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Designing Enhanced Multi-dimensional

Constellations for Code-Domain NOMA

Haifeng Wen, Zilong Liu, Qu Luo, Chuang Shi, and Pei Xiao

Abstract

This paper presents an enhanced design of multi-dimensional (MD) constellations which play a

pivotal role in many communication systems such as code-domain non-orthogonal multiple access (CD-

NOMA). MD constellations are attractive as their structural properties, if properly designed, lead to

signal space diversity and hence improved error rate performance. Unlike the existing works which

mostly focus on MD constellations with large minimum Euclidean distance (MED), we look for new

MD constellations with additional feature that the minimum product distance (MPD) is also large.

To this end, a non-convex optimization problem is formulated and then solved by the convex-concave

procedure (CCCP). Compared with the state-of-the-art literature, our proposed MD constellations1 lead

to significant error performance enhancement over Rayleigh fading channels whilst maintaining almost

the same performance over the Gaussian channels. To demonstrate their application, we also show that

these MD constellations give rise to good codebooks in sparse code multiple access systems.

Index Terms

Multi-dimensional (MD) constellation, code-domain non-orthogonal multiple access (CD-NOMA),

sparse code multiple access (SCMA), convex-concave procedure (CCCP), minimum Euclidean distance,

minimum product distance.

I. INTRODUCTION

A multi-dimensional (MD) constellation refers to a set of equal-length vectors that exhibits

certain distance properties. At the transmitter, several incoming bits are grouped to select a
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1All the obtained MD constellations can be found in https://github.com/Aureliano1/Multi-dimensional-constellation

July 21, 2022 DRAFT



2

vector from an MD constellation which is then sent out over a multi-channel communication

system (e.g., a multicarrier system). A judiciously designed MD constellation yields a large

constellation shaping gain owing to the so-called signal space diversity [1], [2]. In general, the

performance of an MD constellation is measured by its minimum Euclidean distance (MED)

and/or minimum product distance (MPD). Specifically, a large MED leads to reliable detection

in a Gaussian channel, whereas a large MPD is preferred for robust transmissions in a Rayleigh

fading channel.

In recent years, the search for good MD constellations has attracted significant research

attention due to their contemporary application in code-domain non-orthogonal multiple access

(CD-NOMA) systems [3]. Widely regarded as an enabling paradigm for massive connectivity

in future machine-type communication networks, the codebook design of a CD-NOMA system

relies on certain good MD constellations. A representative CD-NOMA scheme is sparse code

multiple access (SCMA), in which low-complexity message passing decoding is carried out at

the receiver by efficiently exploiting the sparsity structure of the codebooks [4], [5]. In SCMA,

certain user-specific operations (such as interleaving, permutation, shuffling, phase rotations)

may be applied to a common MD constellation to generate multiple sparse codebooks [6]. A

comprehensive survey on various MD constellations for uplink SCMA codebook design is given

in [7]. In [8], Star-QAM based MD constellation with large MED has been proposed for downlink

SCMA. Recently, such an MD constellation is employed to construct power-imbalanced SCMA

codebooks in [9]. The applications of SCMA for massive access in 6G has also been discussed in

[10]. Besides, in the case of multiple-input multiple-output (MIMO) transmission, there has been

a large body of literature concerning achieving the channel capacity at a high signal-to-noise

ratio (SNR) through certain MD constellations with large MED [11]–[13].

The primary objective of this paper is to design enhanced MD constellations with both

large MED and MPD. Despite numerous research attempts, this class of MD constellations

is rarely known in the literature, to the best of our knowledge. From the numerical optimization

point of view, a remarkable algorithm (perhaps the only known algorithm so far) for good MD

constellations has been introduced in [15] by minimizing the total constellation energy subject to

an MED constraint. As shown in Section IV, the MD constellations from [15] may suffer from

small MPD, making the resultant communication system highly susceptible to transmission errors

in Rayleigh fading channels.
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With the aid of the inequality of arithmetic and geometric means, we first observe that

the MPD of an MD constellation tends to grow if the element-wise distances of any two

MD vectors are enlarged [3]. Thus, our optimization problem is transformed to achieving the

minimum total constellation energy, while at the same time, the maximum element-wise distances

and a large MED value, which is balanced by a trade-off factor. Such a problem is then

tackled by the convex- concave procedure (CCCP) [14] to obtain a sub-optimal solution. Our

numerical simulation results show that the obtained MD constellations lead to significant error

performance enhancement over Rayleigh fading channels while maintaining almost the same

performance over the Gaussian channels as compared to that of [15]. Additionally, by applying

these new MD constellations, we obtain improved SCMA codebooks whose BER performances

in uplink Rayleigh fading channels outperform (or comparable to) those representative ones in

the literature.

