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Abstract—In acoustic scene classification (ASC), a technical
problem yet to be solved is raised by the variety of recording
devices. The amount of data recorded by different devices is
usually unbalanced. The model trained with audio data collected
by one device is hardly transferred to another device. Therefore,
in order for the cross-device performance to be improved, this
paper proposes a data augmentation method for ASC systems
that take monaural audio samples as input, whereby the head-
related transfer functions (HRTFs) are adopted to add artificial
spatial information to monaural audio samples. The proposed
method enables ASC systems to imitate the ability of human
binaural hearing to distinguish spatial orientation and lock
specific sound sources. The experiment results show that with
the proposed method, the VGGNet and ResNet systems can get
13.4% and 14.4% higher accuracy than the DCASE 2020 baseline
in the cross-device ASC, respectively.

Index Terms—Acoustic scene classification, mismatched
recording devices, head-related transfer functions, data augmen-
tation, convolutional neural network

I. INTRODUCTION

How to make machines accurately perceive and understand
high-level information like human beings has always been an
interesting problem in the field of audio signal processing.
Acoustic scene is a representative high-level audio infor-
mation. The information of acoustic scene is useful in the
design of context-aware services, intelligent wearable devices,
robotics navigation systems, audio archiving systems, and so
on [1]. For example, if an electrical car can continuously sense
its surroundings and perceive the acoustic scene, it can auto-
matically switch to a quiet mode when entering a residential
area. In machine hearing, acoustic scene classification (ASC)
refers to the task of associating a semantic label to an audio
stream that identifies the environment in which it has been
produced.

Inspired by the AlexNet [2], Valenti et al. proposed the
first dedicated convolutional neural network (CNN) for ASC
in 2016 [3]. Since then, CNNs have been becoming the
mainstream choice for ASC [4]. In DCASE 2020 challenge,
there is no evidence of changing in this trend. Meanwhile,
tempo-spectral acoustic features, such as short time Fourier
transform (STFT), constant-Q transform and MFCC, are still
open choices, although since 2018 the log mel spectrograms
are often believed to lead to better results [5], [6]. An emerging
difficulty of ASC lies in the mismatched recording devices.
Models trained with audio data recorded by one device are
likely to perform poorly on another device.

The most straightforward solution to the problem of the mis-
matched recording devices is the spectrum correction method.
Nguyen et al. worked out this method to remove the difference
between recording devices [7]. When aligned audio samples
from different recording devices are available, a reference
device is firstly selected and the audio samples collected from
the other devices are all compensated in order to match the
reference device. The spectrum correction method is simple
and effective. However, it is also very limited and impractical,
because aligned audio samples are rarely available. Moreover,
the choice of the reference device, which can greatly affect
the final outcome, is difficult to carry out, when the number
of devices is considerably large or even uncertain. Therefore,
more effective data augmentation methods are desired. The
conventional data augmentation methods include noise aug-
mentation, time shift, pitch shift, speed tuning, and so on.
Presently, they are relatively ineffective and often have adverse
effects.

Another aspect of the mismatched recording devices is the
imbalanced recording time length. One device provides most
of the audio samples, while the other devices records very
few of them. Therefore, catering for the variety of recording
devices, most of the research works in the field of ASC
regarding to the mismatched recording devices work merely
on monaural audio samples that contain no spatial information.
This fact hinders ASC systems from imitating the ability
of human binaural hearing to distinguish spatial orientation
and lock specific sound sources. Han et al. in 2017 have
obtained improved results by using binaural representations
as input feature that containing richer spatial information than
monaural representations [8]. Mesaros et al. have reported
in 2018 that stereo audio samples result in higher ASC
accuracy than monaural audio samples [9]. Green et al. have
proposed the use of spatial features extracted from fourth-order
ambisonic recordings for ASC [10]. Those works proved that
spatial information plays a positive role in ASC.

This paper proposes a new data augmentation method for
ASC systems that take monaural audio samples as input,
where the audio samples are processed by the head-related
transfer functions (HRTFs) to add in the artificial spatial
information [11]. The concept of HRTFs was developed in
psycho-acoustical spatial audio processing. Each HRTF con-
tains frequency-dependent magnitude gain and phase shift that
models how a particular ear receives sound from a point in
the three-dimensional space [12]. Since a person has two
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Fig. 1. The virtual auditory space constructed by HRTFs at 0° elevation.

ears, HRTFs are also grouped in pairs. The proposed method
adopts 24 HRTF pairs to construct a virtual auditory space,
as illustrated in Fig. 1. The virtual auditory space is then
integrate them into two classic CNNs, the VGGNet and
ResNet [13], [14]. The effectiveness of the proposed method
is validated through comparative experiments using the TAU
urban acoustic scenes 2020 mobile dataset [9].

