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ABSTRACT Navigation is a challenging problem in the area of underwater unmanned vehicles, due to
the significant electronmagnetic wave attenuation and the uncertainties in underwater environments. The
conventional methods, mainly implemented by acoustic devices, suffer limitations such as high cost, terrain
effects and low refresh rate. In this paper, a novel low-cost underwater visual navigation method, named
Integrated Visual Odometry with a Stereo Camera (IVO-S), has been investigated. Unlike pure visual
odometry, the proposed method fuses the information from inertial sensors and a sonar so that it is able to
work in context-sparse environments. In practical experiments, the vehicle was operated to follow specific
closed-loop shapes. The Integrated Visual Odoemtry with Monocular Camera (IVO-M) method and other
popular open source Visual SLAMs (Simultaneous Localisation and Mappings), such as ORB-SLAM2 and
VINS-Mono, have been used to provide comparative results. The cumulative error ratio is used as the
quantitative evaluation method to analyse the practical test results. It is shown that the IVO-S method is
able to work in underwater sparse-feature environments with high accuracy, whilst also being a low cost
solution.

INDEX TERMS Underwater navigation, underwater vehicles, visual-inertial odometry, sensor fusion.

I. INTRODUCTION
Unmanned Underwater vehicles (UUVs), specifically
Remotely Operated Vehicles (ROVs) and Autonomous
Underwater Vehicles (AUVs), are widely used in offshore
engineering, ocean research, and marine mining. ROVs have
also been used since the 1980s for pipeline inspection mis-
sions [1], [2]. Modern ROVs are utilised broadly in the
development of subsea oil and gas facilities [3]. For exam-
ple, in the research project MarMine, a work class ROV
was deployed with a drill mounted for testing in basalt
rock at 2700m depth [4]. In [5], a swarm of AUVs was
utilised to explore an unknown environment and the Auto-
sub3 AUV has been used for geoscience beneath the Pine
Island Glacier Ice Shelf [6]. Meanwhile, in April 2010, the
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Arctic Explorer completed over 1000 km of under-ice survey,
mapping the sea floor during 10 days of continuous underwa-
ter operation [7], [8].

However, underwater navigation is still challenging.
Because electromagnetic waves are attenuated in water, iner-
tial measurements and acoustic positioning methods are com-
monly implemented for localising UUVs. Nevertheless, such
conventional navigation systems suffer many drawbacks.
The Inertial Navigation System (INS) suffers from white
noise and bias noise in acceleration measurement, which
cause unbounded position error after double integration. The
Doppler Velocity Log (DVL) requires vehicles to be close to
the seabed, since it needs to receive the reflected sound waves
to deduce relative linear velocities. For the same reason, it is
not sensitive for estimating rotational motions [9]. In acoustic
navigation systems (Ultra Short Baseline (USBL) or Long
Baseline (LBL)), much time and money are consumed by
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the deployment and recovery of equipment. In addition,
environmental factors, such as tide level, water current, and
the speed of sound in water, may disturb the accuracy of
acoustic transponders [10]. Hence, the integration of INSs,
DVLs and acoustic transponders is usually utilised to pro-
vide a reliable navigation solution in practical implemen-
tations [8]. The arrangement however makes the cost of
underwater localisation methods extremely high.

At the same time, Visual Odometry (VO) andVisual Simul-
taneous Localisation and Mapping (SLAM) Algorithms have
been successfully applied in mobile robotics and aerial
robotics [11]. One well-known visual odometry application
has been on NASA’s Mars exploration rovers [12]. A VO
system with a stereo camera was used to detect and compen-
sate for any accidental slip of the rovers. In 2005, Nister [13]
developed visual odometry techniques with a monocular
camera and a stereo camera for navigation of ground vehicles.
In the results, error rates were generally less than 2.0%.
Scaramuzza [14] developed a special visual odometry with an
omnidirectional camera to guide ground cars; its cumulative
error after 400m travelling was about 6.5m. Forster [15]
reported a fast monocular visual odometry for micro drones
and the drift in metres per second was about 0.0051m/s.

In comparison with the wide range of applications of visual
odometry in mobile robots and air drones, the development of
visual odometry in underwater environments is slow. Apart
from the fact that the illumination and visibility are uncertain
in the underwater environment, the main reason is that the
seabed may not offer as many feature points as the ground
environment can offer [10]; and the cost of underwater data
collection is much higher relative to ground data collection.
Recently, the LiDAR camera is popular in VO applications
of mobile cars and drones [16], which can generate the
point cloud image directly by using laser scanning. However,
in water where the speed of light becomes different and
unstable, the LiDAR system needs to be calibrated carefully
to retain its accuracy. In addition to that, since the light ray
in water is subject to the scattering and the attenuation, the
measurement range of LiDAR systems is very limited. These
shortcomings have prevented the development of applications
of VOs on underwater vehicles.

In this paper, an Integrated Visual Odometry with Stereo
Camera (IVO-S) has been investigated to address underwater
visual navigation challenges in sparse-feature environments.
Unlike general inertial-visual navigationmethodswhichwere
developed based on tightly coupled algorithms and feature-
basedmethods, the characteristics of the proposedmethod are
as follows:
• After the stereo camera 3D reconstruction, unreliable
feature points are filtered out according to depth infor-
mation from the sonar;

• Prior to processing nonlinear optimisation, a robust lin-
ear estimation algorithm and a fusion algorithm are
implemented to derive and correct translation vectors.

In the investigated method, the robust linear estima-
tion algorithm plays an important role. More specifically,

3D positions of feature points are reconstructed using data
from the stereo camera, and are tracked by the Lucas-Kanade
Optical Flow (OF) algorithm. An IMU development kit and
a gyroscope measure the acceleration and orientation of the
vehicle, and a ping sonar measures the distance between the
vehicle and the seabed. Subsequently, the linear estimation
and the fusion algorithm are processed to calculate a transla-
tion vector. Finally, theMaximumAPosterior (MAP)method
is employed to optimise the pose of vehicle by integrating
the information from results of the linear estimation and
the multiple sensors. The method is verified by practical
experiments by means of quantitative evaluation methods,
compared with other popular visual SLAMs and odometries.
The main novelty of the method is that it is able to navi-
gate underwater vehicles in sparse-feature environments with
high accuracy, while other visual navigationmethods perform
unsuccessfully.

