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We construct the first four-dimensional multi-black hole solution of general relativity with a pos-
itive cosmological constant. The solution consists of two static black holes whose gravitational at-
traction is balanced by the cosmic expansion. These static binaries provide the first four-dimensional
example of non-uniqueness in general relativity without matter.

Introduction. Black holes are famously featureless.
This idea is embodied by the no-hair theorems, which
state in essence that stationary black holes are uniquely
characterized by their mass, angular momentum, and
charge [1–11].

It should be noted that there are many situations
where black hole uniqueness, as we have expressed it,
is known to be violated. A well-known example involves
multi-horizon configurations of charged, extremal black
holes [12, 13]. Other examples include higher dimensions
[14], anti-de Sitter asymptotics [15–17], or exotic matter
like classical Yang-Mills fields, complex scalars and Proca
fields [18–20].

Additionally, there are some mathematical gaps in
fully establishing black hole uniqueness, even in the more
limited case of four-dimensional pure gravity in flat space.
Indeed, asymptotically flat multi-Kerr black holes, where
their gravitational attraction might be balanced by spin-
spin interactions, have not been ruled out (see e.g. [21–
33] for attempted constructions that yield singular con-
figurations). Though for static solutions, a classic the-
orem due to [34–36] precludes the existence of regular
asymptotically flat multi black holes.

Despite these (and potentially more) counterexamples,
there is currently no experimental or observational evi-
dence that black hole non-uniqueness can be realized in
astrophysical or cosmological contexts. Indeed, the no-
hair theorems are fully consistent with observational re-
sults from the LIGO consortium [37].

However, the no-hair theorems assume that spacetime
is asymptotically flat, a feature which is violated in our
universe at the longest scales by the presence of a cosmo-
logical constant [38–42]. The resulting cosmic expansion
might balance out the gravitational attraction of two or
more black holes, allowing multiple black holes to exist
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in static equilibrium. Such a configuration would share
the same mass and angular momentum as some single-
horizon black hole and therefore serve as a more realistic
counterexample to black hole uniqueness.

The aim of this Letter is to demonstrate that such a
multi-horizon configuration indeed occurs within general
relativity. We will focus on the simplest case with two
equal-mass black holes that do not rotate nor contain
charge, but our results and methods can be straightfor-
wardly generalized. We will first show that these black
binaries can be anticipated using intuition from Newton-
Hooke theory, and then construct these solutions by solv-
ing the Einstein equation numerically. Finally, we study
the properties of these binaries in detail.

Our results, along with physical intuition, suggest that
the static de Sitter binaries are dynamically unstable.
Nevertheless, there remains a possibility that they can
be stabilized with the introduction of charge or angular
momentum. We will comment on this and other matters
in the conclusions.

Before we continue, we mention some closely related
work. Dynamical (i.e. out of equilibrium) multi-black
holes in Einstein-Maxwell theory with a positive cosmo-
logical constant were found in [43]. The “rod-structure”
corresponding to our static binaries were anticipated and
examined in detail in [44]. In [45], a novel mechanism
for balancing multi-black holes was proposed. These
constructions provide Ricci-flat, closed-form solutions for
static binaries supported by expanding bubbles of noth-
ing. Mechanically, these solutions behave similarly to the
static binaries we find.

Finally, we mention the mathematical papers [46–48],
which might seem to rule out the existence of static black
binaries in de Sitter. We will show that the assumptions
made in [46, 47] do not apply, and that (for technical
reasons) this conclusion from [48] is not correct.

