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Abstract. The convolution model of the parametric loudspeaker describes the far-

field directivity of the difference-frequency wave by the product directivity of two

ultrasonic primary frequencies convolved with Westervelt’s directivity. This can be

extended to the case when the primary wave is amplitude-modulated thus resulting

in the harmonic distortion of the self-demodulated wave. This paper proposes the

extended convolution model with Westervelt’s directivity and Berktay’s directivity

respectively. The angle-dependent harmonic distortion of the parametric loudspeaker

is thereafter investigated, which is a topic not often mentioned in previous literature but

is of significance in practice. The measurement, numerical simulation and model results

are compared for the case when the double sideband (DSB) modulation is adopted and

the frequency response of the ultrasonic emitter is a known factor. The comparison

validates that the extended convolution model provides accurate predictions that are

consistent with the measurement results and the extended convolution model is a

simpler way to compute the far-field directivity of an amplitude-modulated parametric

loudspeaker as compared to the numerical simulation.
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1. Introduction

Due to the parametric array effect, when two ultrasonic primary frequencies are

transmitted at the same angle, the virtual sources of the difference frequency are created

and form an end-fire array [1, 2]. If the primary wave is excited by a modulated

ultrasonic carrier, the self-demodulated wave is generated in a similar manner, which

can be interpreted as the difference frequency between the sideband frequency and the

carrier frequency [3]. The self-demodulated wave possesses a narrow directivity, which is

similar to the directivity of the ultrasonic carrier. Therefore, the parametric loudspeaker

modulates an audio input on the ultrasonic carrier, transmits the modulated ultrasound

carrier through a small-sized ultrasonic emitter, and is finally able to present an audio

beam in air [4]. The Berktay’s far-field solution describes the self-demodulation process

concisely by a square function and a high-pass filter. It has been well understood that

the square function introduces harmonic distortion, while the high-pass filter affects the

frequency response of the parametric loudspeaker [5].

The state-of-the-art approaches to reduce the harmonic distortion of the parametric

loudspeaker include a selection of modulation and preprocessing methods. The

amplitude modulation, more specifically called the double sideband (DSB) modulation,

is shown in figure 1(a). It was the first modulation method studied for the parametric

loudspeaker [4]. Due to the two sidebands, the DSB modulation suffers from the second

harmonic distortion, of which the level is proportional to the modulation index. Adding

in a quadrature term, the single sideband (SSB) modulation was proposed as a variant

of the DSB modulation [6]. Block diagrams of the lower and upper SSB modulations are

shown in figure 1(b) and figure 1(c), respectively. When the audio input is a sinusoid

signal, the SSB modulation outputs two ultrasonic primary frequencies that ideally

eliminate the harmonic distortion resultant from the second-order nonlinearity of air.

Alternatively, the square root method was proposed as a preprocessing method for

the DSB modulation [7]. The square root is an inverse operator to the square function

in the Berktay’s far-field solution. Moreover, equalization of the ultrasonic emitter

before the square root method is expected to improve the performance in practice

[8]. A post equalization is usually carried out by the double integral to offset the

high-pass filter in the Berktay’s far-field solution [9]. The automatic gain control is

another type of preprocessing method that changes the dynamic range of the modulated

ultrasonic carrier to reduce the effective modulation index and subsequently result in a

lower harmonic distortion level of a variety of modulation methods [10]. Recently, the

Volterra filter based linearization technique has demonstrated to be the most versatile

and effective preprocessing method if the computational complexity does not affect its

implementation [11].
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Figure 1. Block diagrams of the (a) DSB, (b) lower and (c) upper SSB modulations.

Once the harmonic distortion problem can be resolved, the parametric loudspeaker

will become a very convenient directional sound source that can be readily applied

in a wide range of sound field control applications. Differing from the conventional

loudspeaker array, the parametric loudspeaker is a small-sized stand-alone unit that

requires no additional directivity control. Many attempts have been reported regarding

applications of the parametric loudspeaker in active noise control [12], audio projection

[13], human-machine interface [14], and increasingly in contemporary art projects

[15, 16]. In the above mentioned instances, the emphasis has been given to the narrow

directivity and small size of the parametric loudspeaker, but the sound quality remains

unaddressed.

Applications of the parametric loudspeaker have necessitated a directivity model

of the self-demodulated wave to incorporate with modulation methods that can reduce

the harmonic distortion. Besides the axial performance of the parametric loudspeaker,
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the beam patterns of the difference-frequency wave and its harmonics are investigated.