The outline of the paper is: Previous work on VO and
underwater navigation systems are introduced first; Sec-
ondly, the ROV and related modifications for underwater
data collection are presented. Thirdly, the geometry transfor-
mation matrices among the coordinates of various sensors
are derived; Then, the IVO-S method is derived in detail;
Next, the implementation of the proposed method, physical
experiments, and discussion about the results are presented.
Finally, the conclusions are drawn from the work.

II. RECENT WORKS OF VISUAL ODOMETRY AND
UNDERWATER NAVIGATION
In recent years, a number of different visual odometry tech-
niques have been reported. These approaches are grouped
into two differentmethods: one is feature-basedmethods such
as PTAM; the other is direct methods such as LSD-SLAM.
The indirect methods need a pre-computation step, where
the feature points are extracted and tracked. Conversely, the
direct methods operate directly on pixel intensities, which
results in subpixel precision at high frame-rates.

The feature-based methods include Parallel Tracking And
Mapping (PTAM) [17] and ORB-SLAM algorithms [18].
They first extract the feature points with distinguishing
descriptors from the initial image. Subsequently, these feature
points are tracked by their own descriptors. Through these
corresponding feature points in a series of images, the motion
can be estimated by multiple-view geometry technology. The
ORB-SLAM algorithm, developed from PTAM, utilised a
robust feature detection algorithm named ORB [19] to extract
and track these points with ORB descriptors. During the
motion estimation process, the ORB-SLAM method imple-
ments the Levenberg-Marquardt algorithm to solve for opti-
mal camera pose.

The direct methods include Fast Semi-direct monocu-
lar Visual Odometry (SVO), Large-Scale Direct Monocular
SLAM (LSD-SLAM), and Direct Sparse Odometry (DSO).
The SVO, developed by Forster [15], requires a flat plane
parallel to the camera in the bootstrap. Hence, that method
is usually applied for air drones. The LSD-SLAM and DSO
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were developed by Engel [20], [21]. As mentioned before,
they both skip the pre-process step, and operate on the pixels
directly. In these two methods, the geometric error function is
minimised by the Levenberg-Marquardt method to solve for
the optimal camera pose.

While the pure visual SLAMs are accurate, low cost,
and have bounded position error, the performances of these
SLAM methods are dependent on the density of feature
points. Therefore, these methods require the usage of global
shuttering cameras with long focal-length and wide angle
lenses to grab more reliable feature points. Pure SLAMs
usually require at least 50 feature points to recover the
cameras’ motion. In the SVO method, at least 100 fea-
ture points are required in the bootstrap. Because of that,
inertial-visual odometries or SLAMs have been developed
to improve performances of pure Visual SLAMs. Leuteneg-
ger [22] developed an Open Keyframe-based Visual-Inertial
SLAM (OKVIS) with a stereo camera and an inertial sensor.
A Robust and Versatile Monocular Visual-Inertial State Esti-
mator (VINS-Mono) using a monocular camera and an iner-
tial sensor was developed by Qin [23]. The method is based
on tightly coupled algorithms which minimise a summation
of reprojection errors and inertial sensor errors by nonlinear
regression algorithms, and performed well in dense-sparse
environments.

In underwater navigation systems, visual odometry tech-
nology is mainly applied to aid other navigation methods.
Caccia [24] investigated a horizontal motion estimation based
on an optical laser camera. In this method, the depth is
measured by a laser, and the optical algorithm only estimates
the linearmotion. Eustice [25] used a visual odometrymethod
to aid DVL for underwater vehicles. He called it Visually
Augumented Navigation (VAN). The DVL and VO are com-
bined by a variant Extended Kalman Filter (EKF), where the
attitude is corrected by visual odometry. In this case, visual
odometry is applied to bound errors from inertial methods.
Eustice [26] then improved the method by replacing the EKF
filter with an information filter. The improved approach was
applied to underwater exploration surveying of RMS Titanic,
and the results showed an improvement in accuracy. Kim [27]
applied the VAN method to inspect ship-hulls for the U.S.
Navy. The VAN method was extended by Kaess [28] and
Mahon [29]. In their work, the optimal trajectory estimation is
considered as a smoothing and mapping problem formulation
and it is solved by efficient matrix factorisations. The VAN
algorithm with image sonar was also utilised to estimate pose
and landmarks using pose graph methods in [30]. Kim [31]
made an improvement on iSLAM to estimate the trajectory
of a vehicle by fusing the information from DVL and a visual
odometry system.

Croke [32] made a comparison for UUV navigation
systems between the VO and the acoustic beacons meth-
ods. In this paper, the visual odometry with stereo camera
gives 5% along-track error. Hildebrandt [33] reported an
IMU-aided stereo visual odometry method to predict the
trajectory of UUVs. However, the algorithm was tested in

a synthetic underwater environment rendered by the
3DS Max program. Two open source visual odometries
(libviso2 and fovis) were applied for underwater navigation
by Wirth [34]. The tank floor was covered by a digital poster,
in order to create a rich feature environment. Image matching
technology was then used to obtain the ground truth. Based
on Wirth’s work, Carrasco [35] applied graph-SLAM to
improve the visual odometry performance and the mean error
was 0.17m after 46m operating in a feature-dense environ-
ment. Bellavia [36] developed a stereo visual odometry sys-
tem using only highly reliable data in the estimation process.
The authors applied the KITTI benchmark to evaluate the
methods. However, as the KITTI dataset is collected by a
ground vehicle, the results of the evaluation were that it was
not suitable for underwater navigation.

Recently, Nawa [37] designed a light visual odometry
method with a stereo camera adapted to the underwater
context and a novel stereo matching approach. Zhang [38]
reported a robust visual odometry with a stereo camera; the
method is developed based on ORB-SLAM2, and updated
by use of the Quad-Screening matching algorithm. A real
time Monocular Visual Odometry System for the underwater
environment has been developed by Ferrera [39]. In the work,
the Optical Flow (OF) algorithm is used to track feature
points. The depths of feature points are derived by triangu-
lation calculation. Teixeira [40] investigated implementation
of a deep learning algorithm on underwater visual odome-
try estimation. However, such an algorithm requires a large
volume of training data and it is not robust. Dabove [41]
reported a monocular visual odometry using low cost sen-
sors. Their method is based on the Kalman filter. Since the
aforementioned visual odometries only utilise visual sen-
sors, these methods may not perform well in context-sparse
environments.

