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Abstract—Primary-ambient extraction (PAE) plays an increas-
ingly important role in spatial audio reproduction to achieve
an immersive listening experience. The existing PAE algorithms
produce notable extraction errors, especially when the primary
components are relatively small in magnitude as compared to the
ambient components. In this paper, an F(-estimation-based PAE
method is proposed. This method explores harmonic structures
of the primary components to tap the full potential and utilize
the sparsity constraint. The experiment results validate that the
F0-estimation-based PAE method achieves 5 dB lower extraction
errors than the principal component analysis (PCA) method and
the ambient phase estimation with a sparsity constraint (APES)
method.

Index Terms—Spatial audio reproduction; Primary ambient
extraction; Harmonic structure; F0 estimation

I. INTRODUCTION

Spatial audio reproduction has gained increasing importance
in the entertainment industry these recent years. Audio files
usually comprises both point-like directional sound sources
and diffused environmental sound, which are usually referred
to as primary components and ambient components, respec-
tively [1]. They are perceived differently by human hearing.
Hence, it is essential to make use of different rendering
schemes to gain an optimal listening experience [2]. However,
the primary and ambient components are usually mixed in the
existing mainstream audio formats (e.g., stereo, multichannel
signals) [3], which suggests that an extraction of the primary
and ambient components becomes a necessity. Many fields in
spatial audio processing such as spatial audio coding, audio
up-mixing and immersive 3D sound systems have witnessed
the applications of PAE [4]-[7].

The basic signal model of PAE is illustrated in Fig. 1. The
primary components in different channels are correlated with
each other while the ambient component in each channel is
uncorrelated with the primary components and other ambient
components [8]. Based on such a signal model, several PAE
methods have been introduced [9]. The least-squares (LS)
method extracts primary and ambient components on the basis
of least squares criterion [10]. The PCA method calculates
the correlation values between different channels to evaluate
the correlation components of the input signals as primary
components [11]. Jot et al. use the time-frequency masking
method to extract environmental sound components from
stereo signals [12]. In many cases of PAE, since the primary
components are essentially speech-like signals, they can be
considered to be sparse in the time-frequency domain. He
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Fig. 1. Basic stereo signal model of PAE, where X and X; are the input
signals; Po and P are the pure primary components; Ao and A are the pure
ambient components; Po and Py are the extracted primary components; Ag
and Aj are the extracted ambient components

et al. estimates the phases of the ambient components by
enhancing the sparsity of the primary components and thus
puts forward the state-of-the-art APES method [13]. Among
the four methods mentioned above, the APES method shows
the best overall performance, while the other three methods
result in larger extraction errors.

The APES method is still not the optimal method. At each
time-frequency point, the APES method uses only the criterion
of minimum amplitude of the primary components. Clearly
such a method does not make full use of the sparsity of
the primary components. The primary components extracted
by the APES method still suffer from major leakage from
the ambient components. This paper proposes to utilize more
sparsities of the primary components to reduce the leakage of
ambient components to a larger extent to ultimately extract
purer primary components. A novel method to achieve a more
accurate PAE result by means of FO estimation, referred to as
the PAEF method in short, is thus put forward.

II. BASIC STEREO SIGNAL MODEL

The input signal of each channel is firstly converted into
time-frequency domain by means of short-time Fourier trans-
form (STFT). For each frequency band or subband within
a time frame, it is usually assumed that only one domi-
nant directional sound source constitutes the primary com-
ponents [1]. After performing STFT on the input signals,
every time-frequency point is denoted as X, (m,n) where m
represents the index of time frames, n represents the index



of frequency bands and c represents the index of channels
(c € {0,1} for stereo signals). Thus, for one subband b which
includes frequency points from n,_1 + 1 to np (ng is the
upper boundary of frequency index of subband b) in time
frame m, the subband signal can be donated as X.[m,b] =
[Xc (m> np—1 + ]-) 7Xc (ma Np—1 + 2) s 7Xc (ma nb)]T
Therefore, the stereo signal model can be written as

Xc [m,b] =P, [m,b] + A [m,b] ¥V ce {0,1}, (1)

where P, is the primary component and A, is the ambient
component of the input signal. In the following part of this
paper, the subscript [m, b] is omitted.

