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A Digital Twin Architecture for Wireless
Networked Adaptive Active Noise Control
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Abstract—The active noise control (ANC) is a complementary
technique to the passive noise control (PNC) to reduce the
low frequency noise. The ANC controller can be implemented
by pre-trained filters or adaptive filters. The adaptive ANC
controller is advantageous in its adaptation to environmental
changes. However, the algorithm complexity of the adaptive ANC
controller increases with the scale of ANC applications, making it
difficult to be carried out on low-cost processors. To resolve this
problem, cloud computing should be utilized in ANC systems,
and thus the wireless networked ANC system is proposed. Since
it is crucial for ANC controllers to generate the anti-noise wave in
real time, this paper formulates a digital twin architecture that
implements the control filter adaptation in the cloud and the
anti-noise signal generation on the local controller, respectively.
A digital twin filtered-reference least mean squares (DT-FxLMS)
algorithm is proposed to coordinate the digital twin with the
local controller. Simulation and experiment results demonstrate
the effectiveness and efficiency of the wireless networked ANC
system based on the digital twin architecture.

Index Terms—Active noise control, networked control systems,
wireless sensor network, digital twin, human-centered computing

I. INTRODUCTION

A recent study by the World Health Organisation (WHO)
concluded that noise pollution has become one of the

top environmental hazards to both physical health and mental
wellbeing in the European region [1]. The impact and risk of
noise pollution is even more severe in developing countries.
Prolonged exposure to loud noises may cause people to
feel stressed, annoyed, and suffer from sleep deprivation and
hearing loss [2]. These facts emphasize the pressing issue
regarding the development of noise monitoring and control
measures.

With the rapid development of the Internet of things (IoT),
noise can be monitored and visualized in both long term
and real time [3]–[5]. Traditional manual collection has been
replaced by acoustic sensor networks (ASNs) for higher gran-
ularity of noise data in both space and time [6]–[8]. Substantial
amount of noise data and dedicated ASN node equipment
have leveraged artificial intelligence for noise mapping and
analyzing. For example, in a sensing and analytical system,
computational methods are developed to automatically detect
specific types of sound sources by machine hearing [9], [10].
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The output of such a system places emphasis on the hard data
evidence for inspection crews to be efficiently allocated and
restriction of operation time to be precisely set.

On the other hand, noise control measures have also been
extensively studied. They can be categorized into passive
noise control (PNC) and active noise control (ANC). The
PNC is effective in reducing high frequency noises [11],
[12]. Recently, sonic crystals, which consist of periodic arrays
of scatters, are employed in sound barriers to attenuate the
transmission of sound at certain frequency bands [13]. When
the noise frequency is low, the size, weight and cost of PNC
measures may increase dramatically [14]. As a complementary
technique to the PNC, the ANC tackles low frequency noise
problems based on the principle of acoustic wave superposition
[15]. The ANC system generates an anti-noise wave that has
the same amplitude but reverse phase of the noise wave.

ANC systems are further categorized into the feedforward
and feedback structures. The feedforward ANC (FFANC)
system is composed of reference microphones, secondary
loudspeakers, a controller and optional error microphones. The
controller generates control signals according to the reference
signals measured by the reference microphones. The secondary
loudspeakers transmit the control signals to form the anti-noise
wave. The FFANC controller can be implemented by pre-
trained analog filters, pre-trained digital filters, or adaptive fil-
ters. In the case of adaptive filters, error microphones observe
the superposition of the noise wave and the anti-noise wave,
and provide the error signals to update the filter coefficients,
as shown in Fig. 1(a). Otherwise, the error microphones can
be omitted from the FFANC system.

The feedback ANC (FBANC) system has no reference
microphones. The error microphones must be included in the
FBANC system. The reference signals are estimated from
the error signals. Therefore, the FBANC system results in
notable noise attenuation with linear predictable noises, but it
provides limited noise reduction performance with broadband
noises. Similarly, the FBANC controller is optional to be
implemented by adaptive filters, as shown in Fig. 1(b). In both
the FFANC and FBANC systems, the adaptive ANC controller
is advantageous in its adaptation to environmental changes and
disadvantageous in its algorithm complexity, as compared to
the pre-trained filter [16].