II. PROPOSED METHOD
A. Data Augmentation with HRTFs

Although HRTFs should be unique for an individual, several
public HRTF databases are available. The CIPIC database
measured HRTFs of 45 subjects at 50 elevations (ranging
from -45 to 230.625 degrees) and 25 azimuths (ranging
from -80 to 80 degrees) [15]. In this paper, 3 elevations
(0°,45° and 135°) and 8 azimuths (±25°, ±30°, ±35° and
±40°) are selected for experimental research. Each monaural
audio sample is thereafter augmented to 24 stereo audio
samples. In every audio samples there are surrounding ambient
components that are not captured by a single HRTF but by
diffuse combinations of them. So there should be at least
two pairs of HRTFs associated with different angles applied
simultaneously, instead of just a single pair of HRTFs. As the
selected azimuths are symmetric to the median plane, 24 stereo
audio samples are further grouped into pairs. In this sense,
each monaural audio sample is augmented to 12 four-channel
audio samples. Different HRTFs lead to different acoustic
features and meanwhile retain the same data distribution. The
augmented training data helps to obtain a more generalized
model, while the augmented evaluation data can provide an
improved ensemble result.

B. CNNs and Focal Loss

The first CNN architecture considered in this paper is the
VGGNet [13]. 8 stacked convolutional layers with the kernel
size of 3×3 are used. Before each convolutional layer, there
is a zero padding layer, a batch normalization layer and a
ReLu activation layer. After the second, fourth, and eighth
convolutional layers, a 3×3 maxpooling layer is appended.
Finally, a 10-way softmax layer following a global average
pooling layer, is used to generate the final classification result.

The second CNN architecture is the ResNet proposed by
McDonnell et al. [14]. Its architecture is shown in Table I.
This ResNet is divided into two networks for parallel training
according to the frequency dimension of features extracted
from audio samples, since the feature of high frequencies to
be learned may be different from those of low frequencies.
The two parallel networks are identical in structure, con-
sisting of several full pre-activation structures, namely the
Residual Blocks [16], [17]. Each Residual Block consists
of two convolution layers with the kernel size of 3×3, as
shown in Fig. 2. When the input and output are different
in scale, average pooling and channel padding are used in
the residual paths. After 8 ResNet blocks, the two parallel
networks are concatenated to form 128 frequency dimensions.
A softmax activation layer, following two 1×1 convolutional
layers, calculates the final output.

When training the CNNs, temporal cropping and mixup
methods are usually introduced to prevent overfitting [14]. In
this paper, in order for the ResNet to be better trained, the
focal loss function is suggested [18]. By adding a modulating
factor to the cross-entropy loss, the focal loss can attenuate



TABLE I
RESNET ARCHITECTURE

Input (431,128,4)
Low Frequency((431,64,4)) High Frequency((431,64,4))
Batch Normalization(ch=3) Batch Normalization(ch=3)

Conv2D(ksize=3,s=[2,1],ch=24) Conv2D(ksize=3,s=[2,1],ch=24)
Residual Block(ksize=3,ch=24) Residual Block(ksize=3,ch=24)
Residual Block(ksize=3,ch=24) Residual Block(ksize=3,ch=24)
Residual Block(ksize=3,ch=48) Residual Block(ksize=3,ch=48)
Residual Block(ksize=3,ch=48) Residual Block(ksize=3,ch=48)
Residual Block(ksize=3,ch=96) Residual Block(ksize=3,ch=96)
Residual Block(ksize=3,ch=96) Residual Block(ksize=3,ch=96)
Residual Block(ksize=3,ch=192) Residual Block(ksize=3,ch=192)
Residual Block(ksize=3,ch=192) Residual Block(ksize=3,ch=192)

Concatenate(ch=192)
Batch Normalization(ch=192)

Activation(’ReLu’)
Conv2D(ksize=1,s=[1,1],ch=768)

Batch Normalization(ch=768)
Conv2D(kszie=1,s=[1,1],ch=10)

Batch Normalization(ch=10)
GlobalAvgPooling(ch=10)

Activation(’SoftMax’)
Output

the relative loss generated by those well-classified samples and
therefore focuses more on the hard, misclassified samples. The
following equation describes the α-balanced variant of focal
loss with balancing parameter α, focusing parameter γ and
prediction score pt.

FL (pt) = −α (1− pt)
γ
log (pt) , (1)

where the value of γ controls the sensitivity of the model to
misclassified samples, and α scales the loss function linearly.
Their typical settings are 2.0 and 0.75, respectively.

Figure 3 shows the procedure of using the proposed HRTF-
based data augmentation method in an ASC system that takes
monaural audio samples as input.

III. EXPENRIMENT

A. Dataset

This paper conducts comparative experiments using the
TAU urban acoustic scenes 2020 mobile dataset [9]. This
dataset contains recordings of 10 different acoustic scenes in
10 European cities from 9 devices. Among them, there are 3
real devices (referred to as devices A, B, C) and 6 simulated
devices (referred to as devices S1-S6). The total amount of
audio samples in the development set is 64 hours, of which
40 hours of audio samples were recorded by device A, and the
remaining small amount of audio samples were collected by
the other 8 devices. All of the recordings are divided into 10-
second audio samples and provided in a single-channel format
(44.1 kHz, 24-bit).

