
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal non-
commercial research or study, without prior permission or charge. This thesis and the accompanying
data cannot be reproduced or quoted extensively from without first obtaining permission in writing from
the copyright holder/s. The content of the thesis and accompanying research data (where applicable)
must not be changed in any way or sold commercially in any format or medium without the formal
permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the
University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Cyber Physical Systems Group

Category-Theoretic Datastructures and
Algorithms for Learning Polynomial

Circuits

by

Paul William Wilson
MEng

ORCiD: 0000-0003-3575-135X

A thesis for the degree of
Doctor of Philosophy

October 2023

http://www.southampton.ac.uk
https://orcid.org/0000-0003-3575-135X

University of Southampton

Abstract

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Doctor of Philosophy

Category-Theoretic Datastructures and Algorithms for Learning Polynomial
Circuits

by Paul William Wilson

The purpose of this thesis is to provide practical, high performance tools for working
with string diagrams for the specific application of machine learning. The thesis
consists of two main lines of research towards this aim.

In Part I, we define a family of categories of differentiable circuits suitable for machine
learning. This construction is made in a modular way: we first give an alternative
axiomatisation of Reverse Derivative categories which is then used to prove a
functional completeness result showing that these circuits are sufficiently expressive.
We then show how ‘gradient-like’ learning can be understood in terms of morphisms
of these categories, and discuss how to generalise gradient-based methods as applied
to neural networks to new settings by varying the ‘underlying arithmetic’ of models.

Part II of the thesis is concerned with how to represent and manipulate large string
diagrams, specifically with an eye to those defined in Part I. We develop
datastructures and define efficient algorithms for tensor and composition of string
diagrams in terms of simple linear-algebraic operations. We show that complexity of
operations is linear in the size of the resulting diagram, and validate our claims with
empirical evidence that our approach can handle diagrams constructed from millions
of generators. Finally, we give a graphical calculus allowing terms of non-strict
monoidal categories to be represented by our datastructure, which in turn yields novel
proofs of Mac Lane’s strictness and coherence theorems.

http://www.southampton.ac.uk

v

Contents

Declaration of Authorship ix

Acknowledgements xi

1 Introduction 1
1.1 Motivation . 1

1.1.1 String Diagrams and Gradient-Based Learning 2
1.1.2 Datastructures for Representing Large Diagrams 3
1.1.3 String Diagrams and (Non-)Strictness 4
1.1.4 Summary . 5

1.2 Content of the Thesis . 5
1.2.1 Part I . 6
1.2.2 Part II . 6

1.3 Synopsis and Original Contributions . 7
Chapter 2 . 7
Chapter 3 . 7
Chapter 4 . 8
Chapter 5 . 9
Chapter 6 . 10
Chapter 7 . 10

1.4 Related Work . 10

2 Background 13
2.1 String Diagrams . 13
2.2 Presentations by Generators and Equations 15
2.3 Cartesian Symmetric Monoidal Categories 20

I Circuit Models and Machine Learning 23

3 Polynomial Circuits 25
3.1 Overview . 25

3.1.1 Relationship to Published Work 26
3.2 Synopsis . 27
3.3 Preliminaries . 27

3.3.1 Forward Derivatives from Reverse Derivatives 31
3.4 RDCs for Categories Presented by Generators and Equations 33
3.5 Polynomial Circuits . 36

vi CONTENTS

3.6 Functional Completeness . 39
3.7 Case Studies . 43

3.7.1 Neural Network Layers as Morphisms in PolyCircS 43
3.7.2 Finite Semirings . 48

4 Machine Learning with Circuits 51
4.1 Overview . 51

4.1.1 Relationship to Published Work 53
4.2 Synopsis . 53
4.3 Preliminaries . 54

4.3.1 Reverse Derivatives as Lenses . 54
4.4 Reverse Derivative Ascent . 56

4.4.1 Reverse Derivatives and Learning 56
4.4.2 Reverse Derivative Ascent . 57

4.5 Lenses and Learning . 60
4.5.1 The Learning Step as a Lens . 60

4.6 Case Studies . 64
4.6.1 Datasets . 64

The Iris dataset . 64
The MNIST image classification benchmark 65

4.6.2 Neural Networks . 65
4.6.2.1 Simple and Hidden Models and the Iris Dataset 66
4.6.2.2 Convolutional model and the MNIST dataset 66

4.6.3 Reverse Derivative Ascent . 67
4.6.3.1 The evalmodel and the Iris Dataset 68
4.6.3.2 The pseudoLinearmodel and the MNIST dataset 69

4.7 Implementation as Lenses of Functions 70

II Datastructures for Circuits 73

5 Datastructures and Algorithms 75
5.1 Overview . 75

5.1.1 Relationship to Published Work 77
5.2 Synopsis . 77
5.3 Preliminaries . 78

5.3.1 Open Hypergraphs . 78
5.3.2 Parallel Hypergraph Processing 82
5.3.3 Adjacency Matrices and PROPs of Matrices 83

5.4 The Hypergraph Adjacency Representation 84
5.4.1 Main Definition . 86
5.4.2 Permutation Equivalence and Boundary Orderings 87

5.5 Operations on HARs . 88
5.6 The Category of Hars . 90
5.7 Complexity . 94
5.8 Empirical . 96

Experiment Details . 96

CONTENTS vii

5.8.1 Benchmark #1: Repeated Tensor 96
5.8.2 Benchmark #2: Small-Boundary Composition 97
5.8.3 Benchmark #3: Large-Boundary Composition 97
5.8.4 Benchmark #4: Synthetic Benchmark 98

5.9 Extensions to Hars . 98

6 Strictness and Coherence 101
6.1 Overview . 101

6.1.1 Relationship to Published Work 102
6.2 Synopsis . 103
6.3 Preliminaries . 104
6.4 Strictification . 105
6.5 Nonstrictification . 107
6.6 The Strictness Theorem . 110
6.7 The Coherence Theorem . 113

6.7.1 The free monoidal category on one generator 113
6.7.2 Graphical proof that W is a preorder 115

6.8 Symmetric Monoidal Strictness . 119

7 Conclusions 121
7.1 Future work . 121

7.1.1 Presentations with Frobenius Structure and Optic Composition . 121
7.1.2 Designing Model Architectures for PolyCircS 122
7.1.3 New Model Classes . 123

Appendix A Proofs for Chapter 3 125
Appendix A.1 Proofs for Theorem 3.15 . 125
Appendix A.2 Interpretation of PolyCircS as Polynomials 131
Appendix A.3 Proofs for Theorem 3.14 . 132
Appendix A.4 Proofs for Theorem 3.20 . 138

Appendix A.4.1 Well-definedness of R for Cartesian Distributive Cate-
gories . 138

Appendix A.4.2 RDC Axioms for Cartesian Distributive Structure . . . 140
Appendix A.5 Forward Differential Operator and Linear Maps 143

Appendix A.5.1 Forward Differential Operator on Cartesian Distribu-
tive Structure . 146

Appendix A.5.2 Daggers and Linear Sandwiches 147

Appendix B Proofs for Chapter 5 149
Appendix B.1 Composition of Hars is associative up to isomorphism 149
Appendix B.2 Experimental Setup . 151

Appendix B.2.1 Software Versions . 152
Appendix B.2.2 Hardware Information 152

Appendix C Proofs for Chapter 6 153
Appendix C.1 Sequential Normal Form . 153
Appendix C.2 Well-Definedness of N . 154
Appendix C.3 Coherence Corollary . 157

viii CONTENTS

Appendix D Additional Material 161
Appendix D.1 Implementations . 161

References 163

ix

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been
generated by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been
clearly stated;

3. Where I have consulted the published work of others, this is always clearly
attributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself;

x CONTENTS

7. Parts of this work have been published as: Paul Wilson and Fabio Zanasi.
Categories of differentiable polynomial circuits for machine learning, 2022. URL
https://arxiv.org/abs/2203.06430 Paul Wilson and Fabio Zanasi. An
axiomatic approach to differentiation of polynomial circuits. Journal of Logical
and Algebraic Methods in Programming, 135:100892, 2023. ISSN 2352-2208. doi:
https://doi.org/10.1016/j.jlamp.2023.100892. URL
https://www.sciencedirect.com/science/article/pii/S2352220823000469
Paul Wilson and Fabio Zanasi. Reverse derivative ascent: A categorical approach
to learning boolean circuits. Electronic Proceedings in Theoretical Computer Science,
333:247–260, feb 2021. doi: 10.4204/eptcs.333.17. URL
https://doi.org/10.4204%2Feptcs.333.17 G. S. H. Cruttwell, Bruno
Gavranović, Neil Ghani, Paul Wilson, and Fabio Zanasi. Categorical foundations
of gradient-based learning, 2021. URL https://arxiv.org/abs/2103.01931
Paul Wilson and Fabio Zanasi. The cost of compositionality: A
high-performance implementation of string diagram composition, 2021. URL
https://arxiv.org/abs/2105.09257 Paul Wilson, Dan Ghica, and Fabio
Zanasi. String diagrams for non-strict monoidal categories, 2022. URL
https://arxiv.org/abs/2201.11738

Signed:.. Date:..................

https://arxiv.org/abs/2203.06430
https://www.sciencedirect.com/science/article/pii/S2352220823000469
https://doi.org/10.4204%2Feptcs.333.17
https://arxiv.org/abs/2103.01931
https://arxiv.org/abs/2105.09257
https://arxiv.org/abs/2201.11738

xi

Acknowledgements

I am indebted to Fabio Zanasi not only for his timely advice (which always seemed to
arrive precisely when I needed it most), but also for the trust he placed in me to work
independently. This balance has been everything I had hoped for in a research degree,
and I look forward to our continued future collaboration. I am also grateful to Paweł
Sobociński for taking a chance on a student with an atypical academic background,
and for providing a great deal of helpful guidance in my early studies.

I also wish to thank mentors, friends, and colleagues from a past age: John Greenall,
for his ongoing support and friendship during both my professional and academic
career; Danijela Horak, whose puzzles inspired me to return to Mathematics; Simon
Worgan and Henk Muller, who were supportive long past any official responsibility,
and yet never hesitated to help.

Thanks go last but not least to my family. First to my wife Liu, who has enriched my
life more than I can say. To Dad, who helped a spark of interest in computers become a
flame, and Mom, who made sure they weren’t the only thing I was interested in.
Finally to the rest of my family, who never stopped asking when I’d get a real job.

xiii

To Liu
Without whom I could not have begun,

and would surely not have finished.

1

Chapter 1

Introduction

This thesis consists of two main lines of work: (1) a string-diagrammatic account of
gradient-based machine learning, and (2) datastructures and algorithms for
representing large diagrams. Together, the aim is to motivate the adoption of string
diagrams for use-cases involving diagrams of ‘industrial scale’, such as circuits.

We begin by motivating these lines of research in more detail.

1.1 Motivation

The language of Symmetric Monoidal Categories (SMCs) is capable of describing
many classes of open system. Examples include combinational circuits [76], electrical
circuits [55, 57] signal flow graphs [21] petri nets [8], and more.

An important benefit to framing an application domain as a symmetric monoidal
category is that one can exploit the intuitive but completely formal graphical language
of string diagrams. Selinger [92] gives a survey of string diagrammatic syntax, and
early formal treatments are given by Joyal and Street [70] and Lafont [77]. A first
example of a string diagram which we will return to in Chapter 4 is shown in Example
1.1.

Example 1.1.

This particular diagram represents the polynomial 〈x0, x1, x2〉 7→ (1+ x2) · x0 + x2 · x1,
but can equivalently be thought of as a ‘circuit’ whose wires carry values in some
semiring S.

2 Chapter 1. Introduction

1.1.1 String Diagrams and Gradient-Based Learning

One domain where the use of such diagrammatic representations is less explored is
that of gradient-based learning for neural networks. Despite this, recent mainstream
machine learning literature often includes informal string-diagram-like notation to
communicate the structure of models (their ‘architecture’) to the reader, for example as
in [100, Figure 1] and [72, Figure 3]. Thus, by proposing string diagrams as such a
notation, we immediately gain the benefits of a pedagogically useful syntax which–by
nature of being completely formal–is also unambiguous. Additionally, using string
diagrams means we can leverage the theoretical results of category theory, for instance
rewriting diagrams modulo symmetric monoidal structure as described in [17]. Lastly, but
most importantly for this thesis, framing model architectures in category theoretic
terms allows us to see new avenues to generalise.

The driving application for this thesis is to generalise the ‘underlying arithmetic’ of
neural networks. More concretely, consider again Example 1.1 and fix the semiring
S = R. Now we may think of this circuit as an extremely simple neural network
architecture; since it represents a polynomial it is certainly differentiable, and thus we
may optimise some of its inputs with gradient descent. A naturally arising question is
then: “can gradient descent be used for circuits whose underlying semiring is not R?”
We argue that the answer is yes, and that synthetic categorical approaches to
differentiation allow us to do so.

Generalising the underlying arithmetic of neural networks is not merely an abstract
exercise: it has real applications. Modern neural network models can be extremely
large, requiring power-hungry GPU hardware for both training and inference [33, 88].
This makes it challenging to run large models in low-power and embedded settings.
One approach to mitigating this increased need for computational resources is an
approach called binarisation [34, 101]. In this case, a neural network is first trained with
real-valued weights before quantising them to ‘binarised’ (boolean) values. In doing
so, the ‘forward’ (predictive) pass of the model can be made simpler and thus more
efficient to execute. For example in [33], the authors are able to replace floating-point
multiply-accumulate operations by accumulations alone. In the more extreme
example of [101], the authors are able to extract a boolean circuit from the binarised
model which is then run on FPGA hardware.

However, binarisation schemes still typically require the use of R-valued gradients in
the training phase. This means that the performance benefits of binarisation do not
typically extend to model training, since one must still make use of expensive
floating-point operations. Now, if the ultimate goal is to extract a boolean circuit, the
natural question to ask is whether the parameters of such a circuit can simply be

1.1. Motivation 3

trained directly. We depict these contrasting approaches informally as follows.

Untrained Neural Network Trained Neural Network

Untrained circuit Trained Circuit

Gradient Descent

Reverse Derivative Ascent (our approach)

BinarizationR

B
(1.1)

Here, the ‘gradient descent’ arrow represents standard approaches to training neural
networks, while ‘binarization’ represents the extraction of a boolean circuit from a
trained network. The bottom arrow labeled ‘Reverse Derivative Ascent’ represents
our proposed approach, in which a model is trained purely within the B-valued
regime. More generally we might consider any semiring S, in which case we arrive at
the first research question of this thesis: can gradient-based learning be directly
applied to any circuit over a semiring S, without use of R-valued gradients? In
answering this question, we hope to gain the benefit of smaller, more efficient models
in both the training and prediction phases.

1.1.2 Datastructures for Representing Large Diagrams

In order for these ideas to progress beyond mere theory, we must develop tools for
their practical application. Specifically, this means developing datastructures and
algorithms to represent models (circuits) over some arbitrary semiring S. However,
representing just these circuits is not the only goal of such datastructures.

Aside from the informal use of string-diagram-like diagrams in machine learning
literature, use of graphical syntax also occurs in industry. Such examples can be found
for example in the ‘node-based editor’ of Nuke [52] and the ‘visual scripting’ language
of Unity3D [99]. These examples suggest that datastructures for string diagrams may
also be generally useful as the basis for such applications. For that reason, we propose
that a datastructure representing the free symmetric monoidal category on some signature
to have general applicability.

With the goal of a general purpose datastructure in mind, we set out two main
desiderata for their use. Firstly, our datastructures must be formal objects: they should
themselves described in terms of categories. Secondly, they must be scalable: our
algorithms must be data-parallel by construction, and admit efficient implementation
on both sequential and parallel (e.g., GPU) hardware. This is critical when diagrams
become very large, as for instance in the case of circuits.

4 Chapter 1. Introduction

However, before we can consider such datastructures to be truly ‘general purpose’,
there remains a theoretical issue to address. Namely, that of strictness.

1.1.3 String Diagrams and (Non-)Strictness

One limitation on the use of string diagrams for applications is the underlying
assumption of strictness. While we will give more rigorous exposition in the main
thesis content, one consequence of this requirement is that when modelling a string
diagram with a datastructure, each distinct wire must be explicitly represented.
Consider for example the identity diagram on three inputs, below left.

3
=

With the assumption of strictness, a datastructure representation of this diagram must
explicitly model a ‘bundle’ of n wires with n distinct objects in the datastructure. This
is cumbersome for both pedagogical and practical purposes: it is hard to read, and
working with such a diagram is analogous to writing a program in which one must
explicitly name every element of an array. More preferable would be the option to
work with ‘bundles’ of wires directly. In terms of our datastructure, this means
distinguishing between n distinct wires, and a single wire labeled n. More formally,
we can think of this as relaxing the equality above to merely an isomorphism.

In addition to this problem, some useful monoidal categories are not strict to begin
with. This means that without additional theoretical developments, we may not
consider string diagrams for such categories to be formal objects at all.

The latter issue is resolved in principle by Mac Lane’s strictness theorem for monoidal
categories [80]. Mac Lane famously shows that every monoidal category is
monoidally equivalent to a strict one, thus justifying the use of string diagrams.
However, the strictness theorem is stated in terms of the coherence theorem, making it
unclear how to mechanically translate between the non-strict and ‘strictified’ settings.
Moreover, the theorems as stated do not give an explicit graphical calculus for
manipulating non-strict terms in the strict setting.

In order to make these results more useful for computer implementation, we give
novel proofs of Mac Lane’s results. Concretely, we will define a graphical calculus for
non-strict monoidal categories, and then use it to prove the strictness theorem. As a
bonus, we will use our proof of the strictness theorem to provide a novel proof of the
coherence theorem. This approach will yield a explicit, computer-friendly specification
of functors mapping between non-strict categories and their strict equivalents.

In reformulating the strictness and coherence results, we hope to make our
datastructures for string diagrams more generally useful. One application is to allow

1.2. Content of the Thesis 5

for a wider variety of machine learning model class to be treated diagrammatically.
An example of such a model class is the (reverse) differentiable programming
language described by Cruttwell et al. [37].

1.1.4 Summary

To summarise, this thesis consists of two major lines of work:

1. A string-diagrammatic account of gradient based learning which generalises
beyond the semiring of real numbers.

2. High-performance, general-purpose datastructures and algorithms for
representing large string diagrams, and a graphical calculus extending their
applicability to non-strict categories.

1.2 Content of the Thesis

We now briefly summarise the structure and content of the thesis, which is split into
two parts. We begin with a brief sketch of each of these two parts, then describe
chapter structure, and finally give a more in-depth description of the contributions of
the thesis.

In Part I, we give a categorical formulation of gradient-based machine learning using
reverse derivative categories. In particular, we define categories of differentiable
‘polynomial circuits’ in Chapter 3, and then give algorithms for learning their
parameters in Chapter 4.

Part II of the thesis is concerned with the datastructures and algorithms used to
represent morphisms of monoidal categories. We begin in Chapter 5 by describing
datastructures and algorithms for representing morphisms of PROPs, which are able
to represent the circuits of Chapter 3. We then give a graphical calculus allowing for
the representation of morphisms of non-strict categories in Chapter 6.

Each chapter is structured as follows. We begin with an overview and synopsis of the
chapter contents. We then include preliminary content for each chapter, consisting of
background material specific to the chapter. Note that each ‘preliminaries’ section
does not contain original contributions of the author. The remaining sections of each
chapter consist of the original contributions of the author, unless explicitly noted.

We now give a more in-depth summary of the contributions of Parts I and II of the
thesis.

6 Chapter 1. Introduction

1.2.1 Part I

In Chapter 3, we describe a family of reverse-differentiable categories PolyCircS
parametrised by a semiring S. We build this definition in a modular way, starting from
a re-axiomatisation of the theory of Reverse Derivative Categories [29] in terms of
presentations by generators and equations. This reformulation allows us to prove a
theorem showing how to extend categories having reverse derivative structure to
include new generating morphisms while retaining reverse derivative structure. To
complete the chapter, we show how for any given semiring S, one can extend the
category PolyCircS to obtain the property of ‘functional completeness’. Essentially,
this means that for any desired function of type Sm → Sn, there exists a circuit with
that interpretation. This result is key for use in machine learning, because it ensures
the ‘model class’ of circuits is sufficiently expressive.

Chapter 4 uses reverse derivative structure to define concrete learning algorithms. We
begin by defining ‘Reverse Derivative Ascent’, an algorithm for learning the
parameters of models expressed as morphisms of PolyCircS for a ring S. In contrast to
existing techniques, this allows for models to be trained using only values in S,
without requiring the use of floating-point approximations. Consequently, in the case
of ‘boolean circuits’ where S = Z2, it is possible to learn parameters directly as
depicted in (1.1). We then show how the Reverse Derivative Ascent algorithm
generalises (using joint work with Cruttwell et al. [36]) before finally giving empirical
results of our algorithms on some benchmark datasets.

1.2.2 Part II

While Part I of the thesis is concerned with particular categories and morphisms, Part
II is concerned with how such morphisms can be efficiently represented. In Chapter 5
we describe a general-purpose datastructure for representing morphisms of PROPs.
Our primary motivation is to represent the polynomial circuits of Part I, but we also
intend to provide a datastructure for general use. For this reason, we also describe
algorithms for tensor product and composition of morphisms, and ensure their
complexity is linear in the size of the resulting diagram. We conclude the chapter with
empirical results of our algorithms’ performance, and discuss how to extend the
representation to the case of categories with more than one generating object.

The final contributions of the thesis are in Chapter 6, where we are concerned with
how to represent morphisms of non-strict monoidal categories. In doing so, we
develop a graphical calculus for non-strict monoidal categories. Ultimately, this
amounts to a novel proof of Mac Lane’s strictness theorem, but with key differences.
Primarily, our proof makes no reference to the coherence theorem, and so we are also

1.3. Synopsis and Original Contributions 7

able to give a novel graphical proof of the coherence theorem without introducing
circularity.

1.3 Synopsis and Original Contributions

We now give a synopsis of the thesis content. Each chapter summary is accompanied
by a table of references to the main contributions, as well as a list of published works
upon which each chapter is based. Chapters 3 - 6 are structured to be largely
self-contained, beginning with an overview, chapter synopsis, and prerequisites, with
remaining sections constituting original contributions unless explicitly stated.

Chapter 2 recalls the graphical language of string diagrams for symmetric monoidal
categories, and some well-known theorems of use in the thesis. This chapter consists
only of background material, and does not contain original contributions of the author.

Chapter 3 begins with a re-axiomatisation of reverse derivatives (Definition 3.13)
and a proof of its equivalence to the original formulation (Theorem 3.14). We give an
‘Extension Theorem’ showing how presentations of RDCs can be extended with
additional generators in Theorem 3.15. These results are used to define a category
PolyCircS of ‘differentiable polynomial circuits’ (Definition 3.22), which have reverse
derivative structure (Proposition 3.24). We define the property of ‘functional
completeness’ in Definition 3.29, and show that the inclusion of a ‘comparator’
function is sufficient to gain this property in Theorem 3.30. Finally, we define
PolyCirc=S (Definition 3.31) as an extension of PolyCircS with a comparator
operation. We use the extension theorem to show that PolyCirc=S has reverse
derivative structure in Theorem 3.32, and prove it is functionally complete in
Corollary 3.33. The chapter concludes with a discussion of the impact of the choice of
semiring S on model construction, as well as a number of examples of neural network
layers defined as morphisms in PolyCircS.

8 Chapter 1. Introduction

TABLE 1.1: Main Contributions of Chapter 3

Contribution Reference

Graphical formulation of reverse derivatives Definition 3.13
Proof of equivalence to original theorem Theorem 3.14
Extension Theorem Theorem 3.15
Definition of PolyCircS Definition 3.22
PolyCircS is an RDC Proposition 3.24
Sufficiency of comparators for functional completeness Theorem 3.30
Definition of PolyCirc=S Definition 3.31
PolyCirc=S is an RDC Theorem 3.32
Functional completeness for PolyCirc=S Corollary 3.33

Chapter 3 is based on the following papers.
•Wilson and Zanasi [105] – Categories of Differentiable Polynomial Circuits for Machine
Learning
•Wilson and Zanasi [104] – Reverse Derivative Ascent: A Categorical Approach to
Learning Boolean Circuits

Chapter 4 discusses the practicalities of gradient-based learning with polynomial
circuits. Our contributions begin with the definition of a learning algorithm called
‘Reverse Derivative Ascent’ (Definition 4.6) for morphisms of PolyCircS. We give
empirical evidence of its effectiveness by applying models to chosen benchmark
datasets in Section 4.6, with experimental results in Table 4.2. In addition, we show
experimentally that our formulation of learning is consistent with mainstream
approaches to training neural networks (Table 4.1). Section 4.7 concludes the chapter
with a discussion of subtleties arising from the implementation of our experiments as
interpretations of morphisms of PolyCircS as functions. We formalise this as a
statement about ‘compositions of interpretations’ of morphisms of PolyCircS in
Proposition 4.20.

1.3. Synopsis and Original Contributions 9

TABLE 1.2: Main Contributions of Chapter 4

Contribution Reference

Reverse Derivative Ascent algorithm Definition 4.6
Experimental Results: (Reverse Derivative Ascent) Table 4.2
Experimental Results: (Neural networks) Table 4.1
Implementation of Reverse Derivative Ascent Implementation D.1
Implementation of RDA experiments Implementation D.2
Implementation of Numeric Optics & Experiments Implementation D.3
Composition of Interpretations Proposition 4.20

Chapter 4 is based on the following papers:
•Wilson and Zanasi [104] – Reverse Derivative Ascent: A Categorical Approach to
Learning Boolean Circuits
• Cruttwell et al. [36] – Categorical Foundations for Gradient-Based Learning

Note carefully that Section 4.5 is the result of joint work with Cruttwell et al. [36], and
is not the author’s sole contribution.

Chapter 5 introduces the Hypergraph Adjacency Representation (Har), a
datastructure for representing morphisms of PROPs. The Har representation is
specified in terms of adjacency matrices in Definition 5.14. We then give operations for
tensor product (Definition 5.26) and composition (Definition 5.28), before showing
that both have time complexity linear in the size of the resulting diagram
(Propositions 5.42 and 5.43, respectively). Empirical performance results of our
algorithms compared to those of an existing library for string diagrams in Section 5.8.
Section 5.9 concludes the chapter with a discussion of how the Har datastructure may
be extended to model morphisms of the free symmetric monoidal category with
multiple generating objects.

TABLE 1.3: Main Contributions of Chapter 5

Contribution Reference

Har datastructure Definition 5.14
Tensor product of Hars Definition 5.26
Composition of Hars Definition 5.28
Complexity of Har tensor is linear Proposition 5.42
Complexity of Har composition is linear Proposition 5.43
Implementation of Har datastructure and operations Implementation D.4

Chapter 5 is based on the following papers:

10 Chapter 1. Introduction

•Wilson and Zanasi [103] – The Cost of Compositionality: A High Performance
Implementation of String Diagram Composition

Chapter 6 introduces a graphical language for non-strict monoidal categories.
Given an arbitrary monoidal category C , we define its ‘strictification‘ C (Definition
6.5) as a presentation by generators and equations. We then construct functors
S : C → C and N : C → C which we show are monoidal in Propositions 6.8 and 6.15,
respectively. These two functors form an equivalence (Theorem 6.22) which
constitutes a novel proof of Mac Lane’s strictness theorem. Since our proof does not
rely on the coherence theorem, it can then be used to graphically prove Mac Lane’s
coherence result (Theorem 6.23) without introducing circularity. Finally, we show how
the strictness result extends to the symmetricmonoidal case by showing that C

‘inherits’ symmetric monoidal structure from C (Proposition 6.43), and that this
extends to the functors S and N (Propositions 6.44 and 6.45, respectively).

TABLE 1.4: Main Contributions of Chapter 6

Contribution Reference

The ‘strictification’ C of a monoidal category C Definition 6.5
Existence of a monoidal functor S : C → C Proposition 6.8
Existence of a monoidal functor N : C → C Proposition 6.15
Elementary proof of the Strictness Theorem Theorem 6.22
Graphical proof of the Coherence Theorem Theorem 6.23
C inherits symmetric monoidal structure from C Proposition 6.43

Chapter 6 is based on the following papers:
•Wilson et al. [107] – String diagrams for non-strict monoidal categories

Chapter 7 concludes the thesis, and discusses avenues for future work.

1.4 Related Work

This thesis has its roots in a number of research areas. Part I is built on synthetic
categorical treatments of differentiation and touches on mainstream neural networks
literature, while Part II is concerned with the combinatorial structure of string
diagrams and more foundational questions. However in all cases the work in this
thesis is characterized by the heavy use of string diagrams, which are central to our
approach. We therefore begin with a brief discussion of the literature for string
diagrams.

1.4. Related Work 11

The use of informal diagrammatic notation has a long history. An early example of
digrammatic syntax for logic is due to Peirce [9], while Zanasi [109] notes that
diagrammatic notation for signal flow graphs appears in a technical report by
Shannon [93]. A more modern example is the notation introduced by Penrose [86] (see
also [7]), and developed by Joyal and Street [70], Lafont [77], and others. There exist a
number of variants of string diagram notation such as proof nets (see for
example Blute et al. [12]), but in this thesis we restrict ourselves to those for symmetric
monoidal categories as described in the comprehensive survey due to Selinger [92].

Our definition of categories of polynomial circuits in Chapter 3 is heavily reliant on
categorical treatments of differentiation. We chiefly rely on the theory of Reverse
Derivative Categories developed by Cockett et al. [29], but this work itself builds on a
long history of axiomatisations of (cartesian) differential categories, as for example in
[13, 35]. A recent extension of reverse derivative categories also considers the more
general monoidal case (as opposed to just cartesian monoidal) [38]. We do not use this
generalisation here, but discuss the implications for potential future directions in the
conclusion of the thesis. Our definition of PolyCircS also has its roots in the boolean
circuits of Lafont [76], but we note the existence of a large number of categorical
models of various kinds of circuit [15, 56, 57]. In fact, a key part of our approach is to
identify the relationship between the presentation of boolean circuits in [76] with
categories of ‘reverse differentiable’ polynomials defined in [29]. Moreover, this
relationship inspires the functional completeness result of Section 3.6, which itself is a
discrete analogue to the various universal approximation theorems for neural
networks (e.g., [67, 79]).

As well as cartesian (reverse) differential categories, there are several alternative
approaches to categorical models of change–we mention them here for completeness.
One notable example is the ‘change actions’ of Alvarez-Picallo [3] (see also
Alvarez-Picallo and Ong [4]), as well as a recent work characterising Reverse Mode
automatic differentiation [5] using the functorial boxes of Melliès [81].

The primary inspiration for our work on direct learning of parameters of circuit
models comes from the circuit extraction technique of Wang et al. [101]. In fact, a later
paper by Constantinides [32] also gives good motivation for reconsidering the
underlying arithmetic of neural networks for the purposes of hardware acceleration
and efficiency. More generally, our work is inspired by the technique of neural
network binarisation as in Courbariaux et al. [33, 34]. Broadly speaking, the Reverse
Derivative Ascent learning algorithm can be considered as a cousin of gradient
descent as applied to neural networks [90].

From a categorical perspective, our work builds on the treatment of supervised
learning given in Fong et al. [50] (later followed by [96]). A particularly relevant
example is the work of Sprunger and Katsumata [97], who use cartesian forward

12 Chapter 1. Introduction

derivative categories for computing gradients. However, this work predates the
introduction of reverse derivatives [29], and the authors note that “when there are
millions of parameters in a machine learning model, [use of the forward derivative] is
computationally disastrous”. The specific use of the reverse derivative is therefore
critical from an efficiency perspective.

The use of lenses and optics for various kinds of learning has also enjoyed increased
attention in the literature. Foundational work on properties of various kinds of optics
can be found in e.g., [14, 26, 63, 89], while the specific use of optics in the context of
machine learning has recently been addressed in the work of Fong and Johnson [49],
and Braithwaite and Hedges [23] in the case of bayesian learning.

Our work on developing datastructures for the efficient representation of morphisms
of monoidal categories is primarily based on the work of Bonchi et al. [17], which is
later developed into a three-part series of papers on rewriting [18–20]. We also draw
some inspiration from an earlier work on open graphs by Dixon and Kissinger [41].
This latter work also has an implementation for diagrammatic reasoning in the
Quantomatic [75] tool, as well as a related tool, PyZX [74], for working with the
ZX-calculus. Another general tool frequently used for quantum natural language
processing tasks is DisCoPy [39]. More recent implementations of string diagram
representations include the wiring diagrams [85] of Catlab.jl [82], and most recently
the ‘higher-dimensional’ approach of Hadzihasanovic and Kessler [62]. In contrast to
these approaches, the work in this thesis is intended firstly to serve as a standard
‘reference implementation’ which can be easily implemented, and secondly to be
high-performance by construction. With respect to this latter point, we demonstrate
empirically that our datastructure is able to handle diagrams of ‘industrial scale’ by
taking advantage of highly optimised sparse matrix libraries.

Our work on developing a graphical calculus for non-strict monoidal categories in
Chapter 6, while based on relatively fundamental definitions, relates to several
existing works in the literature. One such notable example arises in the study of
weakly distributive categories of Blute et al. [12], where the authors introduce a
diagrammatic calculus with two distinct tensor products and an additional type of
wire called a ‘thinning link’. It seems that our construction may also arise by omitting
the additional structure, but this is not explored in [12]. A similar type-theoretic
approach not based on diagrams can also be found in [94], and the idea of using
‘adapters’ also arises in the reversible circuits of Choudhury et al. [28]. More closely
related to our graphical calculus are the scalable graphical calculi described in [24, 25]
which contain several similar constructions. However, the authors do not explicitly
study the connection to Mac Lane’s strictness and coherence theorems. As a final note,
we highlight that our construction serves a similar purpose to the ‘functorial boxes’
of Melliès [81].

13

Chapter 2

Background

In this chapter, we review the basics of the graphical language of string diagrams for
symmetric monoidal categories, as well as how categories can be defined as
presentations by generators and equations. Subsequent chapters will make heavy use
of both of these concepts. A comprehensive survey of graphical languages for various
categories can be found in [92]. We will also assume familiarity with basic category
theory, especially with the definitions of symmetric monoidal categories and functors.

2.1 String Diagrams

The categories defined in this thesis will often be stated in terms of a graphical
presentation by generators and equations. In this section, we aim to familiarise the
reader with such presentations. We begin with intuition, and then proceed to more
precise definitions in Section 2.2.

