized by first drawing time series of independent and identically 
distributed samples from a Gaussian distribution, i.e., N(0,2.192). 
These random time series are then smoothed and averaged to ac-
count for temporal and ensemble averaging. ϵo is realized by boot-
strapping randomized hurricane corrections (see the “Observed North 
Atlantic hurricane counts” section). ϵT is realized using RSSTs in an 
ensemble of HadISST1b and then multiplied by the sensitivity fac-
tor 7.30 ± 0.35 (see the “Simulating North Atlantic hurricanes using 
prescribed SSTs” section).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/26/eabg6931/DC1
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