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ABSTRACT 

In the past two decades, majority of researches on the parametric loudspeaker concentrate on the 

nonlinear modeling of acoustic propagation and pre-processing techniques to reduce nonlinear distortion 

in sound reproduction. There are however very few studies on directivity control of the parametric 

loudspeaker. In this paper, we propose an equivalent circular Gaussian source array that approximates the 

directivity characteristics of the linear ultrasonic transducer array. By using this approximation, the 

directivity of the sound beam from the parametric loudspeaker can be predicted by the product directivity 

principle. New theoretical results, which are verified through measurements, are presented to show the 

effectiveness of the delay-and-sum beamsteering structure for the parametric loudspeaker. Unlike the 

conventional loudspeaker array, where the spacing between array elements must be less than half the 

wavelength to avoid spatial aliasing, the parametric loudspeaker can take advantage of grating lobe 

elimination to extend the spacing of ultrasonic transducer array to more than one and a half wavelength in 

a typical application. 

Key Words: Beamsteering, spatial aliasing, ultrasonic transducer array, parametric loudspeaker, 

nonlinear acoustics. 



I. INTRODUCTION 

Due to the high directivity of sound beams created by the parametric loudspeaker, it can be deployed 

in many sound confinement applications, such as providing personal listening zones in public area and 

creating immersive sound effects in virtual reality [1]. The principle of the parametric loudspeaker, 

commonly known as parametric array, was first theoretically explained by Westervelt [2] in 1963. Since 

then many studies were investigated in underwater. It is not until 1975 when Bennett and Blackstock [3] 

proved that parametric array is also able to operate in air. Yoneyama and Fujimoto [4] later demonstrated 

that the parametric loudspeaker can be used to create a directional audio beam by amplitude modulating a 

high intensity ultrasonic carrier signal with audio signal. However, severe distortion was observed, and 

subsequently, different types of preprocessing methods and modulation techniques [5]-[8] have been 

studied to reduce the distortion to an acceptable speech quality level.  

Several theoretical models are currently used in describing the nonlinear acoustics properties of 

parametric array [9]-[12], but majorities of these models emphasize on the amplitude response, rather than 

on the phase response of the generated harmonics. Zheng and Coates [13] developed an analytical 

formula for the far-field angular response of the difference frequency wave, and evaluated the off-axis 

performance of parametric array. Subsequently, Zheng and Wang [14] proposed a numerical method, of 

which results are reported in close agreement with available experimental results within and beyond the 

Rayleigh distance of parametric array. However, the off-axis angle was limited to a small range due to the 

assumption that the parametric nonlinear interaction process in air was treated in a quasi-linear manner in 

both the above investigations. 

Steering of directional sound beam is a useful feature for applications that require the parametric 

loudspeaker to steer to a targeted audience and not to disturb people nearby [15]. A direct approach is to 

turn the sound beam mechanically, as shown in Olszewski et al. [16]. However, mechanical structure is 

bulky and cannot be scaled down easily. Alternatively, a digital beamsteering approach for the parametric 

loudspeaker was proposed by Tan et al. [17], who exploited a group of bifrequency Gaussian sources but 

ignored the absorption effect in air. In their work, the delay-and-sum beamforming technique was 



employed for electronically steering the primary beams so as to steer the audible beam towards the 

desired direction. The theoretical basis of this digital beamsteering method of the parametric loudspeaker 

can also be traced back to Darvennes and Hamilton [18]. They studied the difference frequency wave 

generated from two noncollinear Gaussian beams based on the nonlinear parabolic wave equation, and 

found that when restricted to moderate sources separations and interaction angles, the far-field directivity 

of the difference frequency wave is given by the product of the primary beam directivities. The product 

directivity principle was applied in the work of Gan et al. [19] on digital beamsteerers of the parametric 

loudspeaker, but they only provided simulation results of the proposed beamsteering algorithms and did 

not discuss the spatial aliasing issue. 

In this paper, an equivalent Gaussian source array to the ultrasonic transducer array is proposed to 

prove the feasibility of devising a digital beamsteerer for the parametric loudspeaker. A new observation 

on the limitation of valid angle range for beamsteering, which is based on the nonlinear parabolic wave 

equation, is also stated for the parametric loudspeaker. Moreover, digital beamsteering approach of the 

parametric loudspeaker is carried out in experiment and links to the theoretical study. From the 

experimental measurements, we observe spatial aliasing of primary waves in the parametric loudspeaker 

and the formation of grating lobes of primary waves, which may or may not be completely inherited by 

the difference frequency wave, depending on the frequencies of the primary waves. This grating lobe 

elimination is also analyzed and verified through experiments. 

This paper is organized as follows. In Section II, the beamforming structure of the parametric 

loudspeaker is given. In Section III, the grating lobe elimination of the parametric loudspeaker is 

observed and analyzed by simulations. The experiments of grating lobe elimination are carried out and 

discussed in Section IV. Lastly, Section V concludes this paper. 

II. BEAMSTEERING STRUCTURE OF PARAMETRIC LOUDSPEAKER 

One of the most popular model equations in nonlinear acoustics is the parabolic wave equation, also 

widely known as the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation [11], [12]. The KZK equation 

accurately describes the entire process of self-demodulation throughout the near-field and into the 



far-field, for both on and off axis of the beam, and is expressed as follows:  
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where 2
  is the Laplacian operator that operates in the plane perpendicular to the axis of the sound 

beam; p is the acoustic pressure; τ is the retarded time; δ is the diffusivity of sound; c0 is the small-signal 

sound speed; β is the coefficient of nonlinearity; and ρ0 is the ambient density. The effects of diffraction, 

absorption and nonlinearity in wave propagation are expressed by the first, second and third terms on the 

right hand side of (1), respectively. 