Listeners found themselves very likely to stand on an off-axis angle of the audio beam

system, due to the narrow directivity of the parametric loudspeaker [17]. It was also

noted in [18] that using the parametric loudspeaker at an off-axis angle could reduce

the risk of ultrasound exposure.

The product directivity principle is the basis of many models that were used

for computing the far-field directivity of the difference-frequency wave. Based on

the product directivity principle, the directivity of the difference-frequency wave is

simply estimated by the product of the beam patterns of two ultrasonic primary

frequencies, which becomes unreasonably narrower than the directivity of the primary

wave. However, the product directivity principle was adopted in early designs of

the steerable parametric loudspeaker, whereby beam patterns of the two ultrasonic

primary frequencies were steered to the target angle of the difference-frequency wave

[19]. After that, the product directivity principle was modified using ad hoc methods,

such as introducing the equivalent Gaussian source array and carrying out the spline

interpolation between local peaks of the model result, until the convolution model was

formulated based on Westervelt’s derivation [20].

The convolution model describes the far-field directivity of the difference-frequency

wave by the product directivity of two ultrasonic primary frequencies convolved with the

so-called Westervelt’s directivity. It provides an accurate and concise directivity model

for the parametric loudspeaker. The convolution model has been successfully adopted

in the reproduction of personal sound in shared environments [21]. In the design of an

omnidirectional parametric loudspeaker [22], the convolutional model was adapted to

the case of a curved ultrasonic emitter [23]. On the other hand, the convolution model

may not capture the complex near field nonlinear interactions between the ultrasonic

waves [24]. Therefore, a cylindrical expansion for the ultrasound was introduced when

the radiating surface of the ultrasonic emitter was modeled as a baffled phased ultrasonic

source [25]. The resultant directivity model improves the accuracy of the convolution

model but increases the computation complexity greatly.

So far, the convolution model is only applicable to the parametric loudspeaker using

the SSB modulation. In order to compute the directivity of the parametric loudspeaker

using the DSB and other amplitude modulations, this paper proposes an extended

convolution model based on the spectral analysis of the self-demodulated wave, resulting

in the extended convolution model with Westervelt’s directivity. Moreover, the Berktay’s

far-field solution is also examined and extended, resulting in the extended convolution

model with Berktay’s directivity. Using both numerical simulations and experimental

measurements, the proposed extended convolution models are validated.

2. Theory

Assumptions made in Westervelt’s original derivation are invoked [2]. Two ultrasonic

primary frequencies are transmitted in extremely narrow and perfectly collimated
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Figure 2. Geometry of the theoretical derivation.

beams, so that the volume distribution of virtual sources of the secondary wave is

represented adequately by a line distribution along the propagation direction of the

primary wave. The cross-section area is assumed to be a unit. There is no attenuation

of the difference-frequency wave and the nonlinear attenuation of the primary sound

field is negligible. Hence, the pressure level of the primary sound field at a distance x

and time t is considered in the form of

pi(x, t) =
2∑

n=1

Pne
−αnx cos(ωnt− knx), (1)

where Pn, αn, ωn, and kn are the amplitude, attenuation rate, angular frequency, and

wavenumber of the n-th primary frequency, respectively.

Based on Lighthill’s equation, Westervelt has derived the source strength density

of the secondary waves as

q(x, t) =
β

ρ20c
4
0

∂

∂t
p2i (x, t), (2)

where β is the nonlinear coefficient; ρ0 is the density of the medium; and c0 is the sound

speed in the medium at infinitesimal amplitude. Substitute (1) into (2) and discard the

second harmonic and sum-frequency terms. The difference-frequency source strength

density of the secondary wave is thereafter extracted as

qd(x, t) =
β

ρ20c
4
0

ωdP1P2e
−α(1,2)x sin(kdx− ωdt), (3)

where α(1,2) is the sum of α1 and α2; kd and ωd are the wavenumber and angular frequency

of the difference-frequency wave, respectively.

Under the far-field and absorption-limited source conditions, the pressure level of

the difference-frequency wave is simplified into a linear integral, which is given by

pd(r, θ, t) =
ρ0
4π

∫ +∞

0

1

R(x)

∂

∂t
qd

(
x, t− R(x)

c0

)
dx, (4)

where r is the distance from an observation point to the origin; θ is the off-axis angle

of the observation point with respect to the x-axis; and R(x) is the distance from the

observation point to a virtual source located at x. The geometry is shown in figure 2.

