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Abstract

The parametric array loudspeaker (PAL) is an application of the parametric acoustic array

in air, which can be applied to transmit a narrow audio beam from an ultrasonic emitter.

However, nonlinear distortion is very perceptible in the audio beam. Modulation methods

to reduce the nonlinear distortion are available for on-axis far-field applications. For other

applications, preprocessing techniques are wanting. In order to develop a preprocessing tech-

nique with general applicability to a wide range of operating conditions, the Volterra filter

is investigated as a nonlinear model of the PAL in this paper. Limitations of the stan-

dard audio-to-audio Volterra filter are elaborated. An improved ultrasound-to-ultrasound

Volterra filter is proposed and empirically demonstrated to be a more generic Volterra model

of the PAL.

c©2016 Acoustical Society of America
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Figure 1: Block diagram of the parametric array loudspeaker.

I. INTRODUCTION

When two large-amplitude waves at close frequencies propagate in the same direction,

virtual sources of the difference frequency are created, forming an end-fire array. This

nonlinear acoustic phenomena was discovered by Westervelt for underwater applications

and named the parametric acoustic array (PAA)1. The PAA in air was subsequently

demonstrated by Bennett and Blackstock2. The first directional sound device making use

of the PAA in air was established in 1983, which is now widely known as the parametric

array loudspeaker (PAL)3.

The common design of the PAL, as shown in Fig. 1, consists of a driver circuit and an

ultrasonic emitter. The driver circuit carries out modulation and amplification. The

modulated audio input falls in the ultrasonic frequency band. It is referred to as the

ultrasound input in the latter part of this paper. After the ultrasound input is transmitted

from the ultrasonic emitter, the PAA is formed in air and results in a narrower audio beam

than other sound devices of the same size.
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Nonlinear distortion is an adverse by-product of the PAA in air. Modulation methods

have been proposed to reduce the nonlinear distortion4;5;6;7. Audio bandwidth extension

techniques have also been tried to improve the perceptual sound quality of the PAL8;9. All

those methods were developed on the basis of the Berktay equation that formulated the

principle of the PAL concisely10;11. However, the far-field and absorption-limited conditions

assumed by Berktay are not always valid in applications of the PAL, such as in home

entertainment12, private listening13, noise canceling devices14;15, and so forth.

To develop a preprocessing technique with general applicability to a wide range of

operating conditions, a generic nonlinear model of the PAL is necessary. Although the

second order nonlinear acoustic equation serves this purpose, it has only numerical

solutions that lead to huge computational burdens16. The Volterra filter, in comparison,

can be conveniently identified in audio systems17;18;19. A dedicated inverse system is then

designed to preprocess the audio input in order to compensate for the nonlinear

distortion20. Therefore, the standard audio-to-audio Volterra filter (A2VF) has been used

to model the PAL from the audio input to the audio output, as illustrated in Fig. 2(a).

However, it may be overlooked that the A2VF is not optimum, because the PAL is a

nonlinear system operating at ultrasonic frequencies and the nonlinearity is not incurred in

the PAL from the audio input to the audio output.

In this paper, the ultrasound-to-ultrasound Volterra filter (U2VF) is suggested as an
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Figure 2: Block diagram of the (a) audio-to-audio and (b) ultrasound-to-ultrasound Volterra

filters, where the slanted arrow indicates an adaptive mechanism to obtain coefficients of the

Volterra filters.
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improved Volterra model of the PAL. The U2VF models the PAL from the ultrasound

input to the ultrasound output, as illustrated in Fig. 2(b). In Sections II and III, it will be

shown that when the Berktay equation is extended to include the frequency response of the

ultrasonic emitter, it is readily carried out by the parallel cascade structure of the U2VF.

In Section IV, experimental results are presented to demonstrate that the U2VF is a more

generic Volterra model than the A2VF, when there are changes in the modulation method

and modulation index.

II. THEORY

A. Berktay Equation

As mentioned, the Berktay equation is the basis of modulation methods of the PAL.