Notations: x,x and X denote scalar, vector and matrix, respectively. The n-dimensional

complex and binary vector spaces are denoted as Cn and Bn, respectively. Similarly, Ck×n

and Bk×n denote the (k×n)-dimensional complex and binary matrix spaces, respectively. tr(X)

denotes the trace of a square matrix X. diag(x) gives a diagonal matrix with the diagonal

vector of x. (·)T and (·)H denote the transpose and the Hermitian transpose. vec(·) denotes the

vectorization operator. ‖x‖2 and |x| return the Euclidean norm of vector x and the absolute value

of x, respectively. IN and 0N denote the identity matrix of order N and the all zero matrix with

size N ×N , respectively.

II. PRELIMINARIES

A. MD constellation design

We consider a scenario where the transmit bits are mapped to a K-dimensional complex

constellation with cardinality of M . An MD constellation is denoted by CK×M = [x1,x2, ...,xM ],

where xi ∈ CK×1, i = 1, 2, ...,M . The key performance indicators (KPIs) for an MD constel-

lation include MED, MPD and kissing number. The kissing number refers to the number of

constellation pairs that have the same MED (or MPD) [7]. Since minimizing the kissing number

is intractable, it is desirable to maximize the MED or MPD first as they are the dominating factors

of the BER performances [2], [7]. Next, we introduce MED and MPD for an MD constellation.
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1) MED : The MED of an MD constellation is defined as

dE,min = min{‖xi − xj‖2, 1 ≤ i < j ≤M}. (1)

2) MPD : The product distance (PD) between two K-dimensional complex constellation vec-

tors, xi and xj , is defined as:
dP,i,j =

∏
k∈Kij

|xi,k − xj,k|, (2)

where xi,k and xj,k are the k-th complex element of xi and xj , respectively. Kij denotes the set

of admissible k, for which xi,k 6= xj,k. Then the MPD of such an MD constellation is given by

dP,min = min{dP,i,j , 1 ≤ i < j ≤M}. (3)

Maximizing the MED and MPD of an MD constellation are key for the reliable transmission

over Gaussian and Rayleigh fading channels, respectively [1], [2]. Given a power budget with

the goal of maximizing both MED and MPD, the design problem can be formulated as

max
C

{dE,min, dP,min}

s.t.
1

M
tr(CHC) = P,

(4)

where P is the average power of the constellation vectors. It is worth mentioning that the MED

and MPD are also two design KPIs for the CD-NOMA system [7].

B. Introduction to SCMA

To illustrate the application of the aimed MD constellations, we first provide a brief in-

troduction to SCMA. Let us consider an SCMA system with J users communicating over N

orthogonal resource nodes. To enable massive connectivity, the number of users is normally larger

than that of resources, i.e. J > N and thus the overloading factor is defined as λf = J
N
> 1.

At the transmitter, for the j-th user, the SCMA encoder maps log2 (M) coded binary bits to a

K-dimensional complex codebook set Xj , which is defined as fj : Blog2 M → Xj ∈ CK , where

Xj = [xj,1,xj,2, . . . ,xj,M ] is the codebook of user j with cardinality of M . All the N -dimensional

complex codewords in each codebook are sparse vectors with K non-zero elements and K < N .

The design of optimal multi-dimensional codebooks for SCMA is still an open issue, hence a

sub-optimal multi-stage design is generally considered [8]. Let us consider Vj ∈ BN×K which

is a mapping matrix associated with user j that maps the K-dimensional constellation point to

July 21, 2022 DRAFT



5

an N -dimensional sparse SCMA codeword. The mapping matrix Vj is designed with N −K

all-zero rows, i.e., the all-zero elements in X j are in the same dimensions with Vj . The structure

of SCMA codebook X can be represented by an indicator matrix F = [f1, . . . , fJ ], where fj =

diag(VjV
T
j ). User j and resource n are connected if and only if fn,j = 1, where 1 ≤ n ≤ N ,

and 1 ≤ j ≤ J .

Based on Vj , user j’s codebook is generated by X j = Vj∆jAMC , where ∆j is the constella-

tion operator of user j, 1 ≤ j ≤ J and AMC is the MD constellation which is to be optimized in

the next section. Similar to [9], we combine the constellation operation matrix ∆j and mapping

matrix Vj together, i.e., sjN×J = Vj∆jIK , where IK denotes a column vector of K 1’s. Hence,

the codebook can be represented by the signature matrix SN×J =
[
s1N×J , . . . , s

J
N×J

]
.