Newton-Hooke. Let us first set out to see if the
aforementioned multi-black hole configurations are al-
lowed within Newtonian gravity. We adopt geometrized
units in which c = G = kB = ~ = 1.
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Consider a configuration of N black holes with masses
ma, with a = 1, . . . , N . For the Newtonian approxi-
mation to be valid, we assume that the distances be-
tween the black holes are much larger than their masses.
We now include the effects of the cosmological constant
Λ ≡ 3/`2 > 0, where ` is the de Sitter length scale.
Accordingly, we assume that the entire configuration of
black holes lies within a distance much smaller than ` and
consider the Newton-Hooke equations of motion [49, 50]

ma
d2xa
dt2

−ma
xa
`2

= −
b=N∑
b6=a

mamb(xa − xb)

|xa − xb|3
, (1)

where xa are the positions of the black holes.
Static solutions exist when

xa
`2

=

b=N∑
b 6=a

mb(xa − xb)

|xa − xb|3
. (2)

Such solutions are known as central configurations and
provide homothetic solutions of the Newtonian N -body
problem which has applications to Newtonian cosmology.
The equation (2) can also be obtained from the Dmitriev-
Zeldovich equations [51] by using the scale factor S(t) =

e
t
` , corresponding to a de Sitter background in “stead-

state” coordinates [49, 50, 52, 53].
Consider a central configuration with two equal mass

black holes aligned along the z axis and separated by
a distance d. That is, N = 2, x1 = −x2 = d

2 ez, and
ma = mb = M . Then (2) imposes

d3

`3
=
r+
`

(3)

where r+ ≡ 2M is the Schwarzschild radius.
The requirements that the Newton-Hooke approxima-

tion should be valid and that the black holes are inside
a single cosmological event horizon amount to

r+ � d , d� ` and r+ � ` . (4)

If the distance between the black holes is given as in
(3), then we see that the first two conditions above are
satisfied if we assume the third, i.e. if the black holes
are small enough. We therefore conclude that static de
Sitter binaries with small black holes are consistent with
Newton-Hooke theory.

For later use, we introduce the event horizon Hawking
temperature T+ = (4πr+)−1 and rewrite (3) as

d

`
=

1

(4π` T+)1/3
. (5)

We will confirm that our numerical solutions to the Ein-
stein equation satisfy this scaling in the appropriate limit.

Numerical construction. We now construct static
binaries in general relativity by numerically solving the
Einstein equation with a positive cosmological constant:

Rab =
3

`2
gab , (6)

where Rab is the Ricci tensor and gab is the metric tensor.

We use the DeTurck method, first introduced for gen-
eral relativity in [54] and reviewed in [55, 56]. This
method provides a convenient way of addressing the issue
of gauge invariance, which ultimately causes the Einstein
equation (6) to yield a set of ill-posed, non-elliptic PDEs.

The DeTurck method involves choosing any reference
metric ḡ with the same symmetries and causal structure
as the solution we seek. In this case, our reference metric
is static, contains two identical black holes, a cosmolog-
ical horizon, and is axisymmetric. There is therefore a
discrete Z2 symmetry, as well as two Killing vector fields
k = ∂/∂t and m = ∂/∂φ. We further assume that the
black holes and cosmological horizon are Killing horizons
generated by k. Our specific choice of reference metric in-
volves a combination of the Israel-Khan solution [57] and
the static patch of de Sitter space. Its design is detailed
in the Supplementary Material.

We then write down the most general metric ansatz
g that respects the desired symmetries and causal struc-
ture. In this case, the metric ansatz depends non-trivially
on two coordinates (i.e. it is cohomogeneity-two, and will
yield two-dimensional PDEs).

We then solve the Einstein-DeTurck equation

Rab −∇(aξb) =
3

`2
gab , (7)

where ξa ≡ gbc
[
Γabc(g)− Γabc(ḡ)

]
, and Γ(g) is the metric-

preserving Christoffel connection associated to a metric
g. Unlike the Einstein equation, the Einstein-DeTurck
equation (7) yields a set of elliptic PDEs [58], which gives
a well-posed boundary-value problem with appropriate
physical boundary conditions.

The Einstein-DeTurck equation (7) is solved numeri-
cally. One complication is that the integration domain
contains five boundaries: the Z2 reflection surface, two
disconnected symmetry axes, the black hole horizons,
and the cosmological horizon. We handle this domain
using patching techniques. This and other numerical
methods we use are described in [56] and detailed in the
Supplementary Material.