Previously, it is assumed in PAE that the primary com-
ponents are correlated. They are localized as a result of
the inter-channel level difference (ICLD) and inter-channel
time difference (ICTD) [8]. The primary components between
different channels have relatively more obvious ICLD in stereo
recording that uses coincident microphone techniques and
sound mixes that uses pan-pot stereo techniques. Therefore,
this paper follows the classic simplification of PAE that only
ICLD is taken into account, i.e. Py = kP and k is called
the primary panning factor. The mixed input signals of the
primary and ambient components do not explicitly show the
real value of k. The estimate of k is then carried out on a
frame-by-frame basis by
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where 711, 7o and 71 are denoted as the auto-correlations and
cross-correlation of the input signal [5].

The ambient components of two channels usually have low
cross-correlation because of the diffuseness of environmental
sounds. Therefore, decorrelation techniques are commonly
applied to produce diffuse ambient components from raw
recordings [9]. As the decorrelation techniques produce equal
magnitude of ambient components in the two channels of
the stereo signals, the ambient components are considered
to have equal power in different channels, i.e. |A;| = [A,],
and to be uncorrelated with the primary components. The
primary power ratio y is defined as the ratio of total primary
power to total signal power in two channels, where v is
used to quantify the power difference between the primary
and ambient components (y € [0,1]). Previous studies have
revealed that the performance of PAE is positively related
with the value of v. However, a PAE method that can achieve
significant performance irregardless of the value of y is highly
sought after.

III. FO-ESTIMATION-BASED PRIMARY AMBIENT
EXTRACTION

According to the basic stereo signal model, the PAE prob-
lems can be formulated as

X, =P.+A.,Vce {01},

5 P, = kP 3)
e |A1| = |A0|

in which the ambient components are further expressed as
A=A OW, Vce{0,1}, (G))

where © donates element-wise Hadamard product and the
element in the time-frequency point (m,n) of W, is donated
as W, (m,n) = e%0mm) 0. (m,n) = LA.(m,n) is the
phase of A. (m,n).

Since P; = kPy and X; — KXy = A; — kAy, substituting
(4) yields

|A1] = |Ag| = (X1 — £kXo)./ (W, — kW), &)

where ./ is the element-wise division. On account that |A4] is
real and non-negative, the relationship between the phases of
the ambient components in two channels is given by

0o = 0 + arcsin[sin(0 — 01)/k] + , (6)

where 0 = /(X; — kX) [13].
Substituting (5) and (6) into (3) yields

Ac = (X1 — kX)./(W, — kWo) O W, 7

and
P.=X.—A, =X, — (Xq —kXp)./(W; —kWy) ©We. (8)

If 6, is known, 8 can be calculated by (6). W; = ¢791 and
Wo= 79 are thereafter readily written out. By (7) and (8), A,
and P, can then be obtained. The key to PAE is now converted
to the estimation of 6.

When the primary components have an obvious harmonic
structure in a duration of 7} and the fundamental frequency
is denoted as fj, P. can be expressed as

. too
o= 2T 5% by sty i) ¥ e 0.1,

(€))
where Py represents the weight of the primary components
in the time-frequency point (m, rf,), r € (—oo,00) and r is
an integer.

Within the duration of 77, the primary components have
zero energy for all frequency points except 7 f,. Estimating
the optimal value of 6 is only requested at rf,, which can
be carried out by minimizing the sum of the modulus of the
ambient components in the two channels at the frequency point

rfo, i.e.
@1 = argmin(|A1| + |Aol), f = rfo.

When it is outside the rectangular window, similar to the APES
method, the values of #; can be estimated by minimizing the
sum of the modulus of the primary components in the two
channels, i.e.

(10)

0, = argmin(|Py| + | Py)). (11)

Combining (10) and (11), €, is proposed in this paper to
be estimated by
5 _ {argmin(|A1|+AO|),frf0

) (12)
argmin(|P1| + |PO0|), f # r f0.
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Fig. 2. ESR of (a)—(c) extracted primary component and (d)—(f) extracted ambient component using PAEF, APES, and PCA.

TABLE 1
ACCURACY OF FO ESTIMATION WHEN Y= 0.1
k 2 5 10
Correct rate of first experiment 9291% | 90.20% | 87.50%
Correct rate of second experiment | 90.54% | 87.84% | 91.22%
Correct rate of third experiment | 90.88% | 89.86% | 88.51%
Average 91.44% | 89.30% | 89.08%

This proposed method requests the estimate of fy [14]-[17].
Thus, it is called the FO-estimation-based PAE method and
abbreviated as the PAEF method.