The primary source strength density q1 is given by

q1 =
βP 2

0

ρ20c
4
0

exp (−2α0z)
∂

∂t
[E (t) cos (ωct)]

2 , (1)

where β is the nonlinear coefficient; ρ0 is the density of air; and c0 is the speed of sound in

air; P0, α0, and ωc are initial amplitude, attenuation rate, angular frequency of the

ultrasonic carrier, respectively; z is the on-axis coordinate; t is the retarded time; and E (t)

is the envelope function, which varies slowly compared to the ultrasonic carrier10.

The self-demodulated source strength density is extracted from (1), keeping only the
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audible frequency component as

qd =
βP 2

0

ρ20c
4
0

exp (−2α0z)
∂

∂t

[
E2 (t)

2

]
. (2)

The self-demodulated pressure is calculated by

pd =
ρ0S0

4π

∫ z′

0

1

z′ − z
∂qd
∂t
dz =

βP 2
0S0

8πρ0c40
u (la)

∂2

∂t2
E2 (t) , (3)

where z′ is the observation point; S0 is the source size; la is the effective length of the PAA;

and it is also defined for simplicity that

u (la) =

∫ la

0

exp (−2α0z)

z′ − z
dz. (4)

When the far-field and absorption-limited conditions are assumed, substituting

u (+∞) = 1/2α0z
′ into (3) yields the Berktay equation as

pd =
βP 2

0S0

16πρ0c40α0z′
∂2

∂t2
E2 (t) . (5)

B. Modulation Methods

In the first known PAL, the double sideband (DSB) modulation method was

adopted3. The envelope function of the DSB modulation method is written as

EDSB (t) = 1 +mA (t) , (6)

where m is the modulation index and A (t) is the audio input. The frequency response of

the PAL decreases with a slope of 12 dB per octave as a result of the second derivative in
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(5). Moreover, the second harmonic ratio (SHR), i.e. the ratio of the amplitude of the

second harmonic to that of the fundamental frequency, is proportional to the modulation

index.

As a direct inverse system to the Berktay equation, the square root (SRT) modulation

method was introduced to eliminate the nonlinear distortion of the PAL4. The envelope

function of the SRT modulation method is written as

ESRT (t) =
√

1 +mA (t). (7)

The drawback of the SRT modulation method occurs in the implementation stage, because

the ultrasonic emitter has neither an infinite bandwidth nor a flat frequency response5.

Therefore, the Taylor expansion of (7) is more meaningful in the performance analysis of

the SRT modulation method, which is written as

ESRT (t) = 1 +
m

2
A (t)− m2

8
A2 (t) +O

(
A3
)
, (8)

where O (A3) denotes the third and higher order terms. When the modulation index is

small, the SRT modulation method can be approximated by the DSB modulation method

using half the modulation index.

C. Extended Berktay Equation

The ultrasonic emitter of the PAL is made up of a number of piezoelectric transducers
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Figure 3: Block diagram of the parametric array loudspeaker assuming two stages of self-

demodulation.

(PZTs) that have individual frequency responses21. In order to take them into account, the

extended Berktay equation is derived inductively as follows.

Fig. 3 illustrates a tentatively assumed case where there are two subsequent stages of

self-demodulation along the axis of the ultrasonic emitter. The first stage takes place in the

near-field of individual PZTs. The second stage takes place in the far-field of individual

PZTs but within the near-field of the whole ultrasonic emitter.

In the near-field of individual PZTs, they are treated as piston sources. Primary

waves transmitted by a PZT do not overlap with those transmitted by other PZTs.

Therefore, self-demodulated waves are independently generated. If the impulse response of

the ith PZT is denoted as si (t), the superposition of self-demodulated waves yields the
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audio output of the PAL as

pn =
βP 2

0S0

8πρ0c40M
u (ln)

M∑
i=1

{sa (t) ∗ ∂
2

∂t2
{si (t) ∗ [E (t) cos (ωct)]}2}, (9)

where M is the total number of PZTs; ln denotes the range of the near-field of individual

PZTs; sa (t) is the impulse response of a low-pass filter to suppress ultrasonic frequencies,

modeling the extraction of (2) from (1); and ∗ denotes linear convolution. Because the

second derivative and convolution are linear operators, the sequence of them is

exchangeable.