R(x) can be approximated by r in the denominator and by r − x + x tan2(θ)/2 in the
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retarded time. Equation (4) is thus calculated as

pd(r, θ, t) = −βω
2
dP1P2

8πρ0c40r

ejkdr−jωdt

α(1,2) + jkd tan2(θ)/2
+ c.c. (5)

= −βω
2
dP1P2

4πρ0c40r

∣∣∣∣∣ 1

α(1,2) + jkd tan2(θ)/2

∣∣∣∣∣ cos(ωt− kdr − φ) (6)

= KP1P2DW (θ) cos(ωt− kdr − φ), (7)

where

K =
βω2

d

4πα(1,2)ρ0c
4
0r

; (8)

Westervelt’s directivity is denoted as

DW (θ) =

∣∣∣∣∣ α(1,2)

α(1,2) + jkd tan2(θ)/2

∣∣∣∣∣ =
α(1,2)√

α2
(1,2) + k2d tan4(θ)/4

; (9)

and the angular response is given by

φ = π − tan−1
kd tan2(θ)

2α(1,2)

. (10)

They are decomposed into the integration of extremely narrow beams that are

independent in all directions. In each direction, Westervelt’s derivation is valid.

Assuming that only weak nonlinear interactions occur in the parametric loudspeaker,

the wave superposition principle is still applicable for the difference-frequency wave.

Thus, the directivity of the difference-frequency wave becomes a convolution between

Westervelt’s directivity and the product directivity D1(θ)D2(θ), i.e.

Dd(θ) = [D1(θ)D2(θ)]⊗DW (θ), (11)

where ⊗ denotes the linear convolution operation. The pressure level of the difference-

frequency wave is readily written as

pd(r, θ, t) = KP1P2Dd(θ) cos(ωt− kdr − φ). (12)

2.1. Extending the Convolution Model by Spectral Analysis

Equation (11) is previously known as the convolution model. It provides an accurate

and concise directivity model for the parametric loudspeaker when there are only two

ultrasonic primary frequencies. In order to extend the convolution model to work with

different modulation methods, the pressure level of the primary sound field at a distance

x and time t is modified based on the spectral analysis as

pi(x, t) =
N∑
n=1

Pne
−αnx cos(ωnt− knx+ ψn), (13)

where N denotes the number of ultrasonic primary frequencies that are transmitted in

extremely narrow and perfectly collimated beams; and ψn denotes the initial phase.

Every two of the ultrasonic primary frequencies result in a difference-frequency

wave. The same difference frequency can be produced by different combinations of
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ultrasonic primary frequencies. Such combinations are collected in a set, which is defined

as W (ωd) = {i, j|ωi − ωj = ωd}. The pressure level of the difference-frequency wave is

superimposed as

pd(r, θ, t|ωd) =
∑

i,j∈W (ωd)

[
−βω

2
dPiPj

8πρ0c40r

ej(kdr−ωdt+ψi−ψj)

α(i,j) + jkd tan2(θ)/2
+ c.c.

]
(14)

=

K0

∑
i,j∈W (ωd)

PiPjK(i,j)DW(i,j)
(θ)

+ c.c., (15)

where

K0 =
βω2

d

8πρ0c40r
ejkdr−jωdt; (16)

K(i,j) =
ejφ(i,j)

α(i,j)

; (17)

φ(i,j) = ψi − ψj + π − tan−1
kd tan2 θ

2α(i,j)

; (18)

and Westervelt’s directivity is generalized as

DW(i,j)
(θ) =

α(i,j)√
α2
(i,j) + k2d tan4(θ)/4

. (19)

Similarly, when beam patterns of the ultrasonic primary frequencies are introduced

as Dn(θ), the pressure level and directivity of the difference-frequency wave become

pd(r, θ, t|ωd) =
{
K0P1P2

∑
i,j∈W (ωd)

{[Di(θ)Dj(θ)]⊗[K(i,j)DW(i,j)
(θ)]}

}
+c.c.(20)

and

Dd(θ|ωd) =
∣∣∣∣ ∑
i,j∈W (ωd)

{[Di(θ)Dj(θ)]⊗ [K(i,j)DW(i,j)
(θ)]}

∣∣∣∣, (21)

respectively. This results in the extended convolution model with Westervelt’s

directivity. Compared with (11), the complex coefficient K(i,j) caters to the fact that the

same difference frequencies generated by different combinations of ultrasonic primary

frequencies possess different phases.