Creuze [42] developed a monocular odometry aided by
inertial and pressure measurements. It can estimate the abso-
lute scale of observed objects. Rahman [43] developed an
Inertial-Visual SLAMs with a profiling sonar based on the
OKVIS. The information from multiple sensors was fused by
a tightly-coupled nonlinear optimisation method. More par-
ticularly, camera pose estimations and underwater environ-
ment mapping were conducted by minimising the cost func-
tion. Later, Rahman [44] updated the method by introducing
a loop-closure method, a different initialisation algorithm,
and image pre-process technologies. However, quantitative
evaluation methods were not applied to verify these methods
in underwater environments. Hence, the accuracy of these
methods are unknown in underwater navigation applications.

In [45], an Integrated Visual Odometry with a Monocu-
lar Camera (IVO-M) method has been investigated, which
utilises a sonar, an IMU development kit and a gyroscope.
In that method, the 3D feature points are reconstructed
by the depth information from a sonar and the assump-
tion of a partially flat seabed. The linear transformation is
processed to derive the translation vectors. Although that
method can localise the vehicle in underwater sparse-feature
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FIGURE 1. VideoRay pro 3 with additional tube.

environments, it is limited by the assumption and suffers from
noise on feature point detection and tracking directly. The
proposed method applies the depth calculation algorithm of
the stereo camera to reconstruct 3D feature points initially.
Subsequently, the sonar filter is used to remove unreliable fea-
ture points. The trusted points are processed by a robust linear
algorithm to derive the translation vectors. Before starting the
nonlinear regression, the translation vectors are corrected by
the sensor fusion algorithm. Since the depths of feature points
are obtained through the stereo camera and the sonar works as
a filter, the IVO-S method can have higher precision without
requiring any assumptions to be made.

III. HARDWARE CONFIGURATION
The 3D feature points on the seabed are constructed from a
pair of images captured by the stereo camera and the depth
from the ping sonar. The gyroscope and IMU sensors are
utilised to aid in estimating the rotational motions. These
sensors were installed on a modified ROV (VideoRay Pro 3).
In this section, the ROV and hardware configuration of the
novel navigation method are discussed in detail.

Multiple precise sensors are fixed on a tray inside a water-
proof tube, which is installed on the bottom of the original
vehicle. The main sensors included are: an IMU development
kit with signal processing capabilities, a gyroscope, a ping
sonar, and an Intel RealSense T265 Tracking camera. The
IMU sensor is expected to provide acceleration data, and the
gyroscope is used to measure the heading angle precisely.
The ping sonar detects the distance between the seabed and
the vehicle. The Intel RealSense T265 Tracking Camera inte-
grates a stereo camera, an internal IMU sensor and an Intel
Visual Processing Unit (VPU). Therefore, the T265 tracking
camera can supply stereo images for the IVO-S.

The underwater vehicle, with the additional tube installed,
is shown in Fig. 1. The layout of sensors on the tray is shown
in Fig. 2 and Fig. 3. The costs of the various sensors are
listed in Table 1, illustrating that the novel IVO-S navigation
algorithm can be implemented on low-cost hardware.

IV. GEOMETRY TRANSFORMATION
As mentioned previously, the sensors located on the tray
include: an IMU, a gyroscope, a ping sonar and T265 tracking

FIGURE 2. Top view: sensors on electronics tray.

FIGURE 3. Back view: sensors on electronics tray.

TABLE 1. Sensors list.

camera. Each of the sensors has their own coordinates.
In order to unify data from various sensors on the same
coordinate reference frame, transformation matrices (T ) are
derived in this section. The value measured in the sensors’
coordinates can be transferred to the vehicle body’s coor-
dinate system. In linear algebra theory, the transformation
matrix is in the Special Euclidean Group, and has three
dimensions. Hence, T ∈ SE(3), and R3

× SO(3) → T .
The coordinates of the electronics tray are called the body ref-
erence. The relationship between body reference and global
reference is presented in Fig.4.

The locations and orientations of the sensors relative to
each other is arranged beforehand. The sensors are mounted
following the blueprint. After that, the locations and orienta-
tions are measured manually again.

A. IMU DEVELOPMENT KIT
The IMU sensor can measure acceleration vectors and angu-
lar velocities of the device. In this work, the LPMS-ME1,
a low cost IMU development kit with integrating signal pro-
cessing, can output the attitude information based on mag-
netic field, and acceleration vectors on xyz axes. It uses
the quaternions to describe the attitude of the IMU relative
to the global coordinates. In computation of the coordinate
transformation, the quaternion is converted to the rotation
matrix R. Unlike T , the rotation matrix R is in the Special
Orthogonal Group with three dimensions. Hence, it can be
written as R ∈ SO(3). Fig.5 shows the position of the IMU.
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FIGURE 4. Body reference and camera reference.

FIGURE 5. Top tray (Unit:mm).

The transformation matrix from IMU reference to body
reference is denoted as bodyT imu, and it is derived as,

bodyT imu =
[
bodyRimu bodyt imu

0 1

]
. (1)

bodyRimu = Rz(π ). (2)
bodyt imu = [−0.069 0.024 0.003] (3)

In (3), the units are meters;Rz(π ) is a basic rotation matrix,
which rotates vectors by an angle π about the z-axis in the
anticlockwise direction. Now assumingRmeasure was themea-
sured rotation matrix from the IMU sensor, then globalRbody
transferring the body reference relative to the global reference
is,

globalRbody = Rmeasure bodyR−1imu. (4)

B. GYROSCOPE
The LPMS-NAV2 is an accurate one-axis gyroscope and
integrates a 3-axis accelerometer [46]. It can measure the
heading angle (yaw) with ultra-low drift error. The position
of the LPMS-NAV2 is illustrated in Fig.6.

The bodyRnav denotes the transformation matrix from the
NAV2 reference to the body reference, and it is derived as,

bodyTnav =
[
bodyRnav bodytnav

0 1

]
. (5)

bodyRnav = Rz(−
π

2
)Rx(π ). (6)

bodytnav = [−0.05733 − 0.00309 − 0.015] (7)

However, theNAV2 only provides the heading angle (yaw).
The yaw from the NAV2 will be mapped into the body
coordinates, and used to correct the yaw from the IMU. In this

FIGURE 6. Bottom tray (Unit:mm).

way, the navigation information from the IMU and gyroscope
is fused. Considering that±π2 is the pitch range for the ROV,
so the Gimbal lock problem is ignored.

