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Abstract

This paper describes a method to compute the far-field directivity of a parametric loud-

speaker array (PLA), whereby the steerable parametric loudspeaker can be implemented

when phased array techniques are applied. The convolution of the product directivity and

the Westervelt’s directivity is suggested, substituting for the past practice of using the prod-

uct directivity only. Computed directivity of a PLA using the proposed convolution model

achieves significant improvement in agreement to measured directivity at a negligible com-

putational cost.
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I. INTRODUCTION

The parametric loudspeaker is an application of the parametric acoustic array in

air1;2. It allows an equally narrow audio beam to be created from a significantly smaller

aperture size compared to the conventional loudspeaker and loudspeaker array. Past

studies of the parametric loudspeaker focused mostly on suppressing the harmonic

distortion3;4;5 and improving the sound quality6. In those studies, the ultrasonic emitter of

the parametric loudspeaker was assumed to be a circular or rectangular source, even

though it was made up of numerous piezoelectric ultrasonic transducers (PZTs) in practice.

If the PZTs could be grouped into several channels and fed different driving signals, the

overall system becomes a parametric loudspeaker array (PLA), since each channel in such a

system is effectively a parametric loudspeaker. It has been proven by experiments that the

delay-and-sum beamforming approach applied to the primary waves can control the

directivity of the difference frequency wave in a PLA7;8.

However, there is difficulty in computing the far-field directivity of a PLA, especially

when the computational power is constrained. In Westervelt’s original derivation1, the

directivity of the difference frequency wave was described by the Westervelt’s directivity

under assumptions that the primary waves were transmitted in collimated narrow beams

and the resultant difference frequency wave would propagate like a linear wave. Since then,

Berktay has extended Westervelt’s derivation in two aspects9. Firstly, an envelope function
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is introduced to describe the self-demodulation process of a pulsed ultrasonic carrier on its

propagation axis. This leads to the Berktay’s far-field solution, which is the most widely

applied model equation in past studies of the parametric loudspeaker4;5;6. Secondly, an

aperture factor is considered to compensate for the discrepancy between measured

directivity and the Westervelt’s directivity. The aperture factor is a function of the

wavenumber of the difference frequency wave depending on the shape of the ultrasonic

emitter.

Following that, Berktay and Leah developed Berktay’s extensions and included the

product directivity of the primary waves in a volume integral to amend the computed

far-field directivity of a parametric transmitting array10. In other words, the aperture

factor has been substituted by the product directivity of the primary waves. They have

further interpreted that when the product directivity of the primary waves is as sharp as

an impulse function, the volume integral is simplified into the Westervelt’s directivity; and

when the Westervelt’s directivity is as sharp as an impulse function, the volume integral is

simplified into the product directivity. All aforementioned model equations comply with

the assumption of collimated narrow beams. Hence, none of them can be readily applied to

a PLA. With the exception of main lobes, side lobes and grating lobes of the primary

waves are rarely collimated in a PLA8. Furthermore, the directivity of a PLA is usually of

interest within an angular range implied by the beam width of the PZTs. For example,
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some PZTs resonating at 40 kHz with a diameter of 10 mm possess a typical beam width

of 80◦. Therefore, the directivity of a PLA made up of these PZTs should be measured

from −40◦ to 40◦ with respect to the normal axis of the PZTs. This wide angular range

conflicts with the assumption of narrow beams of the primary waves.

On the other hand, the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation describes

the combined nonlinear effects of absorption, diffraction, and nonlinearity, which is not

strictly restricted by the assumption of collimated narrow beams11. Due to the parabolic

approximation, the KZK equation is applicable in the paraxial region, which has an

approximate angular validity limit of ±20◦ 12. This is not wide enough for many

applications of the parametric acoustic array. Hence, several researchers have attempted to

extend the applicability of the KZK equation to arbitrary angles. For example, Fox et al.

have substituted the steered beam axis for the normal axis of the ultrasonic emitter to

become the propagation axis so that the KZK equation can be used to compute steered

nonlinear fields13. Kamakura et al. have used two Padé terms in the analysis of the

nonlinear propagation of a parametric sound beam emitted from a circular piston source,

and excellent agreement between measured directivity and computed directivity using their

proposed model equation has been achieved14. A combination of these two mentioned

approaches would lead to a viable numerical solution to the far-field directivity of a PLA, if

the computational cost was not a constrain.
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Therefore, previous attempts to compute the far-field directivity of a PLA simply uses

the product directivity of the primary waves, which is inspired by Darvennes and

Hamilton’s seminal work on the intersection of two Gaussian beams15. Despite its ease of

application, the accuracy of the product directivity model is adequately good, only in the

vicinity of grating lobes of the primary waves8. A modification to the product directivity

model, namely the advanced product directivity model, has been previously proposed16.