Beyond the near-field of individual PZTs, primary waves transmitted by neighboring

PZTs start to overlap and result in large virtual sources. It is impractical to measure

acoustically the characteristics of virtual sources. To simplify the derivation, we have

assumed that virtual sources are created in the same size as the ultrasonic emitter

immediately after the first stage of self-demodulation. Therefore, the audio output of the

PAL contributed by the second stage of self-demodulation is expressed by

pf =
βP 2

0S0

8πρ0c40
[u (la)− u (ln)] {sa (t) ∗ ∂

2

∂t2
{

M∑
i=1

si (t) ∗ [E (t) cos (ωct)]}2}. (10)

Eqs. (9) and (10) can be summarized into a general formula that is not limited to two

stages of self-demodulation as

pd = sa (t) ∗
M̂∑
i=1

Ki{ŝi (t) ∗ [E (t) cos (ωct)]}2, (11)
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where Ki is a positive value, related to the effective length of a group of PZTs; ŝi (t) is the

overall frequency response of the group of PZTs, combined with the second derivative; and

the upper bound of the summation is denoted by M̂ , depending on the number of PZTs

and stages of self-demodulation. For instance, we have tentatively assumed in Fig. 3 that

pd (x) = pn (x) + pf (x) , (12)

whereby M̂ = M + 1; ŝi (t) = si (t) and Ki = βP 2
0S0u (ln) /8πρ0c

4
0M , when i ≤M ;

ŝM+1 (t) =
∑M

i=1 si (t) and KM+1 = βP 2
0S0 [u (la)− u (ln)] /8πρ0c

4
0.

Eq. (11) is referred to as the extended Berktay equation in this paper. It will be

elaborated in the next section that (11) is readily carried out by the parallel cascade

structure of the U2VF. When PZTs are assumed to have the same frequency response, the

extended Berktay equation is simplified to the Berktay equation with an overall frequency

response of the ultrasonic emitter. This special case has been examined with the

one-dimension A2VF previously22.

III. MODELING METHOD

A. Volterra Filter

Nonlinearity of the PAL can be modeled by the Volterra filter as

yn =
N−1∑
i=0

h1 (i)xn−i +
N−1∑
i=0

N−1∑
j=0

h2 (i, j)xn−ixn−j + εn, (13)
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where xn and yn are the input and output samples at the the discrete time index n; εn is

the model error, containing the third and higher order nonlinearity; N is the memory

length; h1 and h2 are the first and second order Volterra kernels, respectively23.

Eq. (13) can be rewritten in the vector notation as

yn = HTXn + εn, (14)

where

H = [h1 (0) , h1 (1) , . . . , h1 (N − 1) ,

h2 (0, 0) , h2 (0, 1) , . . . , h2 (N − 1, N − 1)]T (15)

and

Xn = [xn, xn−1, . . . , xn−N+1, xnxn, xnxn−1, . . . , xn−N+1xn−N+1]
T . (16)

Both H and Xn are vectors with the length of N2 +N . The normalized least mean

squares (NLMS) algorithm can be adopted to estimate H iteratively as

Hn+1 = Hn + µ
Xnεn
XT

nXn

, (17)

where µ is the step size24;25.