There is however no general analytical solution to the KZK equation [20], but by considering 

acoustic sources with Gaussian amplitude shading, namely Gaussian sources, closed form solution can be 

found under the quasilinear approximation [9]. The source function q1 of Gaussian sources is defined as 
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where r is the distance to the center of the source; p0 and a are the peak source pressure and the effective 

source radius, respectively. 

Thus, the directivity function of Gaussian source can be derived from the linear solution component 

in the quasilinear approximation by substituting (2) into (1) [9]. The far-field Gaussian directivity DG is 

given by 
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where θ is the angle (in degree) with respect to the axis of the beam, and k is the wavenumber. It is noted 

that from (3) that larger values of ka (i.e. larger ratios of source dimension to radiation wavelength) 

produce narrower beams. The variation of the Gaussian directivity with radiating frequency and effective 

radius is plotted in Fig. 1. Figure 1(a) shows that when the radiation frequency increases from 30 kHz to 

50 kHz and the effective radius of the Gaussian source is fixed at 8 mm, the beamwidth decreases. Figure 

1(b) shows another case when the radiation frequency is fixed and the effective radius of the Gaussian 

source varies from 2 mm, 5 mm to 8 mm. It is observed that the Gaussian directivity gets shaper with 



higher operating frequency and smaller source radius. 

 
Fig. 1. Gaussian directivity varying with (a) the radiation frequency and (b) the effective radius. 

When considering the difference frequency wave due to the radiation from a bifrequency Gaussian 

source, the difference frequency wave is given by the product of the directivities of the two primary 

frequency waves in the far-field, which is known as the product directivity principle [18]. However, the 

ultrasonic transducer array in the parametric loudspeaker [15]-[17] is usually separately weighted and 

equally spaced, and all the transducers in the linear array are assumed omnidirectional instead of Gaussian 

sources. Typical beampattern of 8-channel uniform linear transducer array with half wavelength spacing 

and using Chebyshev weights that achieve a sidelobe level of 20 dB is shown in Fig. 2(a). In practice, 

either a single transducer or a group of transducers are driven by the same output from each channel of 

the transducer array. Channel directivity is considered as the directivity pattern transmitted from one 

channel of the transducer array. Due to the channel directivity, the heights of sidelobes are reduced and no 

longer equal. The beampattern of the 8-channel transducer array is only plotted from -40˚ to 40˚ in Fig. 

2(b) in accordance with the half power beamwidth of the channel directivity. Note that each lobe in the 

beampattern of a uniform linear transducer array has a bell shape similar to the directivity of a single 

Gaussian source. Thus, a transformation can be proposed to obtain an equivalent Gaussian source array 

from a linear uniform transducer array whose beampattern is given. In a seminal paper, Wen and 



Breazeale [21] demonstrated that it was possible to accurately simulate the sound beam of a piston source 

by the superposition of ten Gaussian beams. They obtained the coefficients by fitting the Gaussian 

sources to match the piston velocity distribution on the surface of the transducer using a nonlinear least 

squares approach. A similar idea is used here. Each Gaussian source in the equivalent array is assigned an 

effective radius and an angular offset. Thus, each Gaussian source can represent one lobe in the 

beampattern plot. The directivity patterns of the Gaussian source arrays, which are equivalent to Figs. 2(a) 

-(b), are plotted in Figs. 2(c)-(d), respectively. Two kinds of mismatches are observed between the 

equivalent Gaussian source array and the transducer array in Figs 2(e)-(f). First, the sidelobes in the 

beampattern plot of the transducer array become more asymmetric when the incidence angle becomes 

larger. The asymmetric sidelobes result as peaks in the mismatch beampatterns. Second, the mismatches 

between the equivalent Gaussian source array and the transducer array becomes larger at the gaps 

between two sidelobes. Through the mismatches at the gaps are obvious, they occupy relatively small 

ranges of incidence angle. Fig. 2 illustrates that when the overall directivity of the transducer array is 

given by multiplying its theoretical beampattern with the channel directivity, the nonlinear least square 

approach can still work out an equivalent Gaussian source array that match the overall beampattern of the 

transducer array well. 



 
Fig. 2. (a) Beampattern of a transducer array (8 channels) with Chebyshev weights giving 20 dB sidelobe level when 

the spacing is half the wavelength; (b) beampattern of a transducer array (8 channels) with Chebyshev weights 

giving 20 dB sidelobe level taking into account of the channel directivity; (c) beampattern of the equivalent 

Gaussian source array (7 elements) to (a); (d) beampattern of the equivalent Gaussian source array (5 elements) to 

(b); (e) mismatch beampattern between (a) and (c), which excludes the channel directivity; (f) mismatch 

beampattern between (b) and (d), which includes the channel directivity. 