The filtered-reference least mean squares (FxLMS) is
widely recognized as the standard adaptive filtering algorithm
for ANC systems [17]–[19]. It converges to achieve the
minimum Euclidean norm of the error signals. This results
in the formation of quiet zones at the locations of the error
microphones. Research has been extensively carried out to im-
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(a) Feedforward ANC structure with J reference microphones, K 
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(b) Feedback ANC structure with K secondary loudspeakers and M 

error microphones.

Fig. 1. Typical structures of adaptive ANC systems.

prove the convergence performance of the FxLMS algorithm
by means of frequency-domain, subband and block processing
[20]–[24]. However, the improvement in convergence often
comes at a cost of algorithm complexity. When the quiet zones
are necessarily large in applications such as noise cancelling
cases and active windows, even the standard FxLMS algorithm
has to be implemented on costly high-performance controllers
[25]–[28]. It is because the computational complexity in-
creases dramatically with the scale of control filters, secondary
path models and filtered reference signals. In contrast, the
noise cancelling headphone, as one of the most mature ANC
applications, still adopts the pre-trained filter, due to the
scarcity of computing resources in the mobile device [29],
[30].

To resolve the aforementioned problem, cloud comput-
ing, which provides almost unlimited centralized computing
resources, should be utilized in ANC systems. With the
rapid development of wireless communication technologies,
such as the fifth generation of cellular networks (5G), that
enables much reliable data transmission at a significantly
lower latency, a technical trend of control systems with their
sensing data being transmitted through wireless communica-
tion networks is observed [31]–[33]. Wireless communication
technologies and cloud computing are combined to create the
wireless networked control system, where the local controller
is being moved to the cloud side [34]–[37]. The wireless
networked ANC system proposed in this paper is therefore
viable and highly possible.

So far, there have been few works carried out to integrate
wireless communications into ANC. In 2015, Galambos and
Sujbert proposed an ANC system with the concept of IoT. In
their proposed system, the reference signals were transferred

through the Ethernet network, which was not wireless [38].
The network latency was approximately 3 milliseconds by us-
ing the user datagram protocol (UDP). When the sound prop-
agation from a distant noise source to the error microphone
spent more time than the latency on the network, the system
had adequate time to subsume all delays and play the anti-
noise in time, in order for the broadband noise to be controlled.
In 2018, Shen et al. proposed a wireless noise cancellation
system, namely MUTE [39]. The core idea was similar to
the previous work in [38], but emphasis was placed on the
wireless relay design, in which an analog frequency modulator
was adopted to bypass delays from digitization and processing.
In 2021, Shen et al. worked out a coherence-based selection
algorithm of wireless reference microphones when there were
two distant noise sources operating at different times [40]. In
their work, the wireless relay and the motivation of employing
the wireless reference microphone were fundamentally similar
to the MUTE system.

Because the secondary path model plays an essential role
in ANC, the works on the wireless error microphone are few
and far between. In as early as 2006, Sujbert et al. studied
a dual-channel FBANC system, where the error signals were
sampled individually and transferred over ZigBee radios [41].
They pointed out that unsynchronized sampling frequencies of
the error signals led to severe modeling errors of the secondary
paths. A simple unit delay might cause the ANC system to be
unstable when the noise frequency was greater than a quarter
of the sampling frequency. The discussion on the wireless
error microphone was followed up by Shi et al. in 2020
[42]. They examined the use of a wireless error microphone
in a single-channel FFANC system, whereby a simultaneous
variable perturbation method was proposed to cope with the
randomly delayed secondary path resultant from the wireless
local-area network (WLAN), of which the averaged latency
was about 4 milliseconds.