After solving (7), we must verify that the solution ac-
tually solves the Einstein equation, i.e. that ξ = 0, and
is therefore not a Ricci soliton (for which ξ 6= 0). Un-
der many circumstances [58, 59], it can be proved that
these unwanted Ricci solitons do not exist. Unfortu-
nately, the present case is not one of these circumstances.
Indeed, with a positive cosmological constant, Ricci soli-
tons are known to exist (see e.g. [60]). Nevertheless,
ellipticity guarantees local uniqueness. That is, solutions
with ξ = 0 cannot be arbitrarily close to solutions with
ξ 6= 0, and thus the norm ξaξa can be monitored to iden-
tify whether our numerical discretization converges in the
continuum to a Ricci soliton or to a true solution of the
Einstein equation. In the Supplementary Material, we
provide ample evidence that the numerical solutions we
construct are not Ricci solitons.
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FIG. 1. Proper distance between the black hole horizons ver-
sus the black hole temperature. The solid black line shows
the scaling (5) according to Newton-Hooke analysis and the
blue dots show numerical data according to general relativity.

Results. Having numerical solutions corresponding
to static black binaries in de Sitter, we can now describe
their properties and compare the numerical results to
Newton-Hooke theory when the latter is valid.

We expect to find agreement with Newton-Hooke the-
ory when the black holes become sufficiently small, or
alternatively, when the black hole temperature becomes
sufficiently large T+` � 1. In FIG. 1, we provide a log-
log plot of the proper distance between the horizons of
the two black holes along the symmetry axis Pφ/`, as
a function of temperature 4πT+`. The solid black line
is the scaling (5), and the blue dots are the numerical
data. The agreement at large values of T+` shows the
validity of the Newton-Hooke analysis and corroborates
our numerical construction.

We have not managed to find solutions with large black
holes (small 4πT+`). Because our solutions do not have
regions of large curvature, there might be a “turning
point” to a new branch of solutions. A similar phe-
nomenon occurs for localized Kaluza-Klein black holes
when the black holes are large relative to the Kaluza-
Klein circle [54, 55, 61–80]. We leave the exploration of
this region of parameter space for future work.

Let us now discuss black hole thermodynamics. For
a central configuration containing N black holes inside
the static patch of de Sitter, the covariant phase space
formalism [81–92] shows that the following form of the
first law of black hole mechanics holds

N∑
i=1

T
(i)
+ dS

(i)
+ = −Tc dSc , (8)

where Tc is the temperature of the cosmological horizon,

and Sc is its entropy (i.e horizon area). T
(i)
+ and S

(i)
+ are

the same quantities, respectively, for the i−th black hole.
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FIG. 2. Total black hole entropy versus the cosmological hori-
zon entropy. The blue dots are numerical data for static bi-
naries (S = 2S+) and the solid black line is for the single
Schwarzschild-de Sitter black hole.

With N = 2 and equal-mass black holes, we find

2T+ dS+ = −Tc dSc . (9)

We have checked that our data satisfies this form of the
first law to within 0.01%.

Following [93], we now consider the entropy, which
must increase during time evolution. The blue dots in
FIG. 2 show the entropy of the static binary as a function
of the entropy Sc of the cosmological horizon. The black
curve shows the entropy for the single Schwarzschild-de
Sitter black hole (also known as the Kottler black hole).
We see that for any given Sc, the single Schwarzschild
black hole has higher entropy than the binary. This indi-
cates that the binary can evolve towards the single black
hole but not the other way around. The static black
binary is therefore thermodynamically unstable.

The fact that (at least) two solutions exist for a
given cosmological horizon entropy implies that the
Schwarzschild-de Sitter black hole is not unique. This
is the first counterexample to the no-hair conjecture [94]
for pure gravity with a positive cosmological constant.