The equivalent circular Gaussian source array can provide a novel observation of the validation of 



the product directivity principle. For example, a uniform linear transducer array with half wavelength 

spacing is shown in Fig. 3(a). There are 7 lobes in this beampattern plot, so the same number of Gaussian 

sources is required to achieve a good match between the transducer array and the circular Gaussian source 

array, as illustrated in Fig. 3(b). The Gaussian sources in the equivalent circular array are different sizes 

according to the beamwidths of distinguish lobes, and are placed at the angular peaks‟ locations of the 

corresponding lobes. Therefore, by choosing the effective radius for each Gaussian source, as shown in 

Fig. 3(b), the directivity of Gaussian source can fit the shape of lobes when the radiating frequency is 

fixed. 

 
Fig. 3. (a) A uniform linear transducer array (8 elements, half wavelength spacing) is transformed into (b) an 

equivalent circular Gaussian source array (7 elements), where ai (i = 0,1,2,…,6) shows the effective radius of each 

Gaussian source located at the indicated angle. 

Since the product directivity principle is derived from the parabolic wave equation that is only valid 

in the vicinity of the propagating axis, the range of valid angle is limited within an angle of ±15˚ as a 

result of constraint imposed by the KZK equation [9]. In particular, when the ultrasonic transducers in the 

linear array are assumed Gaussian sources, their propagation axes are parallel. Therefore, the range of 

valid angle of the whole transducer array is still limited within an angle of ±15˚. But when the uniform 

linear transducer array is considered as equivalent to a circular Gaussian source array, the propagating 

axes of Gaussian sources are distributed. Thus, the range of valid angle of the circular Gaussian source 

array is given by the union of the ranges of valid angles of all the Gaussian sources. In this sense, the 



product directivity principle can always be applied to the parametric loudspeaker. 

According to the product directivity principle, the directivity of the difference frequency wave can be 

adjusted by controlling the directivity of the primary waves. Figure 4 shows a simplified structure of a 

beamsteerer used in the parametric loudspeaker, where the total number of channels is denoted as M. 

Assume that the ultrasonic transducer array is steered in the same direction and shares the same group of 

weights for two primary frequency waves. Therefore, the difference frequency wave is also steered to that 

direction, and the far-field beampattern of the steered ultrasonic transducer array for the primary 

frequency wave is given by 
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where wm are the weights of channels for m = 0,1,2,..,M –1; the output of each channel can drive a group 

of transducers which are configured into different shapes; d is the spacing between channels in the 

ultrasonic transducer array; k is the wavenumber of the transmitted primary frequency wave; θ is the 

incidence angle that can range from -90˚ to 90˚; and θ0 is the steering angle of the ultrasonic transducer 

array.  

 

Fig. 4. Beamsteering structure of the parametric loudspeaker. 

Based on the product directivity principle, the far-field directivity of the difference frequency wave 

Ddiff(θ) is given by 
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where ka and kb are the wavenumbers of primary frequencies fa and fb, respectively. We always assume 



that fa < fb without lost of generality. Thus, the difference frequency wave generated from the two primary 

frequency waves is given by fdiff = fb – fa. 

For simplicity, the product directivity can be defined as 
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where Λ is the ratio of the wavelength of the lower primary frequency fa to the spacing of the ultrasonic 

transducer array, given by Λ = λa / d; F is the ratio of the higher primary frequency to the lower primary 

frequency, given by F = fb / fa; and Θ is the normalized angle, given by Θ = sinθ – sinθ0.  

III. GRATING LOBE ELIMINATION OF PARAMETRIC LOUDSPEAKER 

Typical ultrasonic transducer [22] with a resonance frequency of 40 kHz has a diameter of less than 

16 mm. However, the primary wavelength for the 40 kHz signal is less than 8.5 mm, which is much 

smaller than the diameter of the ultrasonic transducer. Though it is not surprise to observe spatial aliasing 

of primary frequency waves in the parametric loudspeaker, certain grating lobes of primary frequency 

waves are not completely inherited by the difference frequency wave. This grating lobe elimination can 

occur only under some conditions for the difference frequency wave in the parametric loudspeaker. To 

help analyze the prerequisites on the grating lobe elimination, it is assumed that the weights used in the 

beamsteering structure of the parametric loudspeaker are symmetric with reference to the center channel, 

and the steering angle is chosen between 0° ≤ θ0 ≤ 90°, without lost of generality. 

The angular distances between grating lobes of primary frequency waves is helpful to quantify the 

level of grating lobe eliminations. For example, the grating lobe elimination of the difference frequency 

wave can be achieved when the angular distance between grating lobes of primary frequency waves are 

far apart. The direction where grating lobes occur can be found at Θa = naΛ for the lower primary 

frequency fa and Θb = nbΛ / F for the higher primary frequency fb, where na and nb are indices of grating 

lobes. The distance function, which describes the minimum angular distance between grating lobes of two 

primary frequency waves, is defined as 
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where K is the largest index of grating lobe of the lower primary frequency fa in the visible region where 

the incidence angle is between ±90°; L is the largest index of grating lobe of the higher primary frequency 

fb in the visible region. Because fa < fb is assumed, K must be less than L, and F > 1. Furthermore, to 

compute the values of the distance function, K needs to be assigned in advance.  

 

Fig. 5. Distance function when considering (a) K =1, (b) K =2, (c) K =3, and (d) K =4 grating lobes. 