In summary, the network latency in transmitting the refer-
ence signal may cause failure of the ANC controller, when the
noise source is not sufficiently distant or there is no dedicated
wireless relay. On the other hand, the network latency in
transmitting the error signal can interrupt the adaptation of
the control filter. Since it is crucial for the wireless networked
ANC system to generate the anti-noise wave in real time [43],
it is more practical for common types of wireless communi-
cations, such as ZigBee, WLAN, 5G etc., to take place in the
adaptation of the control filter instead of in the generation of
the anti-noise wave. Moreover, the adaptation of the control
filter can exploit digital twin to improve its stability [44]–[46],
whereby a digital counterpart of the electro-acoustic relation
of the ANC system is built by utilizing cloud computing.

Therefore, this paper formulates a digital twin architecture
that implements the control filter adaptation in the cloud and
the anti-noise signal generation on the local controller, respec-
tively. The sensing data is collected by the local controller
and uploaded into the cloud. A digital twin of the ANC
system is established in the cloud, and a dedicated digital
twin FxLMS (DT-FxLMS) algorithm is proposed to coordinate
the digital twin with the local controller. The digital twin
simulates the noise reduction process of the local controller
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while adapting the control filter to its optimum solution by the
DT-FxLMS algorithm. The optimized control filter coefficients
are downloaded to the local controller to achieve a higher noise
reduction level in the physical world. Prototypes of the wire-
less networked FFANC and FBANC systems are constructed
based on the Cortex-M-based micro-controller with a WiFi
module. Experiment results demonstrate the convergence and
adaptation of the wireless networked FFANC and FBANC
systems based on the digital twin architecture.

II. THEORY AND METHOD

A. Standard FxLMS Algorithm of FFANC and FBANC Sys-
tems

The structure of an FFANC system is shown in Fig. 1 (a).
At time n, the reference microphone obtains a reference signal
x(n), which is stored in a vector form as

x(n) = [x(n), x(n− 1), . . . , x(n−N + 1)], (1)

where N is the tap length of the control filter.
The control filter w(n) takes in the reference signal and

output the control signal y(n), i.e.

y(n) = w(n)xT (n), (2)

where the superscript T denotes the transpose operation.
The primary path p(n) is defined as the acoustic path and

the effects of the electro-acoustic devices from the reference
microphone to the error microphone. It can be considered as
a system that takes in the reference signal and outputs the
disturbance wave d(n), which is written as

d(n) = p(n)xT (n). (3)

It is of significance to note that p(n) is always unknown to
ANC systems.

Similar to the primary path, the secondary path s(n) is
composed of the acoustic path and the effects of the electro-
acoustic devices between the secondary loudspeaker and the
error microphone. It takes the control signal as the input and
generates the anti-noise wave y′(n) as the output, i.e.

y′(n) = s(n)yT (n), (4)

where

y(n) = [y(n), y(n− 1), . . . , y(n−Ns + 1)] (5)

and Ns is the length of the secondary path model.
The error signal e(n) measures the superposition of the

disturbance wave and the anti-noise wave, which can be
written as

e(n) = d(n) + y′(n). (6)

In the standard FxLMS algorithm, the filtered reference
signal is the output of the secondary path model ŝ(n) when
its input is the reference signal. It is written as

r(n) = ŝ(n)xT (n), (7)

where ŝ(n) is an estimate of the true secondary path s(n).
Thereafter, the control filter coefficients are updated by

w(n+ 1) = w(n)− µe(n)r(n), (8)
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Fig. 2. Digital twin architecture of the FFANC system.

where µ is the step size; and r(n) is the vector form of the
filtered reference signal, which can be written as

r(n) = [r(n), r(n− 1), . . . , r(n−N + 1)]. (9)

The structure of an FBANC system is shown in Fig. 1 (b).
Since there is no reference microphone, the reference signal
is estimated from the error signal as

x(n) = e(n)− ŝ(n)yT (n). (10)

In the FxLMS algorithm for the FBANC system, generation of
the control signal, calculation of the filtered reference signal,
and updating the control filter coefficients are identical to (2),
(7) and (8), respectively.

B. Digital Twin Architecture of FFANC and FBANC Systems

As shown in Fig. 2, the digital twin architecture of the
FFANC system is composed of the local controller, the net-
work communication, and the digital twin in the cloud. The
local controller is a typical FFANC controller, including the
acoustic domain, analog domain, and digital domain. Noise
and anti-noise waves interfere with each other in the acoustic
domain. Sound pressures are converted into digital signals in
the analog domain by the analog-to-digital converter (ADC)
and vice versa by the digital-to-analog converter (DAC). Signal
processing takes place in the digital domain. The DT-FxLMS
algorithm is proposed to coordinate the digital twin in the
cloud with the local controller as follows.