The extended convolution model can be used to compute the total harmonic

distortion (THD) level of the parametric loudspeaker with respect to the observation

angle as

THDW (θ|ωd) =

√∑
n=2 n

4Dd(θ|nωd)2

Dd(θ|ωd)
× 100%. (22)
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2.2. Extending the Convolution Model by Berktay’s Far-field Solution

After Westervelt published his discovery of the parametric acoustic array, Berktay

studied a self-demodulation phenomenon caused by the same nonlinear acoustic effect

[3]. Berktay theoretically verified that when an acoustic wave was transmitted in the

form of a pulsed carrier, it would self-demodulate to its envelope, which consisted

of much lower frequency components than the ultrasonic carrier frequency after a

sufficiently long propagation distance. Using Berktay’s far-field solution is an alternative

way to extend the convolution model to work with different modulation methods.

The pressure level of the primary sound field at a distance x and time t is written

in an amplitude-modulated form as

pi(x, t) = Pce
−αcxf

(
t− x

c0

)
cos(ωct− kcx), (23)

where Pc, αc and ωc are the amplitude, attenuation rate and angular frequency of the

ultrasonic carrier frequency, respectively; k = ω/c0 is the wavenumber of the ultrasonic

carrier frequency; and f(t) is an envelope function, varying very slowly as compared to

the ultrasonic carrier.

By substituting (23) into (2) and discarding the second harmonic of the ultrasonic

carrier frequency, the source strength density of the secondary wave is written as

qd(x, t) =
βP 2

c

2ρ20c
4
0

e−2αcx
∂

∂t

{
f 2
(
t− x

c0

)}
. (24)

Equation (24) is rewritten in the frequency domain as

Qd(x, jω) =
βP 2

c

2ρ20c
4
0

e−2αcxjωF0(x, jω)e−jkdx, (25)

where qd(x, t)↔ Qd(x, jω) and f 2(t)↔ F0(jω) are Fourier transform pairs. Moreover,

the Fourier transform of (4) is written as

Pd(r, θ, jω) =
ρ0
4π

∫ +∞

0

jωe−jkdR(x)

R(x)
Qd(x, jω)dx, (26)

where pd(r, θ, t)↔ Pd(r, θ, jω) is a Fourier transform pair.

Using the geometry shown in figure 2, R(x) can be approximated by r in the

denominator and by r − x + x tan2(θ)/2 in the complex exponent. Substituting (25)

into (26) yields the pressure level of the self-demodulated wave in the frequency domain

as

Pd(r, θ, jω) =
βP 2

c

8πρ0c40r

(jω)2F0(jω)e−jkdr

2αc + jkd tan2(θ)/2
. (27)

Letting θ = 0 yields the Berktay’s far-field solution, which is written as

pd(r, θ, t) =
βP 2

c

16παcρ0c40r

∂2

∂t2

{
f 2
(
t− r

c0

)}
. (28)

Taking the absolute value of (27) yields

|Pd(r, θ, jω)| = K1ω
2|F0(jω)|DB(θ|ω), (29)
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where

K1 =
βP 2

c

16παcρ0c40r
(30)

and

DB(θ|ω) =
αc√

α2
c + k2d tan4(θ)/16

. (31)

DB(θ|ω) is referred to as Berktay’s directivity in this paper.

Denoting the beam pattern of the ultrasonic carrier frequency as Dc(θ), the pressure

level and directivity of the self-demodulated wave become

|Pd(r, θ, jωd)| = K1ω
2
d|F0(jωd)|D2

c (θ)⊗DB(θ|ωd) (32)

and

Dd(θ|ωd) = D2
c (θ)⊗DB(θ|ωd), (33)

respectively. This results in the extended convolution model with Berktay’s directivity.

The directivity of the self-demodulated wave is expressed as the convolution of Berktay’s

directivity and the squared beam pattern of the ultrasonic carrier frequency.

In this case, the THD level of the parametric loudspeaker with respect to the

observation angle is obtained as

THDB(θ|ωd) =

√∑∞
n=2 n

4|F0(jωnd)|Dd(θ|nωd)2

|F0(jωd)|Dd(θ|ωd)
× 100%, (34)

where F0(jω) is readily calculated after the modulation method is determined.

3. RESULTS

3.1. Simulation setup

The numerical simulation was carried out by using the k-wave toolbox [26, 27]. The

simulation area was a 11.664m× 10.64m rectangle. There was a perfect matching layer

(PML) on the outermost layer of the area to minimize reflections. Transducers were

placed on the left side of the simulation area. Each transducer had a width of 0.01m

and the spacing between the centers of two neighbouring transducers were also 0.01m

. Thus, the ultrasonic emitter consisting of 8 transducers had a total width of 0.08m.