Consider a simple fragment of an arithmetic expression language with operations on
real and complex numbers. We might wish to express addition on the reals, ‘packing’
and ‘unpacking’ complex numbers into their real and imaginary components, and
simply ‘discarding’ values. Graphically, we can depict these operations in (2.1) in the
specified order.

+
R

R

R

C
R

R
C

R

R
R (2.1)

For the purposes of this example, we may think of these operations as functions. 1

Inputs are depicted as dangling wires on the left, and outputs as dangling wires on the

1The intuition for such operations as functions does not hold in general. Oftenmorphisms of symmetric
monoidal categories can have interpretations which are not functions with inputs and outputs; one such
example is the category FinRel of finite relations.

14 Chapter 2. Background

right. Note that some operations (e.g., the ‘unpacking’ operation) have multiple
outputs while others (e.g., the ‘discarding’ operation) have none at all.

Naturally we would like to use these operations to construct more complex ones. We
can do this by placing our primitive operations on the page and ‘wiring them up’ as
we desire. For example, we might define the function extracting the real component of
a complex number re : C → R graphically as follows:

re := C
R

Not every such wiring is permitted, however. In order for a diagram to correspond to
a morphism of a symmetric monoidal category, operations must be wired acyclically,2

and wirings must be ‘well-typed’ (that is, one cannot connect wires labeled A and B
when A 6= B). In addition, when considering equality of diagrams, the order of inputs
and outputs must be respected. For example, the following two diagrams are not the
same, because their right boundary wires are in a different order.

C
R

R
6= C

R

R

In this case, the inequality is clearly desirable: the real and imaginary components of a
complex number are obviously not interchangeable.

However, it is often the case that we would like to consider two distinct diagrams to
have the same interpretation. To allow for this, we can introduce some equations of
diagrams. One such equation we ought to have is that unpacking a complex number
into its two components and then ‘repacking’ them should be the same as doing
nothing at all. We can express this with an equation saying that the composition of
‘unpacking’ and ‘packing’ is simply the identity.

C

R

C

R

=
C (2.2)

In fact, we will require a much more general version of this equation when we come to
address issues of strictness in Chapter 6.

To summarise, we have made three choices which together will form a presentation of
a symmetric monoidal category. First, a set Σ0 := {C,R} of generating objects of the
category. Second, a set of ‘primitive operations’ Σ1 given in (2.1) called generating

2The acyclicity condition is required for such diagrams to represent a morphism of a symmetric
monoidal category. However, traced symmetric monoidal categories permit such wirings.

2.2. Presentations by Generators and Equations 15

morphisms or just operations. Thirdly, a set of equations Σ2 as in (2.2). These last two
components together define the morphisms of the category as those diagrams
constructed by permissible wirings from the primitive operations in Σ1 and
considered equal ‘up to’ the equations in Σ2. More precisely, two diagrams will
represent the same morphism if one can be transformed into the other by deforming it
and applying a sequence of rewrites3 using the equations (2.1).

While we hope the reader now has a clearer intuition for what a presentation is, we
must now be more precise. In fact, we have already conflated two distinct concepts: (i)
presentations of SMCs by operations and equations and (ii) the graphical language of
string diagrams. In order to be precise, we will now review these two concepts.

2.2 Presentations by Generators and Equations

We can now formally define what is meant by a presentation by generators and equations.
The constructions in this section are well-known, and we recall them here only for
completeness. Moreover, in this section we explicitly consider only strict symmetric
monoidal categories. The objects of these categories will be lists over some generating
set, which we define as follows.

Definition 2.1. Fix a set S. The free monoid on S, denoted List(S) is the set whose
elements are finite sequences of elements in S. We denote such sequences by
〈x1, x2, . . . , xn〉 for xi ∈ S, and denote the empty sequence by I or 〈〉. We may
alternatively call elements of List(S) words over S, or lists of elements in S.

We will start by defining ‘monoidal signatures’, which specify the primitive pieces
from which our categories will be made. Next, we define Σ-terms for a given
signature Σ. These terms can be thought of as the ‘syntax trees’ of all possible
expressions that can be built by combining the primitive operations of Σ using tensor
and composition. We will then define the free strict symmetric monoidal category
over a signature, which we think of as the category having generating objects and
operations, and equations only those of strict symmetric monoidal categories. Finally,
we will define a presentation by operations and equations as the quotient of the free
symmetric monoidal category by some specified additional equations.

Definition 2.2 (Monoidal Signature [70, 73, 92]). A (strict)monoidal signature Σ is a
pair (Σ0,Σ1) where:

• Σ0 is a set of generating objects,

3A ‘rewrite’ of an equation l = r here means finding an occurence of l in a diagram d, and replacing it
by r. Note that there are conditions on which such rewrites are legal; a formal treatment of rewriting for
symmetric monoidal categories is given by Bonchi et al. [17].

16 Chapter 2. Background

• Σ1 is a set of generating morphisms,

so that there is a function τ : Σ1 → List(Σ0)× List(Σ0) taking each generating
morphism to its domain and codomainwhich are both lists of elements in Σ0. We will
sometimes refer to Σ0 and Σ1 together as generators, and Σ1 alone as operations.

We have already seen an example of a signature in the previous section:

Example 2.1. Define Σ0 := {R,C} and Σ1 := { + , , , }, (i.e., the
operations depicted in equation (2.1)). Define τ according to the labeled wires in (2.1):

τ(+) := (〈R,R〉, 〈R〉)

τ() := (〈C〉, 〈R,R〉)

τ() := (〈R,R〉, 〈C〉)

τ() := (〈R〉, 〈〉)

Note that the codomain of the discarding operation is the empty list 〈〉, corresponding to
the unit object of the category.

Remark 2.3. What we call a monoidal signature is called a tensor scheme by Joyal and
Street [70]. Definition 2.2 uses terminology closer to that of Selinger [92] and Bonchi
et al. [18]. In addition, we will often omit an explicit definition of τ when, as in (2.1),
its definition is clear from the labels in a diagrammatic representation.

In some cases, it is useful to consider ‘polymorphic’ operations. For example, the
operations of (2.1) define the discarding operation only on R values. Suppose
instead we wish to have a discarding operation for every object. We would like to
handle this economically, so in such cases we will often define a polymorphic
operation ranging over objects. An example of such a definition is below:

Example 2.2 (Example of a polymorphic generating morphism). For each object
A ∈ Σ0, there is a morphism

A

We take this to mean that there exists a number of such morphisms: one for each object
in A ∈ Σ0. In some cases, we may also allow A to range over elements of List(Σ0).

As in Bonchi et al. [18], we now define Σ-terms: the composites built inductively from
primitives by tensor and composition.

Definition 2.4 (Σ-terms [18]). Given a monoidal signature Σ = (Σ0,Σ1), a Σ-term is
defined inductively as follows:

• idA is a Σ-term for all A ∈ List(Σ0)

2.2. Presentations by Generators and Equations 17

• σA,B is a Σ-term for all A, B ∈ List(Obj)

• f is a Σ-term for each f ∈ Σ1

• f # g is a Σ-term for Σ-terms f : A→ B and g : B→ C

• f ⊗ g : A1 ⊗ A2 → B1 ⊗ B2 is a Σ-term for Σ-terms f : A1 → B1 and g : A2 → B2

Remark 2.5. The symmetry σ is assumed to be a Σ-term only in the case of symmetric
monoidal categories. In the more general monoidal case, we omit it from the inductive
definition.

We can now compare Σ-terms to the graphical language of string diagrams. Following
[18, 92], we give a diagrammatic depiction in (2.3) of each of the primitives and
composites of Definition 2.4.

Name Σ-term Diagrammatic Syntax

Unit idI : I → I (empty)

Identity idA : A→ A A

Symmetry σ : A⊗ B→ B⊗ A A
A
B

B

Morphism f : A→ B fA B

Composition f # g fA
B g C

Tensor f ⊗ g
fA1 B1

gA2 B2

(2.3)

Remark 2.6. In the above we make a minor notational abuse. In particular, objects A in
general are elements of List(Σ0). Thus, although we draw the identity idA : A→ A as
a single wire, for an element A = 〈A1, . . . , An〉 of List(Σ0) we have the strict equality

idA = idA1...An =
A1

An

A1

An

... n

We address the issue of ‘bundling’ wires in Chapter 6.

Now, in order to define the free symmetric monoidal category, we will quotient
Σ-terms by the axioms of strict symmetric monoidal categories. We recall these now,
giving a diagrammatic version of each axiom.

18 Chapter 2. Background

Axiom Σ-term Diagrammatic Syntax

⊗ Functoriality (f1 ⊗ g1) # (f2 ⊗ g2) = (f1 # f2)⊗ (g1 # g2) f1
g1

f2
g2

=
f1
g1

f2
g2

⊗ Functoriality idA ⊗ idB = idA⊗B

A

B =
A⊗ B

α Naturality f ⊗ (g⊗ h) = (f ⊗ g)⊗ h

f
g

h

=

f
g

h

ρ Naturality f ⊗ idI = f
f

= f

λ Naturality idI ⊗ f = f
f

= f

σ Naturality (f ⊗ g) # σA′,B′ = σA,B # (f ⊗ g)
fA A′

gB B′
=

f

gA

B A′

B′

Unit Coherence σA,I = idA

A

A

=
A

Associator Coherence (σA,B ⊗ idC) # (idB ⊗ σA,C) = σA,B⊗C

A
B
C A

B
C =

A
B
C A

B
C

Inverse Law σA,B # σB,A = idA ⊗ idB
A
B

A
B

=
A
B

A
B

(2.4)

Notice that the pentagon and triangle axioms of monoidal categories are not included
above; these become trivial in a strict monoidal category.

Remark 2.7. Many of the equations of strict symmetric monoidal categories are implicit
in the syntax of string diagrams. For example, the naturality axiom of the associator
for strict monoidal categories says that tensor product of morphisms must be
associative on the nose. Since the diagrammatic tensor is simply to place one diagram
atop the other, this strict associativity is ‘built in’. Thus, we may not consider the
diagrammatic syntax and Σ-terms interchangeable until we have quotiented the latter
by the axioms of strict symmetric monoidal categories.

We can now define the free symmetric monoidal category on a signature.

Definition 2.8 (Symmetric Monoidal Category freely generated by a signature [18]).
The strict symmetric monoidal category freely generated by Σ, denoted FreeΣ, has

2.2. Presentations by Generators and Equations 19

objects List(Σ0), with unit object the empty list 〈〉. Morphisms are Σ-terms quotiented
by the axioms of strict symmetric monoidal categories (2.4). Identities, symmetry, and
composition and monoidal product are given by the corresponding Σ-terms in (2.3).

We separate the definition of the free symmetric monoidal category over a signature
from the definition of a presentation for two reasons. The first reason is for simple
modularity: the latter will be expressed as a quotient of the former. The second more
important reason is that reasoning modulo the laws of SMCs can be made simpler by
appealing to the coherence theorem of Joyal and Street [70].

This theorem essentially says that for the laws of SMCs, instead of applying
individual equational rewrites to Σ-terms, we may reason ‘topologically’ with a
diagram. A simple example of such reasoning is as follows. Returning to the example
signature (2.1) and equation (2.2), we may take the tangled diagram below left and
immediately apply the equation C

R

C

R

= C to obtain the diagram below right.

+

+

= +

+

The flavour of reasoning modulo the laws of symmetric monoidal categories is
therefore somewhat different to equational reasoning with Σ-terms. Instead of
performing a sequence of individual equational rewrites, say by first using naturality
of σ, we may instead use the connectivity of the diagram. This is of course a major
selling point of string diagrams: this topological reasoning reduces the amount of
book-keeping required in a proof.

Before defining presentations by operations and equations, we make one final
definition. Again following [18], we define symmetric monoidal theories, which allow us
to augment a monoidal signature with equations, such as those in (2.2).

Definition 2.9 (Symmetric Monoidal Theory). From [18, Definition 2.1], a Symmetric
Monoidal Theory Σ is a triple (Σ0,Σ1,Σ2) consisting of a monoidal signature
equipped with a set of equations Σ2. The elements of Σ2 are pairs of Σ1-terms 〈l, r〉
having the same domain and codomain (i.e., with τ(l) = τ(r)).

This leads us directly to the main definition.

Definition 2.10 (Presentation by Generators and Equations). The strict symmetric
monoidal category presented by generators and equations (Σ0,Σ1,Σ2) has objects
elements of List(Σ0) and morphisms equivalence classes of Σ1-terms quotiented by (a)
the equations of strict symmetric monoidal categories (2.4) and (b) equations Σ2.

One special case of such presentations is that of PROPs.

20 Chapter 2. Background

Example 2.3 (PROP). A PROP is a category C presented by a single object Σ0 := {1}. The
objects of C are therefore the natural numbers: we identify the unit object–the empty
word–with 0, while a list of length n is identified with n. The types of generating morphisms
can be similarity identified, so each generator can be thought of having an arity and coarity
instead of input and output types.

Examples of useful PROPs include a presentation of boolean circuits due to Lafont
[76]. We will define a related family of categories in Chapter 3.

Now that we have defined more clearly what is meant by a presentation, we will see
some useful examples in the next section.

2.3 Cartesian Symmetric Monoidal Categories

Categories with cartesian symmetric monoidal structure will be particularly important
to this thesis. The primary reason is that categories with reverse derivatives–used
extensively in Chapter 3–have cartesian structure as a prerequisite. For that reason, we
now explicitly define such categories.

We start by recalling the definition of the product.

Definition 2.11 (Product). Let C be a category and A, B objects of C . The product of A
and B in C is an object denoted A× B together with projection maps π0 : A× B→ A
and π1 : A× B→ B such that the following diagram commutes for all objects Q and
morphisms f , g

Q

A× BA B

f g

π0 π1

〈 f , g〉

and the ‘tupling’ morphism 〈 f , g〉 is the unique morphism making the diagram
commute.

We will also need the definition of terminal objects.

Definition 2.12 (Terminal Object). An object in a category C is terminal, denoted T, if
for all objects A ∈ C , there is a unique morphism called the terminal map denoted
! : A→ T.

Armed with these standard definitions, we can define cartesian monoidal categories.

2.3. Cartesian Symmetric Monoidal Categories 21

Definition 2.13 (Cartesian Monoidal Category). A cartesian symmetric monoidal
category is a symmetric monoidal category whose tensor is the categorical product ×
and whose unit is the terminal object T.

A particularly important theorem by Fox [53] relates cartesian monoidal categories to
certain presentations which include cocommutative comonoids. Fox shows that that a
category is cartesian if and only if it is equipped with copy and discard
morphisms satisfying certain axioms. Since the content of this thesis is primarily
string-diagrammatic, this theorem is invaluable: we recall it now.

Theorem 2.14 (Fox’s Theorem, [53]). A category is cartesian iff each object A is equipped
with a copy and a discard map:

A
A

A A (2.5)

satisfying the following laws

= = =

f =
f

f
f =

A⊗ B
A⊗ B

A⊗ B =
A

B

A

A
B

B

A⊗ B =
A
B

(2.6)

which say that the generators form a cocommutative comonoid, and that they must be natural
with respect to the other morphisms of the category.

As a consequence of Fox’s theorem, we may ensure that a category presented by
generators and equations has products simply by adding the required generators (2.5)
and equations (2.6) of Theorem 2.14. We will use this fact in the construction of
polynomial circuits in Chapter 3. We may state idea this more formally by defining
presentations of cartesian categories by generators and equations as follows.

Definition 2.15. Let (Σ0,Σ1,Σ2) be a symmetric monoidal theory, and let Σ1
′ and Σ2

′

be the disjoint unions of Σ1 and Σ2 with operations (2.5) and equations (2.6),
respectively. The cartesian category C presented by generators and equations
(Σ0,Σ1,Σ2) is defined as the symmetric monoidal category presented by generators
and equations (Σ0,Σ1

′,Σ2
′).

While we do not prove Fox’s theorem in this thesis, it will be helpful to highlight how
the string-diagrammatic presentation relates to the categorical product. We therefore

22 Chapter 2. Background

give a brief description of this relationship now. First, the tupling map can be depicted
diagrammatically as follows

〈 f , g〉 =

f

g

where in the special case of tupling identity maps we obtain the ‘copy’ generator
〈id, id〉 = .

Similarly for the terminal object, the terminalmap corresponds to the discard generator

!A = A

Projections are the tensor product of the identity and discard maps:

π0 = π1 =

More generally, the ith projection of the n-ary product is the morphism

πi =

i

n− i

···

···

In addition, the tensor product can be written in terms of the tupling of morphisms
composed with projections:

〈π0 # f ,π1 # g〉 =

f

g

=
f
g

= f × g

Finally, the symmetry σ : A× B→ B× A can be constructed similarly.

〈π1,π0〉 = = = σ

23

Part I

Circuit Models and Machine
Learning

25

Chapter 3

Polynomial Circuits

3.1 Overview

In this chapter, we will define a model class suitable for machine learning. For the
purposes of this thesis, this will mean defining a categorywhose role is to define the
space of possible models. More specifically, we will define a family of categories
PolyCircS parametrised by a semiring S where a choice of morphism corresponds to a
choice of model. The suitability of PolyCircS as a model class is evaluated in two
respects: differentiability and expressivity. In the first case we will show how to equip
PolyCircS with reverse derivative structure, which will allow models to be trained in a
gradient-descent-like procedure we will describe in Chapter 4. In the second case we
consider the expressivity of the model class. Models are considered ‘sufficiently
expressive’ if, for an arbitrary dataset, there is a model which can faithfully represent
it. This will lead us to give a ‘functional completeness’ theorem analogous to the
various ‘universal approximation’ theorems for neural networks [67, 79].

An important feature of the categories we describe is that morphisms are specified
using the graphical language of string diagrams. This is beneficial for a number of
reasons. First, as a pedagogical tool, it makes the combinatorial structure of a given
model clear from its formal specification, without having to rely on informal
diagrammatic syntax as in e.g. [72, 100]. Secondly, the use of string diagrams unlocks
a number of formal mathematical tools such as the framework of double pushout
rewriting described in [17–20]. Finally, use of string diagrams will allow us to represent
models–morphisms of these categories–using the datastructures we describe in
Chapter 5. We therefore have a diagrammatic syntax which is completely formal
while also having well-defined datastructures and algorithms for its representation
and manipulation.

26 Chapter 3. Polynomial Circuits

The model classes defined here also come with benefits to machine learning. In
particular, recent neural networks literature contains a number of approaches for
improving model performance [33, 34, 101] under the umbrella of ‘quantisation’ or
‘binarisation’. In these approaches, network weights are quantised to small finite sets
(for example {−1,+1}). This reduces the amount of information required to store
weights and can improve the efficiency of computing arithmetic operations. In some
cases, simply moving from 32 to 16-bit floating-point values can increase performance
in terms of operations per second [108], while in extreme cases such as
binarisation [33, 34] many operations can be completely elided. However, these
approaches typically yield benefits only after the training process, and still require
higher-precision floating point operations at train time.

By defining model classes which can be trained in the low precision regime, we hope to
provide new avenues for model design. In contrast to existing neural networks
literature which focuses on finding particular model architectures or training
methods, our approach allows one to explore the model design space by varying the
underlying semiring, and thus the corresponding notion of arithmetic. We will
explore the consequences of one such choice–the semiring Z2–in Chapter 4.

In order to train models defined over an arbitrary semiring, the categories we define
will need to have reverse derivative structure. Reverse derivatives will allow us to
define ‘gradient-like’ learning algorithms in Chapter 4. However, in order to
guarantee that models are sufficiently expressive, it will be necessary to give an
alternative, more modular axiomatisation of reverse derivatives. Specifically, this
axiomatisation will be in terms of presentations by generators and relations. This
more modular approach will be immediately useful in ensuring the categories we
define are functionally complete. In fact, we will see that PolyCircS is not functionally
complete for every choice of semiring S. To address this we define the category
PolyCirc=S , which introduces an additional ‘comparator’ generator whose inclusion
guarantees functional completeness. Moreover, by giving an ‘extension theorem’ for
reverse derivative categories defined in terms of presentations, we will show how to
retain reverse derivative structure in PolyCirc=S .

3.1.1 Relationship to Published Work

Aside from the preliminaries covered in Section 3.3, the content of this chapter
consists of the author’s individual contributions originally published in [105] and
[104]. Parts of this chapter are reproduced from these works verbatim.

3.2. Synopsis 27

3.2 Synopsis

In Section 3.3 we recall background on reverse derivative categories (RDCs) and their
prerequisites. Our contributions begin in Section 3.4, where we introduce an
alternative graphical formulation of RDCs more suited to categories defined in terms of
presentations by generators and equations. We prove our alternative formulation
equivalent in Theorem 3.14. The ‘Extension Theorem’ (Theorem 3.15) demonstrates
how presentations of reverse derivative categories can be extended with new
generators and equations so that they retain RDC structure. As a first example of this
process, we introduce Cartesian Distributive Categories in Definition 3.18, a precursor
to polynomial circuits.

In Section 3.5 we define the category of polynomial circuits PolyCircS (Definition
3.22), We show that PolyCircS can be given reverse derivative structure in Theorem
3.24, and give examples for particular semirings S. In Proposition 3.27, we give an
isomorphism between PolyCircS and POLYS, a category of tuples of polynomials.
This isomorphism justifies the interpretation of morphisms of PolyCircS as
polynomials.

Finally, in Section 3.6 we define a notion of functional completeness (Definition 3.29)
which allows us to formalise how a reverse derivative category has ‘sufficient
expressive power’ to serve as a machine learning model class. We then give a simple
condition under which a category may be considered functionally complete in
Theorem 3.30, and show that for some choices of semiring S, the category PolyCircS is
already functionally complete. However, for some choices of semiring S, we will see
that PolyCircS is not functionally complete. Thus, in Definition 3.31, we define the
category PolyCirc=S by extending PolyCircS with an additional generator. This
extension will ensure that PolyCirc=S is functionally complete. Finally, we will show
how the extension PolyCirc=S can retain RDC structure in Theorem 3.32, and in
Corollary 3.33 we show that it is functionally complete for all choices of semiring S.

To conclude the chapter, we discuss these definitions from the perspective of machine
learning model design. In Section 3.7.1 we show how a number of examples of neural
network layers can be considered as morphisms of PolyCircS. Finally, in Section 3.7.2
we discuss the impact of the choice of semiring S.

3.3 Preliminaries

In this section, we recall the definition of reverse derivative categories (RDCs). This
structure, first introduced in Cockett et al. [29], is a necessary component for the
‘gradient’-based learning we will define in Chapter 4.

28 Chapter 3. Polynomial Circuits

RDCs have some prerequisite structure. Namely, we must first define cartesian
left-additive categories.

Definition 3.1 (Cartesian Left-Additive Category [13, 29]). A Cartesian Left-Additive
Category is a cartesian category C where each object A ∈ C is equipped with a
commutative monoid

A
A

A A (3.1)

satisfying the equations

= = =

A⊗ B
A⊗ B

A⊗ B =
A

B

A

A
B

B

A⊗ B =
A
B

(3.2)

For the purposes of intuition, one may think of the morphism as an open circuit
with two inputs whose output is their sum. When we later define polynomial circuits,
which will have cartesian left-additive structure, this operation will be interpreted as
the polynomial 〈x1, x2〉 7→ 〈x1 + x2〉.

Note also that since Theorem 2.14 guarantees that any cartesian category comes
equipped with a natural comonoid structure, any cartesian left-additive category C

also has the operations and equations of Theorem 2.14 which we repeat here for
completeness. That is, operations (2.5)

A
A

A A

and equations (2.6)

= = =

f =
f

f
f =

Since both cartesian and cartesian left-additive structure can be given in terms of
generators and equations, we may now define the cartesian left-additive category
presented by a signature. This will make it more convenient to speak of categories
with the structure required to define an RDC already ‘built-in’. We define such
categories in the same way as for cartesian categories in Definition 2.15.

Definition 3.2 (Cartesian Left-Additive Category Presented by Generators and
Equations [105]). Let (Σ0,Σ1,Σ2) be a symmetric monoidal theory, and let Σ1

′ and Σ2
′

be the disjoint unions of Σ1 and Σ2 with operations (3.1) and equations (3.2) of

3.3. Preliminaries 29

cartesian left-additive categories, respectively. The cartesian left-additive category C

presented by (Σ0,Σ1,Σ2) is defined as the cartesian category presented by generators
and equations (Σ0,Σ1

′,Σ2
′).

Observe that a cartesian left-additive category presented by generators and equations
is indeed cartesian left-additive. It has cartesian structure guaranteed by the presence
of generators and equations of Fox’s theorem–that is, generators and , and
equations (2.6). Moreover, it is cartesian left-additive because the signature includes the
addition and zero generators of (3.1) and the necessary equations of (3.2).

Remark 3.3. The definition of cartesian left-additive structure in this thesis is actually
an alternative to the ‘standard’ definition given in [29, Definition 1] and [13, Definition
1.2.1]. The standard definition instead requires that hom-sets of cartesian left-additive
categories come equipped with an addition operation + and zero map 0, forming a
commutative monoid satisfying the following axioms:

x # (f + g) = (x # f) + (x # g) x # 0 = 0

where x, f , g are morphisms. We may recover these axioms by defining
f + g := f

g
, and the zero morphism as 0 := , so that the axioms can be

represented in string-diagrammatic terms as follows:

f

g
x =

f

g

x

x
x =

These equalities follow from Definition 3.1 thanks to the naturality of and as
required in Equation (2.6). A proof of the equivalence of Definition 3.1 and [29,
Definition 1] can be found in [13, Proposition 1.2.2 (iv)].

With prerequisites in hand, we may now recall the original definition of reverse
derivative categories from Cockett et al. [29, Definition 13]. However, we stress that in
Definition 3.13 we will provide an alternative graphical definition: we will only use
the original definition to prove equivalence of the two. Thus, the reader may safely
skip the axioms in the following definition unless particularly interested in details of
the proof of equivalence to our re-axiomatisation.

In recalling the original definition we will use the notation of the original paper, which
uses several morphisms which we must first specify. We give these in string
diagrammatic form below:

ι0 := ι1 := ex :=

〈 f , g〉 :=
f

g
f + g :=

f

g

30 Chapter 3. Polynomial Circuits

We can now proceed by giving the original definition of reverse derivative categories
[29, Definition 13].

Definition 3.4 (Reverse Differential Category [29]). A Reverse Differential Category
(RDC) is a cartesian left-additive category equipped with a combinator R of the
following type

A
f−→ B

A× B −→
R[f]

A

satisfying axioms [RD.1] – [RD.7]:

[RD.1] R[f + g] = R[f] + R[g] and R[0] = 0

[RD.2] 〈a, b+ c〉 # R[f] = 〈a, b〉 # R[f] + 〈a, c〉 # R[f] and 〈a, 0〉 # R[f] = 0

[RD.3] R[id] = π1 and R[π0] = π1 # ι0 and R[π1] = π1 # ι1

[RD.4] R[〈 f , g〉] = (id× π0) # R[f]× (id× π1) # R[g] and R[!A] = 0

[RD.5] R[f # g] = 〈π0, 〈π0 # f ,π1〉〉 # (id× R[g]) # R[f]
[RD.6] 〈id× π0, 0× π1〉 # (ι0 × id) # R[R[R[f]]] # π1 = (id× π1) # R[f]
[RD.7] (ι0 × id) # R[R[(ι0 × id) # R[R[f]] # π1]] # π1

= ex # (ι0 × id) # R[R[(ι0 × id) # R[R[f]] # π1]] # π1

Remark 3.5. As observed in [29], and despite their definition, ι0 and ι1 are not in
general the injections of the coproduct. This is essentially because of the lack of
naturality axiom in the definition of cartesian left-additive categories: i.e., we do not
have the following axioms:

f =
f

f
f =

Should C be an RDC where these equations hold, then the left additive structure
would coincide with the coproduct by the dual of Fox’s theorem (2.14) and would
be the coproduct of identity maps.

The intuition behind the reverse derivative is the following approximation.

f (x) + δy ≈ f (x+ R[f](x, δy))

That is, for a given morphism f : A→ B, its reverse derivative R[f] : A× B→ A
approximates how much the input of f should change in order to achieve a given
change in output (δy). We therefore think of the two ‘arguments’ to R[f] as having
distinct roles: the first (x) is a point, while the second (δy) is a change.

3.3. Preliminaries 31

That the reverse derivative is efficiently computable is essentially the same as the idea
behind backpropagation in neural networks. This allows output errors to be
‘backpropagated’ through the model structure in order to compute a change in
parameters. We describe precisely how this process is used in learning in Chapter 4.

Cockett et al. [29] also give two important examples of reverse derivative category
which we will refer to later in the thesis. For completeness, we give their definitions
now.

Definition 3.6 (POLYS (from [29])). POLYS is the symmetric monoidal category with
objects the natural numbers and arrows m→ n the n-tuples of polynomials in m
indeterminates:

〈p1(x⃗), . . . , pn(x⃗)〉 : m→ n

with each
pi ∈ S[x1, . . . , xm]

where S[x1, . . . xm] denotes the polynomial ring in m indeterminates over S.

Remark 3.7. In Section 3.5 we will define a family of categories of ‘polynomial circuits’
over a semiring, denoted PolyCircS. In addition, we will give an isomorphism
PolyCircS ∼= POLYS. For that reason we do not give a direct definition of the reverse
derivative of POLYS here; it can be found in [29, Example 14].

Definition 3.8 (Smooth (from [29])). The category Smooth has objects the natural
numbers and maps m→ n the smooth functions f : Rm → Rn. The reverse derivative
of a map f : m→ n in Smooth is defined as follows:

R[f](x, δy) := J f (x)T · δy

where J f is the jacobian of f .

3.3.1 Forward Derivatives from Reverse Derivatives

Although we only require reverse derivative structure for machine learning, Cockett
et al. [29, Section 3.1] also show that a category C with reverse derivatives also admits
forward differential structure. That is, if C is a reverse differential category, it is also a
Cartesian Differential Category (see e.g., [13, 29]).

We do not give a full definition of such categories here. However, in order to simplify
our exposition, we will rely on the definition of the induced forward differential
operator. We picture this, as for reverse derivatives, as a derivation rule

A
f−→ B

A× A −→
D[f]

B

32 Chapter 3. Polynomial Circuits

meaning that every morphism f : A→ B has a forward derivative D[f] : A× A→ B.
Note carefully the change in type of D versus R.

Definition 3.9 (Induced forward differential operator [29]). The forward differential
operator induced by reverse differential structure is defined as

D[f] := R(2)[f]

where R(n) denotes the n-fold application of R, and so R(2)[f] is the 2-fold composition
R[R[f]].

Remark 3.10. The intuition for the forward derivative is the approximation

f (x+ δx) ≈ f (x) +D[f](x, δx)

Note that in contrast to the reverse derivative operator R, we think of the forward
derivative as mapping a change in input δx to a corresponding change in output
D[f](x, δx).

When we give our alternative axiomatisation of reverse derivative categories, we will
treat this definition as purely syntactic shorthand to avoid issues of circularity. In
order to make this axiomatisation, we will make use of two more such ‘syntactic’
definitions. We stress that we make no use of the axioms of cartesian differential
categories in any of the proofs that follow.

Definition 3.11 (Partial Derivative [29]). Graphically, the partial derivative of
g : A× B→ C with respect to B is defined as follows:

DB[g] := D[g]
A
B

B
C

Definition 3.12 (Linearity [29]). We say a morphism f : A→ B is linear when

D[f] = fA B
A

Further, a morphism g : A× B→ C is linear in B when

DB[g] = g
A

B
CB

In the next section, we will give our alternative axiomatisation of RDCs. This will
allow us to demonstrate its ‘modularity’ with a theorem showing how new RDCs can
be gradually extended with new operations and equations while retaining RDC
structure.

3.4. RDCs for Categories Presented by Generators and Equations 33

3.4 RDCs for Categories Presented by Generators and
Equations

We now give our alternative graphical definition of reverse derivative categories. The
purpose of this redefinition is two provide a more modular basis from which to
construct new reverse derivative categories. More concretely, we would like to take an
existing RDC and add new operations to it while retaining the RDC structure. This
will be important in Section 3.6, where in order to guarantee that a category satisfies
the property of functional completeness we will have to augment it with a new
generator.

Our recipe for extending RDCs is as follows. We begin with Definition 3.13, which is
our alternative axiomatisation of RDCs in terms of categories defined as presentations
by generators and equations. Theorem 3.14 shows our redefinition is equivalent to the
original. Theorem 3.15 then gives basic conditions under which such presentations
can acquire RDC structure. An immediate corollary is that an RDC defined as a
presentation by generators and equations can be extended to include new generating
operations and equations while only requiring that the additional operations and
equations be checked for compatibility with the equations of RDCs.

Let us now proceed with our alternative definition of RDCs.

Definition 3.13. A Reverse Derivative Category is a cartesian left-additive category
equipped with a reverse differential combinator R:

A
f−→ B

A× B −→
R[f]

A

satisfying the following axioms:
[ARD.1] (Structural axioms, equivalent to RD.1, RD.3-5 in [29])

R [] = R
[]

= R
[]

=

R
[]

= R [] = R [] =

R[f # g] = f
R[g]

R[f] R[f × g] =
R[f]

R[g]

[ARD.2] (Additivity of change, equivalent to RD.2 in [29])

R[f] =
R[f]

R[f]
R[f] =

34 Chapter 3. Polynomial Circuits

[ARD.3] (Linearity of change, equivalent to RD.6 in [29])

DB [R[f]] = R[f]

[ARD.4] (Symmetry of partials, equivalent to RD.7 in [29])

D(2)[f] = D(2)[f]

The following theorem shows that this definition is equivalent to the original
definition of reverse derivative categories given in [29].

Theorem 3.14. Definition 3.13 is equivalent to [29, Definition 13].

Proof. The axioms RD.1-7 of [29, Definition 13] imply axioms ARD.1-4 by Proposition
A.12. Conversely, axioms ARD.1-4 imply RD.1-7 by Proposition A.15. Therefore
ARD.1-4 hold if and only if RD.1-7 hold, so Definition 3.13 is equivalent to [29,
Definition 13].

We now give a theorem which describes the conditions under which a cartesian
left-additive category presented by generators and equations is also a reverse derivative
category. The idea is straightforward: since axiom ARDC.1 requires that the R
operator is defined inductively, one need only check that the generating morphisms of
a presentation satisfy the axioms of Definition 3.13 and that R is well-defined with
respect to the equations.