III. PROPOSED OPTIMIZATION METHOD

In this section, an MD constellation optimization scheme for both large MED and MPD is

proposed. Our idea is to transform the MPD and MED constraints into a sequence of quadratic

forms with linear inequality constraints.

Since it is quite difficult, if not impossible, to directly solve the optimization problem in

(4), we consider a feasible way by transforming it into a single target problem. An equivalent

problem is to find the minimum energy constellation C while keeping the MPD and MED greater

or equal to the thresholds DP and DE , respectively, i.e.,

min
C

tr(CHC)

s.t.
dE,min ≥ DE ,

dP,min ≥ DP .

(5)

The detailed settings of DE and DP will be discussed later. Unfortunately, the optimization

problem in (5) is still hard to solve due to the non-convex constraints of MED and MPD. We

thus reformulate the expressions of Euclidean distance and product distance in linear inequality

constraints and quadratic forms.

Reformulation of MED: Define c = vec(C) ∈ CKM×1. Then, the Euclidean distance square

between xi and xj can be expressed in the following quadratic form:

d2E,i,j = ‖xi − xj‖22 = cHEi,jc, i 6= j, (6)
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where Ei,j = ET
i Ei − ET

i Ej − ET
j Ei + ET

j Ej , Ei = eT
i ⊗ IK , 1 ≤ i < j ≤ M , ei represents

the i-th column of the identity matrix IM , and ⊗ denotes the Kronecker product. The matrix

Ei,j is very sparse, and with nonzero entries limited to −1 and 1. Let + and − be +1 and −1,

respectively. For K = 2 and M = 4, as an example, Ei=1,j=2 is given below:

Ei=1,j=2 =


+ 0 − 0
0 + 0 −
− 0 + 0
0 − 0 +

04

04 04

 . (7)

Reformulation of MPD: To derive the quadratic form of product distance square, we first

give the equivalent expression of product distance square in a logarithmic form, i.e.,

log(d2P,i,j) =
∑
k∈Kij

log(d2i,j,k), (8)

where d2i,j,k = |xi,k − xj,k|2 is the element-wise distance square at the k-th dimension. The

quadratic form of d2i,j,k at the k-th dimension can be easily obtained by padding zeros to other

dimensions. Similar to (6), we have

d2i,j,k = cHBi,j,kc, i 6= j, k ∈ Kij , (9)

where Bi,j,k is obtained by keeping the ((i − 1)K + k) and ((j − 1)K + k) columns of Ei,j ,

while replacing all the remaining columns with zeros. As an example of Bi,j,k for K = 2 and

M = 4 is given below:

Bi=1,j=2,k=1 =


+ 0 − 0
0 0 0 0
− 0 + 0
0 0 0 0

04

04 04

 . (10)

Based on the above analysis, the optimization problem in (5) can be reformulated as:

min
c,t

t

s.t. ‖c‖2 ≤ t,

cHEi,jc ≥ D2
E ,∑

k∈Kij

log(cHBi,j,kc) ≥ 2log(DP ),

1 ≤ i < j ≤M.

(11)
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Albeit the above problem can be solved by semi-definite relaxation (SDR), the resultant

solutions may suffer from small MED values. This is due to the fact that the product distance

in logarithmic form belongs to exponential cone which is considerably hard to be solved by

symmetric primal/dual solvers [16], thus affecting the performance of solving the optimization

problem in (11) and leading to MED degradation. A possible solution to this problem is to

further relax the MPD constraints. Liu and Yang have shown in [3] the relationship between

Euclidean distance and product distance by utilizing the inequality of arithmetic and geometric

means, which is given by

d2P =

K∏
k=1

|xi,k − xj,k|2 ≤

(∑K
k=1 |xi,k − xj,k|2

K

)K
=

1

KK
‖xi − xj‖2K2 ,

(12)

where the equality is achieved if and only if

|xi,1 − xj,1| = |xi,2 − xj,2| = ... = |xi,K − xj,K |. (13)

Based on (12) and (13), the strong product distance constraints can be relaxed by element-wise

distance constraints. Let us consider that the element-wise distance is no less than a threshold

δ, i.e., |xi,k − xj,k| ≥ δ, ∀i, j, k. Then the product distance dP is lower bounded by δK , i.e.,

dP ≥ δK . (14)

With this relaxation, more degrees of freedom may be exploited for maximizing the Euclidean

distance while maintaining high energy efficiency. Hence, the optimization problem in (11) can

be translated to the following one:

min
c,t,η

t− λη

s.t.