Improved agreement between measured directivity and computed directivity has been

observed particularly at directions near the first side lobes of the primary waves. However,

overall accuracies of both product directivity models are not yet satisfactory. This is

probably because the equivalent transformation from a linear array of piston sources to a

circular array of Gaussian sources is carried out based on directivity matching. Hence, a

PLA consisting of 8 channels is approximated only by 7 Gaussian sources at the frequency

of each primary wave. As compared to the classic Gaussian source expansion of a piston

source17, there are 10 Gaussian sources to represent a piston source accurately. Hence, a

possibility of improving the product directivity models is through finding an accurate

Gaussian source expansion of a PLA, but once again this brings up the issue of

computational complexity.

In this paper, a convolution model to compute the far-field directivity of a PLA is

derived from the Westervelt’s directivity. The convolution model is a simple analytical
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equation and gives accurate predictions of the far-field directivity of a PLA when different

phased array techniques are applied. Moreover, the convolution model is also able to be

applied to a parametric loudspeaker, as the parametric loudspeaker is an unsteered PLA

when a common driving signal is fed to all channels with no delays. The applicability of

the convolution model to the curved and omnidirectional PLAs18;19 is expected but beyond

the discussion of this paper.

II. THEORY

A. Westervelt’s Directivity

Assumptions made in Westervelt’s treatment are invoked1. The primary waves are

transmitted in extremely narrow and perfectly collimated beams, so that the volume

distribution of virtual sources of the secondary waves is represented adequately by a line

distribution along the propagation direction of the primary waves. The pressure level of

the primary sound field at a distance x and time t is considered in the form of

pi (x) =
2∑

n=1

Pne
−αnx cos (ωnt− knx) , (1)

where Pn, αn and kn are the amplitude, attenuation rate, and wavenumber of the primary

wave at ωn respectively.

The geometry in Fig. 1 is adopted to derive the Westervelt’s directivity. The

ultrasonic emitter is placed at the origin and the observation point is located at a distance
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Figure 1: Geometry of the Westervelt’s directivity.

of R0 and an off-axis angle of θ. Nonlinear interactions between the primary waves create

virtual sources along the x axis. Westervelt has derived the source strength density of the

secondary waves as

q =
β

ρ20c
4
0

∂

∂t
p2i , (2)

where β and ρ0 are the nonlinear coefficient and density of a homogeneous and viscous

medium respectively; c0 is the speed of sound at infinitesimal amplitude in the medium1.

For parametric loudspeakers, air is assumed to be the homogeneous and viscous medium.

Inserting Eq. (1) into Eq. (2) yields a decomposition into three terms as

q = qh + qs + qd. (3)

The first term on the right side of Eq. (3) is the source strength density of the harmonic
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waves, which is given by

qh =
β

ρ20c
4
0

2∑
n=1

ωnP
2
ne

−2αnx sin (2knx− 2ωnt) . (4)

The second term is the source strength density of the sum frequency wave, which is given

by

qs =
β

ρ20c
4
0

ωsP1P2e
−αsx sin (ksx− ωst) , (5)

where αs = α1 + α2 is defined; ωs = ω1 + ω2 and ks = k1 + k2 are the angular frequency and

wavenumber of the sum frequency wave respectively.