Theorem 3.15 (Extension Theorem). Let C be the cartesian left-additive category presented
by generators and equations (Σ0,Σ1,Σ2) If for each operation s ∈ Σ1 there is some R[s] which
is well-defined (see Remark 3.16) with respect to Σ2, and which satisfies axioms ARD.1-4, then
C is a reverse derivative category.

Proof. Observe that axioms ARD.1 fix the definition of R on composition, tensor
product and the cartesian and left-additive structures. It therefore suffices to show
that axioms ARD.2-4 are preserved by composition and tensor product. That is, for
morphisms f , g of appropriate types, both f # g and f ⊗ g preserve axioms ARD.2-4.
Thus, any morphism constructed from generators must also satisfy the axioms
ARD.1-4, and C must be an RDC. We provide the full graphical proofs that ARD.2-4
are preserved by composition and tensor product in Appendix A.1.

Remark 3.16. In Theorem 3.15, we required that R be well-defined with respect to
equations Σ2. Pragmatically, this means that we must check that R[l] = R[r] for each
(l, r) ∈ Σ2. This is because the morphisms of the category C upon which R is defined
are actually equivalence classes of diagrams. We must therefore have that
R[f1] = R[f2] for two diagrams f1 ∼ f2 in the same equivalence class.

3.4. RDCs for Categories Presented by Generators and Equations 35

Example 3.1. Axiom ARD.1 of Definition 3.13 completely defines the R operator on
generators of cartesian left-additive categories (3.1). Therefore, the cartesian left-additive
category presented by (Σ0, {}, {}) trivially has RDC structure.

An immediate consequence of Theorem 3.15 is that if we have a presentation of an
RDC C , we can ‘extend’ it with an additional operation s, a chosen reverse derivative
R[s], and equations Σ2

′, so long as R is well-defined with respect to Σ2
′ and the axioms

ARD.2-4 hold for R[s].

Corollary 3.17 (Extension of RDC presentations). Let C be an RDC presented by
generators and equations (Σ0,Σ1,Σ2), Now let s : A→ B be a new operation not in Σ1, let
Σ2
′ denote some additional equations involving this operation, and choose some definition of

R[s]. If R is well-defined with respect to Σ2
′, and R[s] satisfies axioms ARD.1-4, then the

category D presented by (Σ0,Σ1 + {s},Σ2 + Σ2
′) is an RDC.

More simply, this says that an existing RDC can be extended with new ‘gadgets’,
providing they respect the conditions in Theorem 3.15.

An immediately useful pair of such gadgets are the multiplication and constant one
generators, which will distribute over the addition generator . We call such

categories cartesian distributive, and define them as follows.

Definition 3.18. A Cartesian Distributive Category C is a cartesian left-additive
category such that each object A is equipped with a commutative monoid and unit

which distributes over the addition and is annihilated by the zero map .
Explicitly, C has generators

(3.3)

satisfying the cartesianity equations (2.6), the left-additivity equations (3.2), the
multiplicativity equations

= = = (3.4)

and the distributivity and annihilation equations

= = (3.5)

Remark 3.19. In the following sections, it will be useful to refer to particular examples
of cartesian distributive categories having additional equations. We will therefore
speak of presentations of cartesian distributive categories in the same way as we speak
of cartesian and cartesian left-additive categories presented by generators and equations.
More explicitly, this will mean that the generators and equations of 3.18 are assumed
to be present in a given signature as with Definitions 2.15 and 3.2.

36 Chapter 3. Polynomial Circuits

We can think of cartesian distributive categories as an extension of cartesian
left-additive categories with an additional multiplication structure. However, note
that the reverse derivative operator R on the generators of cartesian left-additive
categories is completely defined by Definition 3.13. In contrast, for cartesian
distributive categories, we must choose the action of R on the generators and .
We must then use Theorem 3.15 to show that this indeed defines reverse derivative
structure. This will allow us to use cartesian distributive categories as our ‘base’
category for defining polynomial circuits and their extensions in the next section.

Theorem 3.20. Let C be a cartesian left-additive category presented by (Σ0,Σ1,Σ2), and
further suppose that C has RDC structure. Let D denote the cartesian distributive category
presented by (Σ0,Σ1,Σ2) with R defined as follows.

R
[]

= R [] = (3.6)

Then D is an RDC.

Proof. By Theorem 3.15, it suffices to check that R is well-defined (Proposition A.16)
and satisfies axioms ARD.2-4 for the new generators. The generator satisfies the
axioms because R [] = = R [], so it suffices to verify the axioms for in
Propositions A.19, A.20, and A.21 respectively.

Remark 3.21. The definition of R[] and R[] is essentially a string diagrammatic
version of the reverse derivative combinator defined on POLYS. Concretely, if we
interpret as the polynomial (x0, x1) 7→ x0 · x1, then its reverse derivative is
(x0, x1, δy) 7→ (x1 · δy, x0 · δy). Note however that cartesian distributive categories are a
slightly more general formulation than POLYS because a cartesian distributive
category need not in general be a PROP.

3.5 Polynomial Circuits

We can now define polynomial circuits: the categories which will serve as the basis for
our machine learning model class. The morphisms of this category can be thought of
as representing polynomials over a commutative semiring S. The addition operation
of S corresponds to the cartesian left additive structure, and multiplication to the
cartesian distributive. In short, polynomial circuits are essentially cartesian
distributive categories with a single generating object and some additional constants
and equations. We define them as follows.

Definition 3.22. Let S be a commutative semiring. PolyCircS is the cartesian
distributive category presented by objects {1}, arrows

{
s : 0→ 1 | s ∈ S

}
, and the

3.5. Polynomial Circuits 37

‘constant equations’

0 =
s

t
= s+ t 1 =

s

t
= s · t (3.7)

for each s, t ∈ S.

Remark 3.23. The ‘constant equations’ (3.7) of Definition 3.22 guarantee that addition
and multiplication of ‘constant’ generators s is the same as that of addition and
multiplication of constants in S.

Proposition 3.24. PolyCircS is an RDC with R
[
s

]
= .

Proof. The type of R
[
s

]
: 1→ 0 implies that there is only one choice of reverse

derivative, namely the unique discard map . Furthermore, R is well-defined with
respect to the constant equations (3.7) for the same reason. Finally, observe that the
axioms ARD.2-4 hold for R

[
s

]
, precisely in the same way as for R [], and so by

Theorem 3.15 PolyCircS is an RDC.

The requirement of Definition 3.22 that we add an axiom for each possible addition
and multiplication of constants is somewhat uneconomical. For some significant
choices of S, there is an equivalent smaller finite axiomatisation. We demonstrate
these with some examples now.

Example 3.2. Choose S = Z2. Then the equations of Definition 3.22 reduce to the single
equation

=

which expresses that x+ x = 0 for each element x of Z2. Note that no further equations are
needed to define multiplication of constants, which is completely defined on and by the
axioms of cartesian distributive categories.

Example 3.3. When S is the semiring of natural numbers N with the usual multiplication
and addition, PolyCircN can be expressed without any additional equations. The required
integer constants can be defined by repeated addition of as follows:

s := s

where n is defined inductively as follows.

0 := n := n− 1

The constant equations for PolyCircN can then be derived using the axioms of cartesian
distributive categories. This observation in fact makes PolyCircN the free cartesian
distributive category on a single generating object.

38 Chapter 3. Polynomial Circuits

Remark 3.25. Note that we can regard the ‘repeated addition’ morphism n
alternatively as multiplication of the input by n. Proving this lemma is a useful step in
demonstrating that the inclusion of the constant equations for PolyCircN is
redundant.

Example 3.4. In a straightforward generalization of PolyCircZ2
, we can define PolyCircZn

in the same way, but with the only additional equation as

n =

which says algebraically that (1+ n. . .+ 1) · x = n · x = 0 · x = 0.

We can now describe the sense in which polynomial circuits can be thought of as
polynomials. Concretely, there is an isomorphism PolyCircS ∼= POLYS. This amounts
to saying that morphisms of the hom-set PolyCircS(m, n) correspond precisely to
n-tuples of polynomials in m indeterminates, for m, n ∈ N. To make this
correspondence clear, we give the interpretation of PolyCircS as polynomials by
defining the following functor.

Definition 3.26 (J·K : PolyCircS → POLYS). Let J·K be the strict symmetric
identity-on-objects functor defined inductively on generators as follows.

J K = 〈x0〉 r z
= 〈x0, x0〉

r z
= 〈x0 + x1〉r z

= 〈x1, x0〉 J K = 〈〉 J K = 〈0〉r z
= 〈x0x1〉 J K = 〈1〉 r

s
z
= 〈s〉

Example 3.5. For example, consider the polynomial circuit below, which has arity 3 and
coarity 2. It will therefore be represented as a pair (or 2-tuple) of polynomials in 3
indeterminates, which we name x0, x1, x2.s {

= 〈x1 · x2, x0 · x2〉

Using this interpretation gives us the following isomorphism.

Proposition 3.27 (PolyCircS ∼= POLYS).

We give a full proof of Proposition 3.27 in Appendix A.2. The essence of the proof is
that homsets PolyCircS(m, n) and POLYS both have the structure of the free module
over the polynomial semiring S[x1, . . . xm]. This means that there is a unique module
isomorphism between homsets, and since J·K is an identity-on-objects functor this is
sufficient to complete the proof.

3.6. Functional Completeness 39

Remark 3.28. Recall that Cockett et al. [29] have already shown POLYS to be a reverse
derivative category. This of course raises the question: why bother with polynomial
circuits at all? The reason is modularity. By developing polynomial circuits by
incrementally adding algebraic structure and retaining RDC structure using Theorem
3.15, we are now in a position to add additional operations to PolyCircS. This will be
required in the next section to guarantee the property of ‘functional completeness’,
which will allow us to express any desired function Sm → Sn as a corresponding
(augmented) polynomial circuit. Moreover, the new ‘extended’ category based on
PolyCircS will no longer be isomorphic to POLYS, and so will need to use Theorem
3.15 once again to gain RDC structure.

Finally, it will be useful to consider the special case of polynomial circuits over a
bonafide ring, rather than just a semiring. For this case, we introduce additional syntax
for negation, which we denote by . Additionally, we must include the equation

= which can be thought of as saying that x− x = 0 for all x ∈ S.
Naturally, we can also define the reverse derivative on by appeal to Theorem 3.15:

R [] :=

3.6 Functional Completeness

We are now ready to consider the expressivity of the model class of polynomial circuits.
More concretely, for a given commutative semiring S, we would like to guarantee that
for any function between sets f : Sm → Sn, there exists a diagram d ∈ PolyCircS(m, n)
whose interpretation is f . Essentially this would guarantee that we can represent any
function with some diagram in PolyCircS. We call this property ‘functional
completeness’ after the same property of sets of primitive logic gates in boolean
circuits. Note however that in this section we will only show the functional
completeness property for finite semirings S.

Functional completeness is important for machine learning. It ensures that one can
always construct an appropriate model for a given dataset. Consider for example the
task of supervised learning: the goal is to discover a function f : A→ B from a dataset
of input/output examples in A× B. Considering the latter as the extensional
description of a function, it is clear that we need functional completeness to guarantee
that there is a circuit model which can faithfully represent any dataset. An analogous
property for neural networks has also been studied; see for example the various
‘universal approximation’ theorems [67, 79].

We will now formally define the property of functional completeness. We will
therefore need a category of sets and functions to serve as interpretations of

40 Chapter 3. Polynomial Circuits

PolyCircS. For this we use FinSetS: the cartesian monoidal category whose objects
are natural numbers, and where morphisms f : m→ n are functions of type Sm → Sn.
This category is analogous to POLYS, but with hom-sets all functions, not just
polynomials.

Definition 3.29. We say a category C is functionally complete with respect to a set S
when there a full identity-on-objects functor Fn : C → FinSetS.

The intuition for this definition is that a category C is ‘functionally complete‘ when it
serves as a syntax for FinSetS. That is, the fullness of the functor Fn guarantees that
any morphism in FinSetS may be expressed as a diagram in PolyCircS. It is not
required that Fn be faithful, and so we may have unequal diagrams which represent
the same function.

In general, PolyCircS is not functionally complete with respect to S. Take for example
the boolean semiring B with multiplication and addition as AND and OR respectively.
It is well known [102] that one cannot construct every function of type Bm → Bn from
only these operations.

Nevertheless, there is only one missing ingredient required to make PolyCircS
functionally complete. Namely, the ‘comparator’ operation, which represents the
following function.

compare(x, y) =

1 if x = y

0 otherwise

We can state the requirement for the comparator function formally with the following
theorem.

Theorem 3.30. Let S be a finite commutative semiring. A category C is functionally complete
with respect to S if and only if there is a monoidal functor Fn : C → FinSetS in whose image
are the following functions:

• 〈〉 7→ s for each s ∈ S (constants)

• 〈x, y〉 7→ x+ y (addition)

• 〈x, y〉 7→ x · y (multiplication)

• compare (comparison)

Proof. Suppose C is functionally complete with respect to S, where S is a finite
commutative semiring. Then by definition there is a functor Fn : C → FinSetS with
each of the required functions in its image.

Now in the reverse direction, we will show that any function can be constructed only
from constants, addition, multiplication, and comparison. The idea is that because S is

3.6. Functional Completeness 41

finite, we can simply encode the function table of any function f : Sm → S as the
following expression:

x 7→ ∑
s∈Sm

compare(s, x) · f (s) (3.8)

Further, since C is cartesian, we may decompose any function f : Sm → Sn into an
n-tuple of functions of type Sm → S. More intuitively, for each of the n outputs, we
simply look up the appropriate output in the encoded function table.

It follows immediately that PolyCircS is functionally complete with respect to S if and
only if one can construct the compare function in terms of constants, additions, and
multiplications. We illustrate one example of constructing compare in this way below.

Example 3.6. PolyCircZp
is functionally complete for prime p. To see why, recall Fermat’s

Little Theorem [40], which states that

ap−1 ≡ 1(mod p)

for all a > 0. Consequently, we have that

(p− 1) · ap−1 + 1 =

1 if a = 0

0 otherwise

We denote this function as δ(a) := (p− 1) · ap−1 + 1 to evoke the dirac delta ‘zero indicator’
function. To construct the compare function is now straightforward:

compare(x1, x2) = ∑
s∈S

δ(x1 + s) · δ(x2 + s)

Since Zp is a ring, the above can also be written more directly using negation.

compare(x1, x2) = δ(x1 − x2)

It is not possible in general to construct the compare function in terms of multiplication
and addition. To guarantee functional completeness it is therefore necessary to extend
the category of polynomial circuits with an additional comparison operation.

Definition 3.31. Define PolyCirc=S as the cartesian distributive category presented by
the same objects, operations, and equations of PolyCircS, plus an additional compare
operation

= (3.9)

and equations

=
s

s
= =

s

t
= (3.10)

42 Chapter 3. Polynomial Circuits

for s, t ∈ S with s 6= t.

PolyCirc=S can be made a reverse derivative category by once again appealing to
Theorem 3.15. We must therefore choose an appropriate definition of R [=] which
is both well-defined and satisfies axioms ARD.1-4.

A suggestion for this choice comes from the machine learning literature. In particular,
the use of the ‘straight-through’ estimator in quantised neural networks, as in e.g. [10].
Such models often make use of the dirac delta function, whose gradient is zero almost
everywhere. This presents a problem when gradients are ‘backpropagated’: the zero
derivative prevents ‘information flow’ from deeper layers to shallower ones. To
remedy this issue, one instead replaces the ‘true’ gradient with the straight-through
estimator. This instead passes through gradients unchanged from deeper layers to
shallower ones.

In terms of reverse derivatives, this amounts to setting R[δ] = R[id]. Of course, it is
necessary to define R for the full comparator, not just the zero-indicator function δ. We
therefore we make the following choice.

Theorem 3.32. PolyCirc=S is an RDC with R as for PolyCircS, and

R
[

=
]
:=

Proof. R is well-defined with respect to the equations (3.10) since both sides of each
equation must equal the unique discard morphism . Further, R

[
=

]
satisfies

axioms ARD.2-4 in the same way that R
[]

does, and so by Theorem 3.15
PolyCirc=S is a reverse derivative category.

Now the functional completeness of PolyCirc=S is a straightforward corollary of
Theorem 3.30.

Corollary 3.33. Fix a finite commutative semiring S. PolyCirc=S is functionally complete
with respect to the underlying set of S.

Proof. Let Fn : PolyCirc=S → FinSetS be the identity-on-objects strict symmetric
monoidal functor defined as for PolyCircS, and with Fn (=) equal to the
comparison function.

Finally, note that we recover the dirac delta function by ‘capping’ one of the
comparator’s inputs with the zero constant.

δ := =0

3.7. Case Studies 43

Taking reverse derivative of this composite yields precisely the ‘straight-through’
estimator:

R

[
=0

]
= = R []

3.7 Case Studies

We now discuss the impact of the choice of semiring S from the perspective of
machine learning and model design. We begin in Section 3.7.1 by studying several
common ‘components’ of neural network models as morphisms in PolyCircS. While
usually thought of as differentiable functions Ra → Rb, the examples given here
demonstrate that many such layers can be described more generally as morphisms in
PolyCircS without needing to specify a particular semiring S. This suggests that one
may be able to simply re-use existing neural network architectures with a different
choice of underlying semiring.

In Section 3.7.2 we will propose two choices of finite semiring for machine learning
with PolyCircS. The implications of the choice of S will offer some new possibilities
for model design outside of existing neural network architectures. However, we will
also see that for some choices of finite S, re-using neural network architectures may
not be effective.

Defining these basic components will prepare us for Chapter 4. There, we will show
how several of the morphisms defined here can be combined to define models applied
to some benchmark datasets.

3.7.1 Neural Network Layers as Morphisms in PolyCircS

Neural Network models are typically expressed as a composition of ‘layers’. From the
categorical viewpoint, both layers and models are simply morphisms, and so there is
no real distinction between the two. However, ‘layer’ is usually used to suggest a
component of a larger model, rather than a standalone model by itself. Nevertheless, it
will be useful to define some basic layers from which we may define larger models for
the experiments in Section 4.6.2. Note that the neural network layers we describe here
are all well-known; our contribution here is specifically to show how they can be
thought of as morphisms in PolyCircS.

1

We can now define our first layer: the linear layer.

1For the sake of clarity, we will describe the layers in this section in terms of their interpretations as
functions, but note that in each case there is a morphism of PolyCircS whose interpretation yields the
given function.

44 Chapter 3. Polynomial Circuits

Example 3.7 (Linear Layer [11]). A linear layer can conceptually be thought of as the
following map

linear : Sab × Sa → Sb

linear(M, x) := Mx

where M are the coefficients of a b× a matrix, and Mx denotes matrix-vector multiplication.

Since this map can be stated purely in terms of additions and multiplications, it can be
expressed as a morphism in PolyCircS. Consequently, it has a reverse derivative, which we
can think of as the following map

R[linear](M, x, δy) : Sab × Sa × Sb → Sab × Sa

R[linear](M, x, δy) = (xδTy ,M
Tδy)

where here xδTy denotes the outer product of vectors.

To clarify how linear is expressed in PolyCircS, we give the following example.

Example 3.8. When a = 2 and b = 1, we have the following special case

linear
R2

R2
R =

Remark 3.34. The theory of linear algebra over semirings is well-studied [58], and so
the fact that the linearmap generalises to PolyCircS is essentially well-known.
Nevertheless, observe that while a matrix with coefficients in S is a linear map, the
linear layer is not.

Not only is linear defined in PolyCircS, but in fact in any cartesian distributive
category (Definition 3.18). The reverse map of linear can therefore be obtained
inductively by applying the reverse derivative as outlined in Definition 3.13.

Before giving further examples, it is necessary to highlight an ambiguity in the ‘layer’
terminology as used in neural networks literature. We will therefore need to clarify
the relationship between our string diagrammatic syntax and a ‘traditional’ informal
graphical representation of neural networks. In this representation, the linear layer of
Example 3.8 is represented by the following bipartite graph.

Here, the dangling left and right wires represent inputs and outputs, but not including
parameters. Nodes represent values, edges represent the multiplication of a value by a

3.7. Case Studies 45

weight (parameter), and a node’s value is determined as the sum of its inputs. Thus,
the edges of a fully connected bipartite graph correspond to the matrix coefficients of a
linear map.

Unfortunately, the use of the term ‘layer’ can refer to both the nodes of the graph, as
well as the linear map it represents. For example, the neural network defined as the
composition of two linear layers is often said to have a ‘single hidden layer’. Below
depicts an example of this in the ‘traditional’ way (left) and the string-diagrammatic
syntax (right):

linear
R4

R2

linear
R2

R2
R2

Here, the ‘hidden layer’ refers to those nodes falling on the dashed line. In
string-diagrammatic terms, this refers to the ‘internal wire’ labeled R2. Thus the
ambiguity in terminology amounts to confusing morphisms and objects. For that
reason, layerwill hereafter refer only to morphisms. Moreover, we will typically mean
to indicate that a ‘layer’ is not intended to be a complete model by itself, but instead a
component of a larger model.

Let us now proceed to define our remaining examples. We will begin with bias and
activation layers, which together with the linear layer of Definition 3.7 can be
composed to define dense layers.

Example 3.9 (Bias Layer). A bias layer is simply an addition of parameters to inputs.

bias :=

Its reverse derivative is then fixed by Definition 3.13 as follows.

Note that although defined explicitly here, the bias layer is not usually considered as
a distinct layer in the neural networks literature.

Activation layers are another important class of layer. In neural networks, these are
typically nonlinear maps post-composed with other layers. For example, given a
neural network layer viewed as a map f : Ra → Rb, an activation layer would usually
be a map α : Rb → Rb.

46 Chapter 3. Polynomial Circuits

Example 3.10. Let A, B be generating objects of a reverse derivative category C . An
activation layer is a map α : An → Bn.

Remark 3.35. Activation layers are frequently 1→ 1 functions applied ‘pointwise’.
That is, of the form α⊗ . . .⊗ α : An → Bn for some chosen activation function
α : A→ B). However, this is not always the case. For example, in the softmax
activation function [98, Section 2.8], outputs are normalised so the resulting vector
sums to 1. In order to define this, each output depends on all of the inputs, and so the
map cannot be considered as a pointwise application of a function.

A simple example of an activation function is the identity map. Note that the identity
activation is not frequently used in practice, because the composition of two linear
layers with identity activations is equivalent to a single linear layer by matrix
multiplication.

One useful example of an activation layer which is not in PolyCircS is the ‘Rectified
Linear Unit’ (ReLU) [91, Section 5.24].

Example 3.11 (ReLU activation [91]). The ReLU activation function is defined as

ReLU(x) := δ>0(x) · x

where δ>0 is the positive indicator function, applied pointwise to the elements of x. However,
this map has a discontinuity at x = 0, and thus is also not a map in Smooth. Nevertheless,
in the neural networks literature, one typically computes the gradient of ReLU with the
following map.

〈x, δy〉 7→ δ>0(x) · δy

Although ReLU is neither a map of Smooth nor PolyCircS, we may obtain it by using
Theorem 3.15 to extend PolyCircS with a new generator. Add the new generator
δ>0 : S→ S and define its reverse derivative as the zero morphism R[δ>0] := .
We may now define ReLU graphically as follows:

δ>0

Taking the reverse derivative of this ReLU using the inductive definition in 3.13, we
obtain

δ>0

whose interpretation is the desired ‘reverse’ map as specified in Example 3.11.

Combining linear, bias, and activation layers allows us to define a dense layer.

3.7. Case Studies 47

Definition 3.36 (Dense Layer [27]). A dense layer is a composite of linear, bias, and a
chosen activation layer.

dense
Sab+b

Sa Sb :=
linear

Sab

Sa

activation
Sb

Sb
Sb

The layers defined so far are sufficient for many simple machine learning tasks. For
example, in Section 4.6.2 we will build a classifier for the Iris dataset using a
composition of two densemorphisms. However, solving more complex problems
such as image processing tasks will require additional definitions.

We now define two more complex layers which will be useful in solving the MNIST
image classification task in Chapter 4. Each of these layers conceptually operates on
images, thought of as two dimensional arrays of pixels. However, in terms of objects of
a Reverse Derivative Category, we represent this two-dimensional array type as a
single ‘flat’ array: an object of the form Swh for an image of width w and height h.

The first such layer we define is a convolutional layer. A number of variations on this
layer and its use in models occur in the machine learning literature; a survey can be
found in Schmidhuber [91, Section 5.8]. The example we give here is therefore just one
of many possible variants of what are termed ‘convolution’ layers. Nevertheless, we
will use this specific definition for the purposes of describing our model later.

Definition 3.37 (Convolution layer [91]). A 2D convolution layer with size k
convolution kernel is a map convolve : Sk

2 × Sm
2 → Sn

2
which convolves a k× k

kernel over an m×m input image. The output of the convolution layer is an n× n
image where n = max(m, k)−min(m, k) + 1, i.e., so that we only consider the outputs
where kernel and image completely overlap.

Note that the forward map of the convolution layer can be defined completely in
terms of copying, addition, and multiplication. We can therefore consider this layer as
a map in PolyCircS, and obtain its reverse derivative inductively.

Remark 3.38. One often uses convolution layers with multiple input and output
channels. Channels are often used when the data corresponding to each pixel is
multidimensional, for example when one has three distinct color channels in the input.
A convolution over an image with cin input channels and cout output channels can
simply be thought of cout independent convolutions with kernel size cin · k2 and image
size cin ·m2.

In image processing tasks, convolution layers are typically augmented by max pooling
layers [91, Section 5.11]. Here, the idea is to partition the image into tiles, and apply
the max operator to each tile.

48 Chapter 3. Polynomial Circuits

Definition 3.39 (Max Pooling layer [91]). Amax-pooling layer maxpool : S(kn)
2 → Sn

2

computes the maximum of each of the n2 size-k× k subregions of the input image.

Once again, we can appeal to the extension theorem in order to consider these maps
and their reverse derivatives as morphisms in an RDC. In this case, we need an
additional operation max : 2→ 1 whose reverse derivative we define as . The
maxpool layer can then be expressed in terms of permutations and the max operation,
and so its reverse derivative can be determined inductively.

Remark 3.40. Note that our implementation of layers involving convolution or matrix
multiplication operations use specialised subroutines for these purposes, rather than
using a full description of the polynomial circuit itself. Notably, the reverse derivative
of the convolution layer can itself be expressed as a convolution. We might therefore
think of these layers as being pairs of functions, rather than pairs of maps in an RDC.
We discuss this further in Chapter 4.

3.7.2 Finite Semirings

As we have seen, many components used to construct neural network models can be
expressed more generally as morphisms in PolyCircS. We can of course think of them
in the usual ‘neural networks’ way where S = R. However, in order to actually
compute with such morphisms, we must eventually retreat to finite approximations.
More concretely, to actually evaluate a neural network considered as a morphism of
PolyCircR, one usually uses a floating-point approximation.

However, such approximations come with several drawbacks. First, floating-point
arithmetic is relatively slow compared to e.g. integer operations [69]. Second, the
floating point operations of addition and multiplication do not satisfy the semiring
axioms and are not even associative, which results in problems of numerical
instability [60]. Although attempts such as that of Gustafson and Yonemoto [60] exist
to provide ‘more well-behaved’ approximations for the reals, these still do not satisfy
the semiring axioms on the nose.

We therefore might reasonably ask if one can simply start with a finite semiring S and
‘import’ existing neural network architectures to the setting PolyCircS. In this section,
we will discuss the implications for two choices of semiring S on existing neural
network layers. Additionally, we will see that varying S in fact allows us to consider
new model architectures which are not possible for S = R.

The first example we consider is where S = Z2; the ring of integers modulo 2. We
have already seen in Example 3.6 that PolyCircZp

is functionally complete for prime
p, and so there is no need to consider its extension PolyCirc=Z2

.

3.7. Case Studies 49

However, using a semiring of modular arithmetic in general introduces a problem:
one must be careful not to construct models in which gradients ‘wrap around’.
Consider for example the model below, which is constructed of two independent
sub-models f1 and f2 which both use the same parameters P2 applied to different
parts of the input X1 and X2.

f1

f2

P

X1

X2

Y

Since R
[]

= R

[]
, computing the reverse derivative for P will result in a sum

of the input changes computed by R[f1] and R[f2]. In the extreme case when the
underlying semiring is Z2, then when the values of R[f1] and R[f2] are both 1, the
result will ‘wrap around’, and the resulting change in P will be 0. This is clearly
undesirable for learning: here we should prefer that 1+ 1 = 1 to 1+ 1 = 0.

Many of the neural network layers of Section 3.7.1 make use of copying. For instance,
the parameters of a convolutional layer are the convolution kernel. If one regards a
convolution as consisting of a tupling of independent circuits (as is possible due to
cartesian structure) then it is clear that parameters are shared among all of the outputs.
This layer therefore exhibits the ‘wraparound’ problem in PolyCircZ2

because its
reverse derivative consists of a large summation. Thus, the direct use of neural
network layers in PolyCircZ2

is unlikely to perform well in learning tasks.

We should therefore consider other models in the semiring S = Z2. In fact, in this
setting, it is possible to define models which cannot be directly expressed when
S = R. For example, because PolyCircZ2

is functionally complete, we may express
the morphism eval : 2n × n→ 1 whose 2n parameters simply encode an entire
function table in the sense of Equation (3.8). Note that one can also construct an m-bit
output evalmorphism as the tupling of eval; a concrete implementation is given in
Section 4.6.3.

Another possible choice of semiring S is the semiring Satn as a model of saturating
unsigned integer arithmetic for a given ‘precision’ n. The underlying set is simply the
finite set n̄ = {0 . . . n− 1}, with addition and multiplication defined as for the naturals
but truncated to at most n− 1. We define Satn as follows, noting that it is equivalent to
the semiring B(n, n− 1) defined in [2, Example 3] (see also [59]).

Definition 3.41. The semiring Satn has as addition and multiplication the operations

x1 + x2 := min(n− 1, x1 + x2) x1 · x2 := min(n− 1, x1 · x2)
2The re-use of weights in this way is known as ‘weight-tying’ in neural networks literature, but sharing

of parameters also occurs in several of the layers we have already defined.

50 Chapter 3. Polynomial Circuits

over the set n̄ := {0 . . . n− 1}

Note that while Satn is a commutative semiring, it is certainly not a ring: the
introduction of inverses means that the associativity axiom of semirings is violated.
PolyCircSatn is also not functionally complete. Thus, in order to obtain a model class
which is functionally complete and is a reverse derivative category, we must use
PolyCirc=Satn .

In Chapter 4 we will see examples of models in PolyCircR and PolyCircZ2
applied to

real data.

51

Chapter 4

Machine Learning with Circuits

4.1 Overview

Having defined a family of model classes suitable for machine learning–the category
PolyCircS and its extensions–we now turn our attention to algorithms for learning the
parameters of these models. We may think of morphisms of PolyCircR in particular as
neural networks, and a large number of effective techniques under the umbrella of
‘gradient descent’ are known to work well for training. A survey of these techniques
can be found in Ruder [90], but basic idea of gradient descent in supervised learning is
to iteratively ‘show’ example input/output data to a model, and measure its
prediction error. Taking the gradient of this error with respect to the parameters of the
model yields a ‘change in parameters’; multiplying this change by a small constant
(the learning rate) and subtracting from the model parameters constitutes moving in
the ‘direction of improvement’ in parameter space.

In this chapter, we will show that these methods can be generalised to other choices of
semiring S using reverse derivative structure. As a first example, we will define a new
learning algorithm in terms of morphisms of PolyCircS over an arbitrary semiring S.
We will also see how existing methods for gradient-based learning of neural networks
can be described in terms of morphisms of PolyCircS.

The need to define learning in this way addresses a recent need to improve the
efficiency of deep learning models. In solving larger and more complex tasks, models
have themselves become larger and more complex. This comes with a corresponding
increased cost in computational resources: large models require expensive and
power-hungry GPGPU hardware to train and run [34, 88].

This increased computational cost creates additional issues in some domains. For
example, embedded and mobile devices are power constrained, so the efficiency of

52 Chapter 4. Machine Learning with Circuits

running trained models is important to effectively serve these settings. Another
example is privacy-sensitive applications, where one might wish to train a model on
private data. This might be the case even when using a pre-trained model: the
privacy-sensitive end-user might wish to fine-tune1 the model on personal data, but
for large models this may still require expensive GPU hardware.

Improving efficiency is of course a benefit for its own sake as well. More efficient use of
computational resources means more complex models can be created, and more
difficult problems can be solved.

A recent approach to addressing these issues is that of binarisation. In this approach,
one typically trains a neural network using R-valued gradients, and then extracts a
boolean circuit [101]. Analogously, one can think of this as learning the parameters of
a model f ∈ PolyCircR, then somehow extracting a morphism f ′ ∈ PolyCircZ2

which
has similar performance on a given problem. In contrast, what we propose here is that
the parameters of f ′ may simply be learned directly. This obviates the need for
expensive floating point operations, even during the training phase.

The aims of this chapter are therefore twofold. Firstly, we should achieve our goal of
defining a learning algorithm which is able to directly train models defined as
morphisms in PolyCircS. Importantly, this will be done without use of values in R (or
more precisely, without floating-point approximations to such values). In this way, we
can achieve our stated goal of providing an alternative to existing ‘binarisation’
approaches for neural networks. Secondly, we should provide a modular,
compositional characterisation of learning which captures existing gradient-based
techniques for training neural networks. Moreover, we should do this in a
diagrammaticway: this will allow us to use the datastructures and algorithms we will
develop in Part II.

In addition to efficiency benefits, the procedure described here can also be viewed as
opening a new avenue in model design. Currently, new problems are typically solved
by designing novel architectures. For example, the introduction of convolutional
neural networks with max-pooling improved the state of the art on the MNIST
problem [91, Section 5.19] In addition, there are even several approaches [45] to using
neural networks to discover which architectures perform well. Instead, the idea of
Part I of this thesis is that we may also change the underlying arithmetic of the model
through selection of the semiring S.

1See for instance Erhan et al. [46] for details of fine-tuning a pre-trained model.

4.2. Synopsis 53

4.1.1 Relationship to Published Work

The content in this chapter is based on the papers Wilson and Zanasi [104] and
Cruttwell et al. [36]. As usual, the preliminary content in Section 4.3 is background
material, and does not contain original contributions of the author. Additionally, the
contents of Section 4.5 are the result of joint work published in Cruttwell et al. [36]2.
Contributions solely due to the author are contained in Sections 4.4, 4.6, and 4.7. In
particular, the contents of 4.4 and 4.7 are based on Wilson and Zanasi [104], and
Section 4.6 is based on the implementations and experimental work for [104] and [36],
both of which are the author’s individual contribution.