The reference and error signals are buffered in the local
controller as

xL(n) = [x(n), x(n− 1), . . . , x(n− L+ 1)] (11)
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and
eL(n) = [e(n), e(n− 1), . . . , e(n− L+ 1)], (12)

where L is the buffer size. If the buffer is filled up at time n,
xL(n) and eL(n) are uploaded into the cloud. Thereafter, the
digital twin starts its simulation.

Let the time index m range from n + N − L to n in the
digital twin. Therefore, at an arbitrary time m, the reference
signal x̃(m) in the digital twin is able to be written as

x̃(m) = [x(m), x(m− 1), . . . , x(m−N + 1)]. (13)

The error signal ẽ(m) in the digital twin is calculated by

ẽ(m) = e(m) + ŝ(m)ỹT (m), (14)

where

ỹ(m) = [ỹ(m), ỹ(m− 1), . . . , ỹ(m−Ns + 1)] (15)

and
ỹ(m) = w̃(m)x̃T (m). (16)

Here, w̃(m) denotes the control filter in the digital twin, which
is initialized as a zero vector at time m = n+N − L.

The filtered reference signal is calculated by

r̃(m) = ŝ(m)x̃T (m). (17)

The vector form of the filtered reference signal in the digital
twin can be written as

r̃(m) = [r̃(m), r̃(m− 1), . . . , r̃(m−N + 1)]. (18)

Therefore, the control filter coefficients are updated in the
digital twin as

w̃(m+ 1) = w̃(m)− µẽ(m)r̃(m). (19)

To ensure the convergence of the control filter, the buffer size
should be sufficiently longer than the tap length of the control
filter.

At time m = n, the simulation completes in the digital
twin. The control filter coefficients are downloaded to the local
controller as the incremental vector. Therefore, local controller
updates its control filter coefficients by

w(n′ + 1) = w(n′) + w̃(n+ 1), (20)

where n′ is the current time index in the local controller and
the buffers of the reference and error signals are reset at the
same time.

Similarly, as shown in Fig. 3, the digital twin architecture of
the FBANC system is also composed of the local controller,
the network communication, and the digital twin in the cloud.
The local controller receives the error signal from the analog
domain and outputs the control signal. In the digital domain,
the local controller firstly calculates the reference signal and
then generates the control signal by the control filter. The
computational complexity on the local FBANC controller is
thus higher than that on the local FFANC controller.

As long as the calculated reference and error signals are
buffered in the local controller together as (11) and (12), the
digital twin in the cloud need not distinguish the FFANC
and FBANC systems. The DT-FxLMS algorithm remains the
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Fig. 3. Digital twin architecture of the FBANC system.

same in the cloud. Once the simulation is completed in the
digital twin, the incremental vector is downloaded to the local
controller and updates the control filter coefficients as (20)
too.

By using the DT-FxLMS algorithm, the local controller is
set free from calculating the filtered reference signal and up-
dating the control filter coefficients. The local controller only
needs to generate the control signal in real time and upload
the sensing data to the cloud. Therefore, the computational
complexity of the DT-FxLMS algorithm on the local controller
is almost the same as using the pre-trained digital filter.

C. Convergence Analysis of the DT-FxLMS Algorithm

According to the steady-state solution of the FxLMS algo-
rithm [47], the control filter coefficients in the local controller
are presumed to converge to w(∞), satisfying

E[d(n)r̃(n) + w(∞)rT0 (n)r̃(n)] = 0, (21)

where

r0(n) = [r0(n), r0(n− 1), . . . , r0(n−N + 1)] (22)

and
r0(n) = s(n)xT (n). (23)

Subtracting w(∞) from both sides of (20) yields

∆w(n′ + 1) = ∆w(n′) + w̃(n+ 1), (24)

where ∆w(n′) = w(n′)−w(∞).
Taking expectations of both sides of (24) yields

E[∆w(n′ + 1)] = E[∆w(n′)] + E[w̃(n+ 1)]. (25)
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The DT-FxLMS algorithm can lead to a steady-state solution
on the local controller, only if E[w̃(n+ 1)] converges in the
cloud in the first place.