‖c‖2 ≤ t,

cHEi,jc ≥ D2
E ,

cHBi,j,kc ≥ η,

1 ≤ i < j ≤M,k = 1, 2, ...K,

(15)

where η is the introduced auxiliary variable corresponding to δ2, and λ > 0 is a hyper-parameter

which is used to strike a trade-off between the MED and MPD. Small λ tends to give rise
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to large MED but small MPD, whereas large λ leads to increased MPD but small MED, i.e.

approaching the equality in (12). Hence, λ needs to be fine-tuned. In Section IV, λ is set to be

1/2 such that the obtained MD constellations possess both large MED and MPD. The aim of

(15) is to minimize the total constellation energy and maximize the element-wise distance while

maintaining a large MED. Although the optimization problem (15) is still non-convex, it can be

simply linearized. In this paper, such a problem is solved by convex-concave procedure (CCCP)

[14].

Specifically, the optimization problem (15) can be solved by iteratively solving the following

convex problem:

min
c,t,η

t− λη

s.t.

‖c‖2 ≤ t,

cHq Ei,jc+ cHEi,jcq − cHq Ei,jcq ≥ D2
E ,

cHq Bi,j,kc+ cHBi,j,kcq − cHq Bi,j,kcq ≥ η,

1 ≤ i < j ≤M,k = 1, 2, ...K,

(16)

where the subscript q indicates the index of iterations.

It is noted that (16) is a convex second-order cone programming (SOCP) problem which can

be solved by convex optimization tools, e.g. CVX. The optimization process initiates with q = 0

and a randomly sampled vector c0 that meets the constraints. Then, in the q-th iteration, we solve

(16) by assigning the (q − 1)-th optimized solution c∗
q−1 to cq to produce a new solution with

a lower objective value. Note that cHEi,jc ≥ D2
E and cHBi,j,kc ≥ η are always satisfied during

the iterations, since the left sides of the second and third constraints are their affine tight lower

bounds. Furthermore, when cq−1 and cq are feasible, ‖cq‖2 ≤ ‖cq−1‖2 is also satisfied, which

means that the total constellation energy is not increasing during the iterations. The algorithm

stops when ‖cq−cq−1‖2 ≤ ε or the maximum number of iterations Iq is reached. In our numerical

simulation, ε and Iq are set to be 10−4 and 100, respectively. Finally, the MD constellation can

be obtained by reshaping the latest optimized solution c∗ to constellation matrix C∗. The above

iteration process is illustrated in Fig. 1.

According to the interior-point methods [16], the worst-case computational complexity of the

proposed method is O
((

1 + (K + 1)
(

M(M−1)
2

))3.5)
, which is moderate even for large M and

K.
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Fig. 1: Illustration of the CCCP iterations in solving the optimization problem (16). Note that
the algorithm may stop when ‖cq − cq−1‖2 ≤ ε.
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Fig. 2: Plots of the proposed 2-dimensional complex constellations, where the blue circles refer
to the first dimension, the yellow diamonds refer to the second dimension, and the index upon
each circle/diamond stands for the corresponding MD vector number.

IV. NUMERICAL EVALUATION

This section presents a numerical evaluation of the proposed MD constellations. We first

compare our proposed method with the scheme in [15] in terms of MED, MPD and BERs.

For all the simulations, λ and DE are set to be 1/2 and 1, respectively. The powers of all the

obtained MD constellations are normalized to unit, i.e. tr(CHC)/M = 1. Based on these new MD

constellations, we then construct 2-dimensional SCMA codebooks for a 4 × 6 SCMA system

(which is widely adopted in the literature) and compare the error rate performances with some

known SCMA codebooks in uplink Rayleigh fading channels. The indicator matrix of this 4× 6

SCMA system is given by

S4×6 =


0 1 1 0 1 0

1 0 1 0 0 1

0 1 0 1 0 1

1 0 0 1 1 0

 . (17)
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TABLE I: A comparison of MED and MPD for the obtained MD constellations and that from
[15], where the energy of the MD constellation is normalized to tr(CHC) =M .

(K,M)
Proposed [15]

MED MPD MED MPD
(2, 4) 1.633 1.0887 1.633 0.47
(2, 8) 1.4142 0.8165 1.4142 0.1355
(2, 16) 1.1368 0.3572 1.127 0.0781
(2, 32) 0.9297 0.1166 0.9275 0.0571
(2, 64) 0.7599 0.0454 0.7531 0.0109
(3, 4) 1.633 0.7698 1.633 0.3963
(3, 8) 1.4759 0.3086 1.4771 0.0207
(3, 16) 1.2969 0.0906 1.3042 0.0355
(3, 32) 1.1415 0.0425 1.1495 0.0034
(3, 64) 0.9965 0.0114 0.9972 0.0037
(5, 8) 1.5119 0.05 1.5119 1.45× 10−4