4.2 Synopsis

We begin with preliminaries in Section 4.3 where we recall the functoriality of the
reverse derivative operator demonstrated in Cockett et al. [29]. We then recall the
construction of lenses, and discuss how the functoriality of the reverse derivative may
be considered as an embedding into the category of lenses.

Our contributions begin in Section 4.4, where we discuss the role of the reverse
derivative in learning, and introduce the Reverse Derivative Ascent algorithm
(Definition 4.6) for learning the parameters of morphisms in PolyCircZ2

.

In Section 4.5, we recall the more general framework for learning based on lenses first
described in our joint work [36]. We first view Reverse Derivative Ascent within this
framework in Example 4.3, and then show that it is also able to capture more complex
learning methods from the machine learning literature such as gradient descent with
momentum (Example 4.6).

We demonstrate the practicality of our approach in Section 4.6 where we give two case
studies solving real-world problems with both boolean circuits and neural networks.
Section 4.6.2 demonstrates that our method, when applied to the case of neural
networks, gives equivalent results to the same model trained in an existing deep
learning framework. Meanwhile, Section 4.6.3 demonstrates that the method of
Reverse Derivative Ascent as applied to boolean circuits is able to learn even without
the use of real-valued gradients. Both case studies are accompanied by
implementations, which can be found in Appendix D.1.

We conclude in Section 4.7 with a discussion of subtleties arising from our
implementation, which is in terms of functions, not morphisms of PolyCircS. This will

2Although based on this paper, we use a formulation of the material not involving some constructions
appearing in the final published version.

54 Chapter 4. Machine Learning with Circuits

motivate Part II of the thesis, where we show how morphisms of PolyCircS can be
represented combinatorially.

4.3 Preliminaries

Before defining learning algorithms in Section 4.4, we recall some preliminaries. We
first review the sense in which reverse derivatives are functorial, and then discuss a
connection to lenses.

4.3.1 Reverse Derivatives as Lenses

The reverse derivative operator is not a functor on its own. When taking the reverse
derivatives of two maps, f : A→ B and g : B→ C, one clearly cannot compose their
reverse derivatives:

R[f] : A× B→ A R[g] : B× C → B

However, there is a functorial construction arising from the reverse derivative.
Namely, Cockett et al. [29] show that one can construct a category consisting of pairs of
maps, and a functor from a reverse derivative category into this category of pairs.

We first recall the definition of this ‘category of pairs’, L̃in
∗
, first defined in [29,

Example 29].

Definition 4.1 (L̃in
∗
, [29]). Let C be a cartesian category. The monoidal category

L̃in(C)
∗
has objects pairs of objects of C , denoted

(
A
B

)
for A, B ∈ C . The morphisms

of L̃in(C)
∗
are pairs of arrows of C so that (f , f ∗) :

(
A
A′

)
→
(

B
B′

)
is a pair with

f : A→ B and f ∗ : A× B′ → A′. Require also that f ∗ is linear in A (see Definition
3.12). The identity id :

(
A
A′

)
→
(

A
A′

)
is the pair (id,π1), rendered graphically below.

f := A f ∗ :=
A

A′
(4.1)

Composition is defined on maps (f , f ∗) :
(

A
A′

)
→
(

B
B′

)
and (g, g∗) :

(
B
B′

)
→
(

C
C′

)
as

the pair

(f , f ∗) # (g, g∗) :=

 f g , f
g∗

f ∗A

C′
A′
 (4.2)

4.3. Preliminaries 55

Tensor product of maps (f1, f ∗1) :
(

A1
A′1

)
→
(

B1
B′2

)
and (f2, f ∗2) :

(
A2
A′2

)
→
(

B1
B′2

)
is given

by

(f1, f ∗2)⊗ (f1, f ∗2) :=

 f1

f2
,

f ∗1

f ∗2

 (4.3)

Functoriality of the reverse derivative can then be stated as in [29, Proposition 31] as
follows:

Proposition 4.2 (Functoriality of the Reverse Derivative [29]). Let C be a reverse

differential category. For objects A and morphisms f , define F : C → L̃in(C)
∗
as follows:

F(A) :=
(
A
A

)
F(f) = (f ,R[f])

Then F is a monoidal functor.

We may translate the proof in Cockett et al. [29] to our alternative formulation of
RDCs straightforwardly:

Proof of Proposition 4.2. Functoriality of the reverse derivative follows directly from
axiom [ARD.1] of Definition 3.13. Note that composition and tensor product in

L̃in(C)
∗
is precisely the same as the reverse derivative of composites R[f # g] and

products R[f × g], respectively. Moreover, the operation of R on identities gives the

reverse maps of identities in L̃in(C)
∗
.

Now we may see an obvious parallel to the definition of bimorphic lenses defined as for
example in Hedges [63, Definition 1].

Definition 4.3 (Bimorphic Lens [63]). Let C be a cartesian category. The category of
Bimorphic Lenses is denoted BiLens(C), and has as objects pairs of objects of C , and
morphisms pairs (f , f ∗) :

(
A
A′

)
→
(

B
B′

)
where f : A→ B and f ∗ : A× B′ → A′.

Identities, composition, and monoidal products are as in Definition 4.1, i.e., equations
(4.1), (4.2), and (4.3) respectively. We will call the morphisms of BiLens(C) lenses, and
say that a lens (f , f ∗) :

(
A
A′

)
→
(

B
B′

)
is simple when A = A′ and B = B′. Moreover,

we will often refer to the components f and f ∗ as the forward and reverse maps,
respectively.

It is clear that the definition of BiLens is the same as that of L̃in
∗
but without the

requirement of linearity in the second component f ∗ of a morphism (f , f ∗). In fact, it
appears that this definition also appears in Cockett et al. [29, Example 29] as the ‘dual
of the simple fibration’, although the connection to lenses is not made explicit.

56 Chapter 4. Machine Learning with Circuits

As an immediate consequence, Proposition 4.2 may be extended to a functor to BiLens

without changes to its definition. Thus, we may summarise by saying that reverse
derivative categories can be embedded into categories of lenses via the reverse
derivative.

4.4 Reverse Derivative Ascent

We now have all the pieces required to define our first learning algorithm: Reverse
Derivative Ascent. Before giving the algorithm itself, we will motivate its design by
describing the role of the reverse derivative in supervised learning.

4.4.1 Reverse Derivatives and Learning

The reverse derivative is the key to the learning algorithms presented here. In fact, the
intuition for reverse derivatives as computing changes leads to a natural definition of
an algorithm for learning defined for any model expressible as a morphism of a
PolyCircS for some ring S.

In supervised learning, the objective is typically to learn a map f : A→ B from a
dataset of examples a× b : I → A× B. Based on prior beliefs about the structure of
the dataset, one first designs a model: a morphism

model
P
A

B

whose parameters P define a search space over maps of type A→ B. 3 More precisely,
each choice of parameter θ : I → P yields a trained model

model

P

A
B

θ

which is a map of the desired type. Choices of θ are typically evaluated with respect to
some metric such as prediction accuracy.

Example 4.1. When P = I, the model has the trivial parameter space, and so the untrained
model is the same as the trained model: nothing can be learned.

Example 4.2. Suppose model is a morphism in PolyCircZ2
, and P = Z2. In this case, the

model has a parameter space consisting of just two elements, and so there are only two possible
trained models.

3The process of designing such a model is largely beyond the scope of this thesis, but we give some
real-world examples in Section 3.7.

4.4. Reverse Derivative Ascent 57

Now, in gradient-based learning, the idea is to successively improve an initial ‘guess’
of parameters θ0 : I → P by repeatedly showing examples (x, y) : I → A× B to the
model. Thus, for a single ‘step’ of learning, we require a map

step : P× A× B→ P

so that the improved guess θi+1 is given by the following composition.

θi+1 := step P

θi

y

x

P

A

B

If we examine the type of the reverse derivative of our model, it is clear that we almost
a map of the required type:

R[model]
P

B′
A P′

A′

Note that here we have marked certain objects with a prime (e.g. B′). In fact, the
reverse derivative requires that X = X′ for each object X in the above; we use this
notation to distinguish the roles of these inputs and outputs. Concretely, the B′ input
represents a change in output, and the two outputs P′ and A′ represent a change in input.

In order to define the inner step of our algorithm, we therefore need two additional
pieces. First, a morphism producing a new parameter value P, and second a
morphism producing a change in output value B′. Making certain selections for these
two morphisms yields the Reverse Derivative Ascent algorithm, which we can now
define.

4.4.2 Reverse Derivative Ascent

We will define the Reverse Derivative Ascent algorithm in two parts. First, the inner
‘step’ of the algorithm, which we call rdaStep. Repeated applications of this inner
step will form the algorithm itself, denoted rda.

Definition 4.4 (rdaStep). Fix an arbitrary commutative ring S. Let f : P× A→ B be a
morphism of PolyCircS, where P represent parameters to be learned, and A represent

58 Chapter 4. Machine Learning with Circuits

inputs to the model. We define rdaStep f as the following morphism

P

A

B

f

R[f]
A

P

P

Displacement

Update

(4.4)

The morphism in 4.4 consists of the reverse derivative of the model f augmented with
two choices of morphism: the displacement and update maps, which we have
highlighted in (4.4).

First, the displacement computes the model error as the difference between the model
prediction f (θ, x) and the ‘true label’, b. We may therefore think of the model error as
a desired ‘change in output’ δy := y− f (θ, x).

Second, the update morphism computes an updated parameter simply using the
addition morphism of cartesian left-additive structure. Intuitively, this makes
sense: we take the current parameter value θi, and add to it the change in parameters
δθi produced by the reverse derivative to obtain our new parameter value θi + δθi ,
where δθi is the change in parameters given by the first component of the reverse
derivative R[f](θi, x, δy). Note also that we discard the value of the A′ wire; we will
not require it for training the model.

Remark 4.5. In Section 4.6 we will give experimental results using Reverse Derivative
Ascent for models in PolyCircZ2

. Elements of Z2 are self-inverse, and so we have the
equation = . We can therefore express the model error as a generic morphism
in any reverse derivative category as in our original paper [104].

P

A
B

f

Model error

B′

Being defined in any cartesian left-additive category, this is technically a more general
formulation. However, this seems unlikely to work except in settings like PolyCircS
for rings S with self-inverses.

Now, rdaStep f represents a single iteration of the full rda algorithm. Its purpose is to
map the current ‘best guess’ parameter θi : I → P and an input/output example pair

4.4. Reverse Derivative Ascent 59

x× y : I → A× B to produce an updated (and hopefully ‘better’) parameter
θi+1 : I → P.

Of course, a single parameter update is not sufficient for learning: we typically have a
dataset of many examples, each of which we would like to show to the model more
than once. In this case, we can simply apply the rdaStep operation repeatedly to the
dataset, choosing new examples each time. This is the ‘ascent’ part of reverse
derivative ascent, and we define it as follows:

Definition 4.6. Let n ∈ N, and let (xi, yi) ∈ (A, B), denote a sequence of n examples.
rda f is defined as the following morphism

P

A

B
rdaStep f

A

B

P

A

B
rdaStep f

P

A

B
rdaStep f

. . .

A

B

...

...

x1

y1

θ0

θ1

θN−1

θN

x2

y2

xN

yN

θ0

(4.5)

Remark 4.7. Note that in code, we would typically implement rdaStep using a
reduce-like operation; our implementation (see Implementation D.1) uses the scanl
operation in Haskell. We define rda here as a string diagram to emphasize its
generality as a morphism in a reverse derivative category.

In general, it is not necessary for elements (xi, yi) to correspond directly to the
elements of the dataset. More commonly, this sequence will be a permutation of the
dataset with repetitions as in stochastic gradient descent [90, 6.1].

As a final remark, consider the extreme case of reverse derivative ascent as applied to
PolyCircZ2

, which we will explore in a case study in Section 4.6.3. Here, values and
changes can be thought of as vectors of bits. Addition is XOR, and multiplication is
AND. Thus, we may consider the reverse derivative as informing us which bits of the
parameter bitvector to ‘flip’. In contrast to the ‘smoother’ approach of gradient
descent in R, bit flipping is an all-or-nothing affair: there are no ‘small’ changes that
can be made in a given dimension of the parameter vector.

In the next section (4.5) we will see how this algorithm can be reframed into the more
general setting of lenses. In particular, rdaStep will become the reverse map of a lens.
However, note that the algorithm as described can be applied as-is: we will give

60 Chapter 4. Machine Learning with Circuits

experimental results for the choice of semiring S = Z2 on some real-world datasets in
Section 4.6.

4.5 Lenses and Learning

In the previous section, we saw how to define the rda learning algorithm by iterating
the rdaStep morphism. A single step of learning consisted of the reverse derivative
augmented with two things. First, a ‘displacement’ map for computing the model
error, and secondly an ‘update’ map computing the updated parameters.

In fact, by allowing the ‘update’ and ‘displacement’ maps to vary, we can give a more
general recipe for learning in terms of composition of lenses. Not only can this more
general formulation capture the case of rda, but also more complicated existing
update schemes from the neural networks literature. One such example of these is the
stateful momentum gradient update as used in stochastic gradient descent. While this
section is restricted to the theoretical formulation of these concepts, in Section 4.6 we
give experimental evidence that our approach is correct. More precisely, we include
experiments to show (a) that our formulation of the momentum gradient update gives
equivalent performance to a model expressed in an existing machine learning
framework and (b) that the Reverse Derivative Ascent algorithm is able to learn
non-trivial functions from real-world data.

Note that aside from Example 4.3, the content of this section corresponds to the joint
work in Cruttwell et al. [36] and is not solely the contribution of the author. We
therefore only cover two examples here, and refer to [36] for more detail.

4.5.1 The Learning Step as a Lens

Without further ado, let us define the general recipe for learning. We will first define
the general form of update and displacementmaps for a model f : P× A→ B, before
defining the composite learner itself in 4.11.

Definition 4.8 (Update Map [36]). Let S : C → C be a strict monoidal functor. An
update map for parameters P is a morphism of BiLens of the following type

update :
(

S(P)× P
S(P)′ × P′

)
→
(

P
P′

)
Remark 4.9. The role of the update map will be the same as in Reverse Derivative
Ascent: to update a ‘current best guess’ parameter θi to θi+1 using a change in
parameters θ′i . Note however the additional S(P) data: this will allow us to express

4.5. Lenses and Learning 61

stateful gradient descent algorithms–in particular, we will use momentum gradient
descent.

Definition 4.10 (Displacement Map [36]). A displacement map for data A is a
morphism of BiLens of the following type

displacement :
(

A
A′

)
→
(
A
A

)
Definition 4.11 (Learner [36]). Fix a reverse differential category C , and choose a
model morphism f : P× A→ B, update, and displacement maps. A learner is the
following composite in BiLens.

model
update

displacement
input

where input :
(

A
I

)
→
(

A
A

)
is the lens

input :=
(

,
)

and model is the lens (f ,R[f]).

Note that because the model lens is in the image of the reverse derivative functor, the
update and displacement maps must be simple lenses. Concretely, these are lenses
whose domain and codomain are pairs of the same object. In other words, we must
have X′ = X in all cases: the type of ‘changes in X’ must be the same as X itself.
Nevertheless, we retain this notation to distinguish the differing roles of these two
types.

Remark 4.12. The important part of Definition 4.11 is in fact the reversemap of the
composite lens. The reverse map corresponds to a single ‘step’ of learning in the same
way as the rdaStepmorphism of Definition 4.6. More concretely, for a model (f ,R[f]),
update (u, u∗) and displacement (d, d∗), the backwards map of a learner is given by
the following diagram:

u
u∗

d∗f

R[f]

The similarity to the definition of rdaStep should now be clear; we will make it
precise in Example 4.3.

Example 4.3 (Reverse Derivative Ascent). Let S be a commutative ring, and suppose
f : P× A→ B is a morphism in PolyCircS. We may view rdaStep as the learner with

62 Chapter 4. Machine Learning with Circuits

S(P) = I and update and displacement maps as follows.

update :=
(

,
)

displacement :=
(

,
)

When composed to yield the learner morphism, we obtain the following reverse map:

f

R[f]

which is clearly equal to rdaStep.

Let us now consider examples for the case of neural networks. In order to draw
parallels with neural networks terminology, we will give examples of displacement
and update maps separately. The reason for this is that while update maps are
analogous to learning schemes such as gradient descent and its variants, displacement
maps are more like cost functions.

In the lens-based perspective, a displacement map can be thought of as a function
computing a difference between model prediction and the true value. The neural
networks perspective is somewhat different. When learning the parameters of a
neural network with stochastic gradient descent, a single step of learning is usually
expressed as follows [90]

θi+1 = θi − η · ∇θcost(θi, xi, yi)

where cost : Ra → R is a cost function. Now, cost is a composite function involving the
forward map of the model, and so computing the gradient with respect to cost

computes the reverse derivative of the model in essentially the same way as for lenses.
Although these two approaches amount to the same in the learning process, the
lens-based perspective makes it clear how the components of learning can be
composed in a modular fashion.

We will now see some concrete examples of displacement and update functions. Our
first example is the mean squared error displacement map, which arises as the reverse
derivative of the mean-squared error cost function applied to a unit change.

4.5. Lenses and Learning 63

Example 4.4 (Mean Squared Error Displacement [36]). The mean-squared error
displacement denoted MSE is defined as the following lens.

MSE :=
(

,
)

We now give two examples of updatemaps for variants of stochastic gradient descent.
We will formulate these as morphisms of PolyCircS for an arbitrary ring S, but to
correspond to neural networks we should think of S = R. The first of these is ‘basic’
stochastic gradient descent without modifications as described in [90, Section 2.2].

Example 4.5 (Stochastic Gradient Descent [36]). Fix a learning rate η : I → S, and
choose S(P) = I. The gradient descent update map is given by the following lens.

gd :=

 ,

η



When S = R, one typically selects a small value of η < 1.

Our next example is a more complex version of stochastic gradient descent using a
stateful ‘momentum’ update. Details of momentum gradient descent can be found in
[90, Section 4.1].

Example 4.6 (Stochastic Gradient Descent with Momentum [36]). Fix a small learning
rate η : I → S and momentum term γ : I → S. Momentum gradient update is given by the
following lens.

momentum :=

 ,

γ

S(P)
P
P′

η

S(P)

P


Remark 4.13. In all the examples above, we’ve assumed the underlying base category
is PolyCircS where S is a ring. However, we would like to be able to define learning
over arbitrary semirings, such as the semiring of ‘saturating arithmetic’ (Definition
3.41.) For such semirings, consider the setting PolyCirc=S of ‘functionally complete’
polynomial circuits. Here, it is possible to define a difference operation which
nevertheless does not respect the usual arithmetic laws (and therefore does not define
a ring). Thus, the formulation of learners given here does not preclude the use of
semirings: it is merely necessary to find an appropriate displacement map for a given
semiring. One such option for computing differences in saturating arithmetic might
be the ‘clamped difference’ operation, i.e., 〈x, y〉 7→ max(x− y, 0). However, empirical

64 Chapter 4. Machine Learning with Circuits

testing of this hypothesis is not addressed in this thesis; we leave this remark as
conjecture only.

4.6 Case Studies

We now present two case studies of applying our method to data. These are intended
to serve as empirical checks that our theory defines algorithms capable of learning. To
that end, we will verify experimentally that the parameters of models expressed as
morphisms of PolyCirc can be learned by the methods outlined in Sections 4.4 and
4.5.

The first case study in Section 4.6.2 is intended to demonstrate that our theoretical
framework correctly captures existing approaches to neural network learning. To
verify this, we will express the same model and training scheme in both our
framework and Keras [27], an existing deep learning framework. In doing so, we can
make a fair comparison: our models should produce comparable results on the same
data.

The second case study in Section 4.6.3 demonstrates that our method is able to
generalise gradient-based learning beyond the setting of ‘real-valued’ circuits. In
particular, we design models in PolyCircZ2

and show that their parameters can be
learned using the Reverse Derivative Ascent algorithm. Note that in this case study
there is no use of R (i.e., floating-point) values at all: computation during training and
prediction phases is completely in terms of bit-wise operations such as AND and XOR.

Both our implementations and experimental code can be found in Appendix D.1. We
give more detailed information accompanying each of the following case studies.

Before proceeding to experimental details and results, we begin by giving some
details of the experimental datasets used.

4.6.1 Datasets

The case studies considered here both give classification models for two datasets: the
Iris dataset [44] and the MNIST image classification benchmark [78]. Before describing
the details of our experiments, we will give some brief background on these datasets.

The Iris dataset [42] consists of 150 observations from three types of Iris flower.
Each observation consists of 4 measurements of petal and sepal length and width. For
our purposes, it will serve as a classification problem, where the goal is to predict the

4.6. Case Studies 65

TABLE 4.1: Empirical Results for Neural Network Models

Dataset Framework Model Training Accuracy %

Iris Ours simple Gradient descent 96.00%
Iris Keras simple Gradient descent 96.77%

Iris Ours hidden Gradient descent 98.00%
Iris Keras hidden Gradient descent 98.00%

MNIST Ours convolutional Momentum gradient 97.26%
MNIST Keras convolutional Momentum gradient 96.38%

flower species from the four measurements. More abstractly, the goal is to find a map
f : R4 → 3̄, where 3̄ denotes the 3-element set of labels. We provide models for this
dataset as a test case: even simple models are able to achieve high accuracy, and so we
include it here as a basic test that learning is functioning correctly.

The MNIST image classification benchmark is the main focus of our experiments
here. The data consists of approximately 60,000 28x28-pixel images representing
hand-drawn numeric digits in the range 0 to 9. The MNIST dataset is a more realistic
test of solving a ‘real-world’ problem, requiring a more complex model. However, our
goal here is by no means to create a state-of-the-art model; we merely wish to prove
our method experimentally.

We can now proceed to describe the first case study.

4.6.2 Neural Networks

We now compare our method to an existing deep learning framework for training
neural networks. The objective of these experiments is to provide empirical evidence
that the learners described in Section 4.5 faithfully represent gradient descent learning
for neural networks. To that end, we compare three models on two datasets
implemented in both our framework and that of Keras [27].

The results of each experiment are given in Table 4.1. These show the models trained
in our framework achieve accuracy within 1% of those trained with Keras. We
therefore conclude that our approach is indeed able to capture the process of
gradient-based learning for neural networks. We give details on experimental setup
for the Iris and MNIST datasets in Sections 4.6.2.1 and 4.6.2.2, respectively. See also
Implementation D.3 for the implementation of these experiments.

66 Chapter 4. Machine Learning with Circuits

4.6.2.1 Simple and Hidden Models and the Iris Dataset

Our first two experiments use the Iris [42] dataset. We compare two models in our
framework to the same models expressed in Keras [27]. In each case, we learn a map
of the form R4 → R3, whose output is one-hot encoded class labels. We define these
models now.

Definition 4.14 (simplemodel). simple is a single ‘dense layer’ with sigmoid
activation

simple := dense
Sab+b

Sa Sb

where a = 4 and b = 3 correspond to the input and input dimension, respectively.

This definition represents one of the simplest possible neural network models: it
multiplies the input by a b× a matrix, and adds the ‘bias’ term, before scaling outputs
into the range [0, 1] with the activation layer to represent probabilities. Nevertheless,
this is sufficient to achieve high performance on the Iris dataset.

A modest increase in accuracy can be achieved by composing two such layers.

Definition 4.15 (hiddenmodel). Define the model hidden as a composition of two
dense layers, depicted as follows

dense
Rba+b

Ra

dense
Rcb+c

Rb
Rb

so that its parameters are Rcb+c ×Rba+b with a = 4 and c = 3 corresponding to the
input and output dimensions respectively.

Both models are trained using the mean-squared error displacement and basic
gradient update maps described in Section 4.5.

4.6.2.2 Convolutional model and the MNIST dataset

For the MNIST problem, we use a relatively more complex model. Following [27], we
use a convolutional network consisting of two convolution layers with max pooling
and ReLU activations, followed by a single dense output layer. Note that the
convolutionalmodel architecture we use here is a simple modification of an example
given in the Keras documentation [27] which is already known to work well on the
MNIST dataset.

Note also that in this case data is preprocessed by scaling pixel values to the range
[0, 1]. Since pixel values are encoded as bytes, this is done by simply dividing pixel
values by 255.

4.6. Case Studies 67

Definition 4.16 (convolutional (modified from [27])). The convolutionalmodel is
defined as the composition of two max-pooling convolutional layers followed by a
dense ‘output’ layer. First we define

CPR := correlate maxpool relu

from which we can define the complete model:

convolutional :=
CPR

CPR
dense

The training scheme in this case is momentum gradient descent with mean squared
error. More specifically, we use the momentum update map of Example 4.6, and the
mean-squared-error displacement map of Example 4.4. Complete details are available
in Implementation D.3.

4.6.3 Reverse Derivative Ascent

Our second case study has a different goal: to demonstrate empirically that the
Reverse Derivative Ascent procedure is able to learn the parameters of models
expressed as morphisms in PolyCircZ2

. We define two models which we call eval
and pseudoLinear, applied respectively to the Iris and MNIST datasets using the
Reverse Derivative Ascent learning scheme described in Definition 4.6.

In contrast to the neural networks case studies, we also preprocess both datasets by
transforming numeric inputs into a single bit by thresholding. We give a complete
description of this preprocessing in the description of each experiment, but it is
important to note that this transformed dataset therefore contains a great deal less
information than the original. Consequently, the maximum possible accuracy
obtainable on each problem is much lower than in the non-quantised case. Moreover,
in some cases we also reduce the problem to that of a binary classification. It is
therefore not appropriate to consider these tasks as equivalent to those described in
Section 4.6.2. Our goal here is instead merely to prove experimentally that the method
of RDA works in principle: we consider the task of designing models for the full
datasets out of scope for this thesis.

We give results of experiments on the Iris and MNIST datasets in Table 4.2. For the
2-class datasets, each class has roughly the same number of examples, so a random
classifier would have approximately 50% accuracy. We can therefore see that RDA is
able to learn classifiers that perform significantly better than random on the 2-class
experiments, even on the relatively complex MNIST dataset. Note however the
seemingly low accuracy of the Iris model applied to the full 3-class classification

68 Chapter 4. Machine Learning with Circuits

TABLE 4.2: Empirical Results for Reverse Derivative Ascent

Dataset Model Label Encoding Accuracy %

Iris (2-class) eval binary 98.0%
Iris (2-class) eval one-hot 98.0%

Iris eval binary 73.3%
Iris eval one-hot 73.3%

MNIST (2 class) pseudoLinear binary 99.2%

problem. Because of the input transformation, there are many cases of input examples
(x1, y1) and (x2, y2) where x1 = x2 but y1 6= y2. It is therefore impossible to give a
perfect classification. In fact, the best possible classifier on this problem can achieve at
best 81.3% test accuracy.

Remark 4.17. We also include variations ‘binary’ and ‘one-hot’ for each Iris
experiment. The two variants refer to to the encoding of the labels for each task. In the
‘binary’ scheme, the label is simply the binary representation of each numeric class, so
0 becomes 00, 1 becomes 01 and 2 becomes 10. In the one-hot scheme, a label of n
classes is encoded as a length n bitvector with the ith bit set to 1.

We now give details on the experimental setup and models used.

4.6.3.1 The evalmodel and the Iris Dataset

Preprocessing in the Iris model consists of normalisation and thresholding. More
precisely, features are normalised to the range [0, 1] then quantised, so that each
normalized input feature becomes 1 if above 0.5, and 0 otherwise.

Results for the Iris dataset are given for the evalmodel trained using the Reverse
Derivative Ascent algorithm (Definition 4.6). We now describe the evalmodel in
more detail.

The evalmodel is an implementation of the function described in Equation (3.8). The
idea is that the 2a · b parameters together represent the extensional representation of a
function. That is, for a given input a, its b-bit output will simply be looked up in a
table of 2a entries.

Definition 4.18. The evalmodel for a-bit input and b-bit output is given by the
following diagram

∆bbasisZa
2

Z2a·b
2

sum2a

Z2a
2 Z2a·b

2

Zb
2

4.6. Case Studies 69

where

basis : Za
2 → Z2a

2 maps an a-bit value interpreted as an integer into its 2a bit basis
vector, so for example if a = 3, the input (1, 0, 1) represents the integer 5, and is
mapped to the length 2a = 8 output (0, 0, 0, 1, 0, 0, 0, 0).

∆n : Za
2 → Zna

2 is the n-fold copy morphism formed by composition and tensor
product of and identity morphisms. Note that by associativity, any choice of
these is equal up to the axioms of polynomial circuits.

sumn : Zna
2 → Za

2 similarly denotes the n-fold addition morphism, formed by
composition and tensor of and identity maps.

Complete details of the evalmodel can be found in Appendix D.1. See in particular
Implementations D.1 and D.2.

4.6.3.2 The pseudoLinearmodel and the MNIST dataset

MNIST data is preprocessed similarly to the Iris dataset. Pixels are set to 1 if they are
larger than the mean pixel value, and 0 otherwise. Additionally, we consider only a
subset of the classification problem. Specifically, we use only the data of images of
digits 0 and 1, with labels in the set {0, 1}. The trained model will therefore have the
type Zn

2 ×Z28·28 → Z2 where n ∈ N is the number of parameters.

Training is again via the Reverse Derivative Ascent algorithm of Definition 4.6.
Results on the MNIST dataset are given for the pseudoLinearmodel, which is defined
as follows.

Definition 4.19. The pseudoLinearmodel is given by the following diagram

popCount

Z28·28
2

popCount

shr2

≥

Z10
2

Z10
2

Z28·28
2

Z2

where:

popCount : Za
2 → Z

dlog2(a)e
2 computes an integer representation of the number of bits

set in the input

shrn : Za
2 → Za

2 denotes a logical right shift by n

≥: Za+a
2 → Z2 denotes comparison of two a-bit integer representations, returning 1 if
the first is larger than the second, and 0 otherwise.

70 Chapter 4. Machine Learning with Circuits

The intuition for the pseudoLinearmodel is that it learns a mask of the same size as the
input. This mask should represent the ‘average’ example of the 0 class so that when
multiplied by an input of the same class, a large number of bits are set in the output.

4.7 Implementation as Lenses of Functions

In the previous section, we defined models as morphisms of PolyCircZ2
and

demonstrated empirical results using the RDA algorithm on datasets. In the
implementation of our experiments, it is of course necessary to actually evaluate these
morphisms. Consequently, our implementation is actually in terms of lenses of
functions, rather than lenses of PolyCircZ2

. This choice of implementation introduces
some subtleties which we address now.

Recall that Fn : PolyCircZ2
→ FinSetZ2 is the functor interpreting a polynomial

circuit as tuples of functions. The primitives of our implementation are lenses of the
form (Fn(f),Fn(R[f])) for a morphism f ∈ PolyCircZ2

. For example, the primitive
lens corresponding to the morphism is actually the lens given by the pair of maps

x 7→ (x, x) (x, δy1 , δy2) 7→ δy1 + δy2

where the backward map is the interpretation of R [] = as a function.

Models are constructed by composition and tensor product of these primitives.
However, while this is sufficient to validate our approach experimentally, it hides
some important subtleties which we now clarify. The corresponding category of
functions for PolyCircZ2

is FinSetZ2 , which we defined in Section 3.6. In fact,
FinSetZ2 has a presentation by generators and equations due to Lafont [76]. This
presentation is exactly that of PolyCircZ2

, augmented with the additional equation

=

which we can interpret as the equality of polynomials x2 = x.

Interpreting a morphism in PolyCircZ2
as a function therefore amounts to quotienting

by this new equation. However, notice that in so quotienting, the category FinSetZ2 is
no longer an RDC. This is because R is not well-defined with respect to the new
equation. More precisely, since we have = we must also have that
R [] = R []. However, we can calculate that

R
[]

= R [] =

and so clearly R [] 6= R [] Thus, we cannot say that FinSetZ2 is a reverse
derivative category, at least with R [] = .

4.7. Implementation as Lenses of Functions 71

We must therefore be clear about the precise sense in which our implementation uses
reverse derivatives. Since primitives all have the form (Fn(f),Fn(R[f])), we should
also require that their compositions and tensor products do as well. This guarantees
that the reverse map of each model is genuinely a reverse derivative. More formally,
this requirement can be stated as in the following proposition.

Proposition 4.20. Let C be a reverse derivative category. Given a strict cartesian monoidal
functor Fn(·) : C → D , we have

(Fn(f),Fn(R[f])) # (Fn(g),Fn(R[g])) = (Fn(f # g),Fn(R[f # g]))
and

(Fn(f),Fn(R[f]))⊗ (Fn(g),Fn(R[g])) = (Fn(f × g),Fn(R[f × g]))

Proof. The two equalities hold straightforwardly because Fn is strict monoidal, and
because composition and tensor product of lenses is the same for lenses as for reverse
derivatives (Definition 3.13).

More generally, observe that a strict monoidal functor F : C → D can be lifted into a
functor of lenses by its application ‘pointwise’ to each map in a lens:

BiLens(F) : BiLens(C)→ BiLens(D)

BiLens(F)(f , f ∗) := (F(f), F(f ∗))

Consequently, a ‘composition of interpretations’ of polynomial circuits is the same as
the ‘interpretation of compositions’.

Now we can be confident that a model constructed from primitive lenses of the form
(f ,R[f]) always has a reverse map consistent with its forward map. However, an
immediate caveat is that for a given function f ∈ FinSetZ2 , there are actually many
valid reverse maps. This is because there are lenses (f , f ∗) for which there are two
distinct polynomials f1, f2 with Fn(f1) = Fn(f2) but Fn[R[f1]] 6= Fn[R[f2]].

Thus, we might ask: for a given function, which of the reverse maps is most
appropriate? Informally, we should generally wish to preserve information flow in the
reverse direction. For example, given the function corresponding to the identity map

, it makes more sense to use as the reverse derivative than , so that
‘information flow’ in the reverse direction is not lost.

This gives one motivation for Part II of the thesis. In order to understand the structure
of the backwards maps of a given model, one must have access to their underlying
graphical structure. However, an implementation based on functions is ‘opaque’: the
internal structure is completely hidden. It would therefore be preferable to have a
completely symbolic description of the model.

72 Chapter 4. Machine Learning with Circuits

Moreover, symbolic descriptions are amendable to syntactic transformation. Such
transformations have several applications. For example, as in [101], one goal is to
evaluate such models on dedicated hardware such as FPGAs for embedded
applications. Another example of where symbolic descriptions are useful is in
meta-learning, where the structure of the model itself is learned.