The third term on the right side of Eq. (3) is of the most interest to a PLA as well as

a parametric loudspeaker. It is the source strength density of the difference frequency

wave, which is given by

qd =
β

ρ20c
4
0

ωdP1P2e
−αsx sin (kdx− ωdt) , (6)

where ωd = |ω1 − ω2| and kd = |k1 − k2| are the angular frequency and wavenumber of the

difference frequency wave. For simplicity, Eq. (6) is rewritten as the real component of a

complex source strength density:

qd =
β

2ρ20c
4
0

ωdP1P2e
−αsx ×

(
−jejkdx−jωdt

)
+ c.c., (7)

where j is the imaginary unit and c.c. is short for complex conjugate.
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The far-field pressure level of the difference frequency wave can be obtained from the

volume integral, which is given by

pd =
ρ0
4π

∫ ∫ ∫
∂qd
∂t

ejωdR(x,y,z)

R (x, y, z)
dxdydz, (8)

where R (x, y, z) is the distance from the observation point to a virtual source. Berktay and

Leah have multiplied the product directivity with the integral kernel10 and numerical

techniques are requested to solve this volume integral and its variants20;21;22. Noting that

the volume distribution of virtual sources of the difference frequency wave is represented

adequately by the line distribution give by Eq. (7), the far-field pressure level of the

difference frequency wave is simplified into the linear integral, which is given by

pd (R0, θ) =
ρ0S0

4π

l∫
0

∂qd
∂t

ejkdR(x)

R (x)
dx, (9)

where S0 is the cross-sectional area of collimated beams; l is the length of the virtual source

array; R (x) is the distance from the observation point to a virtual source locating at x.

Under the far-field and absorption-limited source conditions1;21, l should be much

shorter than R0 and yet long enough so that the primary waves are sufficiently attenuated

beyond the point x = l. Therefore, R (x) can be approximated by R0 in the denominator

and by R0 − x+ x tan2 θ in the exponent of the Green’s function in Eq. (9). Applying

these approximations and inserting Eq. (7) into Eq. (9) yield

pd (R0, θ) =
−βω2

dP1P2S0

8πρ0c40R0

ejkdR0−jωdt

l∫
0

e−αsx+jkdx tan
2 θdx+ c.c.. (10)
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This linear integral in Eq. (10) is elementary. When the primary waves are

transmitted in perfectly collimated beams, we can change the upper limit of the integral

from l to +∞ without introducing much error. However, this approximation leads to a

larger computed pressure level if the primary waves are not transmitted in well collimated

beams. Nonetheless, by changing the upper limit of the integral to +∞, we obtain

pd (R0, θ) =
βω2

dP1P2S0

8πρ0c40R0

ejkdR0−jωdt

−αs + jkd tan2 θ
+ c.c. (11)

and rewrite it as

pd (θ) = KP1P2DW (θ) cos (ωdt− kdR0 − φ) , (12)

where

K = − βω2
d

4παsR0ρ0c40
; (13)

DW (θ) =
αs√

α2
s + k2d tan4 θ

(14)

is the Westervelt’s directivity; and

tanφ =
kd tan2 θ

αs
(15)

is the angular response.

B. Convolution Model

Eq. (12) can be further modified for collimated beams of the primary waves

transmitted at an off-axis angle of ψn in stead of 0◦ in the previous subsection. Pressure
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Figure 2: Geometry of the convolution model for computing the far-field directivity of a

parametric loudspeaker array.

levels of the primary waves are expressed by P1 = D1 (ψn) and P2 = D2 (ψn), where D1 (θ)

and D2 (θ) are two real functions of the angular variable θ. At this step, it is assumed that

D1 (θ) and D2 (θ) have non-zero values only at θ = ψn. Therefore, the pressure level of the

difference frequency wave in the far field is given by

pd (θ) = KD1 (ψn)D2 (ψn)DW (θ − ψn) cos (ωdt− kdR0 − φn) , (16)

where the angular response is modified to

tanφn =
kd tan2 (θ − ψn)

αs
. (17)
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Assuming that only weak nonlinear interactions occur in a PLA, the wave

superposition principle is still valid for the difference frequency wave. When more than one

pair of collimated beams of the primary waves are transmitted in a space, the pressure level

of the difference frequency wave can be presented in a summation as

pd (θ) = K

N∑
n=1

D1 (ψn)D2 (ψn)DW (θ − ψn) cos (ωdt− kdR0 − φn) . (18)

where N is the total number of collimated beam directions; D1 (θ) and D2 (θ) become

discrete functions representing directivity of the primary waves. When N = 1 and θ1 = 0,

Eq. (18) is simplified back to Eq. (12).