B. Parallel Cascade Structure

Computational complexity of the Volterra filter can be reduced by adopting the

parallel cascade structure26;27. When h2 is real symmetric, it is decomposed into
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Figure 4: Parallel cascade structure of the second order Volterra kernel, where vi (n) de-

notes an eigenvector of the second order Volterra kernel and λi denotes the corresponding

eigenvalues.

h2 = V TΛV , where Λ := diag (λ1, . . . , λN) is a diagonal matrix consisting of eigenvalues of

h2 and rows of V are the corresponding eigenvectors. Providing the input vector

x = [xn, xn−1, . . . , xn−N+1]
T , the second order nonlinear output is manipulated as

xTh2x = xT
(
V TΛV

)
x = (V x)T Λ (V x) . (18)

Eq. (18) provides the basis of the parallel cascade structure. The ith row of V is

treated as a finite impulse response (FIR) filter, of which the coefficients are denoted as

vi (n) for convenience. Each element of V x equals the filtered output of x. Therefore, (18)
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is interpreted as a linear combination of the squared outputs of a bank of FIR filters, as

illustrated in Fig. 4. When there are M − L trivial eigenvalues of h2, keeping only the L

largest eigenvalues saves the computational cost of implementing the Volterra filter.

When x (n) = E (n) cos (ωcn), the audio output of the PAL calculated by the parallel

cascade structure of the U2VF is written as

pd (n) = sa (n) ∗
L∑
i=1

λi{vi (n) ∗ [E (n) cos (ωcn)]}2. (19)

This is an equivalent form of the extended Berktay equation. Eigenvalue λi and eigenvector

vi (n) correspond to parameter Ki and impulse response ŝi (t), respectively. When PZTs in

the ultrasonic emitter have similar frequency responses, L can be much smaller than M .

Particularly when L = 1, (19) is simplified to the one-dimension Volterra filter, where only

the main diagonal elements are implemented for the second order Volterra kernel22. By

doing so, the computational cost is greatly reduced but the model accuracy is traded off.

IV. Experimental Validation

The experiment is carried out in a sound proof room (2.9× 3.1× 2.1 m3), where the

microphone (B&K 4191L) is placed 3.0 m away from the ultrasonic emitter (Mitsubishi

MSP-30E). The microphone is a half-inch free-field microphone with a designed frequency

range from 3 Hz to 40 kHz. The ultrasonic emitter is made up of more than 200 PZTs and

has a diameter of 18 cm. Both the digital-to-analog and analog-to-digital converters have
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Figure 5: (color online) Experimental setup for evaluating the Volterra filters that model

the nonlinearity of the parametric array loudspeaker, with an inserted photograph.

the sampling frequency of 192 kHz and the resolution of 32 bit. The experimental setup is

illustrated in Fig. 5.

The carrier frequency is chosen at 40 kHz. A band-passed white noise from 32 kHz to

48 kHz is transmitted from the ultrasonic emitter for the U2VF identification. The

ultrasound level is maintained at 110 dB. Thereafter, the DSB and SRT modulation

methods are implemented with the modulation index m changing from 0.1 to 1.0 with an

interval of 0.1. A group of A2VFs are identified for the DSB modulation method with

different modulation indexes by the same low-passed white noise cut off at 8 kHz. A2VFs

are not identified for the SRT modulation method, because the SRT modulation method

leads to infinite harmonics of the fundamental frequency. Since the Volterra filter is
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truncated at the second order in this paper, it is inadequate to model the PAL adopting

the SRT modulation method. This is an obvious limitation of the A2VF when the

modulation method introduces high order nonlinearity.

The sound speed in dry air at 20◦C is estimated to be 343 m/s. The acoustic delay

from the ultrasonic emitter to the microphone is 8.75 ms, which equals 1680 samples at the

sampling frequency of 192 kHz. The causality of the Volterra filter is not satisfied if the

memory length is set shorter than the acoustic delay. On the other hand, because the

computational complexity increases exponentially with the memory length, using a long

memory length is not desired. The input and output of the identification have to be

aligned so that the memory length can be shortened. In this paper, the acoustic delay is

offset by 1600 samples and the memory length is set to 300 samples.