In Part II of the thesis, we will give datastructures and algorithms for representing
morphisms of categories like PolyCircS. One aim of this work is to support
morphisms of ‘industrial scale’ consisting of large numbers of generators. In doing so,
we hope to provide a more transparent way to represent large circuit models such as
those described in this chapter.

73

Part II

Datastructures for Circuits

75

Chapter 5

Datastructures and Algorithms

5.1 Overview

We now turn our attention to computer representations of morphisms of symmetric
monoidal categories. More specifically, in this chapter we will define a datastructure
for representing morphisms of PROPs and give algorithms for composition and
tensor product. Our guiding motivation is to represent morphisms of PolyCircS, the
family of categories defined in Chapter 3 whose morphisms correspond to machine
learning models. However, we have additional desiderata for the datastructure we
present here, which we now motivate.

As noted by Bonchi et al. [18], string-diagrammatic syntax is a natural way to model
phenomena in computing which can be thought of as mapping multiple inputs to
multiple outputs. We have already seen one example in the machine learning models
of Chapters 3 and 4. Other examples exist as well; aside from the obvious case of
visual programming languages (as used in e.g. [52, 99]), data such as dependencies
and workflows (as in e.g. [51]) can also be naturally thought about in a graphical way.
Moreover, Bonchi et al. [18] also note that even the syntax of programming
languages–where terms are typically expressed as tree structures–has also enjoyed a
generalisation to term graphs [87].

Despite this, many phenomena are still modeled using tree-like structures, which can
be thought of as representing ‘many-to-one’ operations. In category-theoretic terms,
the use of trees is analogous to working directly with Σ-terms, which obscures the
graphical structure of these phenomena. In some cases combinatorial structure is
modeled with graphs, but graphs alone do not capture the generality of string
diagrams. For example, the software [51] encodes dependency relations as directed
acyclic graphs, where nodes represent ‘tasks’ and edges the inputs and outputs of
each task. However, in contrast to a string diagram, such an encoding does not specify

76 Chapter 5. Datastructures and Algorithms

the ordering of interfaces to each task: this is analogous to a string diagram in which
every generator is commutative. In order to solve this problem, the software places
additional burden on the user. However, in a string-diagrammatic approach, the
ordered interfaces mean that such data could be represented unambiguously.

We suggest that one reason for the use of trees and graphs instead of string diagrams
in general-purpose programming is the lack of clearly specified and
simple-to-implement datastructures. Our secondary aim is therefore to make a
datastructure suitable for general use when modeling phenomena of the
‘many-to-many’ type mentioned above. Of course, this should not detract from our
main aim: this datastructure should still be a completely formal object. More precisely,
we will require that it forms a category, and prove that the operations on it correspond
to their categorical counterparts. In any case, this additional secondary aim introduces
some new desiderata which we discuss now.

Our first requirement is that the datastructures and algorithms described here should
be easy to implement. By way of comparison, tree and graph datastructures are
well-understood, with standard references available for many different
representations and algorithms. In order for string diagrams to be considered as a
replacement, their implementation should be as straightforward as possible. Although
we provide a software library (Implementation D.4) for the datastructure and
algorithms we define here, our goal here is to ensure that the algorithms themselves
are easy to implement without use of this library. This is important because it is not
always possible to use a given implementation. For example, if one is constrained by
choice of programming language, then it is not necessarily possible to use a library
developed for another. It should therefore be possible to implement our datastructure
simply and with similar effort as for tree- and graph-like datastructures.

The second requirement is to support ‘industrial scale’ uses of string diagrams. It is
therefore also important to give algorithms which have high performance. Moreover,
these algorithms should be able to exploit parallel hardware such as GPUs. In order to
achieve this, the datastructures and algorithms we describe are completely in terms of
linear-algebraic operations on sparse matrices, which have efficient implementations
for both sequential and parallel hardware. This allows the datastructures described in
this chapter to support diagrams consisting of millions of generators.

Lastly, we should describe the algorithms themselves in terms of string diagrams. This
means that proofs about the datastructure can themselves be diagrammatic. Using the
rewriting framework of [18, 19], this means that the datastructure is able to actually
represent proofs about the datastructures using the datastructures themselves.

To summarise, we have the following desiderata. We first wish our datastructures and
algorithms to have clear, simple definitions which are easy to implement. Secondly,

5.2. Synopsis 77

the algorithms should be high performance, both in terms of complexity and
real-terms performance of empirical benchmarks. Finally, we should be able to
express the algorithms themselves as string diagrams.

5.1.1 Relationship to Published Work

Aside from the preliminaries of Section 5.3, the content of this chapter consists of the
author’s individual contributions originally published in Wilson and Zanasi [103].
Parts of this chapter are reproduced from this work verbatim.

5.2 Synopsis

We begin with preliminaries in Section 5.3 where we recall the correspondence shown
by Bonchi et al. [17] between certain ‘open directed hypergraphs’ and the free PROP
on a given signature. We then recall a technique from the parallel programming
literature [64] for representing undirected hypergraphs as graphs before finally
recalling the adjacency matrix representation of a graph.

Our contributions begin in Section 5.4, where in Definition 5.14 we define the Har
datastructure for representing string diagrams in terms of matrices.

In Section 5.5 we give operations for the construction of Hars. We show how to
construct ‘primitive’ Hars corresponding to identity, symmetry, and generators in
Definitions 5.22, 5.23, and 5.24, respectively. We then define the operations of tensor
product (Definition 5.26) and composition (Definition 5.28).

Section 5.6 begins with Theorem 5.29 which demonstrates that Hars form a category.
Proposition 5.6 shows that every valid Har datastructure corresponds to a string
diagram, and so one can construct a Har by directly constructing its underlying
bipartite graph. Finally, in Theorem 5.39 we construct an isomorphism between
categories of Hars and the free PROP on a given signature.

Section 5.7 is devoted to a complexity analysis of Har operations. Hars over a given
signature are shown to enjoy a property of Bounded Sparsity (Proposition 5.40),
meaning that the matrices used in representing Hars are mostly zeros. Using this
property, it can then be shown that permutation of Hars has linear time complexity
(Proposition 5.41), from which it follows that the operations of tensor product and
composition are also linear time (Propositions 5.42 and 5.43).

In Section 5.8, we give an empirical analysis of the performance of our Har algorithms
for tensor and composition. More concretely, we compare our implementation against

78 Chapter 5. Datastructures and Algorithms

the wiring diagrams of [82] on some synthetic benchmarks involving composition of
large diagrams consisting of millions of generators.

The chapter concludes in Section 5.9 with a discussion of how Hars can be extended
past the case of PROPs to represent morphisms of the free symmetric monoidal
category with multiple generating objects.

5.3 Preliminaries

The work in this chapter builds on the correspondence between string diagrams and
certain ‘open hypergraphs’ developed in [17–19]. The essence of our implementation
is a representation of these hypergraphs purely in terms of sparse matrices. Moreover,
the operations we will define on our representation can be stated purely in terms of
linear algebraic operations. For that reason, we will begin by recalling both the open
hypergraphs of Bonchi et al. [17] as well as the adjacency matrix representation of
graphs.

5.3.1 Open Hypergraphs

The key idea of Bonchi et al. [17] is that string diagrams can be represented as certain
hypergraphs with ‘interfaces’. More precisely, they draw an isomorphism between
such hypergraphs and FreeΣ, the PROP freely generated by signature Σ. A key benefit
of their approach is that the hypergraph representation is ‘modulo the laws of SMCs’.
The result is that string diagrams are considered purely combinatorially– in terms of
their connectivity, instead of the geometry of a particular diagram layout as in [70].

In Section 5.4, we will show how such hypergraphs can also be represented as directed
bipartite graphs. We therefore begin by recalling the basic definition of directed graph,
will shortly be contrasted with the definition of directed hypergraphs.

Definition 5.1 (Directed Graph [6]). A directed graph is a set of vertices V and edges
E ⊆ V ×V pairs of vertices. A graph is said to be bipartite if V is the disjoint union of
two sets V0 +V1 and each edge (s, t) has either s ∈ V0 and t ∈ V1 or s ∈ V1 and t ∈ V0.

The edges of a directed graph always connect exactly two nodes. In contrast, a
hypergraph has edges which connect lists of vertices.

Definition 5.2 (Directed Hypergraph [17]). A directed hypergraph consists of:

• A set of hypernodes V

• A set of hyperedges E ⊆ List(V)× List(V)

5.3. Preliminaries 79

where each edge e ∈ E is an ordered pair of lists of nodes
e = ((s1, s2, . . . , sm), (t1, . . . , tn)) where s1 . . . sm are the source hypernodes and t1 . . . tn
are the target hypernodes. We say the arity and coarity of the edge e are m and n,
respectively. If v is a hypernode, we say its in-degree in(v) (resp. out-degree out(v)) is
the number of edges for which it appears as a target (resp. source). Such hypergraphs
form a category [17] denoted Hyp.

Under this definition, each of the vertices si for i ∈ m̄ in an edge e is adjacent to every
target tj for j ∈ n̄, and so directed hypergraphs connect m sources to n targets. Notice
also that in the above we used ‘hypernode’ and ‘hyperedge’ to distinguish the nodes
and edges of hypergraphs from the directed graphs of Definition 5.1.

Remark 5.3. There are a number of ways to generalise graphs to hypergraphs. We say
‘directed’ hypergraph to distinguish from the undirected hypergraphs of [64] which
we define shortly. However, the ‘directed’ qualifier will usually be omitted, so the
reader may assume ‘hypergraph’ refers to the directed hypergraphs of Definition 5.2.

In order for the hypergraphs of Definition 5.2 to represent string diagrams, two
additional pieces are required. The first of these is a labeling of hyperedges with
generating morphisms Σ1.

Definition 5.4 (Σ-Labeled Hypergraph [17]). Let Σ be a monoidal signature with a
single generating object so that Σ0 = {1}. A Σ-labeled hypergraph is a triple (V, E, L)
where (V, E) is a hypergraph and L : E→ Σ1 is a labeling of edges as generating
morphisms such that the arity and coarity of each e is the same as that of L(e). The
category of Σ-labeled hypergraphs is denoted HypΣ.

Remark 5.5. Bonchi et al. [17] define the hypergraphs of Definition 5.2 as a category of
functors into FinOrd, the category of finite sets and functions. The category HypΣ is
then defined as the slice category Hyp/Σ. In both cases, the morphisms of the
category are the ‘structure preserving’ maps: natural transformations requiring that
(for example) order of sources and targets is respected.

There is one final piece to add: the interfaces of the hypergraph. For this, Bonchi et al.
[17] use cospans of hypergraphs. String diagrams are then represented using the
following definition.

Definition 5.6 (Open Hypergraphs). An Open Σ-labeled hypergraph is a cospan
m s−→ H t←− n where m, n are discrete hypergraphs (having no hyperedges), and H is
a Σ-labeled hypergraph. The category of such cospans is denoted Cospan(HypΣ)I,
with composition given by pushout.1 We will often say simply open hypergraph
when assuming an arbitrary monoidal signature.

1Note also this is a (full) subcategory of cospans of hypergraphs, since the feet of the cospan are re-
quired to be discrete [17, Definition 3.2].

80 Chapter 5. Datastructures and Algorithms

In order to demonstrate how open hypergraphs represent string diagrams, let us
proceed with the example below. On the left is a string diagram, and on the right its
interpretation as an open hypergraph.

α

β

γ
α

β

γ

(5.1)

In the depiction above right, the hypergraph H is shown in the central grey box,
corresponding to the ‘internal wiring’ of the diagram. The discrete hypergraphs m, n
depicted in blue boxes represent the interfaces of the diagram, while the legs s, t of the
cospan represent the left and right ‘dangling wires’.

Identities and symmetries are represented as hypergraphs having no hyperedges. For
example, the identity morphism of type 2→ 2 is depicted in Equation (5.2) below as a
string diagram (left) and hypergraph (right).

(5.2)

However, not every such hypergraph corresponds to a valid string diagram of FreeΣ.
In other words, the interpretation of string diagrams as hypergraphs is faithful, but
not full. In fact, Bonchi et al. [17] show that there is a correspondence between such
hypergraphs and string diagrams generated by Σ augmented by special frobenius
structure. Graphically, this additional structure is given by the following definition
(see also [17, Figure 2]).

Definition 5.7 (Special Frobenius Structure [17]). The theory of Special Frobenius
monoids is denoted Frob, and consists of generators

(5.3)

and equations

= = =

= = =

= =

(5.4)

5.3. Preliminaries 81

To clarify the relationship between hypergraphs and string diagrams augmented with
this additional structure, observe the following hypergraph which does not
correspond to a string diagram of FreeΣ, but instead to one of FreeΣ+Frob.

α

β

γ α

β

γ

(5.5)

Remark 5.8. Intuitively, the correspondence between hypergraphs and frobenius
structure can be thought of as follows. The and morphisms correspond to
hypernodes not appearing as a source or target. Similarly, the and morphisms
allow for hypernodes appearing in multiple sources or targets.

Naturally however, we would also like to model string diagrams (thought of as
morphisms of FreeΣ) without the additional frobenius structure. For this reason,
Bonchi et al. [17] introduce two conditions on such hypergraphs. We recall the first of
these now.

Definition 5.9 (Monogamicity [17]). An open hypergraph m s−→ (V, E) t←− n is
monogamous when s, t are monomorphisms, and for each hypernode v ∈ V, we have
|s−1(v)|+ in(v) = 1 and |t−1(v)|+ out(v) = 1 where f−1 is the inverse image of the
function f .

The monogamicity condition ensures that any given hypernode appears exactly once as
a source or target, including in the interfaces. In other words, this condition ensures
the string diagram can be pictured without use of any of the Frobenius generators in
Equation (5.3).

The second condition is that of acyclicity, which prevents hypergraphs with ‘feedback’.

Definition 5.10 (Acyclicity [17]). A cycle in a hypergraph is as defined for graphs.
That is, a cycle is a path whose start and end hypernode are equal. A hypergraph is
acyclicwhen it has no cycles.

Notice that the condition of acyclicity is required since one can create a hypergraph
with cycles by simply composing morphisms of FreeΣ+Frob. For example, below left is
a string diagram in FreeΣ+Frob, and below right is its interpretation as a hypergraph.

f
=

f
(5.6)

Thus the example hypergraph pictured in (5.1) is monogamous acyclic, but the
hypergraphs of (5.6) and (5.5) are not.

82 Chapter 5. Datastructures and Algorithms

Now armed with the definition of open hypergraphs, acyclicity, and monogamicity,
we can finally state the definition of the category of hypergraphs which will
correspond exactly to string diagrams–i.e., morphisms of FreeΣ.

Definition 5.11 (Monogamous Acyclic Open Σ-Labeled Hypergraphs [17]). Denote by
Cospan(HypΣ)MA the subcategory of open Σ-labeled hypergraphs which are
monogamous (Definition 5.9) and acyclic (Definition 5.10).

The morphisms of Cospan(HypΣ)MA correspond exactly to string diagrams over Σ, and
so there is an isomorphism FreeΣ

∼= Cospan(HypΣ)MA [17].

Now we have described the combinatorial characterisation of string diagrams given in
[17], we will review some further background which lays the foundations for our
high-performance implementation.

5.3.2 Parallel Hypergraph Processing

Having defined open hypergraphs, we will need a way to implement them which is
compatible with our desiderata. There are many such possible representations. For
example, in [95], hyperedges are represented directly as pairs of lists. However, this
choice of representation comes with drawbacks: code must be written from scratch,
and obtaining high performance therefore requires additional tuning.

For our representation here, we would like to leverage existing high performance code
for representing graphs and apply it to hypergraphs. We therefore take inspiration
from the distributed computing literature. The authors of [64] describe a
representation which encodes hypergraphs as certain bipartite graphs. The idea here is
straightforward. Instead of representing hyperedges and hypernodes as distinct kinds
of object, we consider them both as nodes within a bipartite graph.

In the same way that a directed hypergraph can be thought of as generalising a
directed graph, an undirected hypergraph can be thought of as generalising an
(undirected) graph.

Definition 5.12 (Undirected Hypergraph [64]). An undirected hypergraph consists of:

• A set of hypernodes V

• A set of hyperedges E ⊆ P(V)

where P(V) is the powerset of V.

5.3. Preliminaries 83

Observe that in Definition 5.12 there are neither ‘source’ nor ‘target’ edges. A
hyperedge is instead a set of hypernodes, with every hypernode in the set reachable
from every other.

The observation of Heintz et al. [64] is that one can achieve high performance in
processing undirected hypergraphs by representing them as labeled bipartite graphs.
Concretely, vertices are labeled either • or ◦, with the former playing the role of
hypernodes, and the latter hyperedges. The bipartite graph pictured below depicts
such an encoding, with an edge • → ◦ indicating that the hypernode appears in the
hyperedge set.

(5.7)

Of course, this representation is missing information: there are neither source nor
target hypernodes, and the orderwhich hypernodes appear as sources and targets is
not present. We will therefore need to adapt this definition to that of directed
hypergraphs in Section 5.4. In doing so, we will use a representation of graphs as
adjacency matrices, which we now recall.

5.3.3 Adjacency Matrices and PROPs of Matrices

The representation of directed graphs as adjacency matrices is well known [6]. We
recall it here because it will be central to our definition in Section 5.4. We begin by
recalling the PROP of matrices over a semiring S.

Definition 5.13 (MatS). MatS is the category whose objects are the natural numbers
and whose morphisms f : m→ n are n×m matrices with coefficients in S. The n×m
zero matrix is denoted 0m,n, and the tensor product of matrices f ⊗ g is given by the

direct sum, i.e.
∣∣∣∣ f 0
0 g

∣∣∣∣. We will refer to the set of n×m matrices as MatS(m, n), and

always write composition of matrices in diagrammatic order f # g for matrices f : l → m
and g : m→ n.

We now recall the adjacency matrix representation of a graph. Let G be a directed
graph with K nodes. The adjacency matrix of G is a matrix MatB(K,K) where the ith

column denotes the outgoing edges of the ith node. For example, consider the graph
and its adjacency matrix below:

84 Chapter 5. Datastructures and Algorithms

• •

•

•

∣∣∣∣∣∣∣∣∣∣
0 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0

∣∣∣∣∣∣∣∣∣∣
(5.8)

This representation enjoys a property which will be particularly useful to us later.
Namely, there can be exactly one edge of a particular orientation between two nodes
of a graph. This will be useful to rule out many non-monogamous hypergraphs.

We can also allow for labeled edges by varying the semiring of Mat. For example, by
considering matrices MatN(K,K) we can consider edges to have labels in the set
{1, 2, . . .}, with 0 denoting no edge. The choice of the 0 label to represent ‘no edge’ is
important because it will allow us to exploit the sparsity. Consider for example the
same graph as (5.8) but with labeled edges:

• •

•

•

8

2

4
∣∣∣∣∣∣∣∣∣∣
0 0 0 0
8 0 0 0
2 0 0 0
0 4 0 0

∣∣∣∣∣∣∣∣∣∣
(5.9)

5.4 The Hypergraph Adjacency Representation

In this section we define our datastructure for representing string diagrams, which we
call Hypergraph Adjacency Representations (Hars). In order to motivate our
definition, we will first develop an example in two steps. We start by adapting the
bipartite representation of undirected hypergraphs of Heintz et al. [64] to directed
hypergraphs, before showing how to encode them in terms of adjacency matrices.

Returning to the example string diagram and hypergraph in Equation (5.1), we now
picture its representation as a bipartite graph below the string diagram (left) and
hypergraph (right).

α

β

γ
α

β

γ

α

β

γ
1

1
1

2

21

1

1
(5.10)

5.4. The Hypergraph Adjacency Representation 85

We can more easily see that the graph representation (bottom) is bipartite by
rearranging nodes and edges as in (5.7).

α β γ

1 1
1

2

21

1

1

1 (5.11)

As with the bipartite representation given by Heintz et al. [64] and depicted in (5.7),
we label vertices • and ◦ to denote hypernodes and hyperedges, respectively. We have
additionally made a number of changes to account for the differences in our
hypergraphs. Namely, our representation has:

• ... directed edges, to capture orientation of hyperedges

• ... interfaces, which will serve the role of the legs of a cospan in Cospan(HypΣ)MA

• ... ◦-vertex labels in Σ1, which serve the role of the hyperedge labeling L from
Definition 5.4.

• ... edge labels in N, which serve to record the order of hypernodes in hyperedge
lists.

With respect to this last point, observe that the two incoming edges to the ◦-vertex
labeled γ do not cross each other as in the hypergraph representation. This is meant to
highlight that the ordering of these edges is now represented by edge labels, rather
than as an explicit list representation attached to the hyperedge.

We will now see how to translate this depiction of a ‘bipartite graph with interfaces’
into an adjacency matrix representation. Concretely, we will encode the data as a
4-tuple (M, L,R,N), with M serving double-duty as the adjacency matrix and
edge-label data, N a vector of node labels, and L and R permutation matrices
reordering M so that left boundary nodes are first and right boundary nodes last,
respectively.

The example hypergraph pictured in (5.10) can then be represented by the following
data in which N is shown twice for the sake of clarity.

86 Chapter 5. Datastructures and Algorithms

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 2 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 2 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

•
•
α

β

•
•
γ

•
•

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L = id9 R =

∣∣∣∣∣id7 0
0 σ1,1

∣∣∣∣∣

N =
∣∣∣• • α β • • γ • •

∣∣∣
We can read the columns of M as the outgoing edges for a particular node. See for
example the column for β, which has two outgoing edges labeled 1 and 2, both of
which connect to nodes labeled •. Note also that L is the identity matrix: this means
that the left interface nodes appear first, and moreover they appear in the same order
as in the interface. Hence, the first 2 rows contain only zeros because the left interface

nodes must have no incoming edges. On the other hand R is the block matrix
∣∣∣∣id 0
0 σ

∣∣∣∣
and so while the final two nodes are the right interface nodes, their order in the
interface is swapped.

5.4.1 Main Definition

We can now define the Har datastructure. Note that in the following sections it is
assumed that the signature Σ has a single generating object.

Definition 5.14. (Hypergraph Adjacency Representation)
Fix a monoidal signature Σ with a single generating object. A hypergraph adjacency
representation of type m→ n is written Harm,n and consists of the following data:

- Size K ∈ N

- Labeled Adjacency Matrix M ∈ MatN(K,K)

- Left Permutation L ∈ MatB(K,K)

- Right Permutation R ∈ MatB(K,K)

- Node Labels N ∈ ({•}+ ({◦} × Σ1))
K

Satisfying the following conditions:

5.4. The Hypergraph Adjacency Representation 87

1. The graph represented by M is acyclic

2. The matrix LT # M # L is ordered such that the first m nodes are the left interface
nodes

3. The matrix RT # M # R is ordered such that the last n nodes are the right interface
nodes

4. A node labeled • has no incoming (resp. outgoing) edges if it is a left (resp.
right) interface node, and exactly 1 incoming (resp. outgoing) edge otherwise.

5. For each vertex v labeled (◦, g) with g having arity/coarity m, n,

• v has incoming edges e1 . . . em with labels 1 . . .m respectively

• v has outgoing edges e1 . . . en with labels 1 . . . n respectively

Remark 5.15. The conditions of Hars can be explained as follows. Conditions (1) and
(4) ensure that the graph represents a monogamous acyclic hypergraph. Condition (5)
ensures that the labeling of ◦-nodes with generating morphisms Σ1 is consistent with
their arity and coarity. Finally, conditions (2) and (3) ensure that interfaces are
consistent with the arity and coarity of the morphism being represented. Notice that
the encoding of the interfaces assumes monogamicity. The cospan legs are encoded as
permutations, and so a node can appear at most once in an interface. This is in
contrast to morphisms of FreeΣ+Frob, where the additional frobenius structure allows
any •-vertex to appear in the interface zero or more times.

5.4.2 Permutation Equivalence and Boundary Orderings

When we define algorithms for composition of Hars in Section 5.5, we will discover
that composition is only associative up to isomorphism. This is somewhat expected:
composition of cospans in Cospan(HypΣ)MA is associative up to unique
isomorphism [48], and since our goal is to define a category isomorphic to
Cospan(HypΣ)MA, we should expect the same. Therefore, in order to form a category of
Hars, we will quotient by the following equivalence relation.2

Definition 5.16 (Permutation Equivalence). f , g : Harm,n are equivalent up to
permutation P, denoted f P∼ g, when P is a permutation matrix such that the
following conditions hold:

gM = PT # fM # P gL = PT # fL gR = PT # fR gN = fN # P
Remark 5.17. Note that this definition ensures that if f P∼ g then the graph represented
by gM is isomorphic fM and also that the interfaces of f and g are the same.

2We could take the alternative perspective thatHar forms aweak 2-categorywith permutationmatrices
as 2-cells, but we will take the equivalence relation perspective to simplify our presentation.

88 Chapter 5. Datastructures and Algorithms

Proposition 5.18 (Permutation Equivalence is an Equivalence Relation). Fix some
f , g ∈ Harm,n. Then there exists an equivalence relation denoted ∼, where f ∼ g if and only if
there exists some permutation matrix P ∈ MatB(K,K) such that f

P∼ g (c.f. Definition 5.16)

Proof. We must show that ∼ is reflexive, symmetric, and transitive. Reflexivity of ∼ is

satisfied because f id∼ f . Symmetry follows because if f P∼ g, then g PT
∼ f . Lastly,

transitivity is a consequence of matrix composition: If f P∼ g and g
Q∼ h, then

f
P#Q∼ h.

This definition allows each f ∈ Harm,n to be put into equivalent left or right boundary
orders by permuting by fL and fR, respectively. These particular orderings will come
in useful when we define composition and tensor product. Specifically when
composing f ∈ Harm,n and g ∈ Harn,o we will put f into right boundary order, and g
into left boundary order. Taking advantage of monogamicity, this will allow us to
compose simply by taking the tensor product of fM and gM composed with
projections and injections. We discuss this process in detail in Section 5.5. For now, let
us define the boundary orderings explicitly.

Definition 5.19. The left boundary order of f ∈ Harm,n is denoted L(f) and has the
following data:

L(f)M = f TL # fM # fL L(f)L = id fK L(f)R = f TL # fR L(f)N = fN # fL
Definition 5.20. The right boundary order of f ∈ Harm,n is denoted R(f) and has the
following data:

R(f)M = f TR # fM # fR R(f)L = f TR # fL R(f)R = id fK R(f)N = fN # fR
Remark 5.21. Note that by definition L(f)

fL∼ f and vice-versa, R(f)
fR∼ f .

5.5 Operations on HARs

We can now define algorithms for the operations of composition and tensor product of
Hars. In addition, we will show how several basic primitive Hars can be constructed.
Concretely, since Hars will form a PROP, we will need to define the identity and
symmetry Hars. It will also be necessary to define the ‘singleton’ Har, which can be
thought of as the lifting of a generating morphism in Σ1 into a Har.

We begin by defining the identity Hars.

5.5. Operations on HARs 89

Definition 5.22 (Identity Har). The identity Harm,m is the 4-tuple (M, L,R,N) with

M = 0m,m L = idm R = idm N = 0m,1

Note that there are no nodes labeled ◦ because the identity map contains no
generating morphisms. The Symmetry Har has the same (lack of) internal wiring M
and node labels N, but with the R boundary map as a permutation.

Definition 5.23 (Symmetry Har). The symmetric Har of type m+ n→ n+m is given
by the (M, L,R,N) with

M = 0m+n,m+n L = idm+n R =

∣∣∣∣∣ 0 idn

idm 0

∣∣∣∣∣ N = 0m+n,1

Note that we could alternatively have chosen to set R = id and L as a permutation
because ‘the’ symmetry is actually an isomorphism class of Hars. We now define the
singleton Har, which corresponds to an individual generating morphism in Σ1.

Definition 5.24 (Singleton Har). Fix a generating morphism g : m→ n ∈ Σ1. the
singleton3 Har is (M, L,R,N) where

M =

∣∣∣∣∣∣∣
0 0 0
S 0 0
0 T 0

∣∣∣∣∣∣∣ L = idK R = idK N = (01,m, g, 01,n)

and S ∈ MatN(1,m) is the row vector, (1, 2, . . . ,m) while T ∈ MatN(n, 1) is the
column vector (1, 2, . . . , n).

Remark 5.25. The singleton Har is in left and right boundary order, since the nodes S
are the ordered left boundary nodes, and the nodes T the ordered right boundary
nodes.

We now define two operations on Hars: tensor product and composition. We will see
that Hars form a symmetric monoidal category with these operations in Section 5.6

Definition 5.26 (Tensor Product of Hars). Let f : m1 → n1 and g : m2 → n2 be Hars.
The tensor product f ⊗ g is given by (M, L,R,N), where

M =
fM

gM

fK fK

gK gK
L =

fL

gL

fK m1

gK

m2

fK −m1
gK −m2

R =
fR

gR

fK

n1gK n2

fK − n1
gK − n2

and N given by appending fN and gN , i.e., the block vector (fN gN).
3The name ‘singleton’ refers to the fact that such a Har contains a single generator. We choose this

name based on its common usage in Haskell libraries for a function creating a datastructure (e.g. a set)
with a single element.

90 Chapter 5. Datastructures and Algorithms

Remark 5.27. Recall that the tensor product in Mat is the direct sum, so (f ⊗ g)M is the
block matrix

(f ⊗ g)M =

∣∣∣∣∣ fM 0
0 gM

∣∣∣∣∣
The definitions for L,R are similar, but with additional bookkeeping to ensure that
boundary orderings are respected.

Finally, we can define composition of Hars.

Definition 5.28 (Composition of Hars). Let f : m→ n and g : n→ o be Hars.
Composition f # g is the 4-tuple (M, L,R,N) where

M =
R(f)MfK − n fK

L(g)M gK − ngK
L =

R(f)LfK fK

gK − n gK − n
R =

L(g)R

fK − n fK − n

gK gK

and N given by appending R(f)N and L(g)N(b :), where x(b :) denotes all but the first
b elements of the array x. 4

In the definition of composition, the morphisms and represent the projection
π1 : A× B→ B and injection ι0 : A→ A× B morphisms, respectively. The intuition is
that M # π1 selects the last columns of M, and ι0 # M as selects the first rows. In more
graphical terms, we are simply discarding the outgoing edges of the right boundary
nodes of f and the incoming edges of the left boundary nodes of g. Since in both cases
there are no such edges, no information is lost. In fact, this operation can be
considered as ‘gluing’ f and g along the boundary as in a pushout of cospans.

5.6 The Category of Hars

We will now show that Hars form a PROP over a monoidal signature Σ which we
denote HarΣ. In addition, we will show that HarΣ is isomorphic to FreeΣ: the free
PROP on a monoidal signature Σ. In what follows, we will therefore refer to a fixed,
arbitrary signature Σ, which is assumed to have a single generating object.

We will first need to define how Hars form a category.

Theorem 5.29 (The Category HarΣ). Hars form a PROP with morphisms m→ n the
equivalence classes of values in Harm,n under the relation ∼. Identities and symmetries are as
given in Definitions 5.22 and 5.23, respectively. Composition and tensor product are as in
Definitions 5.28 and 5.26.

4We simply discard the part of the node labels of g corresponding to its left boundary nodes; this does
not ‘lose information’ because their labels are known to be • as a consequence of Definition 5.14.

5.6. The Category of Hars 91

Proof. We give a graphical proof that composition is assocative up to permutation in
Proposition B.6, and so composition is associative for equivalence classes of Hars. It is
straightforward to check that f # id = f , and similarly one can check that σ # σ

σ∼ id.
Finally, one can see that the tensor product is associative essentially because the direct
sum of matrices is.

In order to show an isomorphism between HarΣ and FreeΣ, we will construct two
functors: Har and Hyp, as pictured below.

FreeΣ

Cospan(HypΣ)MA HarΣ

Har∼=

Hyp

The composition of Hyp with the isomorphism Cospan(HypΣ)MA
∼= FreeΣ from [17],

will form the inverse to Har.

Let us now define the functor Har.

Definition 5.30. Denote by Har : FreeΣ → HarΣ the identity-on-objects symmetric
monoidal functor defined inductively so that generating morphisms g ∈ Σ1 are
mapped to their corresponding singleton Hars, and tensor and composition of
morphisms is mapped to tensor and composition of Hars, respectively.

In fact, everymorphism of Har can be constructed this way. In other words, the
singleton Hars constructed from generating morphisms of Σ are sufficient as a ‘basis’
to construct every morphism in HarΣ. This is stated formally in the following
proposition.

Proposition 5.31. The morphisms of Har are generated by the monoidal signature with a
single object and generating morphisms id, σ, and {Har(g) | g ∈ Σ1}.

Proof. A Har is called a ‘permutation Har’ when it has no nodes labeled ◦. Every
h ∈ Harm,n can be factored as f # p for some permutation Har p so that fM = hM and
fR = id. Further, by the acyclicity property, every h ∈ Harm,n with hR = id can be
decomposed into the form f # (id⊗Har(g)⊗ id) for some g ∈ Σ1. Consequently, we
can decompose any Har into the following form.

p1 # (id⊗Har(g1)⊗ id) # p2 # (id⊗Har(g2)⊗ id) # . . . # pN
Since h was an arbitrary Har, it is clear that any h can be expressed as a composition of
such ‘layers’ of generators separated by permutations. Thus, the morphisms of HarΣ

are freely generated by morphisms id, σ, and Har(g) for g ∈ Σ1.

92 Chapter 5. Datastructures and Algorithms

As an immediate consequence of Proposition 5.6, we may also conclude that any Har
satisfying the conditions described in Definition 5.14 corresponds to a string diagram.
Therefore, not only can one construct Hars by composition and tensor product of
singleton Hars, but also by directly specifying the structure of the underlying bipartite
graph.

Remark 5.32. Note that the above proof also suggests an algorithm for decomposition of
Hars into terms. To obtain an ordering of generators g1 . . . gN , one can use a
topological algorithm such as Kahn’s algorithm [71] on the underlying graph.

In order to prove that HarΣ is isomorphic to FreeΣ, we will essentially show that the
functor Har amounts to a ‘relabeling of generators’. This can be stated more generally
for any monoidal category as the following ‘change of basis’ theorem.

Theorem 5.33 (Change of Basis). Fix a monoidal signature Σ, and suppose C
F
⇄
G

D are

strict symmetric monoidal identity-on-objects functors. If C is generated by Σ, D is generated
by {F(g) | g ∈ Σ1}, and for all g ∈ Σ1 we have G(F(g)) = g then C ∼= D .