Substituting ψn =
(
n− N+1

2

)
∆ψ into Eq. (18) and dropping the angular response

term, we obtain

pd (θ) = K cos (ωdt− kdR0)

N−1
2∑

n=−N−1
2

D1 (n∆ψ)D2 (n∆ψ)DW (θ − n∆ψ) . (19)

When ∆ψ is approaching infinitesimal, Eq. (19) is rewritten in the integral form as

pd (θ) = K cos (ωdt− kdR0)

ψ0∫
−ψ0

D1 (ψ)D2 (ψ)DW (θ − ψ) dψ, (20)

where ψ0 is the upper angular limit of the computed directivity of the difference frequency

wave.

Eq. (20) complies with the definition of convolution. When the directivity of the

primary waves in a PLA are denoted as D1 (θ) and D2 (θ), the directivity of the difference



Shi, JASA, p. 14

frequency wave is computed using Eq. (20) as

Dd (θ) = [D1 (θ)D2 (θ)]⊗DW (θ) , (21)

where ⊗ denotes the linear convolution operation.

Hence, the directivity of the difference frequency wave is given by the convolution of

the product directivity and the Westervelt’s directivity. As aforementioned, Berktay and

Leahy have observed in their proposed volume integral that when the product directivity is

as sharp as an impulse function, the volume integral is simplified into the Westervelt’s

directivity; and when the Westervelt’s directivity is as sharp as an impulse function, the

volume integral is simplified into the product directivity10. The same observation is made

by the convolution model as well. In digital signal processing, the linear convolution

operation is the fundamental of digital filters. The Westervelt’s directivity serves as a

spatial filter on the product directivity of the primary waves. When the Westervelt’s

directivity is as sharp as an impulse function, the directivity of a PLA becomes a sampled

version of the product directivity. When the Westervelt’s directivity is wide, the directivity

of a PLA is given by a smoothed version of the product directivity. Therefore, side lobes

are not likely to be observed in the PLA.

III. RESULTS

A. Measurement Setup
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Figure 3: Measurement setup of a laboratory-made parametric loudspeaker array.

The measurement setup of a laboratory-made PLA is illustrated in Fig. 3. The PLA

consists of 8 channels and every channel consists of 4 PZTs. The uniform spacing between

channels is adjustable. A bi-frequency ultrasonic signal is fed to all channels, but it is

delayed by different amounts in every channel in order to steer the primary waves to a

desired direction. All PZTs have a resonance frequency of about 40 kHz and a diameter of

9.9 mm. The typical beam width of the PZTs is 80◦. When driven at the resonance

frequency, the PLA is capable of transmitting a maximum pressure level of 120 dB

measured at 4 m away from the PLA.

Measurements are carried out in an anechoic chamber with a dimension of

6 (m)× 3 (m)× 3 (m). Room temperature is maintained at 20◦C, but relative humidity
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varies. Directivity of the PLA is measured from −40◦ to 40◦ at a resolution of 1◦ controlled

by a rotation stage. The primary and difference frequency waves are captured by B&K

Type 4138 and 4134 microphones respectively. The microphones are placed at a distance of

4 m away from the center of the rotation stage, which is considered to be the far field of

the PLA and the primary waves have been sufficiently attenuated.

Directivity and frequency response of the PZTs have already contributed to measured

directivity of the primary waves. Therefore, when directivity of the difference frequency

wave is computed using measured directivity of the primary waves, the convolution model

and product directivity models can be compared with reference to measured directivity of

the difference frequency wave. In figures of the following subsections, measured directivity

of the difference frequency wave is labeled as “Measurement”; product directivity of the

primary waves is labeled as “Product Directivity”; the computed directivity using the

convolution model is labeled as “Convolution”; the computed directivity using the

advanced product directivity model is labeled as “Gaussian Directivity”, since measured

directivity of the primary waves is approximated by a circular array of Gaussian sources in

the first step of this method16.