We now comment on the uniqueness theorems for de
Sitter black holes [46–48] which would, under certain
assumptions, rule out the existence of static de Sitter
binaries. In [46], the level sets of the lapse function
N ≡

√
−gtt are assumed to be surface forming. In par-

ticular, this means that the level sets must consist only
of 2D surfaces. In [47], the set MAX(N) = {x ∈ M :
N(x) = Nmax}, where Nmax is the maximum value of N
in the manifold M, is assumed to disconnect M into an
inner regionM− and an outer regionM+ with the same
virtual mass. Our static binaries do not satisfy either of
these assumptions. Indeed, in FIG. 3 we show the level
sets N in our domain of integration for a typical solution
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FIG. 3. Contour plot showing the level sets of the lapse function N . The cosmological horizon is the outer solid black semicircle.
The horizon axes has the two black hole horizons as solid magenta lines, and the outer and inner axes in dashed black lines.
The green square is where N takes its maximum value.

(all of our solutions show the same qualitative behavior).
The coordinates (r, z) are defined in the Supplemental
Material. The cosmological horizon is represented by the
outer solid black semicircle, the two black hole horizons
are marked by solid magenta lines along the horizontal
axis, and the inner and outer axes are given by the dashed
horizontal line. Finally, the green square marks the loca-
tion of the maximum of N in M. This maximum repre-
sents an S1 on the manifold, which is not a 2D surface,
and it also does not partition the manifold into two re-
gions. Therefore, our static binaries fail to satisfy the
assumptions in [46, 47].

Finally, we comment on [48]. We believe that this work
is not correct for a rather technical reason. Beginning
with the Schwarzschild-de Sitter black hole, the authors
in [48] argue that they can construct an asymptotically
flat metric that is conformal to the original one, is topo-
logically S1 × S2 deprived of one point, and has zero
ADM mass. If that were true, the rigidity statement in
the positive mass theorem [95–99] would not only imply
that the original metric is conformally flat, but also that
S1 × S2 with one point removed is diffeomorphic to R3,
which is impossible.

Conclusions. We constructed the first example of a
multi-black hole solution within general relativity with a
positive cosmological constant and established that the
leading behavior of these solutions agrees (for small black
holes) with estimates from Newton-Hooke theory. Based
on thermodynamic considerations, we argued that these
solutions are thermodynamically unstable. Because the
configuration requires a delicate balance between gravita-
tional attraction and cosmic expansion, we expect these
solutions to also be dynamically unstable.

We have focused on the static configuration of two
identical black holes, but our results and methods can
be generalized. First, consider the case where the black
holes have different masses. When one of the black holes
is much smaller than the other, one can use the geodesic
approximation to predict the existence of such a config-
uration. Indeed, one can easily confirm the existence of
static orbits for timelike particles on a Schwarzschild-de
Sitter black hole background, thus providing further ev-
idence for the existence of this more general central con-
figuration. Note that if [48] were correct, this asymmetric
binary would also not exist.

We can also include rotation, which will introduce spin-
spin interaction of the black holes. This opens the pos-
sibility of continuous non-uniqueness. Consider, for ex-
ample, the case with two identical black holes rotating in
opposite directions along the axis of symmetry. This con-
figuration will have vanishing total angular momentum,
and will thus be in the same class as the Schwarzschild-de
Sitter black hole. Work in this direction is underway.

Perhaps more interestingly, because spin-spin interac-
tions act on shorter length scales, they could provide
a mechanism for stabilizing the binary. This possibil-
ity resembles the mechanism that provides stability for
molecules. Work in this direction is underway.

We could also consider central configurations contain-
ing N > 2 static black holes in the static patch of de Sit-
ter. These configurations can show interesting properties
within the Newton-Hooke approximation. For instance,
when N ≥ 13, minimal energy central configurations do
not lie on a regular polyhedron [49]. We thus expect the
equivalent property within general relativity. The study
of these configurations is within the reach of the numer-
ical methods employed in this Letter.
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SUPPLEMENTARY MATERIAL

Appendix A: The Israel-Khan Solution

The Israel-Khan solution [57] is an exact solution that describes two asymptotically flat black holes separated by a
conical strut. Because it is an exact multi-horizon solution, it will be useful for our numerical construction of static
de Sitter binaries. Here, we review this solution and describe some of its coordinate representations that we use.