Therefore, taking expectations of both sides of (19) yields

E[w̃(m+ 1)] = E[w̃(m)]− µE[ẽ(m)r̃(m)]. (26)

For analysing the last term in (26), substituting (4) and (6)
into (14) yields

ẽ(m) = d(m) + s(m)yT (m) + ŝ(m)ỹT (m)

= d(m) + w(m)rT0 (m) + w̃(m)r̃T (m). (27)

The slow adaptation assumption is adopted here, in order
for the control filter to swap with the secondary path or the
secondary path model when the reference signal is treated as
the input of two cascaded linear time-invariant systems.

Both w(m) and w̃(m) are assumed to be statistically
independent from r0(m) and r̃(m). Using (21) and w(m) =
w(∞) + ∆w(m) yields

E[ẽ(m)r̃(m)] = E[∆w(m)]Rr0r̃ + E[w̃(m)]Rr̃r̃, (28)

where Rr0r̃ = E[rT0 (m)r̃(m)] and Rr̃r̃ = E[r̃T (m)r̃(m)].
Substituting (28) into (26) yields

E[w̃(m+ 1)] = E[w̃(m)]U + V, (29)

where
U = I− µRr̃r̃ (30)

and
V = −µE[∆w(m)]Rr0r̃. (31)

When the largest eigenvalue of U is less than 1, i.e.
λmax{U} < 1, (29) becomes a simple iteration. Since Rr̃r̃ is
positive definite, the above mentioned condition is equivalent
to

0 < µ <
2

λmax{Rr̃r̃}
, (32)

where λmax (·) denotes the largest eigenvalue of a matrix.
The fixed point of the simple iteration provides

E[w̃(m+ 1)] = V(I−U)
−1

= −E[∆w(m)]Rr0r̃R
−1
r̃r̃ .

(33)
Letting m = n in (33) and substituting it into (25) yields

E[∆w(n′ + 1)] = E[∆w(n′)]− E[∆w(n)]Rr0r̃R
−1
r̃r̃ . (34)

Since the local controller does not update the control filter co-
efficients from time n until time n′, E[∆w(n′)] = E[∆w(n)]
is valid.

Therefore, (34) becomes another simple iteration, i.e.

E[∆w(n′ + 1)] = E[∆w(n′)](I−Rr0r̃R
−1
r̃r̃ ), (35)

which converges to a zero vector when

−I < I−Rr0r̃R
−1
r̃r̃ < I. (36)

This convergence condition can be further written as

O < Rr0r̃ < 2Rr̃r̃. (37)

It is worth noting that the duration from n to n′ is the
total time consumed to complete the digital twin simulation

Secondary Path

(g) Simulation Setup

Fig. 4. Primary and secondary paths for the single-channel ANC simulation.

in the cloud and to communicate between the local controller
and the cloud. This duration does not affect the convergence
of the DT-FxLMS algorithm, as long as the accuracy of the
secondary path model satisfies (37). The downside of the DT-
FxLMS algorithm is found in its slower convergence speed
and less timely update of the control filter, as compared to the
FxLMS algorithm.

Furthermore, when r̃ is replaced by r in the convergence
analysis, (21) and (37) become identical to those of the FxLMS
algorithm. They validate that the DT-FxLMS algorithm can
converge to the same steady-state solution as the FxLMS
algorithm in theory.