Total harmonic distortion (THD) and intermodulation distortion (IMD) are two

widely used performance measures of the PAL. The THD level is defined as the ratio of the

root mean square (RMS) amplitude of the audible harmonics to the RMS amplitude of the

fundamental frequency. The IMD level is defined as the ratio of the RMS amplitude of the

audible intermodulation frequencies to the RMS amplitude of the two fundamental

frequencies. The identified U2VF and A2VFs are evaluated by the simulated THD and

IMD tests. The THD and IMD levels are also measured by the experimental setup in Fig.

5. Model accuracies of the U2VF and A2VFs are judged by how close the simulation
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results can match the measurement results. A sine sweep is used as the testing audio input,

of which the frequency varies from 0.5 kHz to 8 kHz. In the IMD test, another sine tone at

1.7 kHz is added in. The amplitude of the sine tone is four times as that of the sine sweep.

THD curves of the DSB and SRT modulation methods are plotted in Fig. 6. In Figs.

6(a) and (b), it is shown that the A2VF identified for a specific modulation index can only

be used to predict the THD level of the same modulation index. To make the comparison

between the U2VF and A2VFs for the SRT modulation method, the A2VFs identified for

the DSB modulation method are used with the modulation index halved. It is shown in Fig.

6(c) that the A2VF identified for m = 0.25 predicts the THD level of the SRT modulation

method when m = 0.5 more accurately than the A2VF identified for m = 0.5. In Fig. 6(d),

since the modulation index is large, the approximation implied by (8) is no longer accurate.

Therefore, the A2VF identified for m = 0.5 is only adequate to predict the THD level of

the SRT modulation method when the testing frequency is above 5 kHz. In such a case,

the frequency response of the ultrasonic emitter works like a band-pass filter so that the

PAL cannot generate the third and higher order harmonics that are audible. When the

testing frequency is below 5 kHz, the A2VF identified for m = 0.5 tends to under estimate

the THD level of the SRT modulation, because the third and higher order harmonics

become audible and they are not modeled by A2VFs truncated at the second order.
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Figure 6: (color online) Total harmonic distortion curves of (a) DSB modulation method

using the modulation index of 0.5; (b) DSB modulation method using the modulation index

of 1.0; (c) SRT modulation method using the modulation index of 0.5; (d) SRT modulation

method using the modulation index of 1.0.
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Figure 7: (color online) Averaged total harmonic distortion curves of (a) DSB modulation

method; (b) SRT modulation method.

In Fig. 7, the averaged THD levels across the testing frequencies are plotted with

respect to the modulation index. Fig. 7 shows that when there are changes in the

modulation method and modulation index, the U2VF can always predict the THD level of

the PAL with certain accuracy. The model accuracy of the A2VF is only high when the

identification and THD measurement takes place under identical conditions. The model

accuracy of the A2VF is found to decrease with the modulation index. This is because

when the modulation index is low, the second order nonlinearity becomes weak in the

audible frequency band. In this case, the output of the first order Volterra kernel is about

20 dB higher than the output of the second order Volterra kernel. The second harmonic

amplitude may be lower than the noise floor. The U2VF overcomes this problem because
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the second order nonlinear output remains strong in the ultrasonic frequency band.

Therefore, using a microphone that can measure the second harmonic of the ultrasonic

input benefits the model accuracy of the U2VF. In this paper, due to the limited frequency

range of the microphone, the model accuracy of the U2VF is slightly compromised.

Fig. 8 shows the frequency responses of the DSB and SRT modulation methods when

m = 0.5 and m = 1.0. General trends are similar, since they are obtained with the same

ultrasonic emitter. When the modulation index is specified, the sound pressure level of the

SRT modulation method is lower than that of the DSB modulation method. When the

modulation method is fixed, higher modulation index leads to higher sound pressure level.

Furthermore, IMD curves and averaged IMD curves are plotted in Figs. 9 and 10,

respectively. It is noteworthy that when the A2VFs identified for the DSB modulation

method are used for the SRT modulation method, the modulation indexes are halved.