B. Collimated Main Lobes of the Unsteered Primary Waves

First of all, an unsteered PLA is tested. Room temperature and relative humidity are
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Figure 4: Directivity of the difference frequency wave at 4 kHz generated from the primary

waves at 38 kHz and 42 kHz.

recorded at 20◦C and 30% respectively. The bi-frequency ultrasonic signal is generated as a

combination of 38 kHz and 42 kHz sine waves. The uniform spacing between channels is

set to 10 mm. Since no delay is implemented, this unsteered PLA functions identically to a

parametric loudspeaker. Maximum pressure levels of the primary waves at 38 kHz and 42

kHz are recorded as 103.7 dB and 109.7 dB respectively. The difference frequency wave is

created at 4 kHz by the parametric acoustic array in air. The maximum pressure level of
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Figure 5: Directivity of the difference frequency wave at 8 kHz generated from the primary

waves at 36 kHz and 44 kHz.

the 4 kHz wave is recorded as 54.0 dB.

Measured directivity and computed directivity are normalized and plotted in Fig. 4.

The proposed convolution model shows the best results among the three directivity models.

It provides us with the closest matches to the measured directivity at angles from −30◦ to

40◦. The product directivity models fail to match the beam width of the difference

frequency wave. Their predictions tend to provide a much narrower main lobe and a few
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side lobes that are not observed in the measured directivity. Some mismatches of the

computed directivity using the convolution model to the measured directivity are observed

only from −40◦ to −30◦. However, none of the three directivity models shows good

agreement in this angular range.

In addition, it is known from the Nyquist-Shannon sampling theorem that a

maximum spacing of 4.1 mm is necessary to avoid spatial aliasing of the primary wave at

42 kHZ. Undoubtedly, grating lobes are observed in the measured directivity of the

primary waves. However, they are not found in the measured directivity of the difference

frequency wave as shown in Fig. 4. This is explained by grating lobe elimination8. Because

spatial aliasing period depends on frequency, the primary waves at different frequencies

have different spatial aliasing periods. When main lobes of the primary waves are

collimated, their grating lobes are separated and result in eliminated grating lobes of the

difference frequency. Grating lobe elimination becomes obvious when the ratio of the

difference frequency to the higher primary frequency or carrier frequency is sufficiently

large. For example, in a parametric loudspeaker using a carrier frequency of 40 kHz,

grating lobe elimination is generally observed when the difference frequency is above 2 kHz.

Next, the bi-frequency ultrasonic signal is changed to a combination of 36 kHz and 44

kHz sine waves. Maximum pressure levels of the primary waves at 36 kHz and 44 kHz are

recorded as 95.5 dB and 103.0 dB respectively. The difference frequency wave at 8 kHz
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achieves a maximum pressure level of 50.7 dB. Because grating lobe elimination occurs,

there is no grating lobe but a small side lobe of the difference frequency wave observed in

Fig. 5.

The results from the proposed convolution model is still the best among the three

directivity models. Close matches to the measured directivity are observed in vicinities of

the main lobe ranging from −20◦ to 20◦ and the side lobe ranging from −40◦ to −30◦. The

advanced product directivity model outperforms the product directivity. However, both

product directivity models are not able to match the measured directivity closely.

Mismatches of the computed directivity using the convolution model to the measured

directivity are observed at angles from −30◦ to −20◦ and from 20◦ to 40◦. At these angles,

the primary waves are not strong enough to generate a long virtual source array. As

discussed after Eq. (10), when the length of the virtual source array is not long enough, the

approximation of making l = +∞ causes a larger computed pressure level than the

measured value. Despite all these factors, the proposed convolution model is able to

predict the beam width and side lobe attenuation accurately for the unsteered PLA in our

measurements.

C. Collimated Main Lobes of the Steered Primary Waves

In the case of a steered PLA, the uniform spacing between channels remains at 10
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Figure 6: Directivity of the difference frequency wave at 4 kHz steered to −20◦ from the

primary waves at 38 kHz and 42 kHz.

mm. Room temperature and relative humidity are recorded at 20◦C and 50% respectively.

The bi-frequency ultrasonic signal is generated as a combination of 38 kHz and 42 kHz sine

waves. A delay line is implemented in every channel to steer main lobes of the primary

waves simultaneously to −20◦. The primary waves at 38 kHz and 42 kHz achieve maximum

pressure levels of 101.3 dB and 101.4 dB respectively. The readings are lower than those in

the unsteered PLA due to directivity of the PZTs. The difference frequency wave at 4 kHz
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achieves a maximum pressure level of 49.7 dB.

