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ABSTRACT
An active noise control (ANC) system generates a secondary
sound to destructively interfere with the undesirable noise.
Existing ANC algorithms are mainly designed to minimize
the power of the residual sound, with few considerations to
the listening experience. This results in a pressing issue in
practice whereby the residual sound is perceived to be dif-
ferent from the undesirable noise. When the ANC system is
deployed to reduce the noise level in a factory environment,
workers may feel strange because they are used to detecting
the anomaly machine sound by their auditory perception. In
order to solve this problem, this paper proposes to integrate
anomaly sound detection (ASD) into the ANC system in or-
der for the residual sound to represent the same machine sta-
tus as the original machine noise. The ASD module is used to
simulate human judgement. A homothety constrained ANC
algorithm is developed to synchronously reduce the sample-
wise power and keep the segment-wise machine status of the
residual sound. The experiment results validate the effective-
ness of the homothety constrained ANC algorithm in noise
reduction, and the subjective test results show that the ASD-
integrated ANC system results in less confusing perceptions
of the residual sound.

Index Terms— Active noise control, anomaly machine
sound detection, residual sound, homothety constrained
FxLMS

1. INTRODUCTION

Noise pollution is an inescapable issue due to the inhabition
of human beings and the environment. Prolonged exposure
to loud noises may cause health problems for people, such
as hearing loss, cardiovascular disease, sleep deprivation, and
physiological stress [1]. Passive noise control (PNC) mea-
sures are developed to isolate the noise source, block the noise
propagation path, and shield the receiver. They are efficient
in abating high-frequency noise, but become bulky and costly
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Fig. 1. Block diagram of the ANC system integrated with an
ASD module to simulate human judgement.

when noise frequencies are low [2]. For example, in a factory,
machines can be placed in an enclosed space to control their
noise at source, but the complexity of ventilation and mainte-
nance increases [3]. Alternatively, workers can wear hearing
protection earbuds, which consequently halts all verbal com-
munications during their working hours [4].

Due to several restrictions of PNC, active noise control
(ANC) gained popularity in the past decade [5]. Noise can-
celing headphones have become the most eye-catching prod-
uct in consumer electronics [6]. An ANC system generates
a secondary sound to destructively interfere with the undesir-
able noise. There are two fundamental ANC structures. They
are the feedforward and feedback structures. The feedforward
ANC structure consists of reference, control and error signals,
while the feedback structure consists of only error and con-
trol signals. Owing to the reference signals, the feedforward
structure is preferable for broadband noise control applica-
tions [7, 8].

The generation of the secondary sound in an ANC system
can be implemented by adaptive filtering algorithms [9, 10].
Existing ANC algorithms are mainly designed to minimize
the power of the error signal, in order for quiet zones to be
formed around error or virtual error microphones [11]. How-
ever, as human ears have frequency-dependant sensitivities,
the perceptual loudness is not proportional to the sound pres-
sure level (SPL). Therefore, psychoacoustic ANC algorithms
are investigated to achieve noise equalization, sound profiling,
or sound quality control that make the residual sound seem
softer without further reducing its SPL [12, 13, 14].



When an ANC system is deployed to reduce the noise
level, the residual sound is often perceived to be drastically
different from the undesirable noise. This causes a pressing
issue in a factory environment as workers may feel strange be-
cause they are used to detecting the anomaly machine sound
using their auditory perception. The ANC system protects
hearings of the workers, but also confuses their judgments
wtih regards to the machine status. In order to solve this prob-
lem, this paper integrates an anomaly sound detection (ASD)
module into the ANC system to simulate human judgement,
as shown in Fig. 1. A homothety constrained FxLMS al-
gorithm is thereafter proposed to synchronously reduce the
sample-wise power and keep the segment-wise machine sta-
tus of the residual sound, in order for the residual sound to
represent the same machine status as the original machine
noise.

The work presented here has focused on the formula-
tion of the homothety constrained FxLMS algorithm and the
design of an ASD-integrated ANC system, which takes ad-
vantage of the emerging field of machine hearing [15]. Recent
studies have demonstrated that machine learning algorithms
substantially outperformed human listeners in the task of
sound classification [16, 17]. Previous works using machine
learning algorithms in ANC consider either selection or gen-
eration of the control filter by neural networks [18, 19]. While
the present study is related to recent attempts in substituting
human listeners with machine hearing systems, it feedbacks
new information for the control filter to update, which was
not considered in earlier studies.