 Figure 5 shows the distance function when K = 1,2,3,4 and 1< F < 2. Nulls in the distance function 

show the occurrence of grating lobes for difference frequency wave. When two grating lobes of primary 

frequency waves arise in the same direction, the value of distance function reduces to 0. This observation 

can be shown in Fig. 6(a) when the second grating lobe of 40 kHz primary wave coincides with the third 



grating lobe of 60 kHz primary wave. Therefore, nulls in the distance function constrain the range of F 

that must be chosen between two neighboring nulls to prevent grating lobes of the difference frequency 

wave. To ensure the ability of generating low difference frequency, the null where F =1 must be chosen 

as the lower bound of the valid range of F. From (7), nulls in the distance function are located where F = 

nb / na. Setting na = K and nb = K + 1 gives the upper bound of the valid range of F, which represents the 

null that is closest to 1. Thus, the upper bond of F is given by F = (K + 1) / K. Note that the location of 

nulls in distance function is not related to the estimation of L. So the range of F, given by 1 < F < 1 + 1 / 

K, is valid whenever K is assigned.  

The difference frequency is generated from the two primary frequency waves, given by fdiff = fb – fa. 

Derived from the definition of F, fdiff / fa = F – 1. Therefore, the range of the difference frequency is given 

by 0 < fdiff < fa / K. If the parametric loudspeaker is designed to generate all the audible frequencies below 

20 kHz, K should be less than fa / 20 kHz. In practice, fa is normally chosen to be around 40 kHz (i.e. 

coincide with the resonating frequency of the typical ultrasonic transducer [22]). Therefore, it is 

reasonable to assign K =2. 

The relation between steering angle and the number of grating lobes of primary frequency waves can 

be found in the Nyquist criterion [23], the range of Λ is approximately given by 
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where φ is the maximum steering angle. For example, setting K = 2, φ = 90°, the spacing of the ultrasonic 

transducer array d is found to be less than one and half the wavelength. In the case of using upper single 

sideband modulation and the carrier frequency (i.e. fa) is 40 kHz, the maximum non-aliasing spacing of 

the ultrasonic transducer array is 12.75 mm. In another beamsteering example of K = 2, φ = 30°, the 

largest spacing can achieve two times wavelength of the lower primary frequency wave to prevent grating 

lobes at the difference frequency. Therefore, the non-aliasing spacing of the ultrasonic transducer array 

can now be widened to 17 mm. 



As discussed above, the grating lobes of the difference frequency wave appear where there are nulls 

in the distance function. In addition, grating lobes are suppressed within the vicinity of nulls in the 

distance function due to the product directivity principle. Thus, intersection function is proposed to 

describe the elimination of grating lobes of the difference frequency wave when the distance between 

grating lobes of primary frequency waves is given by the distance function. Intersection function is 

defined as 
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(9) 

Based on the beamsteering structure in Fig. 4, simulations are carrier out for an ultrasonic transducer 

array with 16 channels. The spacing d is chosen as twice the wavelength of the lower primary frequency 

wave (i.e. β = 2 and fa = 40 kHz). The higher primary frequency fb is selected as 60 kHz, 50 kHz, 42 kHz, 

resulting in F = 1.5, 1.25, 1.05, respectively. The steering angle θ0 is specified as 15˚, and wm are chosen 

as Chebyshev weights with 30dB attenuation. The simulated beam patterns for three sideband frequencies 

are plotted in their respective plots of Figs. 6(a)-(c). Grating lobes (1,2,3,…) in the figures are indexed 

from right to left, and the mainlobe is labeled as 0. 

In Fig. 6(a), the second grating lobe of the lower primary frequency (fa = 40 kHz) only coincides 

with the third grating lobe of the higher primary frequency (fb = 60 kHz). In this case, spatial aliasing of 

the difference frequency (fdiff = 20 kHz) occurs at -50˚. In Fig. 6(b), grating lobes of the lower primary 

frequency (fa = 40 kHz) coincide with sidelobes of the higher primary frequency (fb = 50 kHz) that result 

in sidelobes of the difference frequency (fdiff = 10 kHz). Heights of all the sidelobes in the difference 

frequency wave are not higher than the highest sidelobe of primary frequency waves. This case is called 

the grating lobe elimination. In Fig. 6(c), the first grating lobe of the lower primary frequency (fa = 40 

kHz) appears in the direction close to the first grating lobe of the higher primary frequency (fb = 44 kHz). 

Two grating lobes that are closely spaced result in a sidelobe at the difference frequency (fdiff = 4 kHz) 

that is lower than the mainlobe but higher than the highest sidelobe of primary frequency waves. This 

case is considered as a partial eliminated grating lobe of primary frequencies. The intersection function 



for this group of simulations is plotted in Fig. 6(d). The grey bar at the bottom of Fig. 6(d) shows the 

region of partial grating lobe elimination, and the black bar illustrates the region of grating lobe 

elimination. 

 

Fig. 6. Three cases, (a) spatial aliasing, (b) grating lobe elimination, and (c) partial grating lobe elimination occur in 

an ultrasonic transducer array with 16 channels (M =16) and twice the wavelength spacing (Λ=0.5). The intersection 

function for this array configuration and equal weights is plotted in (d) to show the ranges of F that lead to different 

cases. 

In another scenario, the spacing d is changed to one and a half times the wavelength of the lower 

primary frequency (i.e. β = 1.5). The number of channels and the lower primary frequency are kept at 8 

and 40 kHz, respectively. The higher primary frequency is selected as 60 kHz, 50 kHz, 44 kHz, resulting 

in F = 1.5,1.25,1.1, respectively. The steering angle θ0 is specified at 35˚, and wm are chosen as equal 

weights. Spatial aliasing, grating lobe elimination and partial grating lobe elimination cases are shown by 



Figs. 7(a)-(c), respectively. The intersection function for this group of simulations is plotted in Fig. 7(d). 