III. SIMULATION RESULTS

Simulations were carried out with a single-channel ANC
system setup, of which the primary and secondary paths were
measured in advance. Their impulse responses and frequency
responses are shown in Fig. 4, along with the measurement
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Fig. 5. Simulated error signals of the FFANC system using the FxLMS and
DT-FxLMS algorithms.
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Fig. 6. Simulated noise spectra of the FFANC system using the FxLMS and
DT-FxLMS algorithms.

setup. The noise source was placed at two different locations
to create two primary paths. The simulation was initialized
with the primary path 1 and shifted to the primary path 2
in a latter stage to demonstrate the adaptivity of the wireless
networked adaptive ANC system. The sampling rate was set
to fs = 16 kHz. The lengths of the control filter and the
secondary path model were set to N = 400 taps and Ns = 200
taps, respectively. The buffer size was L = 8000 taps. A noise
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Fig. 7. Simulated error signals of the FBANC system using the FxLMS and
DT-FxLMS algorithms.
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Fig. 8. Simulated noise spectra of the FBANC system using the FxLMS and
DT-FxLMS algorithms.

floor was added to the error microphone by a white Gaussian
noise with the normalized power of 1.

Figure 5 shows the error signals of the conventional FFANC
system using the FxLMS algorithm and the wireless networked
FFANC system using the DT-FxLMS algorithm. The same
step size µ = 0.01/‖x(n)‖22 was used for both algorithms.
This step size ensured the convergence of both algorithms,
while letting the difference in their convergence speeds be
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easily observed. In the first 30 seconds of the simulation, the
primary path 1 was adopted and the noise source was a band-
limited noise from 500 Hz to 700 Hz. The power of this band-
limited noise was 45.0 dB higher than the noise floor. From 30
seconds to 60 seconds of the simulation, the noise source was
changed to another band-limited noise from 300 Hz to 900 Hz.
The power of this band-limited noise was 43.1 dB higher than
the noise floor. In the last 30 seconds of the simulation, the
primary path 2 was adopted and the noise frequency remained
in the range of 300 Hz to 900 Hz. As a result of changing the
primary path, the power of the band-limited noise increased to
46.6 dB higher than the noise floor. Both the FxLMS and DT-
FxLMS algorithms converged to control filters that generate
the effective anti-noise signals. The convergence process of
the DT-FxLMS algorithm was slower and less smooth than
the FxLMS algorithm. Figure 6 shows the power spectra of
the error signals. Although the communication between the
local controller and the cloud only took place every time the
buffer was filled up, the steady-state performance of the DT-
FxLMS algorithm was not affected. The DT-FxLMS algorithm
converged to almost the same steady state as compared to the
FxLMS algorithm in all three stages of the simulation.

Figure 7 shows the error signals of the conventional FBANC
system using the FxLMS algorithm and the wireless networked
FBANC system using the DT-FxLMS algorithm. Only the
primary path 1 was adopted. In the first 120 seconds of the
simulation, the noise source was a multi-tonal noise, consisting
of 550 Hz, 600 Hz and 650 Hz sinusoid waves. From 120
seconds to 240 seconds of the simulation, the noise source
was changed to a narrow band noise, of which the frequency
ranged from 550 Hz to 650 Hz. In the last 120 seconds of
the simulation, the noise source changed to a relative broad
band noise, of which the frequency ranged from 500 Hz
to 700 Hz. The step size was set to µ = 0.001/‖x(n)‖22,
µ = 0.01/‖x(n)‖22 and µ = 0.02/‖x(n)‖22 in three stages
of the simulation, respectively. The smallest step size was
used for the primary noise with the narrowest bandwidth.
Otherwise, the converge processes of both algorithms would
be too short to demonstrate that the DT-FxLMS algorithm was
slower than the FxLMS algorithm. The power of the noise
was 43.8 dB, 45.6 dB and 45.1 dB higher than the noise
floor in the three stages of the simulation, respectively. Both
the FxLMS and DT-FxLMS algorithms converged to control
filters that generate the effective anti-noise signals. However,
as compared to the FFANC simulation, the convergence speed
of the DT-FxLMS algorithm became slower in the FBANC
simulation. Figure 8 shows the power spectra of the error
signals. The DT-FxLMS algorithm could converge to the same
steady state as compared to the FxLMS algorithm in the
first stage of the simulation, but led to slightly lower noise
reduction levels than the FxLMS algorithm when dealing with
narrow band and broad band noises.