2. HOMOTHETY CONSTRAINED FXLMS
ALGORITHM

As illustrated in Fig. 2, a single channel feedforward ANC
system receives the reference signal x(n) and generates the
control signal y(n) to minimize the power of the error signal
e(n). The primary path and the secondary path to the error
microphone are denoted as p(n) and s(n), respectively. The
objective function of the classic FxLMS algorithm is given by

J(n) = E
[
e2(n)

]
. (1)

The update equation of the control filter obtained on this basis
is written as

w(n+ 1) = w(n)− 2µe(n)r̂(n), (2)

where w(n) is the weight coefficient vector; µ is the step size;
and r̂(n) is the filtered reference signal vector. r̂(n) is further
written as

r̂(n) = [r̂(n), r̂(n− 1), · · ·, r̂(n− Lw + 1)]T , (3)

where

r̂(n) = [x(n), x(n− 1), · · ·, x(n− Ls + 1)]T · ŝ(n); (4)
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Fig. 2. Block diagram of the homothety-constrained FxLMS
algorithm.

ŝ(n) is the secondary path model; Lw and Ls are the length of
the control filter and the length of the secondary path model,
respectively.

The classic FxLMS only reduces the sample-wise power
of the error signal. In order to keep the segment-wise ma-
chine status of the residual sound at the same time, the objec-
tive function of the homothety constrained ANC algorithm is
modified to

J(n) = E

{
e2(n) + λ

[
e(n)− α · d̂(n)

]2}
, (5)

where d̂(n) is the estimate of the disturbance signal d(n); α
and λ are adaptive hyper-parameters, namely the homothety
ratio and the Lagrange multiplier, respectively. The additional
term in (5), as compared to (1), is called the homothety con-
straint. It is integrated into the block diagram of the classic
FxLMS algorithm to form the homothety constrained FxLMS
(HC-FxLMS) algorithm, as shown in Fig. 2.

The update equation of the control filter is thereafter writ-
ten as

w(n+ 1) = w(n)− 2µ

[
e(n)− λ

1 + λ
α · d̂(n)

]
r̂(n), (6)

where both α and λ are updated in a segment-wise way, cater-
ing for the ASD module.

In the k-th segment, the homothety ratio is firstly esti-
mated by

α(k) = arg
α

min
{∥∥∥e(k) − αd̂(k)

∥∥∥
2

}
, (7)

where d(k) is the disturbance signal estimate vector, i.e.

d̂(k) = [d̂(n), d̂(n− 1), · · ·, d̂(n− Lf + 1)]T ; (8)

e(k) is the error signal vector, i.e.

e(k) = [e(n), e(n− 1), · · ·, e(n− Lf + 1)]T ; (9)



and Lf is the segment size. Therefore, the segment index is
associated with the time index by

k =

⌊
n

Lf

⌋
− 1. (10)

The Lagrange multiplier is subsequently calculated by

λ(k+1) = βh(k), (11)

where β is a scaling factor; and h(k) is the minimum in (7),
given by

h(k) =
∥∥∥e(k) − α(k)d̂(k)

∥∥∥
2
. (12)

The Lagrange multiplier determines the noise reduction per-
formance of the HC-FxLMS algorithm. Adopting a variable
Lagrange multiplier and an early stopping strategy allows the
HC-FxLMS algorithm to converge to a pre-defined noise re-
duction level.

3. ANOMALY SOUND DETECTION MODULE

The ASD module used in this paper belongs to the category of
unsupervised anomaly detection in sound, where “anomaly”
is defined as the patterns in data that do not conform to ex-
pected “normal” behavior [20]. It is dedicated to the detection
of unknown anomalous machine sound without training data
of anomalous machine sound. In order to achieve this target,
an auxiliary task of machine type classification is carried out
by a residual neural network (ResNet) [21, 22].

The architecture of the ASD module is shown in Fig. 3.
The log-mel spectrum of one segment of the residual sound is
the input of the ResNet. After 1 convolution layer, 9 residual
blocks, global pooling and softmax, a machine type predic-
tion is made. The anomaly score is calculated by

Anomaly Score =

√√√√ n∑
i=1

(T(truth)(i)−T(predict)(i))
2
,

(13)
where T(predict) denotes the machine type prediction; T(truth)

denotes the ground truth; and n denotes the dimension of the
machine type label, which is given by the number of machine
types in the training dataset plus one augmented “unknown”
type. The spectrum distortion method is adopted to trans-
form an original sound segment into the “unknown” type of
machine sound.