The grey bar at the bottom of Fig. 7(d) shows the region of partial grating lobe elimination, and the black 

bar illustrates the region of grating lobe elimination. 

 

Fig. 7. Three cases, (a) spatial aliasing, (b) grating lobe elimination, and (c) partial grating lobe elimination occur in 

a ultrasonic transducer array with 8 channels (M =8). The spacing is one and a half the wavelength (Λ=0.667). The 

intersection function for this array configuration and equal weights is plotted in (d) to show the ranges of F that lead 

to different cases. 

When the transducer spacing is reduced from 2λa (in Fig. 6) to 1.5λa 
(in Fig. 7), the number of grating 

lobes in the beampattern plots of primary frequency waves is reduced due to insufficient spatial sampling 

rate. However, the largest index of grating lobes at the lower primary frequency is constant as K =2, 

because the steering angle also changes from 15˚ to 35˚, as stated in (8).  



In Figs. 8(a)-(b), we set K = 2, 1 < F < 1.5, and the number of channels M = 8. The spacing of the 

ultrasonic transducer array used to plot Figs. 8(a)-(b) are 1.5λa and 2λa, respectively. Slight differences are 

observed between curves of intersection functions. However, these differences are found not to affect the 

ranges of F that ensure the grating lobe elimination, since the changed segments are subsets of the ranges 

of F that ensures the grating lobe elimination. Note that from the definition of the intersection function, it 

can also be discovered that the range of F that ensures the grating lobe elimination is not changed with Λ. 

(see appendix for detail explanation).However, the value of Λ can affect the occurrence of grating lobe 

elimination in an implicit way. In practice, closer spacing between channels in the ultrasonic transducer 

array leads to less grating lobes. The value of Λ in (8) determines the number of grating lobes of the 

lower primary frequency wave. 

In Fig. 8(c), K is set to 1. Within the range of 1 < F < 1.5, we can only obtain the lower bound of F 

which ensures the grating lobe elimination, since the upper bound has already been beyond the range of F 

that we are considering. Correspondingly in Fig. 5(a), the distance function when K =1 has only one null 

within the range 1 < F < 1.5. 

Another factor that determines the grating lobe elimination is the number of channels used in the 

ultrasonic transducer array. In Fig. 8(d), the number of channels M is increased to 16. Comparison 

between Fig. 8(a) and Fig. 8(d) shows that the number of channels can significantly affect the range of 

grating lobe elimination. Another advantage of increasing number of channels is obtaining narrower 

beams, but this is traded off by using more digital-to-analog convertors and processing complexity.  

Through the comparison among all the four subplots of Fig. 8, beamsteerer using Chebyshev weights 

with 20 dB attenuation results in comparable range of F compared to beamsteerer using equal weights. 

Chebyshev weights with 10 dB and 30 dB attenuation result in the widest and narrowest range of F, 

respectively. In order to achieve higher attenuation, the range of difference frequency is sacrificed. Once 

the range of F  is fixed, increasing the carrier frequency widens the range of difference frequency 

generated from the parametric loudspeakers. However, the bound of F  is proportional to the bound of 

the difference frequency in parametric loudspeakers. Increasing carrier frequency increases both the lower 



and upper bounds of the difference frequency. Therefore, a better way to build the ultrasonic transducer 

array in the parametric loudspeaker is to increase the number of channels, which widens the ranges of F  

and the difference frequency, and preserves the ability of generating low frequency as well. 

  

Fig. 8. Intersection function with four groups of weights (equal weights and Chebyshev weights with 10 dB, 20 dB, 

30 dB attenuations): (a) 8 channels, one and a half wavelength spacing, and appearance of two grating lobes for the 

lower primary frequency wave; (a) 8 channels, two times wavelength spacing, and appearance of two grating lobes 

for the lower primary frequency wave; (c) 8 channels, half wavelength spacing, and appearance of only one grating 

lobes for the lower primary frequency wave; (d) 16 channels, half wavelength spacing, and appearance of two 

grating lobes for the lower primary frequency wave. 

IV. EXPERIMENT RESULTS 

Grating lobes appear in the beampattern of primary frequency waves when the spacing of channels is 

larger than half the wavelength of primary frequency waves in the ultrasonic transducer array. This is 

commonly known as the Nyquist criterion [24] in array signal processing theory. However, the simulation 



results reveal that the Nyquist criterion is no longer applied to the difference frequency wave generated by 

the parametric loudspeaker. When the primary waves are steered to the same direction, their mainlobes 

coincide with each other. But because of the difference between wavenumbers of the two primary waves, 

the spatial aliasing periods for the two primary waves are also different. Thus, the grating lobes of two 

primary frequency waves do not coincide at the same direction all the times. It allows the grating lobes of 

primary frequency waves to suppress each other at the difference frequency wave based on product 

directivity principle. The spacing limitation has been relaxed to ensure sufficient spatial sampling rate at 

the difference frequency in parametric loudspeakers. 