IV. EXPERIMENT RESULTS

Experiments of both the FFANC and FBANC systems
were carried out on the Cortex-M-based micro-controller
(STM32F407) with a WiFi module (ESP8266), as shown in
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Fig. 9. Experimental setup of the wireless networked FFANC and FBANC
systems.

Fig. 9. The micro-controller was implemented as the local con-
troller. Two 1/2 inch measurement microphone sets (CRY333)
were used as the reference and error microphones [48]. They
were connected to or disconnected from the micro-controller’s
internal ADCs depending on the ANC structure. The internal
DAC was used to output the control signal. Two multimedia
speakers were used as the noise source and the secondary
loudspeaker, respectively. A laptop was employed to play the
role of the cloud side, where the digital twin ran. The UDP
was adopted to communicate between the micro-controller and
the laptop. The sampling rate was set to fs = 7114 Hz. The
lengths of the control filter and the secondary path model were
set to N = 200 taps and Ns = 100 taps, respectively. As the
experiment environment was not an ideal linear time-invariant
system, a relatively small step size should be considered to
ensure the convergence, and a sufficiently large buffer should
correspondingly be employed. Therefore, the buffer size and
the step size were set to L = 10000 taps µ = 0.001/‖x(n)‖22,
respectively.

Three band-limited noise sources were used in the exper-
iments of the FFANC system. The first noise source ranged
from 550 Hz to 650 Hz, with the sound pressure level (SPL)
of 72.1 dBA. The second noise source ranged from 500 Hz
to 700 Hz, with the SPL of 71.9 dBA. And the third noise
source ranged from 300 Hz to 900 Hz, with the SPL of 70.2
dBA. The first two noise sources were also adopted in the
experiments of the FBANC system. A multi-tonal noise source
was further included, which consisted of 550 Hz, 600 Hz and
650 Hz sinusoid waves. The SPL of this multi-tonal noise
source was 71.2 dBA. All the above SPLs were measured
with a class 2 SPL meter (AWA5636-0) at the location of the
error microphone [49]. Moreover, before any noise sources
and the secondary loudspeaker were powered up, the SPL was
recorded as 35.7 dBA at the location of the error microphone.

Figure 10 shows the normalized noise power levels mea-
sured by the error microphones of the conventional FFANC
system and the wireless networked FFANC system. The con-
ventional FFANC system adopted the FxLMS algorithm, and
wireless networked FFANC system adopted the DT-FxLMS
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Fig. 10. Measured convergence curves of the FFANC system using the
FxLMS and DT-FxLMS algorithms.
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Fig. 11. Measured noise spectra of the FFANC system using the FxLMS and
DT-FxLMS algorithms.

algorithm. The conventional FFANC system using the FxLMS
algorithm had reduced the SPLs at the location of the error
microphone by 18.4, 15.4 and 14.4 dBA in the three stages of
the experiment, respectively. The wireless networked FFANC
system using the DT-FxLMS algorithms had reduced the SPLs
at the location of the error microphone by 17.3, 15.9 and 14.7
dBA in three stages of the experiment, respectively. The results
of the DT-FxLMS algorithm were very close to the results of
the FxLMS algorithm. Figure 11 shows the power spectra of
the error signals. Similar to the trends in the simulation, the
steady-state performance of the DT-FxLMS algorithm was also
close to the FxLMS algorithm in all the three stages of the
experiment.

Figure 12 shows the normalized noise power level measured
by the error microphones of the conventional FBANC system
and the wireless networked FBANC system. The conventional
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Fig. 12. Measured convergence curves of the FBANC system using the
FxLMS and DT-FxLMS algorithms.
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Fig. 13. Measured noise spectra of the FBANC system using the FxLMS
and DT-FxLMS algorithms.

FBANC system using the FxLMS algorithm had reduced the
SPLs at the location of the error microphone by 25.2, 17.3
and 12.4 dBA in three stages of the experiment, respectively.
The wireless networked FBANC system using the DT-FxLMS
algorithms had reduced the SPLs at the location of the error
microphone by 25.2, 17.5 and 13.4 dBA in three stages of the
experiment, respectively. The convergence speed of the DT-
FxLMS algorithm became slower than the FxLMS algorithm,
when the noise source was a multi-tonal noise. Figure 13
shows the power spectra of the error signals. The DT-FxLMS
algorithm converged to very close noise reduction levels, but
led to different water bed effects, as compared to the FxLMS
algorithm.