The performance of the ASD module is provided by its
receiver operating characteristic (ROC) curve, which exhibits
the trade-off relationship between the true positive rate (TPR)
and false positive rate (FPR). The TPR is the proportion of
anomaly sound segments that are correctly identified, and the
FPR is the proportion of normal sound segments that are mis-
taken as anomalies. Conventionally, the ROC curve is quan-
tized by the area under the curve (AUC), which ranges from
0.5 (neutral) to 1 (best).
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Fig. 3. Architecture of the ASD module based on auxiliary
machine type classification.

4. EXPERIMENTAL RESULTS

MIMII and ToyADMOS datasets are used to train the ASD
module and validate the effectiveness of the ASD-integrated
ANC system [23, 24]. In total, there are six machine types.
They are the fan, pump, slide rail, valve, toy car, and toy con-
veyor. There are 4000 sound clips of each type of machine in
the training subset and 800 sound clips of each type of ma-
chine in the evaluation subset. The implementation of the
ASD module is carried out with the adaptive moment estima-
tion optimizer and the binary cross entropy loss.

The primary path and secondary path for ANC simula-
tions are measured in a laboratory environment at a sampling
rate of 16 kHz, which is in consistency with the datasets. The
length of the control filter is set to 800 taps. Figure 4 shows
the homothety ratio curves of the FxLMS and HC-FxLMS al-
gorithms on six types of machine noise with respect to noise
reduction (NR). The markers indicate the measurement data
and the solid lines present least-squares fitting results. In the-
ory, there is an upper bound, given by α = 10−(NR/20).
Figure 4 demonstrates that the HC-FxLMS algorithm obtains
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Fig. 4. Homothety ratio curves of the FxLMS and HC-
FxLMS algorithms on six types of machine noise.

closer results to the theoretical upper bound, as compared to
the FxLMS algorithm. The improvement achieved by the ho-
mothety constraint is prominent when NR ranges from 5 dB
to 15 dB.

Figure 5 shows AUC values of the ASD module when
its input is provided by the residual sound of the ANC sys-
tem. It is observed that the AUC value always decreases when
NR increases. However, the HC-FxLMS algorithm leads to
a much slower AUC degradation as compared to the FxLMS
algorithm. When NR is 12 dB, the HC-FxLMS algorithm
significantly outperforms the FxLMS algorithm for three ma-
chine types, i.e. fan, pump and toy car.

Subjective tests are carried out to evaluate the similarity of
the residual sound and the original machine noise. There are
22 participants, consisting of 15 males and 7 females. Two
sound clips are chosen for each type of machine under differ-
ent noise reduction levels. The participants are asked to rate
the similarity from 1 (bad) to 5 (excellent). The test results
are presented in the average score and the 95% confidence in-
terval with respect to the noise reduction level in Table 1. The
HC-FxLMS algorithm is proven to result in less confusing
perceptions.
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Fig. 5. AUC values of the ASD module with respect to NR.

Table 1. Subjective test scores under different noise reduction
levels.

Noise Reduction 9dB 12dB 15dB 18dB
FxLMS 3.3±0.1 3.1±0.09 2.7±0.1 2.5±0.1

HC-FxLMS 4.0±0.07 3.9±0.08 3.5±0.09 2.9±0.1

5. CONCLUSIONS

This paper tackles the pressing issue of deploying ANC sys-
tems in a factory environment where the residual sound con-
fuses the workers’ judgements on the machine status. An un-
supervised ASD module is trained by the auxiliary machine
type classification task based on the ResNet architecture. It
is integrated into the ANC system to simulate human judge-
ments. The HC-FxLMS algorithm is proposed and results in
homothety ratio curves that are very close to the theoretical
upper bound. Both the AUC and subjective tests validate that
the residual sound of the HC-FxLMS algorithm reduces in-
stances of confusing perceptions. Leveraging a machine hear-
ing system to simulate human judgments for ANC systems
may bring forth a new approach of integrating ANC and ma-
chine learning.
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