In this section, we conduct experimental measurement to determine the grating lobe elimination of 

the difference frequency wave in cases described in the previous sections. The experiment was conducted 

in an anechoic chamber with a dimension of 6 m×3 m×3 m. Primary frequency waves were captured by 

an 1/8 inch microphone (B&K 4138), and the difference frequency wave was measured by a 1/2 inch 

microphone (B&K 4134). The ultrasonic transducer array was mounted on a motorized rotary stage, and 

the microphones were placed at a location 4 meters away from the center of the ultrasonic transducer 

array, as shown in Fig. 9. The beamwidth of the Murata ultrasonic transducer (MA40S4S) [22] used in 

our experiments is stated as 80˚ in the data specification. Therefore, the beampatterns of the difference 

frequency wave, as well as the primary frequency waves were restricted to be measured from -40˚ to 40˚ 

with a resolution of 1˚. The sound was estimated to propagate at 343 m/s in air. All the channels in the 

ultrasonic transducer array were equally weighted, but differently delayed to achieve beamsteering. The 

beamsteering structure shown in Fig. 4 was implemented in a data acquisition board (NI PCI-6733).  



 
Fig. 9. The configuration of the transducer array and the microphones used in the experiments. 

The experiments were first carried out using column-wise configuration with spacing of d = 1 cm. 

The output of each channel drives four transducers in a column, and the channel directivity is shown in 

Fig. 10(a). Each channel is considered as a transducer unit in the beamsteering structure shown in Fig. 4. 

The steering angle of primary frequency waves was fixed at -20˚, and the primary frequencies were 

adjusted to achieve three difference frequencies of 8 kHz, 4 kHz and 1 kHz. In order to compare the 

measurement results with the simulation results reported in the previous sections, we use (4) to compute 

the beampattern with the contribution of channel directivity for the two primary frequency waves. 

However, in the simulation result for the difference frequency wave, two simulation approaches can be 

derived by either using the product of simulated beampatterns of primary frequency waves as well as the 

channel directivities (stated as Simulation I), or using the product of measured beampatterns of primary 

frequency waves (stated as Simulation II). The experimental results as well as the corresponding 

simulation results are shown in Fig. 11. 



 
Fig. 10. (a) Measured channel directivity of the column-wise configuration; (b) Measured channel directivity 

of the block configuration. 

 
Fig. 11. Experimental results and simulation results using column-wise configuration (M: mainlobe; G: grating lobe) 

are plotted in solid lines and dash lines, respectively. (a)-(d) show beampatterns of primary frequencies (36.5 kHz 

and 44.5 kHz) and difference frequency (8 kHz), and illustrate a case of grating lobe elimination; (e)-(h) show 

beampatterns of primary frequencies (38.5 kHz and 42.5 kHz) and difference frequency (4 kHz), and illustrate a 

case of partial grating lobe elimination; (i)-(l) show beampatterns of primary frequencies (39.5 kHz and 40.5 kHz) 

and difference frequency (1 kHz), and illustrate a case of spatial aliasing at the difference frequency. 

Mainlobes of both primary frequencies and difference frequencies are marked as „M‟ in Fig. 11. 

Grating lobes of the primary frequencies, as well as the eliminated grating lobes of the difference 



frequencies, are marked as „G‟ in Fig. 11. Figs. 11(a)-(d) show a case of grating lobe elimination. The 

results are obtained when the primary frequencies are given by 36.5 kHz and 44.5 kHz, and the generated 

difference frequency is 8 kHz. The grating lobes are located at 35˚ and 24˚ in the beampatterns of 36.5 

kHz and 44.5 kHz primary waves, respectively in Figs. 11(a)-(b). For the higher primary frequency 

beampattern (in Fig. 11(b)), the grating lobe is closer to the mainlobe compared to the lower primary 

frequency beampattern. Because of sufficient angular distance between the two grating lobes, grating lobe 

elimination occurs in the difference frequency wave. The highest sidelobe that is an eliminated grating 

lobe is located at 25˚ in Figs. 11(c)-(d). Figure 11(c) shows the result of simulation I, which can predict 

the height of eliminated grating lobe based on the simulated beam patterns of the primary frequency 

waves; while Fig. 11(d), which represents the case for Simulation II, shows a better match between the 

experimental result and the simulation result. A case of partial grating lobe elimination is shown in Figs. 

11(e)-(h). The primary frequencies are chosen as 38.5 kHz and 42.5 kHz, and the generated difference 

frequency is 4 kHz. The grating lobes are located at 31˚ and 26˚ in the beampatterns of 36.5 kHz and 44.5 

kHz primary waves, respectively, shown in Figs. 11(e)-(f). These two grating lobes are still apart from 

each other, but result in partial grating lobe elimination due to the smaller angular distance between them. 

The partial eliminated grating lobe is located at 29˚ in Figs. 11(g)-(h). The simulated beam patterns in the 

cases of simulation I and II generates two similar results for both mainlobe and partial eliminated grating 

lobe. The last set of results shows a case of spatial aliasing, as illustrated in Figs. 11(i)-(l). The primary 

frequencies are given by 39.5 kHz and 40.5 kHz. Thus, the difference frequency is 1 kHz. Both the 

grating lobes are located at 30˚ in the beampatterns of 39.5 kHz and 40.5 kHz primary waves, shown in 

Figs. 11(i)-(j). These two grating lobes result in spatial aliasing because they are located too close to each 

other. The grating lobe of the difference frequency wave is slightly lower than the mainlobe due to the 

channel directivity of the ultrasonic transducer array (see Figs. 11(k)-(l)). Both results of simulation I and 

simulation II can match the measured beampattern of the difference frequency wave at the vicinity of 

mainlobe and grating lobe. However, for the other angles, simulation II matches better to the experimental 

result compared to simulation I. 