Sensors were arranged in an arc with the radius of 10m on the right side of the simulation

area. A schematic diagram of the simulation setup is shown in figure 3(a). The measured

frequency response of a real ultrasonic emitter was taken into account in the simulation

by an infinite impulse response (IIR) filter. The modeled frequency response is plotted

in figure 3(b). The other parameters regarding the numerical simulation are listed in

table 1. Since the simulation setup was mainly consistent with the experiment setup,

the simulation results are discussed together with the experiment results in Section 3.3.
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Figure 3. Setup of the numerical simulation in the k-wave toolbox.

Table 1. List of simulation parameters.
Parameter value

Number of transducer points 8

Number of sensor points 5320

Temperature 10 ◦C

Relative humidity 50 %

Sound speed 343.42 m/s

Density of air 1.293 kg/m3

Power law absorption pre-factor 1.6 dB/(MHz)
y
cm

Power law absorption exponent(y) 1.984

Number of grid points in the row direction 5832

Number of grid points in the column direction 5320

Grid point size 0.002 m

Thickness of PML 0.08 m

3.2. Measurement setup

The measurement setup is illustrated in figure 4. Measurements were carried out in a

room, of which the dimension was measured to be 4m × 3m × 3m. The temperature

was about 10◦C and the relative humidity was in the range of 40%− 60%. The interior

of the measurement room was treated with sound-absorbing materials, except for the

ceiling and the floor. Hence, two acoustic panels (0.6m× 0.6m) were placed above and

below the measurement microphone to absorb reflections from the ceiling and the floor.

The acoustic panels were made up of sound absorbing materials and they were set 0.12m

apart.

The ultrasonic emitter consisted of 8 × 16 piezoelectric transducers that were

configured in a rectangular array. This ultrasonic emitter was fastened on a motorized

rotation stage, in order for the horizontal directivities of the primary and self-

demodulated waves to be measured from −20◦ to +20◦. Resonant frequencies and
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Figure 5. Block diagram of signal processing flow in the wave generator of the

laboratory-made parametric loudspeaker.

diameters of the piezoelectric transducers were about 40kHz and 9.8mm, respectively.

The overall size of the ultrasonic emitter was 0.08m× 0.16m and the Rayleigh distance

was calculated as 1.49m. The measurement microphones (CRY-333 and CRY-343) were

placed at a far-field position, which was 3m from the ultrasonic emitter. The initial

pressure level of the ultrasonic emitter was set to 110dB, in order to satisfy the condition

of applying Berktay’s far-field solution. In this case, the Gol’dberg number was smaller

than 1.

The laboratory-made parametric loudspeaker adopted a wave generator as the

driver of the ultrasonic emitter. This wave generator converted a multi-bit audio input

into a 1-bit amplitude-modulated output. The signal processing flow is shown in figure

5. The pulse density modulation (PDM) was carried out in a topology of cascade-of-
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resonators feedforward form, of which the signal model is written as

U(z) = STF (z)V (z) +NTF (z)E(z), (35)

where U(z), V (z), and E(z) are the z transforms of the input u(n), output v(n), and

quantization error e(n) of the PDM. The signal transfer function (STF) and noise

transfer function (NTF) were designed as

STF (z) = 1 (36)

and

NTF (z) =
(z2 − 1.976z + 1)(z2 − 1.958z + 1)

(z2 − 1.488z + 0.5672)(z2 − 1.651z + 0.7831)
, (37)

respectively.

3.3. Discussions

Figure 6 shows the directivities of the laboratory-made parametric loudspeaker when

the audio inputs are 2kHz and 4kHz sinusoid signals. Since the DSB modulation is

employed, the second harmonic is also observed besides the fundamental frequency.

In figure 6(a), the average prediction errors for the fundamental frequency are 0.0577,

0.0512, and 0.0524 by the extended convolution model with Westervelt’s directivity, the

extended convolution model with Berktay’s directivity, and the numerical simulation,

respectively. The average prediction errors for the second harmonic are 0.0653,

0.0570, and 0.1277 by the extended convolution model with Westervelt’s directivity, the

extended convolution model with Berktay’s directivity, and the numerical simulation,

respectively. In figure 6(b), the average prediction errors for the fundamental frequency

are 0.0477, 0.0410, and 0.0502 by the extended convolution model with Westervelt’s

directivity, the extended convolution model with Berktay’s directivity, and the numerical

simulation, respectively. The average prediction errors for the second harmonic are

0.0445, 0.0389, and 0.0500 by the extended convolution model with Westervelt’s

directivity, the extended convolution model with Berktay’s directivity, and the numerical

simulation, respectively. Those prediction errors can generally be considered small

within the half-power beamwidth (HPBW), but relatively large outside the HPBW. The

accuracy of the extended convolution model is overall satisfactory. It is validated that

the proposed extended convolution models can predict the directivities of the parametric

loudspeaker using the amplitude modulation.