The whole dataset is divided into the training and testing
subsets. 70% of the audio samples for each device is included
in the training subset. The rest of audio samples are kept for
testing. In particular, devices S4, S5 and S6 only appear in
the testing subset. In the training subset, device A contributes
about 75% of the total audio samples. In the testing subset,
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Fig. 2. Residual Block

all the devices contribute almost equally. The average of the
class-wise accuracies is used as the performance measure of
the ASC system under testing, i.e.

Accaverage =
1

10

i=10∑
i=1

Acci, (2)

where i is the index of the acoustic scenes, including (1)
airport, (2) bus, (3) metro, (4) metro station, (5) park, (6)
public square, (7) shopping mall, (8) street pedestrian, (9)
street traffic and (10) tram.

B. Feature Extraction

Firstly, a 2048-point hamming window with 50% overlap
is used to extract the spectrogram of each audio sample.
Secondly, the log mel spectrogram is obtained by applying the
log mel filter bank on the spectrogram. There are 128 log mel
filters in the filter bank that cover a frequency range from 0
to half of the sampling rate, yielding 431-frame spectrograms
with 128 frequency bins. Thirdly, log mel spectrograms are
normalized by subtracting the mean and dividing the standard
deviation. Finally, the 4-channel feature with the size of (431,
128, 4) can be obtained. With the data augmentation proposed
by this paper, a monaural audio sample can generate 12 such
features.

C. Training

Models are trained using stochastic gradient descent (SGD)
optimizer with the Nesterov momentum. The batch size, mo-
mentum, and decay are set to 32, 0.9, and 0.0001, respectively.
The initial learning rate is set to 0.01 and decreased by a factor
0.5 every 10 epochs after 70 epochs. Each model is trained for
180 epochs which takes about 4.5 hours on a single NVIDIA
GeForce RTX 2080Ti card.
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Fig. 3. Architecture of the ASC system using the HRTF-based data augmentation method. Four log mel spectrograms are generated from one piece of audio
data processed by a pair of HRTF azimuths. Different models are obtained and finally a simple averaging layer is used for ensemble learning.

D. Results

Three baseline systems are compared firstly. Among the
baseline systems, the ResNet baseline exhibits the highest
accuracies in all the three categories of devices. They are the
real devices (A, B, and C), seen simulated devices (S1, S2,
and S3), and the unseen simulated devices (S4, S5, and S6).
As the DCASE2020 baseline results in the worst performance
[19], the proposed method is only adopted in the VGGNet and
ResNet baseline systems for further comparison.

Figure 4 shows the accuracy change of the VGGNet baseline
corresponds to ±25°, ±30°, ±35° and ±40° azimuth pairs
associated with 0°, 45° and 135° elevations. In the VGGNet
baseline system, the HRTFs can significantly improve the ASC
performance for the simulated devices. By contrast, Fig. 5
shows the accuracy change of the ResNet baseline corresponds
to ±25°, ±30°, ±35° and ±40° azimuth pairs associated with
0°, 45° and 135° elevations. The HRTFs mainly improve the
ASC performance of the ResNet baseline for the real devices.

Table II shows the summarized results of different ASC
systems, including the DCASE2020 baseline, the VGGNet
baseline, the ResNet baseline, the latter two integrated with
the proposed method. The proposed method is validated to
be effective in improving the cross-device ASC system per-
formance. When integrating with the VGGNet baseline, the
proposed method achieves 6.2% and 13.4% higher average
accuracy than the VGGNet baseline and the DCASE2020
baseline, respectively. When integrating with the ResNet base-
line, the proposed method achieves 2.5% and 14.4% average
accuracy than the ResNet baseline and the DCASE2020 base-
line, respectively.

Fig. 4. Accuracy change of the VGGNet baseline corresponds to ±25°, ±30°,
±35° and ±40° azimuth pairs associated with 0°, 45° and 135° elevations.

IV. CONCLUSIONS

Aiming at the deployment difficulty of ASC raised by the
mismatched recording devices, this paper proposes a new data
augmentation method that uses HRTFs to add artificial spatial
information to the monaural audio samples. The proposed
HRTF-based data augmentation method enables ASC systems
that take monaural audio samples as input to imitate the ability
of human binaural hearing to distinguish spatial orientations
and focus on specific sound sources. The experiment results
show that with the proposed method, the VGGNet and ResNet



Fig. 5. Accuracy change of the ResNet baseline corresponds to ±25°, ±30°,
±35° and ±40° azimuth pairs associated with 0°, 45° and 135° elevations.

TABLE II
SUMMARIZED RESULTS OF DIFFERENT ASC SYSTEMS

System name Real
Device

Seen
Simulated

Device

Unseen
Simulated

Device
Average

DCASE2020
Baseline [19] 0.646 0.533 0.443 0.541

VGGNet
Baseline 0.674 0.589 0.577 0.613

ResNet
Baseline 0.682 0.654 0.644 0.660

HRTF VGGNet 0.724 0.661 0.639 0.675
HRTF ResNet 0.732 0.664 0.660 0.685

baseline systems can get 6.2% and 2.5% improvement in the
cross-device ASC accuracies, respectively. Moreover, with the
proposed method, the VGGNet and ResNet systems can get
13.4% and 14.4% higher accuracy than the DCASE 2020
baseline in the cross-device ASC, respectively.
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