From the above experimental results, when the difference frequency increase, the grating lobes of the 

two primary frequency waves become further apart in angular distance and full or partial grating lobe 

elimination can occur. However, when the difference frequency gets smaller, spatial aliasing become a 

problem. These experiments also verified that the product directivity principle can be used to predict the 

directivity of the delay-and-sum structure for the parametric loudspeaker. 

The next experiment looks into a different configuration, known as the block configuration. In our 

experiment, four ultrasonic transducers are grouped into a single channel with a spacing of d = 2cm 

between the centroid of neighboring channels. The directivity pattern for the primary frequency waves of 

the block configuration plotted in Fig. 10(b) has two sidelobes and two dips located around ±25˚. Due to 

the sharper directivity pattern of the block configuration, the steering angle can only be selected within 

±15˚. Outside these angles, the mainlobe of the transducer array is greatly suppressed. The experimental 

results, as well as the corresponding simulation results, are shown in Fig. 12. 

 
Fig. 12. Experimental results and simulation results using block configuration (M: mainlobe; G1 and G2: grating 

lobe) are plotted in solid lines and dash lines, respectively. The primary frequencies are 39.5 kHz and 41.5 kHz, and 

the difference frequency is 2 kHz. (a)-(d) show a case of grating lobe elimination when the primary frequencies are 

steered to -5˚; (e)-(h) show a case of partial grating lobe elimination when the primary frequencies are steered to 

-10˚; (i)-(l) show a case of spatial aliasing when the primary frequencies are steered to -15˚. 



Similar to the previous notations, the mainlobes of both primary frequencies and difference 

frequencies are marked as „M‟ in Fig. 12. Grating lobes of the primary frequencies, as well as the 

eliminated grating lobes of the difference frequencies, are labeled as „G1‟ and „G2‟ in Fig. 12. When the 

mainlobes are steered to -5˚, grating lobe elimination can be observed in Figs. 12(a)-(d). Grating lobes are 

located at -32˚ and 19˚ in the beampattern of 39.5 kHz in Fig. 12(a), respectively. Grating lobes are 

located at -31˚ and 18˚ in the beampatterns of 41.5 kHz primary waves, as shown in Fig. 12(b). These 

grating lobes are not sufficiently separated in angular distance, but still result in grating lobe elimination 

due to the troughs in the channel directivity of block configuration as shown in Figs. 12(c)-(d). Both 

results from simulation I and simulation II match the measured beampattern of the difference frequency at 

the vicinity of mainlobe, as well as the grating lobes. When the steering angle of the primary waves are 

increased to -10˚ (shown in Figs. 12(e)-(h)), the location of grating lobes are changed to 14˚ and 13˚ in the 

beampatterns of 39.5 kHz and 41.5 kHz primary waves, respectively ( labeled as “G2” in Figs. 12(e)-(f)). 

Meanwhile, the grating lobes are located at -36˚ in the beampattern of both 39.5 kHz and 40.5 kHz 

primary wave. The angular distance between the two grating lobes of the primary frequencies remain 

close to each other. These two grating lobes result in partial grating lobe elimination still due to the 

channel directivity of block configuration. Figs. 12(g)-(h) show this case of partial grating lobe 

elimination. Simulation II gives better prediction to the measured amplitude of the eliminated grating lobe 

than simulation I. Increasing the steering angle of the primary waves to -15˚ leads to a significant 

decrement of the angular distance between the grating lobes, shown in Figs. 12(i)-(l). In this case, the 

grating lobes are located close to each other at 9˚ in the beampatterns of 39.5 kHz and 41.5 kHz primary 

waves (labeled as „G1‟ in Figs. 12(i)-(j)), which result in spatial aliasing. This grating lobe of the 

difference frequency wave is shown to be even higher than the mainlobe, as shown in Figs. 12(k)-(l). In 

this case, partial grating lobe elimination is also observed for the difference frequency wave at 35˚, which 

is a true elimination that is caused by the angular distance between two grating lobes. 

It is shown in Fig. 11 and Fig. 12 that the simulation results match well with the experiment results 

for the primary frequency waves. However, for the difference frequency wave, product directivity theory 



in (6) can only predict the major lobes including the mainlobe, grating lobes and some relatively higher 

sidelobes. Although many of the sidelobes of the difference frequency wave are clearly observed in the 

simulation, they are not distinguishable in the experimental plots. A possible reason is the relatively low 

amplitude of the sidelobes compared to the inherent noise level of the measurement system.  

Table I summarizes the locations and amplitudes of grating lobes of parametric loudspeaker for both 

column-wise and block configurations. The grating lobe elimination for the difference frequency wave is 

shown to be effective for both configurations in the experiment. For the grating lobe elimination case, 

experimental results show that the column-wise configuration can reduce the grating lobe (labeled as „G‟) 

by 10.05 dB at the difference frequency of 8 kHz, and the block configuration reduces the grating lobes 

by 11.99 dB („G1‟) and 11.08 dB („G2‟) by at the difference frequency of 2 kHz. For the case of partial 

grating lobe elimination, the column-wise configuration reduces the grating lobe by 8.32 dB at the 

difference frequency of 4 kHz, and the block configuration reduces the grating lobe by 2.69 dB („G1‟) 

and 3.45 dB („G2‟) at the difference frequency of 2 kHz. For the spatial aliasing case, there are no grating 

lobe eliminations in both column-wise and block configurations. Theoretical simulations can also be used 

to predict the grating lobe elimination fairly accurately for the above cases. 