Measured directivity and computed directivity are normalized to this pressure level

and plotted in Fig. 6. The proposed convolution model predicts the most accurate main

lobe as compared to the product directivity models. However, an almost constant error of 3

dB is observed in the vicinity of the side lobe. This can be explained by the approximation

of making l = +∞ in Eq. (10). After compensating for the 3dB error, the convolution

model still cannot match the notches closely in the measured directivity. However, the

product directivity model is uncannily accurate in this angular range. It shows that the

actual Westervelt’s directivity becomes much sharper than the theoretical one given by Eq.

(14) in the vicinity of the side lobe. As compared to the product directivity model, the

advanced product directivity improves agreement to the measured directivity at first side

lobes of the primary waves, but introduces errors at the side lobe of the difference

frequency wave. Overall, the trade off is between predicting the main lobe and matching

the side lobe. Therefore, the convolution model, which is able to yield the most accurate

beam width, is of the great importance to applications of the PLA.

The bi-frequency ultrasonic signal is changed to a combination of 36 kHz and 44 kHz

sine waves. Both the primary waves at 36 kHz and 44 kHz are steered to −20◦. Maximum

pressure levels of the primary waves at 36 kHz and 44 kHz are recorded as 90.8 dB and

94.8 dB respectively. The difference frequency wave at 8 kHz achieves a maximum pressure



Shi, JASA, p. 23

Figure 7: Directivity of the difference frequency wave at 8 kHz steered to −20◦ from the

primary waves at 36 kHz and 44 kHz.

level of 45.6 dB. Similar discrepancies are observed in Fig. 7. There is a trade off between

the agreement to the main lobe and the side lobe. The convolution model is better at

predicting the main lobe of the difference frequency wave, but the product directivity

model works excellently for matching the side lobe in the measured directivity. Once again,

the convolution model predicts a higher side lobe than the measured directivity. The

applicability of the convolution model to uncollimated beams of the primary waves at large



Shi, JASA, p. 24

intersection angles may be limited, while the product directivity model is well suited for

these exceptional cases.

D. Uncollimated Main Lobes of the Primary Waves

In this subsection, the convolution model is demonstrated when a dedicated

beamforming approach enabling a PLA to transmit two sound beams simultaneously is

adopted23. In this beamforming approach, different delay lines are implemented in every

channel for the primary waves. Therefore, main lobes of the primary waves are steered to

different directions on purpose. As aforementioned, the primary waves at different

frequencies have different spatial aliasing periods. When main lobes of the primary waves

are collimated, grating lobes are separated by the difference in their spatial aliasing periods

leading to grating lobe elimination8. However, if the main lobes are steered to different

directions that are separated by half of the difference in spatial aliasing periods, the grating

lobes will be separated by the same amount. In this case, one sound beam of the difference

frequency wave is resulted from nonlinear interactions of the main lobes, and another

sound beam is resulted from the grating lobes of the primary waves. Therefore, this

beamforming approach is called the dual beam generation. Without any changes to the

hardware configuration of a PLA, the confined sound can be shared into another location.

Potential applications of the dual beam generation can be found in spatial audio and

assistive listening24, where more than one steerable parametric loudspeakers using the
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Figure 8: Directivity of the difference frequency wave at 4 kHz steered to ±20◦ from the

primary waves at 38 kHz and 42 kHz.

same carrier frequency interfere with each other. Using the dual beam generation, we are

able to explore the performance of the convolution model for uncollimated main lobes of

the primary waves.

Room temperature and relative humidity are recorded at 20◦C and 20% respectively.