Lastly, Table I lists the computational loads of two algo-
rithms on the local controller. The computational loads are
counted by the number of multiply accumulators (MACs). The
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TABLE I
COMPUTATIONAL LOADS OF THE DT-FXLMS AND FXLMS ALGORITHM ON THE LOCAL CONTROLLER

Algorithm FFANC (DT-FxLMS) FFANC (FxLMS) FBANC
(DT-FxLMS) FBANC (FxLMS)

Estimation of the reference signal - - Ns MACs Ns MACs
Generation of the control signal N MACs N MACs N MACs N MACs
Adaptation of the control filter - N +Ns MACs - N +Ns MACs

In Total (Ctotal) N MACs 2N +Ns MACs N +Ns MACs 2N + 2Ns MACs

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
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Fig. 14. Maximum lengths of the control filters in the FFANC and FBANC
systems using different sampling rates.

relation between the sampling rate and the computational load
is described by

1

fs
≥ t0(Ctotal + Coverhead), (38)

where t0 denotes the executing time of a MAC, which was
0.174 us in the experiment; Ctotal denotes the total computa-
tion load of an algorithm, as listed in Table 1; and Coverhead

denotes the equivalent number of MACs of the overhead,
which includes the data communication, ADC, DAC, and so
on. It should be noted that the network latency is not part of
the overhead. The network latency only affects the timeliness
of the control filter adaptation and does not cause the ANC
controller to fail. In the experiment of this paper, logging the
noise power level was counted into the overhead. Therefore,
the equivalent number of MACs were approximated as 100
MACs and 50 MACs for the overheads of the DT-FxLMS and
FxLMS algorithms, respectively.

Figure 14 shows maximum lengths of the control filters (for
Ns = 0.5 × N ) in the FFANC and FBANC systems using
different sampling rates, where the lines represent the theoret-
ical predictions by (38) and the triangle markers represent the
measured results. Due to the restrictions of the STM32F407,
the sampling rate can only be set to discrete values, such as
5335 Hz, 7114 Hz, 10671 Hz, etc. Based on the measured
results, the DT-FxLMS algorithm achieves more than twice the
length of the control filter in the FFANC system, as compared
to the FxLMS algorithm. The advantage of the DT-FxLMS is
less significant in the FBANC system, as the computational
complexity on the local FBANC controller is higher than that
in the local FFANC controller. In this case, the DT-FxLMS
algorithm still achieves nearly twice the length of the control
filter, as compared to the FxLMS algorithm. As indicated by
the theoretical predictions, with the same length of the control
filter, the DT-FxLMS algorithm allows the sampling rate to be

increased by about 100% and 50% as compared to the FxLMS
algorithm in the FFANC and FBANC systems, respectively.

V. CONCLUSIONS

The balance of advanced algorithms and the hardware cost
is a problem that has to be taken into consideration for ANC
systems. Thus, this paper proposes the wireless networked
ANC system to incorporate cloud computing. The wireless
networked ANC system can remove a significant portion of
the computational load from the local controller to ensure
the generation of the anti-noise wave to be feasibly carried
out in real time by a low-cost micro-controller. The sensing
data is collected by the local controller and uploaded into the
cloud. A digital twin of the ANC system is established in the
cloud, which simulates the optimum noise reduction process
of the local controller while adapting the control filter to its
optimum solution by the dedicated DT-FxLMS algorithm. The
optimized control filter coefficients are downloaded onto the
local controller to achieve a higher noise reduction level in the
physical world. Simulation and experiment results demonstrate
that the steady-state performance of the DT-FxLMS algorithm
is very close to the classic FxLMS algorithm in both the
FFANC and FBANC systems. Hence, the wireless networked
ANC system can be readily integrated with the noise mon-
itoring ASNs in the future to provide a package solution to
noise monitoring and control problems in urban and industrial
applications.
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