The grating lobe elimination in the block configuration is observed to be more sensitive to the 

steering angle and forms two grating lobes in the visible range. However, column-wise configuration can 

steer to -20˚ with only one grating lobe in the visible range. We can conclude that the column-wise 

configuration has a better beamsteering capability and grating lobe elimination. But when the steering 

angle is small, the block configuration can be designed such that the grating lobes coincide with the 

troughs in its directivity pattern. Thus, the parametric loudspeaker using block configuration is able to 

achieve very narrow mainlobe, but with limited range of steering angles. 

Table I: DISTRIBUTION OF GRATING LOBES IN PARAMETRIC LOUDSPEAKER USING DIFFERENT 

CONFIGURATIONS (M: Measurement; S: Simulation; S1: Simulation I; S2: Simulation II) 

Colum-wise Configuration (refer to Fig. 11) Block Configuration (refer to Fig. 12) 

 
Location of 

Grating lobe 

Reduction of 

Grating lobe 

 Location of 

Grating lobe 

Reduction of 

Grating lobe 

Location of 

Grating lobe 

Reduction of 

Grating lobe 



„G‟ (degree) „G‟ (dB) „G1‟ (degree) „G1‟(dB) „G2‟(degree) „G2‟(dB) 

Grating lobe elimination case 

8 kHz-M 25 10.05 2 kHz-M -30 11.99 19 9.41 

8 kHz-S1 24 10.37 2 kHz-S1 -31 9.73 18 8.58 

8 kHz-S2 25 8.13 2 kHz-S2 -31 10.23 18 9.98 

Partial grating lobe elimination case 

4 kHz-M 29 8.32 2 kHz-M -36 2.69 14 3.45 

4 kHz-S1 28 6.12 2 kHz-S1 -36 2.69 13 1.32 

4 kHz-S2 29 7.92 2 kHz-S2 -36 16.55 13 10.27 

Spatial aliasing case 

1 kHz-M 31 0.35 2 kHz-M 9 0 35 4.98 

1 kHz-S1 30 2.07 2 kHz-S1 9 0 34 10.93 

1 kHz-S2 30 1.62 2 kHz-S2 9 0 35 5.31 

 

V. CONCLUSION 

In this paper, we studied the beamsteering capability for the parametric loudspeaker and its unique 

property of spatial aliasing. A theoretical model of the beampattern of the parametric loudspeaker was 

derived based on an equivalent circular Gaussian source array that approximates the directivity 

characteristics of the linear ultrasonic transducer array. Using the product directivity principle, a digital 

beamsteerer of the parametric loudspeaker was proposed and implemented in a delay-and-sum structure. 

The experimental results verified the feasibility of the digital beamsteerer in the parametric loudspeaker. 

In particularly, this paper also examined the spatial aliasing property of the parametric loudspeaker, and 

found that different degree of grating lobe elimination can occur under different conditions. It is observed 

in both simulation and experiment that the occurrence of grating lobe elimination depends on both the 

difference frequency and the configuration of the ultrasonic transducer array. An important finding of this 

work is to show that inter-channel spacing of the ultrasonic transducer array in the parametric loudspeaker 

can be extended to more than K + 1 times of half wavelength of lower primary frequency, where K  

(usually K = 2) is the largest index of grating lobes of the lower primary frequency wave in the visible 

region. When the steering angle is limited to a certain range, the non-aliasing spacing of the ultrasonic 

transducer array can be further extended. Taking advantage of the increased spacing of the ultrasonic 



transducer array, grating lobe elimination allows the parametric loudspeaker to achieve a much shaper 

mainlobe without increasing the number of channels. This observation will significantly reduce the cost 

of implementing a steerable parametric loudspeaker. Two configurations of the ultrasonic transducer 

array were also implemented and compared. The experiments results showed that the column-wise 

configuration achieves a better beamsteering capability compared to the block configuration. However, in 

small steering angle applications, block configuration can achieve sharper mainlobe compared to the 

column-wise configuration when the same numbers of ultrasonic transducers are used in the parametric 

loudspeaker. 
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APPENDIX 

One important property of the intersection function is that the range of F that ensures the grating lobe 

elimination of the difference frequency wave does not change with the value of Λ. This property can be 

proven as follows: 

 Substitute (7) into (9), 
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Assume Λ is replaced by Λ. Since, both Λ and Λ are determined, μ is a constant given by μ = Λ / Λ.  

Thus, (A.1) can be manipulated as 
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For any value of F, there is always a certain Θ that gives the maximum value of the part within the 

angle brackets. Furthermore, this maximum value is the value of intersection function at this value of F. 

Here μ and Θ are known. It is not hard to find Θ =μ / Θ. Equation (A.2) is further expressed as 
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 Equation (A.1) and (A.3) are identical, except that Λ in (A.1) is replaced by Λ in (A.3), and Θ in 

(A.1) is replaced by Θ in (A.3). It proves that the maximum values of the part within the angle brackets in 

(A.1) and (A.3) are the same. Thus, it can be seen that the change of Λ cannot change the range of F that 

ensures the grating lobe elimination of the difference frequency wave, which is close related to the value 

of the intersection function. 
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