Proof. It suffices to show that the functors F and G are inverses. Note that in the
following proof we will use juxtaposition for composition to ease the notational
burden, so for example f g means f # g and FG means F # G.
We first check FG = id. Since every morphism h ∈ C is formed by composition and
tensor product of id, σ, and generators g ∈ Σ1, we proceed by induction:

1. If h ∈ {id, σ} then FG(h) = h because F,G are symmetric monoidal functors.

2. If h ∈ Σ1 then FG(h) = G(F(h)) = h by assumption.

3. If h = f g then FG(h) = G(F(f g)) = G(F(f)F(g)) = G(F(f))G(F(g)) = f g by
inductive hypothesis.

4. If h = f ⊗ g then
FG(h) = G(F(f ⊗ g)) = G(F(f)⊗ F(g)) = G(F(f))⊗ G(F(g)) = f ⊗ g by
inductive hypothesis.

Now check GF = id. Choose h ∈ C and proceed again by induction. Cases 1, 3, and 4
can be shown in the same way as above, so we need only demonstrate that
F(G(h)) = h. This follows immediately by assumption: since C is generated by
operations Σ1, we need only check the ‘base cases’ where h = F(g). Thus, if h = F(g)
for g ∈ Σ1 then F(G(h)) = F(G(F(g))) = F(g) = h.

Remark 5.34. Theorem 5.33 amounts to a renaming of generators, and so is analogous
to a change of basis in linear algebra.

5.6. The Category of Hars 93

Now, in order to show that HarΣ is indeed isomorphic to FreeΣ, we will use Theorem
5.33. We have already constructed a functor Har : FreeΣ → HarΣ and shown that HarΣ

is generated by the morphisms {Har | g ∈ Σ1} in Proposition . It therefore remains to
construct the functor Hyp : HarΣ → Cospan(HypΣ)MA, and show that its composition
with the isomorphism Cospan(HypΣ)MA

∼= FreeΣ is inverse to Har on generators Σ1.

Definition 5.35. We define the functor Hyp : HarΣ → Cospan(HypΣ)MA on morphisms
h ∈ Harm,n by constructing a monogamous acyclic hypergraph cospan
m s−→ H t←− n ∈ Cospan(HypΣ)MA as follows.

Hypergraph H The graph represented by hM and hN consists of vertices vi labeled •,
and and vertices ej labeled (◦, gj) for gj ∈ Σ1. We define H as the hypergraph
with hypernodes vi and labeled hyperedges ej = ([s1, s2, . . . , sA], [t1, t2, . . . , tB], gj)
where sk is the unique vertex u such that there exists an edge (u, ej, k) in hM, and
tk the unique vertex w such that there is an edge (ej,w, k).

Cospan legs The cospan legs l : m→ H and r : n→ H are constructed from hL and
hR, respectively. Concretely, if we view each leg as a function mapping a natural
number to a node in H, then l = fL # π

m, fK−m
0 and r = fR # π

fK−n,n
1 with

πX,Y
0 : X×Y → X and πX,Y

1 : X×Y → Y.

Proposition 5.36. Hyp is a Symmetric Monoidal Functor

Proof. It is clear that Hyp preserves identities: Hyp(id) is mapped to the discrete
hypergraph with identity cospans. Similarly, Hyp(σ) is a cospan of the discrete
hypergraph whose left leg is identity and right leg is the symmetry, so Hyp(σ) = σ.

Further, one can verify that the operation of Har composition essentially mimics the
computation of pushouts of hypergraphs, and Definition 5.28 tells us that the left and
right legs of the cospan Hyp(f) #Hyp(g) are equal to those of Hyp(f # g).
Finally, we can see that since the tensor product of f ⊗ g of Hars is the direct sum of
matrices, the hypergraph representation of Hyp(f ⊗ g) coincides with
Hyp(f)⊗Hyp(g), and once again Definition 5.26 ensures that the left and right legs of
the cospan coincide.

Corollary 5.37. There is a symmetric monoidal functor Har∗ : HarΣ → FreeΣ obtained by
composing Hyp with the isomorphism Cospan(HypΣ)MA

∼= FreeΣ. given in [17].

Moreover, this functor is inverse on generators.

Proposition 5.38. Har∗(Har(g)) = g for g ∈ Σ1

Proof. Let g ∈ Σ1 be a generating morphism, so Har(g) is a singleton Har. Then
Hyp(Har(g)) gives hypergraph cospan with a single hyperedge labeled g. Under the

94 Chapter 5. Datastructures and Algorithms

isomorphism given in [17], this corresponds to the Σ-term consisting of a single
generator g (see [18, p. 22]). Thus, the composite functor Har∗ : HarΣ → FreeΣ is
inverse on generators.

Theorem 5.39. Har : FreeΣ → HarΣ is an isomorphism of PROPs

Proof. We have shown that

- There is a symmetric monoidal functor Har : FreeΣ → HarΣ (Definition 5.30)

- There is a symmetric monoidal functor Har∗ : HarΣ → FreeΣ (Corollary 5.37)

- HarΣ is generated by the singleton Hars corresponding to the operations g ∈ Σ1

(Proposition 5.6)

- Har∗(Har(g)) = g for g ∈ Σ1. (Proposition 5.38)

Thus, by Theorem 5.33, Har and Har∗ form an isomorphism FreeΣ
∼= HarΣ,

5.7 Complexity

We now give the time complexity of the composition and tensor product operations
defined in Section 5.5. Since our algorithm is expressed in terms of matrix
multiplication, one might expect that the time complexity of the operations presented
here to be at best O(n2.37188) (at time of writing [43]). However, the matrices
representing a Har have a high degree of sparsity, and so it is possible to significantly
improve on this bound.

Concretely, observe that for a finite monoidal signature Σ and f ∈ Har(m, n), one can
guarantee that the number of non-zero elements in fM is O(fK):

Proposition 5.40. (Bounded sparsity) Fix a finite monoidal signature Σ and let f be a Har.
Now let m be the largest arity of any generator g ∈ Σ and n the largest coarity. Then the rows
of fM have at most m non-zero elements, the columns at most n non-zero elements, and fM has
O(fK) non-zero elements.

Proof. By definition 5.14, vertices in fM labeled •may have at most one incoming and
outgoing edge. Moreover, each vertex v labeled (◦, g) must have exactly a incoming
and b outgoing edges for a generator g : a→ b. These edges correspond to the
non-zero rows and columns of fM, respectively, and so the non-zero elements of each
row (resp. column) is at most m (resp. n).

5.7. Complexity 95

Now, it happens that the time complexity of the ‘naive’ sparse matrix multiplication
algorithm [61] is essentially linear in the number of non-trivial multiplications
required–that is, those scalar multiplications where neither multiplicand is zero. From
this fact and the property of bounded sparsity, it follows that both composition and
tensor product of Hars are linear-time operations. To make this clear, we introduce the
following proposition:

Proposition 5.41. (Permutation of Hars has linear complexity)
Choose some f ∈ HarΣ and a permutation matrix P ∈ Mat(fK, fK). Then P # fM and fM # P
can be computed in linear time.

Proof. For matrices A, B ∈ Mat(k, k), the complexity of Gustavson’s sparse matrix
multiplication routine [61] is O(2k+ nnz(A) +m). Here nnz(A) is the number of
non-zero entries of A and m is the number of non-trivial multiplications required.

By the bounded sparsity property (Proposition 5.40), one can see that computing a
row of the matrix fM # P requires only a constant number of non-trivial multiplications,
and further nnz(fM) is O(fK). Thus, computing fM # P is O(fK).

Alternatively, one may also see that linear complexity is possible using Gustavson’s
HALFPERM algorithm [61], which can compute P # fM # QT in O(nnz(fM)) operations.
Since nnz(fM) is O(fK), this operation has linear complexity.

Using proposition 5.41 we can now show that composition and tensor product have
linear time complexity.

Proposition 5.42. (Tensor Product of Hars f ⊗ g is O(fK + gK))
Given f ∈ Har(m1, n1) and g ∈ Har(m2, n2), computation of f ⊗ g is O(fK + gK).

Proof. It is clear from Definition 5.14 that each component of f ⊗ g is computed either
as a direct sum or a multiplication of permutation matrices of size fK + gK. Since each
of these operations is O(fK + gK), it is clear that the whole operation is also.

Proposition 5.43. (Composition of Hars f # g is O(fK + gK))
Given f ∈ Har(m, n) and g ∈ Har(n, o), computation of f # g is O(fK + gK).

Proof. The proof is similar to that of Proposition 5.42, except that we must include the
cost of the operations R(f) and L(g). These operations are linear by proposition 5.41,
and so the composition f # g must also be O(fK + gK).

96 Chapter 5. Datastructures and Algorithms

5.8 Empirical

We now give an empirical evaluation of our complexity claims on several synthetic
benchmarks. We compare our own implementation to the wiring diagrams of
Catlab.jl [82, 83].5 For implementation and benchmarking code, see Implementation
D.4.

The following benchmarks assume a fixed monoidal signature. Specifically, we use the
generators of PolyCircZ2

(Definition 3.22). More concretely, we will build morphisms
from the following generators:

where the generator represents a NOT gate, alternatively thought of as the map
. We choose the generators of PolyCircZ2

since they serve as a syntax for boolean
circuits as witnessed by the presentation described by Lafont [76]. We specifically
choose such circuits as a real-world example of a presentation in which diagrams will
necessarily be very large. For example, a string-diagrammatic representation of a CPU
would need (at least) hundreds of thousands of generators.

Experiment Details Each benchmark has the same structure: for k ∈ {1 . . . 20} we
construct two string diagrams consisting of 2k−1 generators, and then measure the
time taken to compute the tensor product or composition of those diagrams. Each
measurement is repeated 10 times for each k, and plots of each experiment show the
mean computation time with minimum and maximum error bars. In each case, the
x-axis is the resulting diagram size (meaning the number of generators), and the y-axis
is the time taken to compute a given operation. If a result takes longer than 60 seconds
to compute, it is omitted. More details of the experimental setup can be found in
Appendix B.2.

Note carefully that the performance chart for each benchmark uses a log scale on both
axes, since for each k we construct a string diagram of size 2k.

5.8.1 Benchmark #1: Repeated Tensor

The first experiment measures the performance of the tensor product of large
representations. Concretely, let f be the k-fold tensor product of , i.e.
f = ⊗ k. . .⊗ . We measure the performance of computing f ⊗ f .

5Note however that Catlab’s wiring diagrams provide a strictly more general setting than ours. We
discuss possible generalisations of our approach to address this in Section 5.9.

5.8. Empirical 97

1e1 1e3 1e5

Size of result (number of generators)

0.01

0.1

1

10

R
un

ti
m
e
(s
ec
on

ds
)

implementation
Catlab

Sparse HAR

Tensor

5.8.2 Benchmark #2: Small-Boundary Composition

We measure the performance of composition m
f→ n

g→ o along a small shared
boundary, i.e., where n� fK + gK. Concretely, let f be the k-fold composition of ,
so that f = # k. . . # . We measure the performance of computing f # f .

1e1 1e3 1e5

Size of result (number of generators)

0.01

1

100

R
un

ti
m
e
(s
ec
on

ds
)

implementation
Catlab

Sparse HAR

Small Boundary Composition

5.8.3 Benchmark #3: Large-Boundary Composition

We measure the performance of composition m
f→ n

g→ o along a large shared
boundary, i.e. where n ≈ min(fK, gK). In particular, let f be the k-fold tensor product
of , then we measure f # f .

98 Chapter 5. Datastructures and Algorithms

1e1 1e3 1e5

Size of result (number of generators)

0.001

0.01

0.1

1

10

R
un

ti
m
e
(s
ec
on

ds
)

implementation
Catlab

Sparse HAR

Large Boundary Composition

5.8.4 Benchmark #4: Synthetic Benchmark

We give a final benchmark as a validity check to ensure our implementation still
performs well on realistic-looking representations. Specifically, we measure the
performance of composing two a 2k−1-bit adder circuits to form a 2k-bit adder.

1e2 1e4 1e6

Size of result (number of generators)

0.01

0.1

1

10

R
un

ti
m
e
(s
ec
on

ds
)

Synthetic

5.9 Extensions to Hars

In this chapter, we defined a datastructure for representing morphisms of the free
PROP on a given monoidal signature. We also gave algorithms for tensor and
composition of such morphisms, and showed how they have time complexity linear in

5.9. Extensions to Hars 99

the size of the resulting diagram. However, in general we would like to be able to
model a larger class of diagrams. Specifically, it will be useful for the next chapter to
consider string diagrams for categories having more than one generating object.

An extension of the definitions in this chapter to categories with multiple generating
objects is straightforward. We therefore discuss these extensions informally now. Let
Σ now denote a monoidal signature with its set of generating objects Σ0 no longer
constrained to be the 1-element set. One can model string diagrams of FreeΣ by
adding additional label information for those Har vertices labeled •. Specifically, such
vertices must additionally be labeled with an element of Σ0.

However, we must also make sure that object labels of •-labeled vertices are
compatible with the operations of Σ1 and the interfaces of the diagram. Thus, two
additional constraints on Hars are required. First, suppose v is a vertex labeled (◦, g),
with g : A1 ⊗ . . .⊗ Am → B1 ⊗ . . .⊗ Bn. We require for each labeled edge (x, v, i) that
the label of x is (•, Ai), and similarly for edges (v, y, j) that labels of y are (•, Bj).
Secondly, we must forbid composition ofHars having ‘incompatible boundaries’. That
is, for a Har f : m→ n with right interface nodes labeled A1 . . . An and g : n→ o with
left interface nodes labeled B1 . . . Bn, we require that Ai = Bi for each i ∈ {1 . . . n}.

In summary, we must make the following changes to the Har datastructure.

• Node labels N are in the set (({•} × Σ0) + ({◦} × Σ1))

• Vertices labeled (◦, g), incoming edges v1 . . . vm are ‘well-typed’ with respect to
the generator g.

• Composition of Hars having incompatible boundaries is forbidden.

Another useful potential extension is to support string diagrams for signatures
augmented with a chosen Special Frobenius structure (Definition 5.7). However, this is
not possible without more significant changes to the Har datastructure. The reason is
that the ‘internal wiring’ and interfaces of Hars are encoded as adjacency matrices.
This limits the number of edges between two nodes to at most 1, whereas the
hypergraphs corresponding to string diagrams with the additional Frobenius
structure have no such restriction. Essentially, the adjacency matrix encoding makes
the assumption of monogamicity, which is not present in the Frobenius case. We
therefore leave this extension to future work, which we discuss further in Chapter 7.

101

Chapter 6

Strictness and Coherence

6.1 Overview

Until now, we have only dealt in strict symmetric monoidal categories. However, the
final chapter of this thesis is concerned with non-strictness. More precisely, we give a
strict graphical calculus for reasoning about non-strict monoidal categories. Even more
precisely, given an arbitrary and potentially non-strict monoidal category C , we give a
presentation by generators and equations of its strict equivalent, denoted C .

The construction given in this chapter results in a new proof of Mac Lane’s
well-known strictness theorem [80, p.257]. However, the primary motivation is to
augment datastructures such as those described in Chapter 5 with the ability to
represent terms of non-strict categories. While Mac Lane’s proof guarantees the
validity of graphical reasoning for non-strict categories, the precise details are
problematic from an implementation perpective. One issue in particular is the reliance
on Mac Lane’s coherence theorem [80] for monoidal categories. In contrast, our proof of
the strictness theorem is elementary. This means we are able to give a novel graphical
proof of the coherence theorem in terms of the strictness theorem.

Reliance on the coherence theorem is problematic for two reasons. Firstly, as observed
by Hines [65, Section 1.4] the theorem itself is often mis-stated as ‘all diagrams built
from coherence isomorphisms commute’. In fact, Hines gives a counterexample to this
statement in [65, Definition 2.1]. The correct statement of the coherence theorem in fact
only guarantees that certain ‘formal’ diagrams [80] commute. Thus, reliance on the
coherence theorem introduces implementation subtleties which we would like to
avoid. The second issue stems from the definition of the tensor product of morphisms
in the equivalent strict category. Mac Lane uses the coherence theorem to witness the
existence of certain morphisms without needing to define them specifically [80, p.258].

102 Chapter 6. Strictness and Coherence

However, in order to implement the strictness construction in code, it is necessary to
be completely explicit about the definition of such maps.

In addition to allowing the representation of non-strict terms, the construction
presented here has additional benefits applicable to our guiding application of
machine learning. Concretely, the ‘strictification’ of a strict category makes the
construction of large diagrams more ergonomic by allowing for ‘bundling’ of wires.
Consider for example the machine learning models defined in Part I of the thesis.
Recall that we defined models as morphisms of reverse differentiable categories
having the form P× A→ B. For example, the ‘dense’ map of Definition 3.36 was
defined as follows

dense
Sab+b

Sa Sb :=
linear

Sab

Sa

activation
Sb

Sb
Sb

where P = Sb·a+b. Although pictured as distinct wires, the object corresponding to the
two inputs to dense is a single natural number ab+ b+ a. Without specifying P
explicitly, it is therefore ambiguous which of the inputs are the parameters, and so it is
not possible to precisely specify the ‘learning step’ morphism (4.4) of Reverse
Derivative Ascent.

The strictification construction presented here allows for the removal of this
ambiguity. In particular, wires may be ‘bundled’ so that the densemorphism can have
the form P⊗ X, where P and X are generating objects of the category. In this case, the
domain of the densemorphism would genuinely be a binary tensor product.
Specifying a model would therefore mean simply giving a morphism whose domain
is a binary product whose first object represents the parameters. The learning step
morphism can then be defined in terms of arrows with binary domains. Categorically
speaking, this will require the introduction of a generating object for every object in
the ‘base’ category (in this case PolyCircS). We will describe this process formally in
Section 6.4.

6.1.1 Relationship to Published Work

Aside from the preliminaries covered in Section 6.3, the content of this chapter
consists of the author’s individual contributions originally published in [107]. Parts of
this chapter are reproduced from this work verbatim.

6.2. Synopsis 103

6.2 Synopsis

As usual, we begin with preliminary background material in Section 6.3. In this case,
the background material consists of the definitions of monoidal and symmetric
monoidal functors. Although we have so far assumed familiarity with these
definitions, we will now need to be precise about the various maps involved.

Section 6.4 marks the beginning of our contributions, where we define the ‘graphical
language of non-strict monoidal categories’. Concretely, in Definition 6.5 we give a
presentation by generators and equations of a category C , which we will later prove to
be the ‘strictification’ of an arbitrary monoidal category C . As a first step towards this
proof, we construct a functor S : C → C in Definition 6.7, and show it is monoidal in
Proposition 6.8.

Section 6.5 begins with the construction of the ‘nonstrictification’ functor N : C → C

in Definition 6.10. The definition of N is more complex than for S , and so it is
necessary to explicitly construct its coherence maps in Definitions 6.12 and 6.14 before
proving it is monoidal in Proposition 6.15.

In Section 6.6, it is shown that strictification and non-strictification functors S and N
constitute a monoidal equivalence between C and C . We first show that N ◦ S = idC

in Proposition 6.16, which makes the composite a split idempotent. Finally, in
Proposition 6.21, we show that the composite S ◦N isomorphic to the identity functor.
These two facts together yield Theorem 6.22, constituting a new proof of Mac Lane’s
Strictness Theorem [80] which crucially does not rely on the coherence theorem.

Section 6.7 exploits our proof of the strictness theorem to give a novel graphical proof
of Mac Lane’s coherence theorem [80] (Theorem 6.23). Our proof is essentially the
mirror of Mac Lane’s, who defines a certain preorder before showing it is free in a
particular sense. In contrast, we define the category W (Definition 6.24) to be free, and
then use our graphical calculus to show that its strictification W is a preorder
(Proposition 6.38.) This implies that W is a preorder (Corollary 6.39), resulting a novel
graphical proof of the Coherence Theorem.

Section 6.8 concludes the chapter by demonstrating how the strictness theorem
extends to the symmetricmonoidal case. Proposition 6.43 shows that if C is symmetric
monoidal then C is as well. In addition, this implies that the functors S and N are
symmetric monoidal, which is shown in Propositions 6.44 and 6.45, respectively.

104 Chapter 6. Strictness and Coherence

6.3 Preliminaries

In the following sections, we will define a pair of functors forming a monoidal
equivalence between a monoidal category C and its strictification C . It will therefore
be necessary to recall these concepts in detail. We begin with the definition of a
monoidal functor.

Definition 6.1. Monoidal Functor
Let (C ,⊗, IC) and (D , •, ID) be monoidal categories. A monoidal functor is a functor
F : C → D equipped with natural isomorphisms ΦX,Y : F(X) • F(Y)→ F(X⊗Y) and
ϕ : ID → F(IC) such that the following diagrams commute for all objects A, B,C ∈ C .

(F(A) • F(B)) • F(C) F(A) • (F(B) • F(C))

F(A) • F(B⊗ C)

F(A⊗ (B⊗ C))

F(A⊗ B) • F(C)

F((A⊗ B)⊗ C)

αD

idF(A) •ΦB,C

ΦA,B⊗C

ΦA,B • idF(C)

ΦA⊗B,C

F(αC)

(6.1)

F(A) • ID F(A) • F(IC)

F(A⊗ IC)F(A)

idF(A) • ϕ

ΦA,IC

F(ρC)

ρD

ID • F(B) F(IC) • F(B)

F(IC ⊗ B)F(B)

ϕ • idF(B)

ΦIC ,B

F(λC)

λD
(6.2)

We will also need the definition of an equivalence of categories.

Definition 6.2 (Equivalence of categories). An equivalence is a pair of functors C
F→
←
G

D

together with natural isomorphisms η : idC → G ◦ F and ϵ : F ◦ G → idD .

A monoidal equivalence of categories requires the natural transformations η and ϵ be
monoidal natural transformations. We recall these now.

Definition 6.3 (Monoidal Natural Transformation). Let
(F,Φ, ϕ) : (C ,⊗, IC)→ (D , •, ID) and (G, Γ,γ) : (C ,⊗, IC)→ (D , •, ID) be monoidal
functors. Amonoidal natural transformation α : F → G is a natural transformation

6.4. Strictification 105

such that the following diagrams commute.

F(A) • F(B) G(A) • G(B)

G(A⊗ B)F(A⊗ B)

αA • αB

ΦA,B ΓA,B

αA⊗B

(6.3)

ID

F(IC) F(IC)

ϕ γ

αI

(6.4)

Finally, we may define a monoidal equivalence of categories as follows.

Definition 6.4 (Monoidal Equivalence). Let C
F→
←
G

D be monoidal functors forming an

equivalence of categories with natural isomorphisms η : idC → G ◦ F and
ϵ : F ◦ G → idD . It is a monoidal equivalence when η and ϵ are monoidal natural
isomorphisms.

6.4 Strictification

We begin by defining the ‘strictification’ of an arbitrary monoidal category C as a
presentation by generators and equations of a new, strict monoidal category C .

106 Chapter 6. Strictness and Coherence

Definition 6.5. Fix an arbitrary monoidal category C . Its ‘strictification’ (C , •) is the
strict monoidal category freely generated by:

1. Generating objects A for each A ∈ C

2. Generating morphisms (6.5), with f : A→ B for each f : A→ B ∈ C

3. Functoriality equations (6.6)

4. Adapter equations (6.7), and

5. Monoidal equations (6.8)

Φ
A

B
A⊗ B Φ∗

A

B
A⊗ B

ϕ IC ϕ∗IC

fA B

(6.5)

idA =
A

f g = f # g (6.6)

ΦΦ∗
f

g
= f ⊗ g

Φ Φ∗f ⊗ g =
f

g

ϕ ϕ∗
IC

=

ϕϕ∗IC IC = IC

(6.7)

α = Φ

ΦΦ∗

Φ∗

A⊗ B

B⊗ C

A

B

C α−1 =
Φ∗

Φ∗ Φ

Φ

A⊗ B

B⊗ C

A

B

C

λ = Φ∗
ϕ∗

λ−1 = Φ
ϕ

ρ = Φ∗
ϕ∗

ρ−1 = Φ
ϕ

(6.8)

Remark 6.6. The generating objects of C are all of the objects C . This means that a
morphism with m inputs and n outputs will have domain and codomain of the form
A1 • · · · • Am and B1 • · · · • Bn, respectively, where each X is an object (not just a
generating object) of C . For example, if A⊗ B is an object of C , then A⊗ B is a
generating object of C . Note also that since C is strict by construction, we may use
string diagrammatic notation without appeal to Mac Lane’s strictness theorem.

We can now define a monoidal functor from C to C . Note that this functor is one half
of a monoidal equivalence, a fact which will be proven in Section 6.6.

6.5. Nonstrictification 107

Definition 6.7. Let S : C → C be the strictification functor defined on objects and
morphisms as S(A) := A and S(f) := f , respectively

Proposition 6.8. (S ,Φ, ϕ) is a monoidal functor.

Proof. S preserves identities and composition (and is therefore a functor) by the
functor equations (6.6):

S(idA) = idA = idA S(f # g) = f # g = f # g = S(f) # S(g)
It is a monoidal functor using the adapter generators Φ = Φ and ϕ = ϕ from

(6.5). We must therefore have that Φ is a natural isomorphism and ϕ an

isomorphism, respectively. This is a straightforward consequence of the adapter

equations. First, observe that ϕ # ϕ∗ = id by definition. The adapter Φ is natural as

a straightforward consequence of the adapter equations (6.7):

Φ
f

g
= Φ

f

g
Φ Φ∗ = Φ f ⊗ g

and similarly for its inverse Φ∗ . Finally, for S to be a monoidal functor we require

that the diagrams of (6.1) and (6.2) commute. Again, this is precisely what the
monoidal equations (6.8) state, and so the proof is complete.

Remark 6.9. Notice that C is defined by freely adding the requirements of Definition 6.1.

Generators Φ and ϕ and equations (6.7) give the natural isomorphism Φ and

isomorphism ϕ, while the commuting diagrams (6.1) and (6.2) are precisely the
‘monoidal’ equations (6.8).

6.5 Nonstrictification

We can now define the functor N : C → C which will form the other half of a
monoidal equivalence between the two categories. The definition of N is somewhat
more involved than for S . To apply the functor we must first decompose a diagram
into a ‘sequential normal form’, consisting of a composition of ‘layers’

#g1 g2 . . . gn# #X1

A1

Y1

X1

B1

Y1

X2

A2

Y2

X2

B2

Y2

Xn

An

Yn

Xn

Bn

Yn

where each gi is a generator. This form is alternatively known in the literature; the
‘layer’ terminology is used by Lafont [77], while Alvarez-Picallo et al. [5] call

108 Chapter 6. Strictness and Coherence

diagrams of this form ‘maximally sequential foliations’. We take advantage of this
decomposition to define N on the individual layers idX • q • idY for some generator q,
and then freely on composition so that N (f # g) = N (f) #N (g). We give more detail
on this decomposition in Appendix C.1.

Definition 6.10. The nonstrictification functor N : C → C is defined inductively on
objects:

N (IC) := IC N (A) := A N (A • R) := A⊗N (R)

And on morphisms we give a recursive definition, with the following base cases

N (idIC) = idIC

N (f) := f

N (ΦA,B) := idA⊗B

N (Φ∗A,B) := idA⊗B

N (ϕ) := idIC

N (ϕ∗) := idIC

N (f • idY) := f ⊗ idN (Y)

N (ΦA,B • idY) := αA,B,N (Y)

N (Φ∗A,B • idY) := α−1A,B,N (Y)

N (ϕ • idY) := λ−1N (Y)

N (ϕ∗ • idY) := λN (Y)

N (idA • f) := idA ⊗ f

N (idA •ΦB,C) := idA⊗(B⊗C)

N (idA •Φ∗B,C) := idA⊗(B⊗C)

N (idA • ϕ) := ρ−1A

N (idA • ϕ∗) := ρA

where the object Y is assumed to be a non-empty list. Additionally, we have a single
recursive case q ∈ {Φ, ϕ,Φ∗, ϕ∗, idQ}

N (idA • q • r) := idA ⊗N (q • r)

and finally we take N (f # g) := N (f) #N (g).

We prove that N is well-defined with respect to the equations of Definition 6.5 in
Appendix C.2, where we also note how N(f) is the same regardless of which
‘sequential normal form’ decomposition is chosen for f .

Remark 6.11. The definition of N can be explained more intuitively in terms of
programming. If each layer of the sequential normal form is thought of as a list of
arrows of C , then the definition of N is essentially a list recursion in there are separate
cases for 1, 2, and n-element lists.

We can now show that N is a monoidal functor. To do this, it is necessary to specify the
coherence maps: the natural isomorphism ΨX,Y : N (X)⊗N (Y)→ N (X •Y) and
isomorphism ψ : IC → N (IC) mandated by Definition 6.1.

Definition 6.12. The coherence natural isomorphism for N is denoted Ψ and is
defined recursively as follows.

ΨIC ,IC := λIC = ρIC ΨX,IC := ρN (X) ΨIC ,Y := λN (Y)

ΨA,Y := idA⊗N (Y) ΨA•X,Y := α−1A,N (X),N (Y) # (idA ⊗ΨX,Y)

6.5. Nonstrictification 109

Remark 6.13. Note that both λIC and ρIC have the correct type as a choice for ΨIC ,IC .
In fact, they are equal: unitors coincide at the unit object, i.e. λIC = ρIC , as noted
in [47, Corollary 2.2.5].

Definition 6.14. The coherence isomorphism ψ for N is defined as follows.

ψ := idIC

Proposition 6.15. (N ,Ψ,ψ) is a monoidal functor.

Proof. It is clear that Ψ and ψ are natural isomorphisms since they are both composites
of natural isomorphisms. Thus it remains to check the diagrams of Definition 6.1
commute.

The squares (6.2) commute because ψ = id, ΨA,IC = ρ and ΨIC ,B = λ by definition.

Now let us check that the hexagon (6.1) commutes. Note that in the following we use
that N (αC) = id, because C is strict, and so the hexagon axiom becomes a pentagon.

We will approach the problem inductively, checking base cases where A = I and
A = A, and finally the inductive step with A = A • R. Let us begin with A = I, and
taking the outer path of the hexagon we calculate as follows:

(idIC ⊗ΨB,C) # ΨIC ,B•C # Ψ−1B,C # (ΨIC ,B ⊗ idN (C))
−1

= (idIC ⊗ΨB,C) # λN (B•C) # Ψ−1B,C # (λN (B) ⊗ idN (C))
−1

= λN (B)⊗N (C) # (λN (B) ⊗ idN (C))
−1

= αIC ,N (B),N (C)

Wherein we expanded the definition of Ψ, then used naturality of ΨB,C before
applying the monoidal triangle lemma of [47, (2.12)].

Now consider the second base case, where A is the ‘singleton list’ A. In this case, the
hexagon diagram commutes immediately because ΨA,B = idA⊗N (B) and
ΨA,B•C = idA⊗N (B•C). More explicitly, we calculate as follows, starting again with the
outer path of the hexagon and expanding definitions:

(idA ⊗ΨB,C) # ΨA,B•C # Ψ−1A•B,C # (ΨA,B ⊗ idN (C))

= (idA ⊗ΨB,C) # idA⊗N (B•C) # (α−1A,N (B),N (C) # (idA ⊗ΨB,C))
−1 # (idA⊗N (B) ⊗ idN (C))

= (idA ⊗ΨB,C) # (idA ⊗ΨB,C)
−1 # αA,N (B),N (C)

= αA,N (B),N (C)

110 Chapter 6. Strictness and Coherence

Finally let us prove the inductive step. Assume that the hexagon commutes for objects
R, B, C, giving us the equality

ΨR,B•C # Ψ−1R•B,C = (idN (R) ⊗Ψ−1B,C) # αN (R),N (B),N (C) # (ΨR,B ⊗ idN (C))

We may then rewrite the following subterm of the monoidal hexagon as follows:

idA⊗ (ΨR,B•C # Ψ−1R•B,C) = idA⊗ (idN (R)⊗Ψ−1B,C) # idA⊗ αN (R),N (B),N (C) # idA⊗ (ΨR,B⊗ idN (C))

We can then rewrite idA ⊗ αN (R),N (B)N (C) using the monoidal category pentagon
axiom, and then use naturality of α to reduce the outer path of the monoidal hexagon
until we are left with αA⊗N (R),N (B),N (C), as required.

6.6 The Strictness Theorem

Finally, we must check that S and N indeed form a monoidal equivalence. This will
amount to a proof of Mac Lane’s strictness theorem which we state formally in
Theorem 6.22. Explicitly, we require the following two diagrams to commute,

A N (S(A))

N (S(B))B

f

ηA

N (S(f))

ηB

(6.9)

S(N (A)) A

BS(N (B))

S(N (f))

ϵA

f

ϵB

(6.10)

and further require that both η and ϵ are monoidal natural isomorphisms (Definition
6.3.) We begin by showing that η is a monoidal natural transformation.

Proposition 6.16. N ◦ S = idC .

Proof. N (S(f)) = N (f) = f = idC (f)

Remark 6.17. Note that Proposition 6.16 shows that the composite N ◦ S is actually
equal to the identity functor, and thus ηA = idA. This guarantees that η is a monoidal
natural isomorphism. In addition, this will make the composite of the two functors a
split idempotent.

Now we prove (monoidal) naturality of ϵ. This proof is somewhat more involved.
Unlike Proposition 6.16, the composite S ◦ N is merely isomorphic to the identity
functor, not equal on the nose. We therefore begin with an inductive definition of ϵ.

6.6. The Strictness Theorem 111

Definition 6.18 (ϵ : S ◦ N → idC). We define the monoidal natural isomorphism
ϵ : S ◦ N → idC for the composite S ◦ N inductively:

ϵIC := ϕ∗ = ϕ∗

ϵA := idA =

ϵA•R := Φ∗ # (idA • ϵR) = Φ∗
ϵR

Let us first show that ϵ is a natural isomorphism. We will proceed by induction, so we
begin by showing the inductive case as a useful lemma.

Proposition 6.19. If ϵ is natural for f and g, then it is natural for f # g.
Proof. Take morphisms f : X → Y and g : Y → Z. By assumption, we have:

S(N (f)) = ϵX # f # ϵ−1Y S(N (g)) = ϵY # g # ϵ−1Z

from which we can derive

ϵ−1X # S(N (f g)) # ϵZ = ϵ−1X # S(N (f) #N (g)) # ϵZ

= ϵ−1X # S(N (f)) # S(N (g)) # ϵZ

= ϵ−1X # ϵX # f # ϵ−1Y # ϵY # g # ϵ−1Z # ϵZ

= f # g
(6.11)

as required.