(5, 16) 1.4254 0.0158 1.4254 0.004
(7, 8) 1.5119 0.0043 1.5119 4.45× 10−4

(7, 16) 1.4537 8.28× 10−4 1.4537 1.38× 10−4

(9, 8) 1.5119 2.30× 10−4 1.5119 3.72× 10−5

(9, 16) 1.4606 3.27× 10−5 1.4606 6.82× 10−7

Fig. 2 presents the proposed 2-dimensional constellations with M = 4, 8, 16, 32. As we can see,

the constellation points at the same dimension, i.e., the constellation points with the same color

(same shape), own large MEDs. In other words, the element-wise distance at each dimension

is optimized, thus helping contribute a large MPD for the obtained MD constellations. Due to

the irregular pattern of constellation points, natural labeling is employed in the following BER

simulations.

Table I compares the MPD and MED values of the obtained MD constellations with that

from [15] for K ∈ {2, 3, 5, 7, 9} and M ∈ {4, 8, 16, 32, 64}. For the MD constellation with

K = 2,M = 4, it has been proven in [17] that the MED is upper bounded by 1.633. We can

observe that the obtained 2× 4 constellation achieves the optimal MED and large MPD values

at the same time. Moreover, the MPDs of the obtained MD constellations are significantly larger

than those arising from [15]. Let us denote by r(K,M) the ratio between the MPDs of our

obtained MD constellations with dimension of K ×M and that from [15]. Fig. 3 shows the

MPD improvements of the proposed method over [15] for K = 2, 3. It is noted that our obtained

MD constellations outperform the MD constellations from [15] by 3 dB to 12 dB for different

K and M . Since the MPD is not considered in [15], the MPD values of their MD constellations

are random, thus leading to the non-smooth ratio pattern.

Then we compare the BER performances of the obtained MD constellations and that from [15]

in Gaussian and Rayleigh fading channels in Fig. 4. Specifically, K = 3 is considered and the
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maximum likelihood detector with perfect channel information is assumed at the receiver side.

As can be seen, the proposed codebook achieve similar BER performance with that from [15]

in Gaussian channels, however, our obtained MD constellations outperform the constellations in

[15] significantly in Rayleigh fading channels in the high SNR region. One can observe that our

obtained MD constellations enjoy 4 dB and 2 dB gains for K = 3,M = 8 and K = 3,M = 16

respectively. To sum up, our proposed enhanced MD constellation can achieve good performance

in both Gaussian and Rayleigh fading channels, due to the large MED and MPD.
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Fig. 3: MPD improvement for
the obtained MD constellations
over that from [15] for K =
2, 3.
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Fig. 4: Comparison of BERs
between the obtained constella-
tions and that from [15] with
K = 3.
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Fig. 5: Comparison of BERs
between different codebooks
with M = 4, 8, 16 in uplink
SCMA under Rayleigh fading
channels.

By adopting the indicator matrix in (17), Fig. 5 compares the BER performances of the resul-

tant SCMA codebooks (arising from the obtained MD constellations) with several representative

codebooks with K = 2. These benchmarking codebooks for comparison are that obtained from

[15], the Star-QAM codebook [8], Chens codebooks [18] and Jiangs codebook [19]. Overall, our

obtained codebooks outperform the Star-QAM codebooks, Jiangs codebook and the codebooks

from in [15], and achieve comparable (but slightly worse) BER performance with the codebooks

in [18] for M = 4 and M = 8.

The latter is because our obtained MD constellations exhibit relatively flat (or almost flat)

MPD spectra, leading to limited error rate gain for optimizing the labeling between the input

bits and transmit sparse codewords. The excellent BER advantage of our obtained codebooks is

more prominent for M = 16. In this case, the codebooks of [18] are not available due to the

intolerable computational complexity, whilst at the same time, we obtain about 5 dB gain over

that from [15] and 10 dB gain over Star-QAM codebooks at BER = 10−5.
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V. CONCLUSIONS

In this paper, we have proposed a new method of designing enhanced MD constellations for

CD-NOMA with large MED and MPD at the same time. The optimization problem is formulated

(and then solved by CCCP) to minimize the energy of the MD constellations and maximize the

element-wise distance while keeping the MED greater or equal to a certain threshold. Whilst

maintaining almost the same performance over the Gaussian channels as compared to that of

[15], numerical results have shown that the obtained MD constellations lead to enhanced error

performances over Rayleigh fading channels, thanks to the enlarged MPD. Building upon these

new MD constellations, good error performances are also observed for the resultant SCMA

codebooks over uplink Rayleigh fading channels.
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