C. T265 CAMERA
The Intel RealSense T265 Tracking Camera consists of a
fisheye lens stereo camera, a low-cost IMU and VPU. It can
output the camera pose based on the V-SLAM algorithm
running on the VPU. In the official website, the T265 is stated
as having less than 1% closed loop drift error under intended
conditions [47]. Furthermore, there are practical projects and
drone competitions applying the T265 tracking camera [48],
[49] [50]. Fig.6 presents the location of T265 on the tray.

The bodyT t265 denotes the transformation matrix from the
T265 reference to the body reference, which is derived as,

bodyT t265 =
[
bodyRt265 bodyt t265

0 1

]
; (8)

bodyRt265 = Rz(π )Rx(π ); (9)
bodyt t265 = [0.09273 − 0.00275 − 0.03]. (10)

With bodyRt265, the rotation of the camera can be obtained
from the inertial sensors. It is also used to transfer depth from
the sonar reference to camera reference.

D. SONAR
The sonar is a single-beam echosounder. It has multiple
purposes: working as an altimeter for ROVs and AUVs,
bathymetry work aboard a USV (Unmanned Surface Vehi-
cle), and obstacle detection. The sonar can measure the depth
from 0.5m to 30m, and the angle of beamwidth is about 30◦.
The sonar is mounted on the hull of the ROV, and the

position is illustrated in Fig. 7.
The bodyT sonar denotes the transformation matrix from the

sonar reference to body reference. The rotation matrix is
an identity matrix because the two references are parallel.
Hence, only translation bias is considered.

bodyT sonar =
[
bodyRsonar bodytsonar

0 1

]
, (11)

bodyRsonar = I. (12)
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FIGURE 7. Sonar location.

The rotation matrix is the identity matrix and the transla-
tion vector is,

bodytsonar = [0.060, 0.070, 0.065]T . (13)

With the bodyT sonar transformation, the distance from the
body to the ground can be obtained.

V. METHODOLOGY
In this section, the mathematical derivations are introduced.
Two pairs of stereo images from previous and next frames are
undistorted and blurred firstly. The blur process is utilised
to reduce noise by smoothing. In this way, the reliable
3-space feature points can be detected and tracked. Then,
the incremental translation between two frames is derived
using a linear method. After the fusion algorithm, a nonlinear
optimisation method is used to solve for the pose of the
camera. The flow diagram of the proposed method is shown
in Fig.8.

A. UNDERWATER CALIBRATION AND BLUR
The stereo image sequences are collected by the Intel
RealSense Tracking camera T265. The camera installed on
the bottom of the vehicle captures the calibration patterns
in the underwater environment. While the T262 camera is
provided with precise calibration information when it left the
production line, it is calibrated in air. However, the refraction
can not be ignored in water. It occurs when the light ray from
the object in the water propagates through the water-tight
container of the camera, causing nonlinear distortion on
the imaging plane. The underwater calibration processed
by [51] is expected to reduce the effects of the refrac-
tion by using the distortion polynomial and increasing the
focal length [52], [53]. More specially, the parameters of
the stereo camera are computed by OpenCV tools. The
Kanalla-Brandt distortion model is applied to undistort these
stereo images [54]. The collection of samples for underwater
calibration is shown in Fig.9.

After the calibration, the intrinsic matrix K , extrinsic
parameters, and undistortion polynomial can be obtained.
The extrinsic parameters, forming the homogeneous transfor-
mation between the left and right camera, are used to rectify
the stereo camera. The calibration results are presented in the
Appendix section.

FIGURE 8. Flow diagram of IVO-S algorithm.

FIGURE 9. Underwater pattern.

When the calibration and rectification are completed, the
smoothing or blurring of images is processed. It is intended to
remove unreliable and easily mismatched features which con-
tribute to the drift error significantly. The smoothing kernel
is chosen carefully to reduce the noise, but retain the robust
features. In the proposed method, a Gaussian kernel is used
to smooth the image. The size of the kernel was set as (3,5),
and the covariance is calculated by the getGaussianKernel()
in the OpenCV library.

B. 3D POINTS RECONSTRUCTION USING SONAR
There are many 3D reconstruction methods that use monocu-
lar video sequences, or a combination of monocular cameras
with either a laser range scanner or a structured light [55].
However, in the IVO-S, stereo reconstruction is applied to
recover the depth of each feature point.

1) FAST ALGORITHM AND OPTICAL FLOW TRACKING
The FAST algorithm (Features Accelerated Segment Test)
developed by Rosten [56] is utilised to extract the fea-
ture points from the previous left-side image. Compared
with other feature point detectors, such as SIFT (The scale-
invariant feature transform) [57], the FAST algorithm can
detect feature points on the image efficiently. In order to track
the feature points in the right-side image and the next pair
of images, the Optical Flow (OF) algorithm is implemented.
It assumes brightness constancy, so that the intensity of the
pixel remains the same despite small changes of position and
time period [58].
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In the IVO-S, OF is used to track the feature points between
dual stereo frames. There are four associated feature points
generated per set: zl indicates 2-space feature points in the
previous left-side frame, zr indicates 2-space feature points
in the previous right-side frame. Similarly, z′l is a set of
feature points in the next left-side frame, and z′r is a set of
feature points in the next right-side frame. Using the calibra-
tion parameters, the stereo rectification is processed to make
sure that their epipolar lines coincide and become parallel to
the x-axis of the image.

Given pnl ∈ zl , and its associated feature point in
right-side frame pnr ∈ zr matched along the epipolar line,
the triangulation method is adopted to obtain the depth of the
feature. With the perspective camera model, the 3D position
of the feature pn, can be calculated. The the process of the 3D
reconstruction of the stereo camera can be regarded as a map
H : pnl × pnp→ pn, where pnl, pnp ∈ R

2, and pn ∈ R
3.

2) GAUSSIAN FILTER WITH SONAR INFORMATION
Both the FAST feature points detection algorithm and the
optical flow matching method suffer from noise, which indi-
cates that the errors on the 2-space feature points are intro-
duced into 3-space feature points via a 3D reconstruction
algorithm. In the method, the unreliable feature points are
removed by a Gaussian filter. The sonar provides the depth
(dsonar ) from seafloor to vehicle and the depths of most
3-space feature points are expected to distribute near dsonar .
After translating dsonar into camera coordinates, given an
arbitrary feature point pn, the filter Gs is presented as,

Gs(p[3]n ) =
1

√
2πσ

exp(−
(p[3]n − dcam)2

2σ 2 ). (14)

dcam = bodyT−1cam
bodyT sonardsonar (15)

where, the dsonar is the vector measured by the sonar. The
dcam is the third element of the dcam vector. The p[3]n is the
third element in the 3-space feature point.