Similar to the observations obtained in Figs. 6 and 7, the U2VF provides a more generic

Volterra model of the PAL, whereas the A2VF lacks the flexibility upon changes in the

modulation method and modulation index.

Changing the modulation method is not a common practice after the PAL is deployed

in an application. However, when designing the PAL, we need to evaluate the performance

of different modulation methods. The A2VF is shown to be inadequate to serve this
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Figure 8: (color online) Frequency responses of (a) DSB modulation method using the

modulation index of 0.5; (b) DSB modulation method using the modulation index of 1.0;

(c) SRT modulation method when using the modulation index of 0.5; (d) SRT modulation

method using the modulation index of 1.0.
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Figure 9: (color online) Intermodulation distortion curves of (a) DSB modulation method

using the modulation index of 0.5; (b) DSB modulation method using the modulation index

of 1.0; (c) SRT modulation method using the modulation index of 0.5; (d) SRT modulation

method using the modulation index of 1.0.
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Figure 10: (color online) Averaged intermodulation distortion curves of (a) DSB modulation

method; (b) SRT modulation method.

purpose, because many modulation methods introduce high order nonlinearity. Moreover,

changes in the modulation index are more often incurred in the PAL. Since the modulation

index is multiplied with the audio input, time varying amplitude of the audio input is

equivalent to time varying modulation index.

V. Conclusions

Two types of Volterra filters have been studied to model the nonlinearity of the PAL

in order that preprocessing techniques can be developed and evaluated under a wide range

of operating conditions. The A2VF, although a standard in audio systems, encounters

difficulties when the modulation method and modulation index are changed. Therefore, it

may not be useful during the evaluation of preprocessing techniques that introduce high
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order nonlinearity. In contrast, the U2VF recommended by this paper has demonstrated

constantly high model accuracy upon changes in the modulation method and modulation

index. As a more generic Volterra model of the PAL, the U2VF can be used to synthesize

different A2VFs, without the need to carry out extra measurements. Existing linearization

methods are applicable to those synthesized A2VFs. A combination of the synthesis and

linearization methods will eventually lead to the development of a sophisticated

preprocessing technique that reduces the perceptible nonlinear distortion of the PAL better

than the state of the art.
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Figure Captions

Figure 1. Block diagram of the parametric array loudspeaker.

Figure 2. Block diagram of the (a) audio-to-audio and (b) ultrasound-to-ultrasound

Volterra filters, where the slanted arrow indicates an adaptive mechanism to obtain

coefficients of the Volterra filters.

Figure 3. Block diagram of the parametric array loudspeaker assuming two stages of

self-demodulation.

Figure 4. Parallel cascade structure of the second order Volterra kernel, where vi (n)

denotes an eigenvector of the second order Volterra kernel and λi denotes the

corresponding eigenvalues.

Figure 5. (color online) Experimental setup for evaluating the Volterra filters that model

the nonlinearity of the parametric array loudspeaker, with an inserted photograph.

Figure 6. (color online) Total harmonic distortion curves of (a) DSB modulation method

using the modulation index of 0.5; (b) DSB modulation method using the modulation

index of 1.0; (c) SRT modulation method using the modulation index of 0.5; (d) SRT

modulation method using the modulation index of 1.0.

Figure 7. (color online) Averaged total harmonic distortion curves of (a) DSB modulation

method; (b) SRT modulation method.
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Figure 8. (color online) Frequency responses of (a) DSB modulation method using the

modulation index of 0.5; (b) DSB modulation method using the modulation index of 1.0;

(c) SRT modulation method when using the modulation index of 0.5; (d) SRT modulation

method using the modulation index of 1.0.

Figure 9. (color online) Intermodulation distortion curves of (a) DSB modulation method

using the modulation index of 0.5; (b) DSB modulation method using the modulation

index of 1.0; (c) SRT modulation method using the modulation index of 0.5; (d) SRT

modulation method using the modulation index of 1.0.

Figure 10. (color online) Averaged intermodulation distortion curves of (a) DSB

modulation method; (b) SRT modulation method.