Aside from the conical strut, the Israel-Khan spacetime is completely regular outside the horizons. Here, we are
only concerned with the case where both black holes are equal. The solution is often presented in Weyl coordinates:

ds2 = `2

[
−fdt2 +

λ2

f
[h(dr2 + dz2) + r2dφ2]

]
, (A1)

where

f =

(
k(R+ + r+)− (1− k)

k(R+ + r+) + (1− k)

)(
k(R− + r−)− (1− k)

k(R− + r−) + (1− k)

)
, (A2)

h =

(
r2 + (z + 1/k)(z + 1) +R+r+

2R+r+

)(
r2 + (z − 1/k)(z − 1) +R−r−

2R−r−

)

×

(
r2 + z2 − 1 + r+r−

r2 + (z − 1/k)(z + 1) + r+R−

)(
r2 + z2 − (1/k2) +R+R−

r2 + (z + 1/k)(z − 1) +R+r−

)
, (A3)

with

R± =

√
r2 +

(
z ± 1

k

)2

, r± =
√
r2 + (z ± 1)2 , (A4)

and where ` is an arbitrary length scale that we have introduced for later use in de Sitter. The solution is parametrized
by λ ∈ (0,∞) and k ∈ (0, 1). The temperature of the black holes is given by

T =
1

2π

4λ(1− k)

k(1 + k)
. (A5)

A peculiarity of the Weyl form is that the axes and horizons of the solution are all located at r = 0, and so is
described as a “rod structure.” At r = 0, the horizons lie in the regions z ∈ (1, 1/k) and z ∈ (−1/k,−1), with the
inner axis between the black holes in the region z ∈ (−1, 1), and the outer axes in z ∈ (1/k,∞) and z ∈ (−∞,−1/k).
The inner axes contains a conical singularity which holds the two black holes apart.

The Weyl form is useful for obtaining this solution as it provides a means of simplifying the Einstein equation into
an integrable form. But in order to accommodate the rod structure, the coordinates cannot be smooth along the
line r = 0 (there are coordinate singularities at the “joints” between rods), making the Weyl form ill-suited for our
numerical purposes.

We therefore seek a coordinate transformation that maps the outer axes, inner axis, and horizons into a coordinate
rectangle. This can be accomplished by a conformal Schwarz-Christoffel transformation. The standard formulas for
this type of transformation will give mappings that use Jacobi Elliptic functions, but here we convert these functions
to a more algebraic form. The mappings we use are defined by

z =
x
√

2− x2
√

(1− y2)2 + k2y2(2− y2)

(1− y2)2 + k2x2(2− x2)y2(2− y2)
, r =

(1− x2)
√

1− k2x2(2− x2)y
√

2− y2(1− y2)

(1− y2)2 + k2x2(2− x2)y2(2− y2)
. (A6)

Lines of constant x and y, along with the rod structure of Israel-Khan are shown in FIG. 4.
With this coordinate transformation, the Israel-Khan solution takes the form

ds2 = `2

−fdt2 +
λ2

m2∆2
xy

w2

(
4dx2

(2− x2)∆x
+

4dy2

(2− y2)∆y

)
+ y2(2− y2)(1− y2)2dφ2

 , (A7)
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FIG. 4. Lines of constant x and y, shown in Weyl coordinates. There is a reflection symmetry about z = 0, so only positive z
is shown. The rod structure of the Israel-Khan solution can be seen at r = 0, with one of the black hole horizons lying between
the two red dots.

where in these coordinates

f = (1− x2)2∆xm
2 (A8)

and

∆x = 1− k2x2(2− x2) , ∆y = 1− (1− k2)y2(2− y2) , ∆xy = (1− y2)2 + k2x2(2− x2)y2(2− y2) , (A9)

w =
k

(1 + k)2

(
1 +

√
∆y

)2
, m =

k
[
1− (1− k)y2(2− y2) +

√
∆y

]
(1− k)∆x(1− y2)2 + (k +

√
∆y)

[
∆x + (1− k)(

√
∆xy − 1)

] . (A10)

The horizons are at x = ±1, the inner axis is at y = 0, and the outer axes are at y = 1. There is also a Z2 symmetry
about x = 0. All functions ∆x, ∆y, w, and m are smooth and positive definite in the domain. ∆xy vanishes at
(x, y) = (0, 1) (asymptotic infinity), and is positive and smooth otherwise.