IV. RESULTS AND ANALYSIS

In this section, the PAEF method is compared with the
state-of-the-art methods, PCA and APES. A speech signal
is selected as the primary component with each time frame
comprising 1024 samples. The amplitude panning factor k of
the primary components is set to 2, 5 and 10. The ambient
components are wave lapping sounds, which are decorrelated
by all-pass filters with random phases. The input signal that
uses different values of v ranging from 0 to 1 with an
interval of 0.1 is obtained by mixing the primary and ambient
components together. Since the objective functions in (12) are
not convex, a direct searching (DS) method is implemented to
estimate the phase of the ambient components [13]. The opti-
mal phase estimation can be selected from an array of phase
values 01(d) = (2nd/D — ), where d € (1,2,---, D) with
D being the total number of phase values to be considered.

A. Accuracy of FO Estimation

As shown in Fig. 2, since the traditional methods of PAE
have good extraction performance when the power of the pri-
mary component is large, the case when v = 0.1 is specifically
investigated to compare the accuracy of FO estimation. The
accuracy of FO estimation is quantified by the percent correct
rate, which is defined as

Nes ure
ZeshPure o 100%,

pure

Correct rate = (13)
where N, is the number of frames of the pure primary
component and Neg; pure 1S the number of frames in which
the estimated FO equals to the ground truth. To ensure the
robustness, the experiment is repeated thrice. From Table I,
it is found that even when ~ is very small, the accuracy is
satisfactorily high, achieving about 90% on an average.

B. Objective Comparison of the PCA, APES and PAEF Meth-
ods

The PCA, APES and PAEF methods are compared by the
error-to-signal ratio (ESR, in dB) of the extracted primary and
ambient components. Lower ESR indicates better PAE perfor-
mance. The ESR for the primary and ambient components are
calculated as

1 ~ 12

3 llg. — 4|l

ESRq = 10[0910 { Q‘T‘@Q ,Vq S P)7 or A. (14)
c=0 c

According to Fig. 2, the PAEF method outperforms the PCA
and APES methods in terms of both ESRp and ESR 4. First
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Fig. 3. STFT of pure primary component and STFT of extracted primary
component using the PCA, APES and PAEF methods when k=2, v=0.1
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Fig. 4. STFT of pure primary component and STFT of extracted primary
component using the PCA, APES and PAEF methods when k=2, v=0.9

of all, unlike the PCA method, the PAEF method inherits
the good stability of APES and thus its primary component
extraction performance will not change with k. Secondly,
when compared to the APES method, the extraction error of
the PAEF method is reduced by about 2-7dB. The smaller
the value of v is, the less the extraction error will be.
However, because the PAEF method requires estimation of
the fundamental frequency, it needs twice the computing time
as compared to the APES method.

In Fig. 3 and Fig. 4, the STFT of the pure primary
component and STFT of the extracted primary component
using the PCA, APES and PAEF methods when k=2, v=0.1 or
0.9 are plotted. When ~y is small, the PAEF method performs
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Fig. 5. Subjective listening test results of PAE using the PCA, APES and
PAEF methods when k=2, v=0.1, 0.9

the best among the three methods. When v is close to 1,
performances of the three methods are similar.

C. Subjective Comparison of the PCA, APES and PAEF
Methods

In this subsection, 15 participants are invited to evaluate the
PAE performance of the PCA, APES and PAEF methods by
subjective listening tests. The pure primary and ambient com-
ponents and the primary and ambient components extracted by
the three methods are used. Participants are asked to choose
their favourite version from the extracted signals when k=2,
5 and ~v=0.1, 0.9. The subjective listening test results are
shown in Fig. 5 and Fig. 6. About 60% participants prefer
the primary and ambient components extracted by the PAEF
method. Among the remaining participants, more than half of
them prefer the APES method in most test cases.

V. CONCLUSIONS

This paper proposes the PAEF method based on the fact that
most primary components have an obvious harmonic structure.
Compared with the state-of-the-art PAE methods such as the
APES and PCA methods, the PAEF method makes better use
of the sparsity of the primary components. Objective compar-
ison reveals that the PAEF method outperforms the APES and
PCA methods, especially in the presence of relatively strong
ambient components. The PAEF method achieves 5dB less
extraction error than the other two methods on an average.
Moreover, subjective comparison also validates the advantage
of the PAEF method. When there are no obvious harmonic
structures in the primary components, future works should
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Fig. 6. Subjective listening test results of PAE using PCA, APES and PAEF
when k=5, v=0.1, 0.9

develop a hybrid of the PAEF and APES methods for robust
spatial audio coding.
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