In order to generate dual beams of the difference frequency wave at ±20◦, the uniform

spacing between channels is adjusted to 12.5 mm. Different delay lines are implemented in
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Figure 9: Directivity of the difference frequency wave at 4 kHz steered to ±15◦ from the

primary waves at 42 kHz and 46 kHz.

every channel for the primary waves. The primary waves at 38 kHz and 42 kHz are steered

to −21◦ and −19◦ and achieve maximum pressure levels of 100.7 dB and 104.4 dB

respectively. Grating lobes of the primary waves are found at 21◦ and 19◦ respectively. The

resultant difference frequency wave at 4 kHz have two symmetric beams at nearly ±20◦

with a maximum pressure level of 51.3 dB as shown in Fig. 8. As compared to the case of

collimated main lobes of the primary waves, the maximum pressure level of the difference
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frequency wave is slightly reduced. It is observed in Fig. 8 that the convolution model

shows the greatest accuracy among the three directivity models. The agreement of the

convolution model to the measured directivity confirms that it is applicable to

uncollimated main lobes of the primary waves, as well as grating lobes, but only a small

angular separation is allowed.

The uniform spacing between channels is further adjusted to 15 mm to generate dual

beams of the difference frequency wave at ±15◦. The primary waves at 42 kHz and 46 kHz

are steered to −15◦ and −13◦ and achieve maximum pressure levels of 105.0 dB and 93.0

dB respectively. Grating lobes of the primary waves are found at 15◦ and 13◦ respectively.

The resultant difference frequency wave at 4 kHz have two symmetric beams at nearly ±15◦

with a maximum pressure level of 41.5 dB as shown in Fig. 9. With combined effects of the

frequency response of the PZTs and uncollimated main lobes of the primary waves, this

maximum pressure level of the difference frequency wave is much reduced. The convolution

model is still by far the most efficient directivity model in this comparison. Mismatches of

the computed directivity using convolution model to the measured directivity are found at

angles between the dual beams of the difference frequency wave in both Figs. 8 and 9. The

discrepancies allows for future improvement on the convolution model.

IV. CONCLUSIONS
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This paper has presented an analytical model for computing the far-field directivity of

a PLA. Following assumptions made by Westervelt1 and wave superposition principle, a

convolution model has been obtained to represent the far-field directivity of the difference

frequency wave in a simple and clear expression. It has been validated by experiments that

the convolution model results in excellent to satisfactory matches to measured directivity

of a PLA applying different phased array techniques. In conclusion, this concise yet

accurate convolution model is recommended in sound field control applications of the PLA.

Using the product directivity model as a complement to predict the side lobe attenuation

may be necessary when grating lobes of the primary waves are separated by a large angle.

Acknowledgements

This work is supported by MEXT-Supported Program for Strategic Research

Foundation at Private University, 2013-2017.

REFERENCES

1. P. J. Westervelt, “Parametric acoustic array,” J. Acoust. Soc. Am. 35, 535-537

(1963).

2. M. B. Bennett and D. T. Blackstock, “Parametric array in air,” J. Acoust. Soc. Am.

57, 562–568 (1975).

3. M. Yoneyama, J. Fujimoto, Y. Kawamo, and S. Sasabe, “The audio spotlight: An



Shi, JASA, p. 29

application of nonlinear interaction of sound waves to a new type of loudspeaker

design,” J. Acoust. Soc. Am. 73, 1013–1020 (1983).

4. T. Kamakura, M. Yoneyama, and K. Ikegaya, ”Developments of parametric

loudspeaker for practical use,” Proc. 10th Int. Symp. Nonlinear Acoust., Kobe,

Japan, 147–150 (1984).

5. T. D. Kite, J. T. Post, and M. F. Hamilton, “Parametric array in air distortion

reduction by preprocessing,” J. Acoust. Soc. Am. 103, 2871 (1998).

6. C. Shi, H. Mu, and W. S. Gan, ”A psychoacoustical preprocessing technique for

virtual bass enhancement of the parametric loudspeaker,” Proc. 38th Int. Conf.

Acoust. Speech Sig. Process., Vancouver, Canada, 31–35 (2013).

7. N. Tanaka and M. Tanaka, ”Active noise control using a steerable parametric array

loudspeaker,” J. Acoust. Soc. Am. 127, 3526–3537 (2010).

8. C. Shi and W. S. Gan, ”Grating lobe elimination in steerable parametric

loudspeaker,” IEEE Trans. Ultrason. Ferroelectrics Freq. Control 58, 437-450 (2011).

9. H. O. Berktay, “Possible exploitation of non-linear acoustics in under-water

transmitting applications,” J. Sound Vib. 2, 435-461 (1965).