Eventually, we wish to join the Israel-Khan solution with a de Sitter horizon. In anticipation of doing so, we present
the Israel-Khan solution in polar-Weyl coordinates defined by

z = ρξ
√

2− ξ2 , r = ρ(1− ξ2) , (A11)

where the Israel-Khan solution takes the form

ds2 = `2

−fdt2 +
λ2h

f

dρ2 + ρ2

(
4dξ2

2− ξ2
+

(1− ξ2)2

h
dφ2

) , (A12)

with f and h also transformed accordingly. For later use, we find it convenient to express f and h as functions of ρ

and z = ρξ
√

2− ξ2:

f =

(
k(R+ + r+)− (1− k)

k(R+ + r+) + (1− k)

)(
k(R− + r−)− (1− k)

k(R− + r−) + (1− k)

)
, (A13)

h =

(
ρ2 + 1

k [1 + (1 + k)z] +R+r+

2R+r+

)(
ρ2 + 1

k [1− (1 + k)z] +R−r−

2R−r−

)

×

(
ρ2 − 1 + r+r−

ρ2 − 1
k [1 + (1− k)z] + r+R−

)(
ρ2 − (1/k2) +R+R−

ρ2 − 1
k [1− (1− kz)] +R+r−

)
, (A14)
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with

R± =

√
ρ2 +

1

k2
± 2z

k
, r± =

√
ρ2 + 1± 2z , (A15)

Note that h and f approach unity when ρ→∞, where the spacetime becomes asymptotically flat.
From (A6) and (A11), we can derive an explicit coordinate transformation between the Schwarz-Christoffel (x, y)

coordinates and the polar-Weyl (ρ, ξ) coordinates:

ρ =

√
y2(2− y2) + x2(2− x2)(1− y2)2√

(1− y2)2 + k2x2(2− x2)y2(2− y2)
, (A16a)

ξ =

√
1−

(1− x2)y
√

2− y2(1− y2)
√

1− k2x2(2− x2)√
y2(2− y2) + x2(2− x2)(1− y2)2

√
(1− y2)2 + k2x2(2− x2)y2(2− y2)

. (A16b)

Like the original Weyl coordinates, these polar-Weyl coordinates are not smooth along ξ = ±1. This will not be
an issue for us as we will only use these coordinates in our numerical construction for sufficiently large ρ, where the
coordinates are smooth.

Appendix B: Designing the Reference Metric for Einstein-DeTurck

Our strategy for designing a reference metric for the Einstein-DeTurck problem (described in the main text) is to
attach a de Sitter horizon to the Israel-Khan solution. De Sitter space in four dimensions is most commonly written
in the form

ds2 = −

(
1− R2

`2

)
dτ2 +

dR2

1− R2

`2

+ r2(dθ2 + sin2 θdφ2) , (B1)

where ` is the de Sitter length scale. De Sitter can also be written in isotropic coordinates with the transformation

R

`
=

λρ

1 + λ2ρ2

4

, sin θ = 1− ξ2 , τ = ` t , (B2)

which yields

ds2 =
`2

g2+

−g2−dt2 + λ2

dρ2 + ρ2

(
4dξ2

2− ξ2
+ (1− ξ2)2dφ2

) , (B3)

where

g± = 1± λ2ρ2

4
. (B4)

In these coordinates, the de Sitter horizon has a constant temperature of 1/2π. λ is a gauge parameter that merely
scales the radial coordinate ρ. There is an origin at ρ = 0, the de Sitter horizon is located at ρ = 2/λ, there is an axis
of symmetry at ξ = ±1 and a Z2 symmetry at ξ = 0.