If the output of Gs is over a specific threshold value, this
3D feature point is considered as being reliable. The selection
of the threshold value is a trade-off issue: The small threshold
can allow a large volume of data contributing to the localisa-
tion method, but meanwhile too much uncorrected data may
increase the localisation error; The large threshold only lets a
small partition of data be utilised in the computation, but most
unreliable points may be removed, which can finally improve
the positioning accuracy. In the method, the threshold value
is set to 0.52.

C. INCREMENTAL TRANSLATION RECOVER
Before calculation of the incremental translation vector, the
derivation of rotation matrix 2R1 from the previous frame
to the next frame is required. In this case, the R1 and the
R2 should be identified firstly. The R1 can be calculated as,

R1 =
global Rimu imuRbody bodyRt265 (16)

where the globalRimu is the rotation matrix obtained from the
IMU kit and gyroscope sensors for the previous frame time
point. The imuRbody denotes the rotation matrix from the body
reference to the IMU coordinate, and the similar meaning
for bodyRt265.

The R2 matrix is obtained in similar way. Based on two
rotation matrices R1 of previous frame and R2 of the next
frame, the rotation matrix 2R1 can be obtained by,

2R1 = R−12 R1. (17)

Subsequently, the incremental translation 2t1 between two
frames can be computed with the rotation matrix 2R1. Given
a reliable feature point pn in the previous frame and a
corresponding point p′n in the next frame, the translation
vector 2t1 is derived as,

2t1 = p′n −
2R1pn. (18)

Then, the 2t1 will be added into the 0 set. Assuming there
are N pairs of feature points, the size of the 0 is N . That
means there are N number of 2t1 according to different pairs
of feature points. Since the feature points are corrupted by the
imaging noise and reconstruction error, theN number of 2t1 is
not identical. Hence, in order to select the reliable translation
vector 2t1 in the set 0, a robust selection is conducted by
calculating distance dp as,

dp(pn, p
′
n,

2R1,
2t1) =

N∑
n=1

|p′n −
2T1pn|, (19)

where the transformation matrix 2T1 is,

2T1 =

[
2R1

2t1
0 1

]
. (20)

As presented by the equation (19), every 2t1 has its own
distance dp, which sums the transformation deviation of
each pair of feature points. Eventually, the translation vector
2t1 with the smallest distance is selected as 2t1 from the
0 set. The algorithm of 3D reconstruction and translation
recovery is presented as Algorithm 1. Since there is a small
number of trusted feature points, such robust estimation does
not increase the computational time dramatically.

D. FUSION ALGORITHM
Since the 2t1 calculated in previous section is corrupted by
imaging noise, it is to be updated with the measurement of the
sonar by theMaximumAPosterior(MAP) algorithm. In order
to accomplish the goal, the conditional posterior probability
p(2t1|P,P ′,R1,R2, d2, t1) should be maximised with respect
to the 2t1. The P = {p1 p2 . . . pn} and P

′
= {p′1 p

′

2 . . . p
′
n}

are two observed feature point sets in the previous frame and
next frame respectively. The t1 is the translation vector of the
previous frame relative to the original reference and d2 is the
depth from the vehicle to seabed measured by the sonar, and
already transferred to the camera reference.
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Algorithm 1: 3D Reconstruction and Incremental
Translation Recover
Result: 2t1
2D Feature Point Set on Left Image of previous framezl ← Fast-Detection
Algorithm;

Taking the corresponding points on right image of previous frame, left image on
next frame, right image on next frame, generating the points setszr ,z′l , and
z′r respectively;

d0 ←∞;
n← 0;
Set A← Null;
Set 0 (The set of translation vectors)← Null;
while n < Sizeof(zl ) do

pnl ∈ zl , pnr ∈ zr p′nl ∈ z′l , p
′
nr ∈ z′r ;

pn ← H (pnl , pnr ), p
′
n ← H (p′nr , p

′
nl );

if Gs(pn) > Threshold then
2t1 ← p′n −

2R1pn;
Add pn and p

′
n into A;

Add 2t1 into 0;
else

Continue;
end
n++;

end
n← 0;
while n < Sizeof(0) do

pn ∈ A, p
′
n ∈ A;

tn ∈ 0;
dn ← dp(tn,2 R1, pn, p

′
n);

if dn < d0 then
2t1 ← tn;
d0 ← dn;

else
Continue;

end
n++;

end

The posterior probability can be decomposed into the like-
lihood and the prior terms by the Bayesian formula, which is
presented as,

p(2t1|P,P ′,R1,R2, d2, t1)

= η p(d2|2t1,R1,R2, t1)p(2t1|P,P ′,R2,R1). (21)

where the p(2t1|P,P ′,R2,R1) is the conditional probability
of translation vector 2t1 corrupted by imaging noise. The
p(d2|2t1,R1,R2, t1) is the conditional probability of the mea-
surement of the sonar d2.
In order to maximise the posterior probability with respect

to 2t1, the exact expressions of the two conditional probabil-
ities are derived as follows.

As the noise models of the sonar and camera can fit the
Gaussian distribution well [59]–[61], the conditional proba-
bility of 2t1 can be written as,

p(2t1|P,P ′,R1) ∼ N (2t1|µt ,6t ). (22)

where the term µt is the result of Algorithm 1, µt =
2 t1.

The conditional probability of d2 can be written as,

p(d2|2t1,R2,R1, t1) ∼ N (d2|µd , σ 2
d ). (23)

The µd can be derived by,

µd = (T1
2T−11 )[3,4]. (24)

where the T1
2T−11 is calculated as,

T1
2T−11 =

[
2R1RT1 t1 − 2R1RT1

2t1
0 1

]
. (25)

With these information, the exact expressions of the likeli-
hood and the prior can be obtained as,

p(d2|2t1,R2,R1, t1) =
1

2πσ
exp(−

d̂22
2σ 2 ) (26)

p(2t1|P,P ′,R1) =
1

|2π6t |
1/2 exp(−

1
2

2 t̂T1 6
−1
t

2 t̂1)

(27)

where the 2 t̂1 = 2t1 − µt and d̂2 = T (d2) − µd . The
T (d2) is a transform function which is used to transfer the
d2 from sonar coordinates to the original reference. In the
IVO method, T (d2) = d2 − dt0, dt0 is the depth information
from the first frame.