The calculation of the THD beam pattern involves the division between two

predicted directivities. Therefore, it is sensitive to the error in the denominator, which

is given by the directivity of the fundamental frequency. The accuracy of the extended

convolution model also depends on the measured directivities of the ultrasonic primary

frequencies. Due to the noise floor in the measurement room, errors are incurred in the

measured directivities of the ultrasonic primary frequencies at large observation angles.

The extended convolution model with Berktay’s directivity is simpler to calculate than

the extended convolution model with Westervelt’s directivity. However, the accuracy
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(b) 4kHz sinusoid audio input

Figure 6. Directivities of the laboratory-made parametric loudspeaker when the audio

inputs are (a) 2kHz and (b) 4kHz sinusoid signals.

of the former is lower than that of the latter when the angle is more than ±10◦ off the

axis.

Figure 7 shows the HPBW of the laboratory-made parametric loudspeaker. The

average prediction errors for the fundamental frequency are 1.8238◦, 1.9484◦, and

1.5030◦ by the extended convolution model with Westervelt’s directivity, the extended

convolution model with Berktay’s directivity, and the numerical simulation, respectively.

The average prediction errors for the second harmonic are 1.4795◦, 1.4422◦, and

2.8751◦ by the extended convolution model with Westervelt’s directivity, the extended

convolution model with Berktay’s directivity, and the numerical simulation, respectively.

Although error accumulation is difficult to eliminate, the measured HPBW shows a

decreasing trend with respect to the increasing fundamental frequency as well as the

second harmonic. The same trends are also predicted by the extended convolution model

and the numerical simulation results.

Lastly, figure 8 demonstrates the frequency responses of the laboratory-made

parametric loudspeaker both on and off the axis, since previous works on the parametric

loudspeaker seldom exhibit the THD performance and frequency response off the axis.

The predicted frequency responses by the extended convolution model are in good

agreement with the measured frequency responses. The average prediction errors on the

axis are 2.1526dB and 2.7287dB by the extended convolution model with Westervelt’s

directivity and the extended convolution model with Berktay’s directivity, respectively.

The average prediction errors off the axis are 1.4092dB and 1.5404dB by the extended

convolution model with Westervelt’s directivity and the extended convolution model
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(b) Second harmonic

Figure 7. Half-power beamwidths of the laboratory-made parametric loudspeaker at

the (a) fundamental frequency and the (b) second harmonic.
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(a) On the axis
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(b) Off the axis at the angle of 10◦

Figure 8. Frequency responses of the laboratory-made parametric loudspeaker (a) on

the axis and (b) 10◦ off the axis.

with Berktay’s directivity, respectively. The numerical simulation encounters mistakes

in calculating the frequency response. This is likely due to the windowing effect in the

transformation from the time domain to the k-space, or the inaccurate computation of

the sound absorption in the low-frequency range.
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4. CONCLUSIONS

This paper proposes the extended convolution model with Westervelt’s directivity and

Berktay’s directivity respectively. The extended convolution model with Westervelt’s

directivity treats the primary sound field as a set of ultrasonic primary frequency

combinations based on the spectral analysis. Complex weighting coefficients are

introduced in the wave superposition to cater to the fact that the same difference

frequencies generated by different combinations of ultrasonic primary frequencies possess

different phases. The extended convolution model with Berktay’s directivity furthermore

formulates the directivity of the self-demodulated wave as the convolution of Berktay’s

directivity and the squared beam pattern of the ultrasonic carrier frequency. Therefore,

the extended convolution model with Berktay’s directivity is simpler to calculate

than the extended convolution model with Westervelt’s directivity. Both of them

are significantly less complicated computationally than the numerical simulation. The

measurement, numerical simulation and model results are compared in terms of the

directivity, THD beam pattern, and frequency response of the self-demodulated wave.

It is validated that the extended convolution models provide accurate predictions to

the measurement results. Thus, they can be applied in future works on the design of

modulation methods for the parametric loudspeaker.
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