This form of de Sitter is suggestively close to the Israel-Khan solution in polar-Weyl form (A12). Aside from some
factors of f and h (which approach unity at large ρ), the only differences are that de Sitter in isotropic coordinates
has an overall conformal factor of 1/g2+ and a factor of g2− in the dt2 term whose zero defines the de Sitter horizon.
We will make use of these similarities in our construction.

Now to begin engineering a reference metric, we make some slight modifications to the Israel-Khan solution (A7)
and (A12):

ds2ref =
`2

g2+

−fg2− F dt2 +
λ2

m2∆2
xy

w2

(
4dx2

(2− x2)∆x
+

4dy2

(2− y2)∆y

)
+ y2(2− y2)(1− y2)2Sdφ2


=

`2

g2+

−fg2− F dt2 +
λ2h

f

dρ2 + ρ2

(
4dξ2

2− ξ2
+

(1− ξ2)2

h
Sdφ2

) . (B5)
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Here,

S = 1− α(1− y2)2 , (B6)

where α is a new parameter, F is a complicated function that we will describe later in (B10), and equality between the
first and second lines of (B5) (here and in the remainder of this section) is understood to be through the coordinate
transformation (A16). We will use (x, y) coordinates in the region near the black holes and inner axis, and the (ρ, ξ)
coordinates near the cosmological horizon.

We only made three changes to the Israel-Khan solution to arrive at the reference metric (B5). The first is the
inclusion of a conformal factor 1/g2+ to facilitate the matching to de Sitter. The second is a factor of S in the dφ2

term, which we will use to remove the conical singularity in the inner axis by adjusting the parameter α. The conical
singularity is removed when α takes the value

α =
(1− k)2

(
k2 + 6k + 1

)
(k + 1)4

. (B7)

The last change is a factor of g2− F in the dt2 term which introduces a cosmological horizon.

We have freedom to choose the function F , but the choice is a delicate matter. For numerical purposes, we wish
for F to be smooth in (x, y) or (ρ, ξ) coordinates, depending on where the coordinates are being used. The DeTurck
method also requires that F be chosen to preserve the regularity of both the cosmological horizon and of the black
hole horizons [54–56]. That is, F must be positive definite and satisfy

F |x=±1 =
1

g2−
|x=±1 , F |ρ=2/λ =

h

f2
|ρ=2/λ , (B8)

where we have chosen equality in the above instead of proportionality in order to preserve the de Sitter and Israel-Khan
temperatures.

In order to make it easier to find a solution in a Newton-Raphson algorithm (see e.g. [56]), we should also choose
F to match physical expectations in certain limits. Specifically, we expect that when the cosmological horizon is large
compared to other length scales (i.e. λ� 1), the spacetime near the cosmological horizon should approach de Sitter
and the spacetime closer to the origin should be approximately described by the Israel-Khan solution (when α = 0).
The cosmological horizon is already accommodated by the fact that f and h approach unity for large ρ. That is, by
requiring (B8), we already have F ≈ 1 near the cosmological horizon ρ ≈ 2/λ when λ is small.

As for near the origin, we add the requirement that

F |y=0 =
1

g2−
|y=0 , (B9)

which is consistent with (B8). If we set α = 0, then when λ and ρ are small, g± ≈ 1, and the metric approaches that
of the Israel-Khan solution as desired.

All of these requirements can be satisfied by choosing F to take the form

F =
G

f + g2−G− fg2−G
, with G =

ĥ
f̂

(1− x2)y2(2− y2) + g2−

(1− x2)y2(2− y2) + g4−
, (B10)

where f̂ and ĥ are any smooth, positive definite functions that agree with f and h, respectively at ρ = 2/λ. To

choose f̂ and ĥ, we first take the expressions for f and h as written in (A13) and (A14), and treat them as functions

f(ρ, z) and h(ρ, z). We then set f̂(ρ, ξ) = f(2/λ, ρξ
√

2− ξ2) and similarly for ĝ. Note that we cannot use a choice

like f̂(ρ, ξ) = f( 2
λ ,

2
λξ
√

2− ξ2) as it is not smooth in the (x, y) coordinates at x = 0, y = 1.