Until now, the exact expression of the posterior probability
p(2t1|P,P ′,R1,R2, d2, t1) has been known. Subsequently,
the posterior will be maximised with respect to the 2t1. It is
equivalent to minimise the negative log of posterior,

2t1 = argmin
2t1

{−log(p(2t1|P,P ′,R1,R2, d2, t1))} (28)

Since the equation (28) is convex, the 2t1 can be solved by
making its differential equal to zero. Hence, there is,

∂ − log(p(2t1|P,P ′,R1,R2, d2, t1))
∂2t t

∝
∂ − log(p(d2|2t1,R2,R1, t1))

∂2t1

+
∂ − log(p(2t1|P,P ′,R2,R1))

∂2t1
= 0 (29)

Based on equation (21), the equation (29) can be decom-
posed into two terms. For the first term, there is

∂ − log(p(d2|2t1,R2,R2, t1))
∂ 2t1

=
d̂2
σ 2

∂ d̂2
∂ 2t1

(30)

In the equation (30), the ∂ d̂2
∂ 2t1

is

∂ d̂2
∂ 2t1

=
∂ T (d2)− (T1

2T−11 )[3,4]
∂ 2t1

=
∂T (d2)− (t1 − R1

2RT1
2t1)[3]

∂2t1

=
∂T (d2)− (t1 − R∗ 2t1)[3]

∂2t1

=
∂ − t[3]1 + r

T
3

2t1
∂ 2t1

=
∂ rT3

2t1
∂ 2t1

= r3, (31)
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where the r3 is a column vector of the third row of R∗. Sub-
stituting the equation (31) into the equation (30), it becomes,

d̂2
σ 2

∂ d̂2
∂ 2t1

=
d̂2
σ 2 r3

=
T (d2)− (t[3]1 − r

T
3

2t1)
σ 2 r3

=
T (d2)r3 − (t[3]1 − r

T
3

2t1)r3
σ 2 . (32)

The second term in the equation (29) is,

∂ − log(p(2t1|P,P ′,R2,R1))
∂ 2t1

= 6−1t
2 t̂1
∂ 2 t̂1
∂ 2t1

= 6−1t
2 t̂1 (33)

Substituting the equation (32) and the equation (33) in the
equation (29), there is,

6−1t (2t1 −2 t1)+
T (d2)r3 − (t[3]1 − r

T
3

2t1)r3
σ 2 = 0 (34)

The 2t1 is solved as,
2t1 = (6tr3rT3 + σ

2I)−1{σ 2 2t1 −6t (T (d2)− t
[3]
1 )r3}. (35)

As discussed before, the 2t1 in equation (35) is the maxi-
mum point of the equation (21). It indicates that the 2t1 has
been updated by the measurement of the sonar.

E. NONLINEAR OPTIMISATION
In the nonlinear iterative method, the associated Lie
algebra ξ , which comprises two separate 3-element vectors,
is to describe the pose of the vehicle relative to the origin
rather than T [62]. This is because it is much more numeri-
cally stable in the iterative process. The first 3-element vector
in ξ is the rotation vector and the second 3-element vector is
the translation vector. According to Lie algebra theory, the
exponential map from ξ to T is [62],

T = exp(ξ̂ ). (36)

The ξ̂ denotes the skew symmetric matrix of the vector ξ .
It is written in the probability Maximum Likelihood form as,

p(P,P ′|ξ ). (37)

where, P and P ′ are regarded as the observed feature points
in body coordinates. There is,

p(P,P ′|ξ ) ∝ exp(−
1
2

N∑
n=1

{(p′n − exp(ξ̂ )pn)
T6−1n

× (p′n − exp(ξ̂ )pn)}). (38)

The prior of ξ is obtained from the inertial sensors. The
equation is,

p(ξ ) ∼ N (ξ imu,6imu). (39)

The posterior of ξ is,

p(ξ |P,P ′) = p(P,P ′|ξ )p(ξ ). (40)

The optimisation solution is equivalent to minimising the
negative log-posterior with respect to the Lie algebra vector,

ξmin = argmin
ξ

{−log(p(ξ |P,P ′))}. (41)

It can be written as a cost function as,

f = {
1
2

N∑
n=1

eTpn6
−1
n epn +

1
2
eTimu6

−1
imueimu } (42)

epn = p′n − exp(ξ̂ )pn (43)

eimu = ξ − ξ imu. (44)

Hence, the f is,

f =
1
2
ETf 6

−1
f Ef . (45)

Ef = diag(ep1, ep2, . . . , epn, eimu) (46)

6f = diag(61, 62, . . . , 6n, 6imu). (47)

The Jacobian matrix may be written as,

J =
∂Ef
∂ξ
= diag(

∂ep1
∂ξ

, . . . ,
∂epn
∂ξ

,
∂eimu
∂ξ

) (48)

∂epn
∂ξ
=
∂(p′n − exp(ξ̂ )pn)

∂ξ

=
∂−exp(ξ̂ )pn

∂ξ

= −

[
I3×3 −[(exp(ξ̂ )pn)]×
01×3 01×3

]
. (49)

The partial derivative of the regularisation term (eimu) is,

∂eimu
∂ξ
=
∂(ξ − ξ imu)

∂ξ

= I6×6. (50)

Hence, with the Jacobian matrix, the iterative algorithm for
ξ can be expressed as,

1ξ = −(JT6f J)−1JT6−1f Ef ; (51)

ξnew = ξold +1ξ . (52)

Compared with the nonlinear optimisation algorithms in
other VOs, the IMU’s measurement is used to constrain the
rotation vector and the translation vector estimated by the
pure visual odometry. In equation (40), the IMU constraint is
introduced by the probabilistic model. In this case, the effects
of the imaging noise can be decreased.

VI. IMPLEMENTATION AND EXPERIMENTS
The IVO-S algorithm was implemented in C++ language.
The OpenCV libraries were utilised to process the images,
including undistortion of the image, FAST corner detection
and image smoothing. The Levenberg Marquardt (LM) algo-
rithm, used to solve the nonlinear least squares problem, was
implemented by the Ceres Solver. This is an open source
C++ library for solving optimisation problems [63]. Pan-
golin is a light-weight portable library formanagingOpenGL.
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It was applied to draw the 3D trajectory and provide a
graphical user interface. The hardware platform running the
IVO-S includes a 3.2GHz 6-core Intel Core i7 processor with
8GB memory. The computational time is about 0.02 seconds
for processing each dual frame with only one thread. Since
the computational complexity of the IVO-S is O(N ), where
the N is number of the feature points, it should be run online
on the onboard computer.