Shi, JASA, p. 30

10. H. O. Berktay and D. J. Leahy, “Farfield performance of parametric transmitters,” J.

Acoust. Soc. Am. 55, 539-546 (1974).

11. M. F. Hamilton, “Sound beams,” in Nonlinear Acoustics, edited by M. F.Hamilton

and D. T. Blackstock (Academic, San Diego, 1998), Chap. 8, pp. 233-261.

12. T. Kamakura, T. Ishiwata, and K. Matsuda, “Model equation for strongly focused

finite-amplitude sound beams,” J. Acoust. Soc. Am. 107, 3035–3046 (2000).

13. P. D. Fox, A. Bouakaz, and F. Tranquart, “Computation of steered nonlinear fields

using offset KZK axes,” Proc. 2005 IEEE Ultrason. Symp., Rotterdam, Netherlands,

1984-1987 (2005).

14. T. Kamakura, H. Nomura, and G. T. Clement, “Application of the split-step Pad e

approach to nonlinear field predictions,” Ultrason., 53, 432–438 (2013).

15. C. M. Darvennes and M. F. Hamilton, “Scattering of sound by sound from two

Gaussian beams,” J. Acoust. Soc. Am. 87, 1955-1964 (1990).

16. C. Shi and W. S. Gan, “Product directivity models for parametric loudspeakers,” J.

Acoust. Soc. Am. 131, 1938-1945 (2012).

17. J. J. Wen and M. A. Breazeale, “A diffraction beamfield expressed as the

superposition of Gaussian beams,” J. Acoust. Soc. Am. 83, 1752-1756 (1988).



Shi, JASA, p. 31

18. N. Tanaka and M. Tanaka, ”Mathematically trivial control of sound using a

parametric beam focusing source,” J. Acoust. Soc. Am. 129, 165–172 (2011).

19. U. Sayin, P. Artis, and O. Guasch, “Realization of an omnidirectional source of

sound using parametric loudspeakers,” J. Acoust. Soc. Am. 134, 1899–1907 (2013).

20. T. G. Muir and J. G. Willette, “Parametric acoustic transmitting arrays,” J. Acoust.

Soc. Am. 52, 1481–1486 (1972).

21. M. B. Moffett and R. H. Mellen, “Model for parametric acoustic sources,” J. Acoust.

Soc. Am. 61, 325–337 (1977).

22. M. Zheng and L. S. Wang, “The angular response of parametric arrays: General

numerical solution,” J. Sound Vib. 228, 177–197 (1999).

23. C. Shi, H. Nomura, T. Kamakura, and W. S. Gan, “Spatial aliasing effects in a

steerable parametric loudspeaker for stereophonic sound reproduction,” IEICE

Trans. Fund. Electron. Comm. Comput. Sci. .textbfE97A, 1859–1866 (2014).

24. C. Shi, E. L. Tan, and W. S. Gan, “Hybrid immersive three dimensional sound

reproduction system with steerable parametric loudspeakers,” POMA 19, 055003

(2013).



Shi, JASA, p. 32

Figure Captions

Figure 1. Geometry of the Westervelt’s directivity.

Figure 2. Geometry of the convolution model for computing the far-field directivity of a

parametric loudspeaker array.

Figure 3. Measurement setup of a laboratory-made parametric loudspeaker array.

Figure 4. Directivity of the difference frequency wave at 4 kHz generated from the primary

waves at 38 kHz and 42 kHz.

Figure 5. Directivity of the difference frequency wave at 8 kHz generated from the primary

waves at 36 kHz and 44 kHz.

Figure 6. Directivity of the difference frequency wave at 4 kHz steered to −20◦ from the

primary waves at 38 kHz and 42 kHz .

Figure 7. Directivity of the difference frequency wave at 8 kHz steered to −20◦ from the

primary waves at 36 kHz and 44 kHz.

Figure 8. Directivity of the difference frequency wave at 4 kHz steered to ±20◦ from the

primary waves at 38 kHz and 42 kHz.

Figure 9. Directivity of the difference frequency wave at 4 kHz steered to ±15◦ from the

primary waves at 42 kHz and 46 kHz.