The entire Einstein-DeTurck reference metric is parametrized by k, λ, and α. On the desired solution that is free
of conical singularities, α is fixed according to (B7). Because the de Sitter horizon temperature is held fixed, the only
remaining physical parameter is the black hole horizon temperature, which is given by (A5). Any k and λ that give
the same black hole temperature are physically equivalent. To collect all our numerical data, we have fixed λ = 1/10
and used k to parametrize our solutions. We have tried different values of λ, but after trial and error, this value
generated the best numerical results.
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FIG. 5. Illustration of the patches used in our numerical construction.

Appendix C: Patching and Numerical Methods

In this section we explain how we partition the domain of integration using patching techniques (see e.g. [56]). As
mentioned in the main text, the solution we seek contains five boundaries: the inner axis (∂inφ ), the black hole horizon

(H+), the outer axis (∂outφ ), the cosmological horizon (Hc) and the plane of Z2 symmetry.
We numerically solve the Einstein-DeTurck equations with the boundary conditions of regularity at each of our five

boundaries. To do so, we use both the coordinates (ρ, ξ) and (x, y) of the preceding section. Near the black hole event
horizon we use (x, y) coordinates, while near the cosmological horizon we use (ρ, ξ) coordinates. We used a total of
three patches − I, II and III − with each of these having four boundaries: see FIG. 5. Patches I and II are defined
in (x, y) coordinates, and patch III in (ρ, ξ) coordinates. The patching boundary between the patch I and II (dashed

line in FIG. 5) is given by x = x0y
√

2− y2, with y ∈ (0, 1). The patching boundary between patch II and patch III
is simply given by ρ = ρ0.

Furthermore, we fix ρ0 and x0 through

ρ0 =
2

3

(
2

λ
− 1

k

)
+

1

k
and x0 =

1

2

1−

√√√√1−

√
1− 1

k2ρ20

+

√√√√1−

√
1− 1

k2ρ20
, (C1)

so that the only free parameters are k,λ, and α. Note that for non-singular solutions we require α to be given by
(B7) and, as described in the end of the previous section, we fix λ = 1/10 for numerical convenience. We now apply
the numerical methods detailed in [56], and discretize each of our patches on a N ×N Chebyshev-Gauss-Lobatto grid
using transfinite interpolation and pseudospectral collocation, for a total grid size of (N+N+N)×N . The discretized
Newton-Raphson equation reduces to an iteration of linear matrix problems, which we solve by LU decomposition.
To find the first solution (which is always the trickiest step of the Newton-Raphson method), we have set λ = 1/10,
k = 1/2 and used a Newton-Raphson algorithm with a judiciously chosen damping factor. Additionally, we used what
we call the “δ-trick” as explained in section VII.A of [56].

Appendix D: Convergence Tests

In this section, we show that the norm χ ≡ ξaξa of the DeTurck vector vanishes in the continuum limit, as expected
for a solution of the Einstein-DeTurck equation that is not a Ricci soliton (i.e. that is instead a true solution to the
Einstein equation). Additionally, we find exponential convergence, which is consistent with the use of pseudospectral
collocation methods.

Let χ(N) be χ computed on a (3-patched) grid with (N +N +N)×N spectral collocation points. For concreteness
we take k = 1/2, λ = 1/10 and α as given in (B7). In FIG. 6 we show ‖χ(N)‖∞ as a function of N in a log-plot. The
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FIG. 6. Convergence test showing both the exponential accuracy of our numerical method and the fact that we are not
converging to a Ricci soliton.

solid black line shows the best χ2-fit to a straight line in the log-plot, and yields

f(N) = 27.89409− 0.79076N . (D1)

The exponential trend is clear and confirms that the Einstein-DeTurck solution is converging to a true solution of the
Einstein equation (and not to a Ricci soliton).
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