The underwater data collection was conducted using the
modified ROV. As mentioned previously, there are multiple
precise sensors in the watertight tube. These collected data
were stored in the onboard computer temporarily. Once the
test was finished, the data was copied to a hard disk viaWIFI.
The different sensors have various sampling rates. During
the data collection, the timestamps of different sensors are
recorded as well. Since the data from different sensors will
have consistent timestamps, the multi-sensors data can be
associated by matching the nearest timestamps.

The modification changed the centres of gravity and buoy-
ancy of the vehicle, and had a negative impact on the manoeu-
vrability of the vehicle. Hence, an operator held the vehicle
with two half meter sticks, and moved it along the reference
line of the test. Simultaneously, the sensors in the watertight
tube kept recording the data.

The experiments were conducted in the towing tank at
Newcastle University [64]. A square made of straps was set
out, providing the reference path. The scale and 3D pictures
of the square are illustrated in Fig.10. The vehicle was con-
trolled by the operator within the square. Hence, the vehicle is
operated to travel along the path drawn by the straps, as shown
in Fig.11. The operator holding the vehicle tried to follow the
reference straps however, it was difficult to follow the refer-
ence path exactly, particularly where there were sharp turns.

The towing tank is a sparse environment but has random
features due to the deterioration of the coating of the bottom,
which are not regular patterns. In addition, the wall of the
tank and the bases of the reference straps mean that the
bottom is not totally flat. Hence, the towing tank is similar
to some real seabed environments, but it is more harsh for
visual odometries because of the sparse feature points.

VII. EXPERIMENTAL RESULTS
The tests were conducted by operating the vehicle to
travel along different reference paths. Meanwhile, the IVO-S
method would estimate the trajectory of the vehicle. Actually,
the navigation method localises the onboard camera, rather
than vehicle. Because the camera is fixed on the vehicle,
the position of vehicle can be obtained by multiplying by
the transformation matrix. The shapes of the reference paths
were: a square, a triangle and a figure-8 shape. In each test,
the vehicle was expected to return to the starting point at the
end. In other words, each estimated trajectory is supposed to
be closed. However due to accumulated errors, the final pose
of the ROV in the estimated trajectory has an offset relative
to the starting point. The error ratio can be calculated by
dividing the position error by the length of whole trajectory,

FIGURE 10. Square strap 3D in towing tank.

FIGURE 11. Square strap and operator.

which is,

er =
offset

trajectory length
. (53)

Such an evaluation method is popular in verification of
navigation system performance [65]. The IVO-S estimated
3D trajectories originally. In order to present results clearly,
they have been converted into 2D figures. Each path shape
was tested multiple times to prove the repeatability of the
proposed method. The error measured in 3D space and length
of estimated trajectory in each test is presented in Table 2.
The comparative results presented in the following sections
are from the IVO-M [45] methods and other popular visual
SLAMs or odometries, such as ORB-SLAM2, SVO, and
OKVIS, are provided as well.

TABLE 2. Error ratio and distance of each test using IVO stereo method.

A. ESTIMATED TRAJECTORIES FROM THE IVO-S AND THE
IVO-M METHODS
The estimated trajectories from the IVO-S method are plotted
in 2D figures, shown from Fig.12 to Fig.19. The comparisons
between results from IVO-S and IVO-M are presented in
Fig.12, Fig.15, and Fig.18. It should be noted that the data for
IVO-S method and the IVO-M method are collected simulta-
neously. Since the data for the IVO-Mmethod is collected by
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FIGURE 12. Triangular 1st, comparison with IVO-S and IVO-M. Error ratio
of IVO-S is 0.0080, error ratio of IVO-M is 0.00510.

FIGURE 13. IVO-S Triangular 2nd, error ratio: 0.0183.

FIGURE 14. IVO-S Triangular 3rd, error ratio: 0.0115.

FIGURE 15. Square 1st, comparison between IVO-S and IVO-M. Error ratio
of IVO-S is 0.0189, error ratio of IVO-M is 0.0560.

the monocular camera which locates at the front vehicle, the
start points of the IVO-M method is ahead about 0.2 meter
in the x-axis relative to those of the IVO-S method. The
reference path is drawn in black dotted lines in these results.
The experiments were conducted eight times in total: the
triangular shape was tested three times, the square shape was
tested three times, and the figure-8 shape was tested twice.

FIGURE 16. IVO-S Square 2nd, error ratio: 0.0139.

FIGURE 17. IVO-S Square 3rd, error ratio: 0.0118.

FIGURE 18. Figure-8 1st, comparison between IVO-S and IVO-M. Error
ratio of IVO-S is 0.0161, error ratio of IVO-M is 0.0435.

1) DISCUSSION OF RESULTS FROM THE IVO-S AND THE
IVO-M METHODS
According to the experimental results, the IVO-Smethod esti-
mated the trajectories accurately. However, there are larger
drifts on the trajectories estimated by the IVO-M algorithm.
The reason is that the IVO-M algorithm does not remove the
unreliable feature points, and lacks the sonar fusion algorithm
to correct the translation vectors. In particular, in the IVO-M
method, the noise from the feature point extraction algorithm
is imposed on the linear calculation directly. In contrast, in the
IVO-S method, the 3D feature points are reconstructed, and
are processed by the sonar filter. In this case, the points with
large disturbances can be moved out.

In Fig.12 to Fig.14, the vehicle was forced to follow a
triangular path by the operator. Because of the narrow space
in each corner, the operator could not follow the reference
path exactly. In this way, the vehicle had to make a turn in
advance rather than moving along the sharp angles. In the
triangular-shape tests, the estimated position almost returned
to the origin point, and the error ratios are about 1% by
the IVO-S method. The results from the IVO-S and IVO-M
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FIGURE 19. IVO-S Figure-8 2nd, error ratio: 0.0054.

methods are compared in Fig.12. Although the IVO-M
method has a lower error ratio, the trajectory estimated by
the IVO-S method is more rational, because it almost follows
the reference path exactly, and is inside the triangle strap.