Now we may prove that ϵ is a natural isomorphism.

Proposition 6.20. ϵ : S ◦ N → idC is a natural isomorphism.

Proof. We must show that ϵ is an isomorphism and that diagram (6.10) commutes for
all objects in C . The former can be seen by a straightforward induction: observe that ϵ

is constructed as a composition of isomorphisms, and so is itself an isomorphism.

It remains to show that diagram (6.10) commutes. Let f : A→ B be a morphism in C .
By Proposition C.1 we may decompose f into layers f = t1 # . . . # tn with each layer ti
of the form idX • g • idY for some generator g. Proposition 6.19 ensures that if ϵ is
natural for two such layers, then ϵ is also natural for their composite. We therefore
need only check that ϵ is natural for all such layers.

112 Chapter 6. Strictness and Coherence

Let t = idX • g • idY be a morphism with g a generator. One can verify naturality of ϵ

by a second induction. More completely, one can check graphically that naturality
holds for each of the base cases and inductive step in the definition of N (Definition
6.10).

In order to complete the proof that S and N form an equivalence, we must now show
that ϵ is a monoidal natural isomorphism.

Proposition 6.21. ϵ : S ◦ N → idC is a monoidal natural isomorphism.

Proof. We must check that diagrams (6.3) and (6.4) commute. The composition of
monoidal functors S ◦ N is a monoidal functor [1] with the following coherence map
Γ and isomorphism γ.

ΓX,Y = (S ◦ N)(X) • (S ◦ N)(Y)
ΦN (X),N (Y)−→ S(N (X)⊗N (Y))

S(ΨX,Y)−→ (S ◦ N)(X •Y)

γ = IC
ϕ−→ S(N (IC))

S(ψ)−→ (S ◦ N)(IC)

We begin with the latter case, showing the diagram (6.4) commutes, i.e., that
γ # ϵIC = idIC . Observe that S(N (IC)) = S(IC) = IC and that S(ψ) = S(idIC) = idIC .
Thus, γ = ϕ = ϕ , and so

ψ # ϵIC = ϕ ϕ∗
IC = = idIC

as required, so diagram (6.4) commutes.

By similar graphical reasoning, one can also verify inductively that diagram (6.3)
commutes. More precisely, one must check that ΓX,Y # ϵX•Y = ϵX • ϵY for each of the
base cases ΓIC ,Y, ΓX,IC , ΓA,Y and the recursive case ΓA•X,Y.

We can now give the main result.

Theorem 6.22 (Mac Lane’s Strictness Theorem). Let C be an arbitrary monoidal category.
Then C is monoidally equivalent to C with the monoidal functors S and N .

Proof. S and N are monoidal functors by Propositions 6.8 and 6.15, and they form a
monoidal equivalence with η and ϵ by Propositions 6.16 and 6.21. Since C was
arbitrary, the proof is complete.

Note that in contrast to Mac Lane’s proof of Theorem 6.22, we make no reference to
the coherence theorem. We can therefore make use of the strictness theorem to prove
coherence, which is the subject of Section 6.7.

6.7. The Coherence Theorem 113

6.7 The Coherence Theorem

We can now use the strictness theorem to give a proof of Mac Lane’s coherence theorem.
Mac Lane’s original statement of the coherence theorem is given in two parts. The first
part [80, Theorem 1 (p. 166)] defines a preorder W , which is then shown to be free in a
certain sense. However, the more recognisable part of the coherence theorem is in fact
its corollary [80, p. 169], which is a statement about ‘formal diagrams’ formed from
associators and unitors.

The bulk of the proof is for Mac Lane’s Theorem 1. This section is therefore dedicated
to giving a novel graphical proof of this theorem. We relegate discussion of Mac
Lane’s proof of the corollary to Appendix C.3.

Mac Lane’s proof of the main theorem begins by defining a certain preorder W with a
single generating objectW. W is then shown to enjoy the following property.

Theorem 6.23. (Mac Lane’s Coherence Theorem [80, p. 166])
Let M be an arbitrary monoidal category, and let M be an object of M . Then there is a unique
strict monoidal functor W →M such that W 7→ M.

In contrast, we will define the category W so this unique functor is easy to construct,
and then use W to give a graphical proof that W is a preorder. Note that the monoidal
functor in question is strict, so its coherence maps are identities.

6.7.1 The free monoidal category on one generator

We begin by defining W . Again, we stress that our definition of W differs from that of
Mac Lane. In particular, we define W to be ‘free’, and then prove it is a preorder. In
contrast, Mac Lane defines W as a preorder, and then proves its freeness.

Definition 6.24. We define W as the monoidal category freely generated by a single
objectW and no morphisms except those required by the definition of a monoidal
category. 1

Remark 6.25. The objects of W are IW ,W, and their tensor products. The arrows are
id, ρ,λ, α and their composites and tensor products.

It is now clear that the statement of Mac Lane’s Theorem 1 holds for our definition of
W :

Proposition 6.26. Given an arbitrary monoidal category M and object M ∈M , there is a
unique strict monoidal functor W →M with W 7→ M.

1Mac Lane denotes the generating object as (−) to suggest an “empty place”. We follow the convention
of Hines [66] and useW instead.

114 Chapter 6. Strictness and Coherence

Proof. Let M be an object of M and suppose that U : W →M is a strict monoidal
functor such thatW 7→ M. Then we must have that U(W) = M by assumption, and

U(I) = I U(X⊗Y) = U(X)⊗ U(Y)

on objects, and
U(f) = f , f ∈ {α,λ, ρ, id}

U(f ⊗ g) = U(f)⊗ U(g) U(f # g) = U(f) #U(g)
on morphisms, because U is a strict monoidal functor. But this accounts for all objects
and morphisms of W , and so U must be unique.

In order for this to constitute a proof of the coherence theorem we must now prove
that W is a preorder. Our approach will use the following three lemmas.

1. For any monoidal category C , If C is a preorder, then so is C .

2. W is generated solely by adapters {Φ, ϕ,Φ∗, ϕ∗}.

3. W is a preorder.

The final result–that W is a preorder–then follows from the first and third lemmas.
Proving the first and second lemmas is straightforward, so we address them now. The
third requires more work, and is contained in Section 6.7.2.

Proposition 6.27. If C is a preorder, then so is C .

Proof. Let f , g ∈ C (A, B) be morphisms. Recall that N ◦ S = id, and so we can derive
f = N (S(f)) = N (S(g)) = g where we used that S(f) = S(g) because C is a
preorder.

The second lemma states that W is generated by adapters.

Proposition 6.28. W is generated by Φ, ϕ,Φ∗, ϕ∗, id and equations of Definition 6.5.

Proof. Arrows of W are by definition either adapters Φ, ϕ, their inverses, or
morphisms f for some f ∈ W . But note that all such f ∈ W are either id, ρ,λ, α or their
composites. It is clear that each of λ, ρ, α can each be written as adapters by equations
(6.8), so it remains to show that composites of such morphisms can also be written this
way.

That is, we must show that S(f ⊗ g) can be expressed using only adapters and their
composites. This can be proved inductively: if S(f),S(g) can be expressed using

6.7. The Coherence Theorem 115

adapters, then so too can compositions S(f # g) = S(f) # S(g) and tensors
S(f ⊗ g) = Φ # (S(f) • S(g)) # Φ∗.

Thus every morphism of W can be expressed in terms of adapters, and so the category
can be said to be generated by (only) adapters.

6.7.2 Graphical proof that W is a preorder

We will now show that W is a preorder. This proof is broken into the following steps.

1. Define for each object a size in N (Definition 6.29)

2. Prove all morphisms in W go between objects of the same size (Proposition 6.30)

3. Define a canonical arrow can(A, B) between any two objects of the same size
(Definition 6.36)

4. Show that any arrow is equal to the canonical one (Proposition 6.37)

Note that we make heavy use of Proposition 6.28, which lets us reason about W

purely in terms of adapters and their tensors and composites.

We begin–following Mac Lane–by defining the size of an object (the same as Mac
Lane’s notion of length [80, p. 165]) as follows:

Definition 6.29. We define the size of an object as the number of occurrences of the
generating objectW, defined inductively:

size(IW) := 0 size(IW) := 0 size(W) := 1

size(A⊗ B) := size(A) + size(B) size(X •Y) := size(X) + size(Y)

Proposition 6.30 (Morphisms in W preserve size). If f : A→ B is a morphism in W ,
then size(A) = size(B).

Proof. Induction on morphisms.

We now define a canonical arrow can(A, B) between any two objects A and B of the
same size. This definition is given as the composite of two morphisms, pack and
unpack, so that can(A, B) := unpack(A) # pack(B). We begin by defining pack and
unpack.

116 Chapter 6. Strictness and Coherence

Definition 6.31. We define the ‘packing’ and ‘unpacking’ morphisms pack and unpack

in terms of objects of W . Let A ∈ W be an object. Then pack(A) is the morphism with
codomain A, defined inductively as follows.

pack(IW) := pack(IW) := pack(W) :=
W

pack(A⊗ B) :=
pack(A)

pack(B)
pack(X •Y) :=

pack(X)

pack(Y)

In addition, we define unpack(A) := pack(A)−1.

Remark 6.32. It can be more intuitive to define unpack first, thinking of it as the
adapter which removes extraneous IC objects and ‘normalises’ the object into a flat
array ofW objects. In this view, pack is the adapter morphism taking a fixed number
ofW objects and assembling them into a certain bracketing, with unit objects inserted
as appropriate.

Note that Definition 6.31 implicitly uses that W is a groupoid. We prove this now.

Proposition 6.33. W is a groupoid.

Proof. Generators and identities have inverses by Definition 6.5, which allows an
inductive definition for tensor and composition, i.e. (f # g)−1 = g−1 f−1 and
(f • g)−1 = f−1 • g−1 respectively.

In order to define the canonical arrow as a composition of pack and unpack, we will
need the following lemma. This states that for objects A and B of the same size the
unpack(A) and pack(B) morphisms are composable.

Proposition 6.34 (pack(A) : Wsize(A) → A). For an object A of size n, the domain of
pack(A) is the n-fold •-tensoring of W.

Proof. Induction on objects. Note the proposition holds for base cases A ∈ {IW , IW , A}
and is preserved by inductive cases pack(A⊗ B) and pack(X •Y).

The same holds for unpack as an immediate corollary.

Corollary 6.35 (unpack(A) : A→Wsize(A)
).

We can now define the canonical arrow between objects of the same size.

Definition 6.36 (can(A, B)). For each pair of objects A, B of the same size, the
canonical arrow is defined as follows:

can(A, B) : A→ B

can(A, B) := unpack(A) # pack(B)

6.7. The Coherence Theorem 117

Note that the composition of Definition 6.36 is well-typed because size(A) = size(B)
and therefore cod(unpack(A)) = Wsize(A)

= Wsize(B)
= dom(pack(B)).

Example 6.1. The canonical arrow between W ⊗ (IW ⊗W) and (W ⊗ IW)⊗W is
. Note that this is equal to the associator αW,IW ,W .

To complete the proof that W is a preorder, we must show that these canonical arrows
are the only arrows in W . We therefore show that every morphism f : A→ B in W is
equal to can(A, B).

Proposition 6.37. f = unpack(A) # pack(B) for all f : A→ B in W .

Proof. By Proposition 6.28 all morphisms in W are constructed by tensor and
composition of adapters. We therefore proceed by induction, starting with the base
case where we show that the proposition holds for identities and generators ϕ and

Φ . Proofs for inverse generators ϕ∗ and Φ∗ follow by a symmetric argument.

can(X,X) = unpack(X) # pack(X) = pack(X)−1 # pack(X) = idX

can(IW , IW) = unpack(IW) # pack(IW) = # =

can(A • B, A⊗ B) = unpack(A • B) # pack(A⊗ B) =
unpack(A)

unpack(B)
=

Now we can prove the inductive step. The composition of canonical morphisms is
canonical

can(X,Y) # can(Y,Z) = unpack(X) # pack(Y) # unpack(Y) # pack(Z)
= unpack(X) # pack(Y) # pack(Y)−1 # pack(Z)
= unpack(X) # pack(Z)
= can(X,Z)

and the tensor product of canonical morphisms is also canonical.

can(X1,Y1) • can(X2,Y2) =
unpack(X1)

unpack(X2)

pack(Y1)

pack(Y2)

= unpack(X1 • X2) pack(Y1 •Y2)

= can(X1 • X2,Y1 •Y2)

Proposition 6.38. W is a preorder.

118 Chapter 6. Strictness and Coherence

Proof. By Proposition 6.30 we know that all morphisms f : A→ B have the property
that size(A) = size(B). We then define for any such objects a canonical morphism
can(A, B) in Definition 6.36. This canonical isomorphism is unique by Proposition
6.37, and so W is a preorder.

As an immediate corollary, we have that W is a preorder.

Corollary 6.39 (W is a preorder).

Proof. Immediate by Proposition 6.27.

Since we have proven that W is a preorder, we can now give an explicit proof of the
coherence theorem (Theorem 6.23.) We again stress that our approach here was
essentially the reverse of Mac Lane’s, who defines W as a preorder, then shows the
existence of the unique strict monoidal functor.

Proof of Theorem 6.23. W is a preorder by Corollary 6.39, and By Proposition 6.26 there
is a unique, strict monoidal functor from W to an arbitrary monoidal category M with
W 7→ M for some chosen M ∈M .

Mac Lane’s corollary then follows straightforwardly from the main coherence result
(Theorem 6.23). The essential idea is to ‘export’ commuting diagrams from W to an
arbitrary monoidal category by interpreting objects of W as functors and arrows as
natural transformations. The diagrams constructed in this way are the ‘formal’
diagrams which are guaranteed to commute.

We provide a full exposition of Mac Lane’s proof of the corollary in Appendix C.3. The
following proposition will allow us to give this exposition graphically.

Proposition 6.40. If f : A→ B then S(N (f)) = f .

Proof. We know that for any A ∈ W that N (A) = A. Thus for f : A→ B we have
N (f) : A→ B and thus S(N (f)) : A→ B. But W is a preorder, so we have
S(N (f)) = f .

Essentially, Proposition 6.40 shows that any map of the form f : A→ B refers
unambiguously to a morphism of W . We may therefore use the graphical language for
non-strict categories to refer to morphisms of W directly. For a full discussion of the
coherence corollary, we now refer the reader to Appendix C.3.

6.8. Symmetric Monoidal Strictness 119

6.8 Symmetric Monoidal Strictness

To conclude the chapter, we briefly discuss how the strictness theorem extends to the
symmetricmonoidal case. We begin by showing how the braiding σ of C extends to C .

Definition 6.41 (Braiding of C). Let C be a symmetric monoidal category. The
braiding σX,Y in C is defined as

σX,Y := σΦ Φ∗
ϵ−1X

ϵ−1Y

ϵY

ϵX

where ϵ is given in Definition 6.18.

Proposition 6.42 (Naturality of braiding). The braiding in Definition 6.41 is natural.

Proof. We have that ϵ is natural by Proposition 6.20. The result then follows by
applying naturality of ϵ, adapters, and σ.

Example 6.2. When X = A and Y = B naturality follows from naturality of adapters and the
braiding in C .

Φ Φ∗σ
f

g
= Φ Φ∗σf ⊗ g

= Φ Φ∗g⊗ fσ

= Φ Φ∗σ
g

f

This braiding makes C symmetric monoidal.

Proposition 6.43. If C is symmetric monoidal then C is symmetric monoidal.

Proof. Let the braiding of C be defined as in 6.41. It is natural by Proposition 6.42, and
σX,Y # σY,X = idX•Y because adapters, ϵ, and σ are all isomorphisms. Finally, we must
show that the unitor coherence and associator coherence axioms of symmetric
monoidal categories are satisfied. The unit coherence follows straightforwardly.

120 Chapter 6. Strictness and Coherence

Calculating for σX,IC we have

σX,IC = σΦ Φ∗
ϕ∗

ϕ

= σλ−1 ρ

=

where the final step follows from the unitor coherence in C . The case of σX,IC holds in
essentially the same way.

By similar calculations one may show that the associator coherence holds. Essentially,
the proof follows by naturality and the associator coherence of C .

In addition, the monoidal functor S extends to a symmetricmonoidal functor.

Proposition 6.44. If C is symmetric monoidal, then S : C → C is a symmetric monoidal
functor.

Proof. For S to be symmetric monoidal, we require that σS(A),S(B) = Φ # S(σA,B) # Φ∗.
This is immediate if we simply apply S , yielding the equality

σS(A),S(B) = σA,B = Φ Φ∗σ

which holds by Definition 6.41.

Finally, for C and C to be symmetric monoidally equivalent, we must also have that
N is a symmetric monoidal functor.

Proposition 6.45. If C is symmetric monoidal, then N : C → C is a symmetric monoidal
functor.

Proof. One can check by straightforward induction that N (ϵX • ϵY) = ΨX,Y. Having
done so, the result is immediate:

N

 σΦ Φ∗
ϵ−1X

ϵ−1Y

ϵY

ϵX

 = Ψ−1X,Y # σ # ΨY,X

as required.

121

Chapter 7

Conclusions

In this thesis, we have described a family of ‘reverse differentiable’ categories called
polynomial circuits which are suitable for representing machine learning models. We
defined learning algorithms in terms of morphisms of these categories, and gave
experimental results on benchmark datasets. In addition, we defined general-purpose
datastructures and algorithms able to represent morphisms of polynomial circuits,
and demonstrated empirically how they can scale to large diagrams. Finally, we
showed how these datastructures can be extended to a represent morphisms of a
broader class of non-strict monoidal categories, resulting in novel proofs of Mac Lane’s
strictness and coherence theorems.

However, there remain several avenues for future work, which we discuss now.

7.1 Future work

7.1.1 Presentations with Frobenius Structure and Optic Composition

The first main avenue for future work is to extend the Har datastructure to allow for
representing morphisms of those presentations of categories where the signature has
the form Σ + Frob. That is, where the presentation includes a chosen special frobenius
structure (see Definition 5.7). In these cases, the conditions of monogamicity and
acyclicity (Definitions 5.9 and 5.10) are relaxed, and cospans of hypergraphs
correspond directly to such morphisms.

The motivation for this work derives from the desire to more efficiently take the
reverse derivative of a given diagram, and more generally to compose lenses of
diagrams. With the Har datastructure, there are two ways this can be done. The first
option is to treat the primitives of a diagram as pairs of generators and their reverse

122 Chapter 7. Conclusions

derivatives, thus building up a pair of diagrams during composition. The second
approach is to take the reverse derivative of a diagram by decomposing it into layers,
and then apply the reverse derivative composition rule of Definition 3.13.

However, a recent paper by Gavranović [54] shows that these approaches can be
improved. In particular, they show that by using composition of optics instead of
lenses one obtains a diagram which represents a ‘more efficient’ computation in the
sense that there are fewer applications of the forward map.

In order to apply this observation, we suggest combining the diagrams of Boisseau
[14] with datastructures representing morphisms of categories whose signatures
include a chosen Special Frobenius structure. Essentially, the idea is to first embed
lenses into categories of optics and peform the more efficient composition there.

From an algorithmic standpoint this is a more complicated approach, sacrificing the
ease-of-implementation of the Har datastructure. Because the condition of
monogamicity must be relaxed, it is no longer possible to directly represent the
underlying connectivity of a diagram with an adjacency matrix: the additional
Frobenius structure allows for multiple edges between nodes. In other words, this
means the underlying representation must be changed from a graph to a multigraph.
In making this change, one must be careful to retain data-parallelism in order for the
new approach to achieve high performance. One promising approach to
implementing this idea would be to use the ACSets of Patterson et al. [84], which are
defined in a ‘data-parallel friendly’ way.

7.1.2 Designing Model Architectures for PolyCircS

Although we provided some initial exploratory experiments for the category
PolyCircZ2

, there remains a large, unexplored design space for model architectures, as
well as choices of the underlying semiring S itself. For instance, when S = Z2, we
observed that the use of ‘weight-tying’ is likely to lose information in the reverse pass
of the model. Model design is therefore much different in this setting than for S = R.
It remains to be discovered if there are general principles for learners that work well in
any semiring S, or even for a specific choice of semiring.

In addition, some semirings such as finite (Galois) fields and semirings of saturating
arithmetic enjoy dedicated hardware acceleration already. Another avenue is therefore
to tailor models to these specific cases to exploit their efficiency benefits.

Moreover, we have so far assumed that the ‘reverse maps’ in such architectures are
always reverse derivatives, and thus linear in their second input. An obvious question
then is whether non-linear maps not in the image of the reverse derivative operator
can also perform well as components of machine learning models.

7.1. Future work 123

Finally, since we have given a datastructure capable of representing very large model
architectures, a promising avenue of research would be to apply ideas of meta-learning
and automated architecture search (see e.g., [45] for a survey of such techniques.) In
doing so, we may also be able to leverage the categorical literature on rewriting of
string diagrams [18–20].

7.1.3 NewModel Classes

Another promising avenue for research is investigating new model classes. This
amounts to discovering new examples of reverse derivative categories. Of particular
interest to this line of research is the recent work by Cruttwell et al. [38] which extends
the notion of reverse derivative category to general monoidal categories–not just those
where the monoidal product is cartesian.

A first candidate for new model classes might be those categories whose morphisms
represent maps between sequences of elements. The forward differential structure of
one such category has already been studied by Sprunger and Katsumata [97], so
extending this to more efficient reverse derivative structure would be a promising first
step. Other potential examples of novel model class are signal flow graphs [16, 22] and
even categories modelling quantum computation such as the ZX calculus [30, 31].

125

Appendix A

Proofs for Chapter 3

A.1 Proofs for Theorem 3.15

We now prove Theorem 3.15. We split the proof into the following lemmas:

1. ARD.2 is preserved by composition

2. ARD.2 is preserved by tensor product

3. ARD.3/RD.6 is preserved by composition

4. ARD.3/RD.6 is preserved by tensor product

5. ARD.4/RD.7 is preserved by composition

6. ARD.4/RD.7 is preserved by tensor product

In each case, when we say ‘ARD.x is preserved by composition’ we mean that if f and
and g satisfy ARD.x, then so too does f # g, and likewise for tensor product. Let us
now address these lemmas in order.

Lemma A.1. ARD.2 is preserved by composition

Proof. Assume that ARD.2 holds for f : A→ B and g : B→ C. For the zero case, apply
the chain rule and use the hypothesis twice to obtain the result as follows:

R[f # g] = f
R[g]

R[f] = f R[f] = R[f]

=

126 Chapter A. Proofs for Chapter 3

In the additive case we proceed similarly by expanding definitions, applying the
hypothesis, and then using associativity and commutativity of to obtain the final
result:

R[f # g] = f
R[g]

R[f]

=
R[g]

R[g]

f R[f]

=
R[g]

R[g]

f

R[f]

R[f]

=
R[g]

R[g]

R[f]

R[f]
f

f

=

f
R[g]

R[f]

f
R[g]

R[f]

=
R[f # g]
R[f # g]

Lemma A.2. ARD.2 (RD.2) is preserved by tensor product

Proof. For the zero case,

R[f ⊗ g] =
R[f]

R[g]
=

R[f]

R[g]
=

A.1. Proofs for Theorem 3.15 127

And now in the additive case,

R[f ⊗ g] =
R[f]

R[g]

=

R[f]

R[g]

=

R[f]

R[f]

R[g]

R[g]

=

R[f]

R[g]

R[f]

R[g]

=

R[f ⊗ g]

R[f ⊗ g]

Lemma A.3. ARD.3 (RD.6) is preserved by composition

128 Chapter A. Proofs for Chapter 3

Proof. Assume that ARD.3 holds for f : A→ B and g : B→ C. Now calculate:

DC[R[f # g]] = R(3)[f # g]

=
R(3)[f]

R(3)[g]

f
R[g]

f

=

f
R[g]

f

R[f]

R[g]

= f R[f]
R[g]

= R[f # g]

We omit much of the tedious calculation in the first step where R(3) is expanded using
repeated application of the chain rule. In the second step we apply the inductive
hypothesis, then naturality of to finally obtain the result. In addition, we have
made use of the notation of Chapter 6 to clarify the role of inputs to R(3).

Lemma A.4. ARD.3 (RD.6) is preserved by tensor product

Proof. Assume that ARD.3 holds for f and g. Then it holds for f ⊗ g as follows:

R(3)[f ⊗ g] =

R(3)[f]

R(3)[g]

=

R[f]

R[g]

= R[f ⊗ g]

A.1. Proofs for Theorem 3.15 129

Lemma A.5. ARD.4 (RD.7) is preserved by composition

Proof. Assume that ARD.4 holds for f : A→ B and g : B→ C. Now we can calculate
as follows:

D(2)[f # g] =
f

D[f]

D(2)[g]
D[f]

D(2)[f]

=

f

D[f]

D(2)[g]
D[f]

D(2)[f]

=

f

D[f]
D(2)[g]

D[f]

D(2)[f]

=

f

D[f]
D(2)[g]

D[f]

D(2)[f]

= D(2)[f # g]
As with the proof for ARD.3 we omit a great deal of tedious expansion and calculation
from the first step of the proof, which is obtained simply by expanding D(2)[f # g] in
terms of R and using naturality of to simplify the result. In remaining steps, we

130 Chapter A. Proofs for Chapter 3

apply of the assumption that ARD.4 holds for f and g, before finally using naturality
of .

Note that although the above derivation is written in terms of D, each step of the proof
treats the D operator merely as a syntactic sugar for its definition in terms of R. Each
step of the proof thus uses only axioms of RDCs, rather than the forward differential
structure defined in terms of it.

Lemma A.6. ARD.4 (RD.7) is preserved by tensor product

Proof. Assume that ARD.4 holds for f : A1 → B1 and g : A2 → B2. Then we may
calculate as follows, first expanding the definition of D, and then using the inductive
hypothesis to obtain the result:

D(2)[f ⊗ g] =

D(2)[f]

D(2)[g]

=

D(2)[f]

D(2)[g]

=

D(2)[f]

D(2)[g]

= D(2)[f ⊗ g]

It is now straightforward to prove Theorem 3.15.

Proof. (Proof of Theorem 3.15)

A.2. Interpretation of PolyCircS as Polynomials 131

Suppose C is a category presented by generators and relations which is equipped with
a (well-defined) R operator such that axioms ARD.1-4 hold for each generator, and
that R is defined on tensor and composition of morphisms as in ARD.1. By the lemmas
above, composition and tensor product preserve the remaining axioms ARD.2-4, and
so C is an RDC.

A.2 Interpretation of PolyCircS as Polynomials

We will now show the existence of an isomorphism between PolyCircS and POLYS.
The proof presented here is a minor generalisation of the author’s own work in [104].
The basic idea is to show that both categories’ hom-sets have the structure of the free
module over the polynomial semiring. Therefore we recall the definition of a free
module now.

Definition A.7. Following [68, p. 170], let S be a semiring. The free module Sb is the
cartesian product of b elements of S, i.e. Sb = 〈p1, p2, ..., pb〉, with addition defined
pointwise, 〈p1, p2, ...pb〉+ 〈q1, q2, ...qb〉 = 〈p1 + q1, p2 + q2, ...pb + qb〉 a zero element
0 = 〈0, 0, ..., 0〉 and scalar multiplication s〈p1, p2, ..., pb〉 = 〈sp1, sp2, ...spb〉

It is clear that the hom-sets of POLYS have this structure

Proposition A.8. Hom-sets POLYS(a, b) have the structure of the free module Sb with S the
polynomial semiring S = S[x1, ..., xa].

Proof. Immediate from the definition of POLYS

Furthermore, hom-sets of PolyCircS also have this structure. This implies the
existence of a module isomorphism between the hom-sets of PolyCircS and POLYS

which is the basis for the functor J·K. We begin, however, with some special case
examples.

Example A.1. The hom-set PolyCircS(0, 1) has the structure of the semiring S, with every
morphism equal to some element s in S.

Example A.2. Each hom-set PolyCirc(a, 1) has the structure of the polynomial semiring
S[x1, ..., xa], with indeterminates x1 . . . xa given by the projections π1 . . . πa

Proposition A.9. Hom-sets PolyCirc(a, b) have the structure of the free module
S[x1, . . . , xa]b.

Proof. For morphisms f , g : a→ b, define addition f + g :=
f

g

a b and

multiplication

132 Chapter A. Proofs for Chapter 3

f ∗ g :=
f

g

a b , with the zero element defined as 0 := ba
. Then one

can verify graphically using equations of polynomial circuits (Definition 3.22) that the
module axioms hold. 1 If we define the family of b morphisms

ei := a

... i

... b− i

... , 0 < i ≤ b, we can see that it forms a base: each of the generators of

polynomial circuits (Equations (3.3) and (3.7)) can be constructed through addition
and scalar multiplication of morphisms ei and 0.

We are now ready to give the proof of Proposition 3.27.

Proof of Proposition 3.27. By Proposition A.8 and Proposition A.9, there is a module
isomorphism between POLYS(a, b) and PolyCircS(a, b). Further, because the
identity-on-objects functor J·K (Definition 3.26) is defined in terms of this bijection, it is
a full and faithful functor, and so POLYS

∼= PolyCircS.

A.3 Proofs for Theorem 3.14

We now prove the lemmas used in the proof of Theorem 3.14. We begin by showing
axioms RD.1-7 imply ARD.1-4, and then the converse.

Proposition A.10. Axioms RD.1 and RD.3-5 of [29, Definition 13] imply axiom ARD.1 of
Definition 3.13.

Proof. Each of the structural axioms in ARD.1 can be derived as follows.

Identity R [] is derivable from RD.3:

R [] = R[id] = R[π1] =

1We take scalar multiplication of f : a → b by g : a → 1 as the morphism f ∗ (g # ∆∗), where ∆∗ is the
unique 1→ b morphism formed by tensor and composition of and identity.

A.3. Proofs for Theorem 3.14 133

Symmetry R
[]

is derived by applying RD.4 to 〈π1,π0〉:

R
[]

= R[〈π1,π0〉] = (id× π0) # R[π1] + (id× π1) # R[π0]

=

=

Copy R
[]

is derived by applying RD.4 to 〈id, id〉:

R
[]

= R [〈id, id〉] = (id× π0) # R[id] + (id× π1) # R[id]

=

=

Discard R [] is derived from RD.4 directly:

R [] = R[!] = 0 =

Add R
[]

is derived by applying RD.1 to π0 + π1.

R
[]

= R[π0 + π1] = R[π0] + R[π1] = =

Zero R [] = follows immediately by uniqueness of the discard map.

134 Chapter A. Proofs for Chapter 3

Composition R[f # g] follows from RD.5 by applying the counit axiom.

R[f # g] = 〈π0, 〈π0 # f ,π1〉〉 # id× R[g] # R[f] = R[f]f
R[g]

= f
R[g]

R[f]

Tensor R[f × g] follows from RD.4 via the counit axiom:

R[f × g] = R[〈π0 # f ,π1 # g〉] = (id× π0) # R[π0 # f] + (id× π1) # R[π1 # g]

=

R[f]

R[g]

=
R[f]

R[g]

Proposition A.11. Axiom RD.2 of [29, Definition 13] implies axiom ARD.2 of Definition
3.13

Proof. We must derive that R[f] =
R[f]

R[f]
and R[f] = .

A.3. Proofs for Theorem 3.14 135

The former follows using RD.2 with a = π0, b = π1 # π0 and c = π1 # π1 as follows.

R[f] = R[f]

= 〈a, b+ c〉 # R[f]
= 〈a, b〉 # R[f] + 〈a, c〉 # R[f]

=

R[f]

R[f]

=
R[f]

R[f]

The latter follows again by RD.2 as below

R[f] = R[f] = 〈id, 0〉 # R[f] = 0 =

Together, all the axioms RD.1-7 imply the axioms ARD.1-4 of our alternate definition
of RDCs.

Proposition A.12. Axioms RD.1-7 of [29, Definition 13] imply axioms ARD.1-4 of
Definition 3.13

Proof. Axioms RD.1-5 imply axioms ARD.1-2 by Propositions A.10 and A.11.
Moreover, ARD.3 and ARD.4 are direct statements of RD.6 and RD.7, so axioms
RD.1-7 imply axioms ARD.1-4.

We now consider the reverse direction, and show that the alternate axioms ARD.1-4
imply those of the original definition RD.1-7.

Proposition A.13. Axiom ARD.1 of 3.13 implies axioms RD.1 and RD.3-5 of [29, Definition
13].

136 Chapter A. Proofs for Chapter 3

Proof. In each case, we derive each axiom by applying the inductive definition of R
given in Definition 3.13 to the left-hand-side.

RD.1

R[f + g] = R

 f

g

 = R


R[f]

R[g]

 = R[f] + R[g]

RD.3 RD.3 follows directly from ARD.1.

R[id] = R [] = = R[π1]

The reverse derivative of projections is given by applying the rule for tensor
products. For example, R[π0] = = = π1 # ι0. The case for R[π1] is
derived similarly.

RD.4 On tuples of arrows, we can derive as follows.

R[〈 f , g〉] = R

 f

g

 =
R[f]

R[g]

=

R[f]

R[g]

= (id× π0) # R[f] + (id× π1) # R[g]
It is also straightforward that R[!] = R [] = = 0

RD.5 The composition rule follows as in Proposition A.10.

R[f # g] = f
R[g]

R[f]

= R[f]f
R[g]

= 〈π0, 〈π0 # f ,π1〉〉 # id× R[g] # R[f]

A.3. Proofs for Theorem 3.14 137

Proposition A.14. Axiom ARD.2 of Definition 3.13 implies axiom RD.2 of [29, Definition
13].

Proof. First, using ARD.2 and then naturality, coassociativity and cocommutativity of
, derive as follows.

〈a, b+ c〉 # R[f] = R[f]

c

a

b =
R[f]

R[f]
c

a

b

=

R[f]

R[f]

a

a

b

c

=

R[f]

R[f]

a

b

a

c

= 〈a, b〉 # R[f] + 〈a, c〉 # R[f]
Finally, calculate

〈a, 0〉 # R[f] = R[f]
a

= R[f]
a

= a = = 0

to complete the proof.

Proposition A.15. Axioms ARD.1-4 of Definition 3.13 imply axioms RD.1-7 of [29,
Definition 13].

Proof. ARD.1 implies RD.1 and RD.3-5 by Proposition A.13, and ARD.2 implies RD.2
by Proposition A.14. As in A.12, ARD.3 and ARD.4 are direct statements of RD.6 and
RD.7, completing the proof.