From Fig.15 to Fig.17, the IVO-S was evaluated over
square reference paths. It is obvious that the estimated tra-
jectories approximated a square shape. As mentioned before,
because the vehicle was held by an operator, it could not
follow the reference path exactly, and it was particularly hard
at the corners for the operator to turn the vehicle exactly along
the vertical angles. Along some segments of the estimated
trajectories, the vehicle is estimated to go across the reference
path. Since the operator moved close to the reference square
holding the vehicle with half meter sticks, the vehicle may
have crossed the reference line sometimes. In Fig.16 and
Fig.17, the IVO-S has about 1% error ratio. The comparison
between the IVO-S and the IVO-M methods is shown in
Fig.15. Similar to the triangle-shape path, the trajectory esti-
mated by the IVO-Smethod almost follows the reference path
exactly, and is inside the square strap. Furthermore, it suffers
from less drift error.

The vehicle was operated to follow a figure-8 shape
within the reference rectangle in Fig.18 and Fig.19. The
IVO-S method drew approximately figure-8 shape trajecto-
ries. In Fig.19, the error ratio is only 0.54%. In the Fig.18,
there is a comparison between results from the IVO-M
and IVO-S methods. The trajectory generated by the IVO-S
method, not only suffers from less drift error, but also stays
inside the square strap.

B. COMPARISONS BETWEEN IVO-S AND OTHER VISUAL
NAVIGATION METHODS
The four different Visual SLAM algorithms and the IVO-S
algorithm were compared on the same dataset (a triangu-
lar shape). The calibration parameters and coordinate trans-
formation matrices in these Visual SLAMs were corrected
according to the customised dataset. These open source algo-
rithms were: ORB-SLAM2, SVO, VINS-Mono, and OKVIS.
TheORB-SLAM2method has been used for localisingAUVs
and mapping an underwater cave [65], [66]. The VINS-Mono
and OKVIS algorithms with integrated inertial information
have been implemented to localise cameras in underwater
environments [43], [44]. These algorithms performed well
in context-dense environments, however they performed less
successfully in the underwater sparse-feature and complex

FIGURE 20. ORB-SLAM2 trying to initialise with the monocular dataset.

FIGURE 21. The trajectory estimated by ORB-SLAM2 Monocular (The
green line is the estimated trajectory, black dots are measured feature
points, red dots are active feature points.)

magnetic environment. The SVO developed from the direct
method tracks invariant intensity values in images to recover
the camera motion. However, at least 100 feature points are
required to boot. Because of that, the SVO was stuck in the
bootstrap when it was evaluated with the customised dataset.
The other methods were developed from the feature-based
method. Therefore, the quality and quantity of feature points
determine the performances of these methods. In underwater
sparse-feature environments, having few high-quality feature
points may result in failures of these methods. More explic-
itly, the ORB-SLAM2 monocular algorithm was hardly able
to identify enough reliable feature points to finish the initial-
isation process as shown in Fig.20, and lost the matched fea-
ture points frequently in the sparse-feature underwater envi-
ronment. Hence, the trajectory estimated by ORB-SLAM2 is
not complete, as shown in Fig.21. The ORB-SLAM2 stereo
algorithm could not extract any feature points from the cus-
tomised stereo dataset, as shown in Fig.22.

The performances of VINS-Mono and OKVIS algorithms
on the dataset were unsatisfactory. The complex magnetic
field in the towing tank may have increased the drift error of
the low-cost IMU development kit. More seriously, it was dif-
ficult for these feature-based methods to constrain IMU noise
using the few reliable feature points. In this case, unbounded
IMU errors caused a large drift error. The feature detection
processes of the two SLAMs are presented in Fig.23 and
Fig.24. There is a common problemwith the VINS-Mono, the
OKVIS, and V-SLAM: unconstrained drift error, as shown in
Fig. 23 and Fig.25.
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FIGURE 22. ORB-SLAM2 Stereo Feature Detection failed with the stereo
dataset.

FIGURE 23. OKVIS with few matched feature points and huge drift error.

FIGURE 24. VINE-Mono trying to extract feature points.

FIGURE 25. Huge drift error from the VINS-Mono (The green line is the
estimated trajectory in 3D space.)

Conversely, the IVO-Smethod implements the FAST algo-
rithm for extracting feature points and the Optical Flow algo-
rithm for tracking these feature points, rather than utilising
relatively complex descriptors tomatch corresponding points.

FIGURE 26. The trajectory estimated following the triangle pattern by the
IVO-S (error ratio: 0.0183) and IVO-M (error ratio: 0.0559).

In addition, it integrates the sonar and inertial sensor informa-
tion to skip the bootstrap. Unlike other inertial visual SLAMs
based on tightly coupled algorithms, the linear estimations
and the fusion algorithm are processed prior to nonlinear
optimisation. Therefore, these unique characteristics mean
that the IVO-S method performs well in the underwater
sparse-feature environment. Compared with the IVO-M
method, the IVO-S has the higher precision, since it can
reconstruct depths of feature points directly and remove unre-
liable feature points. The trajectories estimated by the IVO-S
and the IVO-M methods are shown in Fig.26.

VIII. CONCLUSION
The novel underwater navigation method IVO-S has been
investigated in this paper. Compared with typical underwater
navigation methods, the IVO-S is designed to offer a high
precision underwater navigation solution at low cost. In addi-
tion, the proposed method can perform well in underwater
sparse-feature environments with high precision, while other
visual slams or odometries such as ORB-SLAM2 andOKVIS
perform unsuccessfully in the same situations. In the future,
the IVO-S method will be extended by introducing closure
loop detection and map reconstruction approaches.

APPENDIX
CALIBRATION PARAMETER
A. CAMERA MATRICES AND DISTORTION COEFFICIENTS
See Tables 3 and 4.

TABLE 3. Intrinsic parameters of the left camera.

TABLE 4. Intrinsic parameters of the right camera.
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B. EXTRINSIC PARAMETERS
The extrinsic parameters build the homogeneous transforma-
tion T e from the left camera to the right camera.

T e =
[
Re te
0 1

]
where,

Re =

 0.999965 0.00281616 −0.00787895
−0.00278412 0.999988 0.00407375
0.00789033 −0.00405167 0.0644494


and,

te = [0.0644494 − 0.000108581 − 0.000456553]T .

Applying the stereoRectify() in OpenCV library with T e,
the stereo rectification can be achieved.
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