138 Chapter A. Proofs for Chapter 3

A.4 Proofs for Theorem 3.20

This section contains lemmas used in the proof of Theorem 3.20, which shows that the
definition of R on cartesian distributive structure is well-defined (Proposition A.16).
and satisfies axioms ARD.2-4 (Propositions A.19, A.20, and A.21, respectively). Note
that several of the derivations here are easiest to understand in terms of the ‘syntactic’
forward differential operator D as described in Appendix A.5

A.4.1 Well-definedness of R for Cartesian Distributive Categories

Proposition A.16. In a cartesian distributive category, the following choice of R is
well-defined.

R
[]

= R [] =

Proof. We check that R
[]

is well-defined by ensuring that R[lhs] = R[rhs] for
each of the additional equations lhs = rhs in the definition of Cartesian Distributive
categories (Definition 3.18).

The commutativity, associativity, and unit equations (3.4) are checked in Proposition
A.17.

Meanwhile, the distributivity and annihilation equations (3.5) are checked in
Proposition A.18, completing the proof.

Proposition A.17. R is well-defined for each of the equations in (3.4), so we have the
following equalities.

R
[]

= R
[]

R

[]
= R

[]
R
[]

= R []

Proof. We check each case separately.

Commutative
R
[]

= = = R
[]

A.4. Proofs for Theorem 3.20 139

Associative

R

[]
=

=

= R

[]

Unit

R
[]

= = = R []

We now check the distributivity and annihilation equations.

Proposition A.18. R is well-defined for each of the equations in (3.5), so the distributivity
and annihilation equations are preserved under R.

R

[]
= R

[]
R
[]

= R []

140 Chapter A. Proofs for Chapter 3

Proof. Distributivity

R

[]
=

=

=

=

= R

[]

Annihilation

R
[]

= = = R []

A.4.2 RDC Axioms for Cartesian Distributive Structure

We now verify the axioms of RDCs hold for R
[]

. ARD.2 holds by Proposition
A.19 below.

Proposition A.19.

R
[]

= R
[]

=
R
[]

R
[]

A.4. Proofs for Theorem 3.20 141

Proof. In the former case, apply the inductive definition of R and use the distributivity
axiom.

R
[]

= = =

The latter case follows in a similar manner.

R
[]

=

=

=

=

=

=
R
[]

R
[]

ARD.3 holds by Proposition A.20:

Proposition A.20. DA

[
R
[]]

= R
[]

142 Chapter A. Proofs for Chapter 3

Proof.

DA

[
R
[]]

= DA

[]

= D

[]

=

=

=

=

= R
[]

Finally, ARD.4 holds by Proposition A.21:

Proposition A.21.

D(2)
[]

= D(2)
[]

A.5. Forward Differential Operator and Linear Maps 143

Proof.

D(2)
[]

= D

[]

=

=

=

= D(2)
[]

Remark A.22. Note that ARD.4 is the only axiom requiring that is commutative.

A.5 Forward Differential Operator and Linear Maps

Definition 3.9 recalls the induced forward differential operator in terms of reverse
differential structure. From this, we may derive an inductive specification of D
analogous to that of Definition 3.13.

Note that the content of this appendix consists of the contributions of the author first
published in [106].

144 Chapter A. Proofs for Chapter 3

Proposition A.23. In an RDC with forward differential operator D defined in terms of R as in
Definition 3.9, we have the following equalities.

D [] = D
[]

= D
[]

=

D
[]

= D [] = D [] =

D[f # g] = f

D[f]
D[g] D[f × g] =

D[f]

D[g]

Proof. We proceed by induction. First, observe that one can calculate the value of D on
each generating by applying Definition 3.9 directly. The inductive step for tensor and
composition is more involved; we give the explicit derivations below.

Tensor Assume that the equality in Definition 3.9 holds for f and g, then calculate as
follows.

D[f × g] = R(2)[f × g]

= R

 R[f]

R[g]



=

R(2)[f]

R(2)[g]

=
D[f]

D[g]

A.5. Forward Differential Operator and Linear Maps 145

Composition Assume that the equality in Definition 3.9 holds for f and g, then
calculate as below.

D[f # g] = R(2)[f # g]

=

f

R[g] R(2)[f]

R(2)[g]

R[g]

= f

R[g] R(2)[f]

R(2)[g]

= f

R[g] R(2)[f]

R(2)[g]

= f

R(2)[f]

R(2)[g]

= f

R(2)[f]

R(2)[g]

=
f

D[f]
D[g]

Note that Proposition A.23 is not a definition: it is an immediate consequence of the
definition of D in terms of R given in Definition 3.9.

146 Chapter A. Proofs for Chapter 3

A.5.1 Forward Differential Operator on Cartesian Distributive Structure

We can similarly derive the values of D
[]

and D [] in a Cartesian Distributive
category.

Proposition A.24 (Forward Derivative on). D
[]

=

Proof.

D
[]

= R(2)
[]

= R

[]

=

=

=

=

Proposition A.25 (Forward Derivative on). D [] =

Proof. Observe that because R [] = R [], we also have R(2) [] = R(2) [] and
therefore D [] = D [] = .

A.5. Forward Differential Operator and Linear Maps 147

A.5.2 Daggers and Linear Sandwiches

Several of the derivations in this thesis involve taking a reverse derivative of the form
R[f # g # h], where f and h are linear. The tedium of calculating such reverse derivatives
can be alleviated by using the ‘linear sandwich’ lemma, which we will shortly prove.
However, we first need the following proposition.

Proposition A.26. Suppose f : A→ B is a linear arrow in an RDC C . Then

R[f] =
f †

where f † := R[f] is the dagger defined in [29, Section 3.2]. 2

Proof. We begin by appeal to [29, Theorems 41 and 42], which allows us to write R[f]
in terms of the ‘contextual linear dagger’ D[f]†[A] ([29, Definition 34]).

R[f] = D[f]†[A] = R[D[f]]

= R

[
f

]

= R[f]

=
f †

Note that the final step of the derivation uses the definition of †.

We can now state the linear sandwich lemma.

Lemma A.27 (Linear Sandwich Lemma). Let A
f→ B

g→ C h→ D be morphisms with f and
h linear (Definition 3.12). Then

R[f # g # h] = R[g]
f

h†
f †

2see also [29, Proposition 24]

148 Chapter A. Proofs for Chapter 3

Proof. If f is linear, then R[f] =
f †

. We can therefore calculate as follows.

R[f # g # h] = f R[f]
R[g]

R[h]g

= f f †R[g]g
h†

= R[g]
f

h†
f †

149

Appendix B

Proofs for Chapter 5

B.1 Composition of Hars is associative up to isomorphism

We will now show associativity of composition for morphisms m
f→ n

g→ o in Har.
Note that since morphisms of Har are equivalence classes of Har representations, we
only need show associativity up to permutation. We begin with a useful lemma.

Proposition B.1. L(f)R = R(f)TL

Proof. L(f)R = f TL # fR = (f TR # fL)T = R(f)TL

We will now prove associativity up to permutation for each of the components
M, L,R,N in separate propositions, which together give the main proof. Note that we
will hereafter write f g for f # g to reduce notational noise.

Proposition B.2. (f (gh))M ∼= ((f g)h)M with the permutation id fK−n ⊗ R(g)TL ⊗ idhK−o:

Proof. We will first simplify (f (gh))M and ((f g)h)M in order to show some
commonalities. We begin by unpacking definitions:

[f (gh)]M =
R(f)M

L(gh)M

Computing L(gh)M, we obtain

L(gh)M =
R(g)M R(g)L

L(h)M

R(g)TL

150 Chapter B. Proofs for Chapter 5

Finally, we can apply R(g)MR(g)L = gTRgMgL to [f (gh)]M, yielding the simplified
diagram:

[f (gh)]M =
gTR

L(h)M

R(g)TL

R(f)M

gM gL

We now turn our attention to [(f g)h]M, which we unpack as follows:

[(f g)h]M =
R(f g)M

L(h)M

Analogously, we compute R(f g)M = (f g)TR(f g)M(f g)R:

R(f g)M =
R(f)M

L(g)M

R(f)TR

L(g)TR

R(f)R

L(g)R

And using that R(f)R = id,

R(f g)M =
R(f)M

L(g)ML(g)TR L(g)R

Finally using that L(g)TRL(g)M = gTRgMgL:

R(f g)M =
R(f)M

gL L(g)RgMgTR

Giving us the simplified diagram for [(f g)h]M:

[(f g)h]M =

R(f)M

gL L(g)RgMgTR

L(h)M

At this point it is clear that [(f g)h]M and [f (gh)]M are related by a permutation. We
now complete the proof by showing that [(f g)h]M ∼= [f (gh)]M for the permutation

B.2. Experimental Setup 151

id⊗ R(g)TL ⊗ id:

R(g)L[f (gh)]MR(g)TL

=

R(f)M

gL R(g)TLgMgTR

L(h)M

R(g)TLR(g)L

Finally, by applying Proposition B.1 we obtain

R(g)L[f (gh)]MR(g)TL =

R(f)M

gL L(g)RgMgTR

L(h)M

= [(f g)h]M

Proposition B.3. [f (gh)]R = (id⊗ R(g)TL ⊗ id)[(f g)h]R

Proof. By similar graphical reasoning, one can compute [(f g)h]R and show it equal to
(id⊗ R(g)TL ⊗ id)[(f g)h]R

Proposition B.4. [f (gh)]L = (id⊗ R(g)TL ⊗ id)[(f g)h]L

Proof. Once again, computing (id⊗ R(g)TL ⊗ id)[(f g)h]R allows us to reach
[f (gh)]L

Proposition B.5. [f (gh)]N = [(f g)h]N(id⊗ R(g)TL ⊗ id)

Proof. Same as for fM, where fN is treated as a diagonal matrix.

Proposition B.6. (Composition in Har is associative up to permutation)

Proof. Immediate from propositions B.2, B.4, B.3, and B.5.

B.2 Experimental Setup

Our experimental setup uses the ASV benchmarking library for Python, and
BenchmarkingTools for Julia. Since each language has its own idiosyncracies, we

152 Chapter B. Proofs for Chapter 5

expect that using a language-specific framework for each implementation will give the
fairest results.

B.2.1 Software Versions

TABLE B.1: Software Versions

Software Version

Python 3.9.4
NumPy 1.20.1
SciPy 1.6.3

Julia 1.6.1
Catlab.jl 0.12.2

B.2.2 Hardware Information

TABLE B.2: Hardware Information

Machine CPU CPU Frequency # cores System Memory

Dell XPS15 7590 Intel Core i7-9750H 2.60GHz 12 16GB

153

Appendix C

Proofs for Chapter 6

C.1 Sequential Normal Form

The decomposition described here is well-known in the literature [5, 76, 77]. We
nevertheless provide a proof here for completeness.

Proposition C.1. Let C be a monoidal category presented by generators and equations. Then
any (finite) term t representing a morphism of C can be factored into ‘layers’:

(id⊗ g1 ⊗ id) # (id⊗ g2 ⊗ id) # . . . # (id⊗ gn ⊗ id)

where each gi is a generating morphism.

This factorization can be diagrammed as follows:

#g1 g2 . . . gn# #X1

A1

Y1

X1

B1

Y1

X2

A2

Y2

X2

B2

Y2

Xn

An

Yn

Xn

Bn

Yn

Note that in general Xi 6= Xi+1 and so on- i.e., the generators need not be “aligned” in
this factorization. For example, we can have morphisms like the following:

Example C.1.

g1

g2

Proof. We proceed by induction on terms. Let S0 denote the set of terms consisting of
identities and generators, Then let

Sn = S0 ∪ {t # u|t, u ∈ Sn−1} ∪ {t⊗ u|t, u ∈ Sn−1}

154 Chapter C. Proofs for Chapter 6

Terms in S0 are clearly already in sequential normal form, so it remains to prove the
inductive case. Assume that any term w ∈ Sn−1 has an equivalent term ŵ in sequential
normal form. Then there are three cases:

1. If v ∈ Sn−1, then we have v̂ by inductive hypothesis.

2. If v = t # u, then t̂ and û exist by inductive hypothesis, and we can form v̂ = t̂ # û.
3. If v = t⊗ u, then v̂ = (t̂⊗ id) # (id⊗ û)

and the proof is complete.

C.2 Well-Definedness of N

In this appendix we verify that N is well-defined. This amounts to two things: first
that N is well-defined with respect to the interchange law, and second that it respects
the equations of Definition 6.5.

In the former case, sequential normal forms are only unique up to interchange [77], so
it must be verified that N is well-defined with respect to this property. This can be
done by checking each of the cases in Definition 6.10. This is straightforward but
tedious; each case follows essentially by naturality and [47, Equations 2.12, 2.13].

In the latter case, we need to verify the equations of Definition 6.5. Specifically, for
each of the functor, adapter, and monoidal equations lhs = rhs, we show that
N (lhs) = N (rhs). We give derivations for these below. Using these derivations one
can then check that the equations hold for cases id • lhs • id = id • rhs • id. This means
that N is equal under any rewrite involving the equations of Definition 6.5. These
checks are relatively straightforward, but we note that the monoidal equations require
the use of the pentagon and triangle axioms, respectively.

We now check that N is well-defined with respect to the functor, adapter, and
monoidal equations of Definition 6.5, beginning with the functor equations (6.6).

N (idA) = idA = N (idA)

N (f # g) = N (f) #N (g) = f # g = N (f # g)
Now the adapter equations (6.7):

C.2. Well-Definedness of N 155

N (Φ # (f • g) # Φ∗) = N (Φ) #N (f • g) #N (Φ∗)

= N (f • g)

= N (f • id) #N (id • g)

= (f ⊗ id) # (id⊗ g)

= f ⊗ g

= N (f ⊗ g)

N (Φ∗ # f ⊗ g # Φ∗) = N (Φ∗) #N (f ⊗ g) #N (Φ)

= N (f ⊗ g)

= f ⊗ g

= (f ⊗ id) # (id⊗ g)

= N (f • id) #N (id • g)

= N ((f • id) # (id • g))
= N (f • g)

N (ϕ # ϕ∗) = N (ϕ) #N (ϕ∗)

= idIC # idIC
= idIC

= N (idIC)

N (ϕ∗ # ϕ) = N (ϕ∗) #N (ϕ)

= idIC # idIC
= idIC

= N (idIC)

= N (idIC)

Finally the associator/unitor equations (6.8):

156 Chapter C. Proofs for Chapter 6

N (Φ∗ # (id •Φ∗) # (Φ • id) # Φ)

= N (Φ∗) #N (id •Φ∗) #N (Φ • id) #N (Φ)

= id # id # α # id
= α

= N (α)

N (Φ∗ # (Φ∗ • id) # (id •Φ) # Φ)

= N (Φ∗) #N (Φ∗ • id) #N (id •Φ) #N (Φ)

= id # α−1 # id # id
= α−1

= N (α−1)

N (Φ∗ # (ϕ∗ • id)) = N (Φ∗) #N (ϕ∗ • id)

= id # λ

= λ

= N (λ)

N ((ϕ • id) # Φ) = N (ϕ • id) #N (Φ)

= λ−1 # id
= λ−1

= N (λ−1)

N (Φ∗ # (id • ϕ∗)) = N (Φ∗) #N (id • ϕ∗)

= id # ρ

= ρ

= N (ρ)

C.3. Coherence Corollary 157

N ((id # ϕ) # Φ) = N (id # ϕ) #N (Φ)

= ρ−1 # id
= ρ−1

= N (ρ−1)

Thus N is well-defined with respect to the monoidal equations.

C.3 Coherence Corollary

This section contains a brief graphical exposition of Mac Lane’s corollary to the
coherence theorem. Note that we essentially just recount Mac Lane’s proof in a
graphical way, and so the author’s contribution is only pedagogical. In contrast, our
proof of the main coherence result in Section 6.7 is novel.

We begin with an informal statement of the coherence corollary. Take a commuting
diagram of W , for instance the triangle axiom below left (C.1).

W ⊗ (IC ⊗W) (W ⊗ IC)⊗W

W ⊗W

αW,IC ,W

idW ⊗ λW ρW ⊗ idW

(C.1)

A⊗ (IC ⊗ B) (A⊗ IC)⊗ B

A⊗ B

αA,IC ,B

idA ⊗ λB ρA ⊗ idB

(C.2)

The coherence theorem allows one to ‘export’ this diagram to an arbitrary monoidal
category M by replacing each ith occurrence of W in a vertex with some Ai in M . For
instance, let A and B be M objects, then we substitute the first occurrence ofW in each
vertex for A, and the second for B, giving us the following commuting diagram in M

on the right (C.2).

Remark C.2. The coherence theorem does not say that diagrams in M whose edges are
components of natural transformations all commute; only those which correspond to
diagrams in W . In other words, if we have parallel M -arrows f , g : A→ B such that
f , g are constructed from associators and unitors, we may not in general conclude that
f = g.

Now, it is not immediately obvious how even this informal coherence result follows
from the statement of Theorem 6.23. Although for some fixed object M ∈M there is a
unique, strict monoidal functor U : W →M , this does not let us obtain every diagram

158 Chapter C. Proofs for Chapter 6

we would like. In particular, using U in this way we cannot obtain diagrams with
multiple variables such as (C.2)–only those where every W is replaced by M.

To allow for diagrams with multiple variables, Mac Lane constructs the non-strict
monoidal category It(M). This will allow us to regard objects A ∈ W of size m as
functors. In particular, the unique strict monoidal functor U will map A to a functor
U(A) : Mm →M as follows.

IM 7→ M
1 CI

W 7→ M M

A⊗ B 7→
U(A)

U(B)
MMm+n ⊗

(C.3)

In the above, A and B are assumed to have size m and n, respectively. In addition,
CI denotes the strictification of the constant functor ConstI : 1→M mapping the

single object of 1 to the monoidal unit IM , and ⊗ represents the strictification of the
tensor product of M .

Now, U : W → It(M) preserves diagrams since it is a functor, and so we may picture
the triangle axiom in It(M) graphically as below.

αW,IW ,W

ρW ⊗ idWidW ⊗ λW

⊗ ⊗ ⊗ ⊗

⊗

CI CI

The vertices of the diagram above are highlighted in blue and depict functors, while
edges depict natural transformations. This transformation of W -objects to functors
formalises the intuition of ‘replacing the ith occurrence ofW in a diagram’. More
concretely, for a given diagram in W with vertices Vi of size n, we now simply make a
particular choice of M n-object for each vertex and apply U(Vi) : M n →M to obtain a
‘multivariable’ diagram in M .

For completeness, we now define It(M) as in Mac Lane [80] and show how it is
monoidal.

Definition C.3. It(M) (from [80, p. 169])

C.3. Coherence Corollary 159

Fix an arbitrary monoidal category (M ,⊗, IM , α,λ, ρ). Then It(M) is the category
with:

1. Objects: functors M n →M

2. Arrows: natural transformations

With M n denoting the n-fold product M × n. . .×M .

The use of our graphical notation above is justified because It(M) forms a monoidal
category in the following way.

Proposition C.4. It(M) is a (non-strict) monoidal category (from [80, p. 169])
The monoidal unit is the constant functor ConstI : 1→M . The monoidal product
□ : It(M)× It(M)→ It(M) is defined on objects (functors F,G) as:

F□G =
F

G
⊗ MMm+n

and pointwise on arrows η : F1 → G1 and µ : F2 → G2 so that for F1,G1 : Mm →M and
F2,G2 : M n →M the component at A× B ∈Mm+n is

(η□µ)A×B =

(
η

µ
F1□F2 G1□G2

)
A×B

=
ηA

µB
F1(A)⊗ F2(B) G1(A)⊗ G2(B)

Associators and unitors are similarly defined pointwise.

λFA =

(
ConstIM□F

F

)
A
= IM ⊗ F(A)

F(A)

ρFA = F(A)⊗ IM
F(A)

αF,G,HA,B,C =

G(B)⊗H(C)

F(A)⊗ G(B)
F(A)

H(C)

Proof. Associators and unitors are natural since each of their components is natural.
That is, given a natural transformation µ : F→ Gwe know that ρF # µ = (µ□id) # ρG

precisely because the components of both sides are always equal. For example, for all
A we have ρFA # µ = (µ□id)A # ρGA . A similar argument applies to α and λ. Further, the
axioms of monoidal categories are satisfied for the same reason: each diagram
commutes because all its components commute using the monoidal structure of M .

160 Chapter C. Proofs for Chapter 6

Finally, we can state the coherence result as in Mac Lane [80].

Corollary C.5. (from [80, p. 169]) Let M be a monoidal category. There is a function which
assigns to each pair of objects A, B ∈ W of size n a (unique) natural isomorphism
canM (A, B) : U(A)→ U(B) called the canonical map from U(A) to U(B), in such a way
that the identity arrow ConstIM → ConstIM is canonical (between functors of 0 variables) the
identity transformation id : idM → idM is canonical, α,λ, ρ (and their inverses) are canonical,
and the composite and □-product of canonical maps is canonical.

Proof. (from [80, p. 169])
Let U : W → It(M) be the unique strict monoidal functor mappingW to the identity
functor id : M →M so that U acts on objects as in (C.3). Then U acts on morphisms of
W as follows.

idIW 7→ id idW 7→ id

λA 7→ λU(A) ρA 7→ ρU(A) αA,B,C 7→ αU(A),U(B),U(C)

f ⊗ g 7→ U(f)□U(g) f # g 7→ U(f) #U(g)
Thus canM (A, B) = U(f) for each unique f : A→ B in W .

Finally, note that by Proposition 6.40, the canonical morphism canM (A, B) can be
defined as canM (A, B) = (U ◦ N)(can(A, B)). Thus we may use the normal form
can(A, B) to determine the canonical natural isomorphism in It(M).

161

Appendix D

Additional Material

D.1 Implementations

Implementation D.1 (Reverse Derivative Ascent Library).
https://github.com/statusfailed/rda

Implementation D.2 (Reverse Derivative Ascent Experiments).
https://github.com/statusfailed/act-2020-experiments

Implementation D.3 (Implementation of Numeric Optics Library and Experiments).
https://github.com/statusfailed/numeric-optics-python

Implementation D.4 (Cartographer-HAR).
https://github.com/statusfailed/cartographer-har

https://github.com/statusfailed/rda
https://github.com/statusfailed/act-2020-experiments
https://github.com/statusfailed/numeric-optics-python
https://github.com/statusfailed/cartographer-har

163

References

[1] Marcelo Aguiar and Swapneel Mahajan. Monoidal Functors, Species and Hopf
Algebras. CRM monograph series. American Mathematical Society, Providence,
RI, November 2010.

[2] Francisco Alarcón and Dan Anderson. Commutative semirings and their lattices
of ideals. Houston Journal of Mathematics, 20, 1994. URL
https://www.math.uh.edu/~hjm/vol20-4.html.

[3] Mario Alvarez-Picallo. Change actions: from incremental computation to
discrete derivatives, 2020. URL https://arxiv.org/abs/2002.05256.

[4] Mario Alvarez-Picallo and C. H. Luke Ong. Change actions: Models of
generalised differentiation, 2019. URL https://arxiv.org/abs/1902.05465.

[5] Mario Alvarez-Picallo, Dan R. Ghica, David Sprunger, and Fabio Zanasi.
Functorial string diagrams for reverse-mode automatic differentiation. CoRR,
abs/2107.13433, 2021. URL https://arxiv.org/abs/2107.13433.

[6] Armen S. Asratian, Tristan M. J. Denley, and Roland Häggkvist. Bipartite Graphs
and their Applications. Cambridge University Press, 1998.

[7] John C. Baez and Aaron D. Lauda. A prehistory of n-categorical physics. In Deep
Beauty, pages 13–128. Cambridge University Press, apr 2011. doi:
10.1017/cbo9780511976971.003. URL
https://doi.org/10.1017%2Fcbo9780511976971.003.

[8] John C. Baez and Jade Master. Open petri nets. Mathematical Structures in
Computer Science, 30(3):314–341, mar 2020. doi: 10.1017/s0960129520000043.
URL https://doi.org/10.1017%2Fs0960129520000043.

[9] Francesco Bellucci and AHTI Pietarinen. From mitchell to carus: Fourteen years
of logical graphs in the making. Transactions of the Charles S. Peirce Society, 52, 03
2016. doi: 10.2979/trancharpeirsoc.52.4.02.

[10] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or
propagating gradients through stochastic neurons for conditional computation,
2013. URL https://arxiv.org/abs/1308.3432.

https://www.math.uh.edu/~hjm/vol20-4.html
https://arxiv.org/abs/2002.05256
https://arxiv.org/abs/1902.05465
https://arxiv.org/abs/2107.13433
https://doi.org/10.1017%2Fcbo9780511976971.003
https://doi.org/10.1017%2Fs0960129520000043
https://arxiv.org/abs/1308.3432

164 REFERENCES

[11] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, New
York, 2007. ISBN 978-0-387-31073-2.

[12] R.F. Blute, J.R.B. Cockett, R.A.G. Seely, and T.H. Trimble. Natural deduction and
coherence for weakly distributive categories. Journal of Pure and Applied Algebra,
113(3):229–296, 1996. ISSN 0022-4049. doi:
https://doi.org/10.1016/0022-4049(95)00159-X. URL
https://www.sciencedirect.com/science/article/pii/002240499500159X.

[13] Richard F. Blute, J. R. B. Cockett, and R. A. G. Seely. Cartesian differential
categories. Theory and Applications of Categories, 22, 2009. URL
https://emis.univie.ac.at/journals/TAC/volumes/22/23/22-23abs.html.

[14] Guillaume Boisseau. String diagrams for optics, 2020. URL
https://arxiv.org/abs/2002.11480.

[15] Guillaume Boisseau and Paweł Sobociński. String diagrammatic electrical
circuit theory. Electronic Proceedings in Theoretical Computer Science, 372:178–191,
nov 2022. doi: 10.4204/eptcs.372.13. URL
https://doi.org/10.4204%2Feptcs.372.13.

[16] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A categorical semantics of
signal flow graphs. In Paolo Baldan and Daniele Gorla, editors, CONCUR 2014 –
Concurrency Theory, pages 435–450, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg. ISBN 978-3-662-44584-6.

[17] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński, and Fabio
Zanasi. Rewriting modulo symmetric monoidal structure. In Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, jul 2016.
doi: 10.1145/2933575.2935316. URL
https://doi.org/10.1145%2F2933575.2935316.

[18] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio
Zanasi. String diagram rewrite theory i: Rewriting with frobenius structure,
2020. URL https://arxiv.org/abs/2012.01847.

[19] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio
Zanasi. String diagram rewrite theory ii: Rewriting with symmetric monoidal
structure, 2021. URL https://arxiv.org/abs/2104.14686.

[20] Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawe Sobociski, and Fabio
Zanasi. String diagram rewrite theory iii: Confluence with and without
frobenius, 2021. URL https://arxiv.org/abs/2109.06049.

[21] Filippo Bonchi, Pawel Sobociński, and Fabio Zanasi. A Survey of Compositional
Signal Flow Theory. In Advancing Research in Information and Communication

https://www.sciencedirect.com/science/article/pii/002240499500159X
https://emis.univie.ac.at/journals/TAC/volumes/22/23/22-23abs.html
https://arxiv.org/abs/2002.11480
https://doi.org/10.4204%2Feptcs.372.13
https://doi.org/10.1145%2F2933575.2935316
https://arxiv.org/abs/2012.01847
https://arxiv.org/abs/2104.14686
https://arxiv.org/abs/2109.06049

REFERENCES 165

Technology, volume AICT-600, pages 29–56. 2021. doi:
10.1007/978-3-030-81701-5_2. URL https://hal.inria.fr/hal-03325995.
part : TC 1: Foundations of Computer Science.

[22] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A Survey of Compositional
Signal Flow Theory, pages 29–56. Springer International Publishing, Cham, 2021.
ISBN 978-3-030-81701-5. doi: 10.1007/978-3-030-81701-5_2. URL
https://doi.org/10.1007/978-3-030-81701-5_2.

[23] Dylan Braithwaite and Jules Hedges. Dependent bayesian lenses: Categories of
bidirectional markov kernels with canonical bayesian inversion, 2022. URL
https://arxiv.org/abs/2209.14728.

[24] Titouan Carette and Simon Perdrix. Colored props for large scale graphical
reasoning, 2020. URL https://arxiv.org/abs/2007.03564.

[25] Titouan Carette, Yohann D'Anello, and Simon Perdrix. Quantum algorithms
and oracles with the scalable ZX-calculus. Electronic Proceedings in Theoretical
Computer Science, 343:193–209, sep 2021. doi: 10.4204/eptcs.343.10. URL
https://doi.org/10.4204%2Feptcs.343.10.

[26] Emma Chollet, Bryce Clarke, Michael Johnson, Maurine Songa, Vincent Wang,
and Gioele Zardini. Limits and colimits in a category of lenses. Electronic
Proceedings in Theoretical Computer Science, 372:164–177, nov 2022. doi:
10.4204/eptcs.372.12. URL https://doi.org/10.4204%2Feptcs.372.12.

[27] Francois Chollet et al. Keras, 2015. URL https://github.com/fchollet/keras.

[28] Vikraman Choudhury, Jacek Karwowski, and Amr Sabry. Symmetries in
reversible programming: From symmetric rig groupoids to reversible
programming languages, 2021. URL https://arxiv.org/abs/2110.05404.

[29] Robin Cockett, Geoffrey Cruttwell, Jonathan Gallagher, Jean-Simon Pacaud
Lemay, Benjamin MacAdam, Gordon Plotkin, and Dorette Pronk. Reverse
derivative categories, 2019.

[30] Bob Coecke and Ross Duncan. A graphical calculus for quantum observables.
Preprint, 2007.

[31] Bob Coecke and Ross Duncan. Interacting quantum observables. In Proceedings
of the 37th International Colloquium on Automata, Languages and Programming
(ICALP), Lecture Notes in Computer Science, 2008. doi:
10.1007/978-3-540-70583-3_25.

[32] G. A. Constantinides. Rethinking arithmetic for deep neural networks.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and

https://hal.inria.fr/hal-03325995
https://doi.org/10.1007/978-3-030-81701-5_2
https://arxiv.org/abs/2209.14728
https://arxiv.org/abs/2007.03564
https://doi.org/10.4204%2Feptcs.343.10
https://doi.org/10.4204%2Feptcs.372.12
https://github.com/fchollet/keras
https://arxiv.org/abs/2110.05404

166 REFERENCES

Engineering Sciences, 378(2166):20190051, 2020. doi: 10.1098/rsta.2019.0051. URL
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0051.

[33] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect:
Training Deep Neural Networks with binary weights during propagations.
arXiv:1511.00363 [cs], 2015.

[34] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or -1, 2016. URL
https://arxiv.org/abs/1602.02830.

[35] G. S. H. CRUTTWELL. Cartesian differential categories revisited. Mathematical
Structures in Computer Science, 27(1):7091, 2017. doi: 10.1017/S0960129515000055.

[36] G. S. H. Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson, and Fabio
Zanasi. Categorical foundations of gradient-based learning, 2021. URL
https://arxiv.org/abs/2103.01931.

[37] Geoffrey Cruttwell, Jonathan Gallagher, and Dorette Pronk. Categorical
semantics of a simple differential programming language. Electronic Proceedings
in Theoretical Computer Science, 333:289–310, feb 2021. doi: 10.4204/eptcs.333.20.
URL https://doi.org/10.4204%2Feptcs.333.20.

[38] Geoffrey Cruttwell, Jonathan Gallagher, Jean-Simon Pacaud Lemay, and Dorette
Pronk. Monoidal reverse differential categories, 2022. URL
https://arxiv.org/abs/2203.12478.

[39] Giovanni de Felice, Alexis Toumi, and Bob Coecke. DisCoPy: Monoidal
categories in python. Electronic Proceedings in Theoretical Computer Science, 333:
183–197, feb 2021. doi: 10.4204/eptcs.333.13. URL
https://doi.org/10.4204%2Feptcs.333.13.

[40] Pierre de Fermat. Letter to frénicle de bessy, 1640.

[41] Lucas Dixon and Aleks Kissinger. Open graphs and monoidal theories, 2010.
URL https://arxiv.org/abs/1011.4114.

[42] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[43] Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via
asymmetric hashing, 2022. URL https://arxiv.org/abs/2210.10173.

[44] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd
Edition). Wiley-Interscience, USA, 2000. ISBN 978-0-471-05669-0.

https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0051
https://arxiv.org/abs/1511.00363
https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/2103.01931
https://doi.org/10.4204%2Feptcs.333.20
https://arxiv.org/abs/2203.12478
https://doi.org/10.4204%2Feptcs.333.13
https://arxiv.org/abs/1011.4114
https://arxiv.org/abs/2210.10173

REFERENCES 167

[45] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture
search: A survey. Journal of Machine Learning Research, 2018. doi:
10.48550/ARXIV.1808.05377. URL
http://jmlr.org/papers/v20/18-598.html.

[46] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol,
Pascal Vincent, and Samy Bengio. Why does unsupervised pre-training help
deep learning? J. Mach. Learn. Res., 11:625660, mar 2010. ISSN 1532-4435.

[47] P. I. Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, editors. Tensor
categories. Number volume 205 in Mathematical surveys and monographs.
American Mathematical Society, 2015. ISBN 978-1-4704-2024-6. URL
https://klein.mit.edu/~etingof/egnobookfinal.pdf.

[48] Brendan Fong. Decorated cospans. 2015. doi: 10.48550/ARXIV.1502.00872. URL
https://arxiv.org/abs/1502.00872.

[49] Brendan Fong and Michael Johnson. Lenses and learners. Proceedings of the 8th
International Workshop on Bidirectional Transformations, 2019. doi:
10.48550/ARXIV.1903.03671. URL https://arxiv.org/abs/1903.03671.

[50] Brendan Fong, David I. Spivak, and Rémy Tuyéras. Backprop as functor: A
compositional perspective on supervised learning. 2017. doi:
10.48550/ARXIV.1711.10455. URL https://arxiv.org/abs/1711.10455.

[51] Apache Software Foundation. Apache airflow, 2022. URL
https://airflow.apache.org/.

[52] Foundry. Nuke, 2022. URL
https://www.foundry.com/products/nuke-family/nuke.

[53] Thomas Fox. Coalgebras and cartesian categories, Jan 1976. URL
http://dx.doi.org/10.1080/00927877608822127.

[54] Bruno Gavranović. Space-time tradeoffs of lenses and optics via higher category
theory, 2022. URL https://arxiv.org/abs/2209.09351.

[55] Dan R. Ghica and Achim Jung. Categorical semantics of digital circuits. In 2016
Formal Methods in Computer-Aided Design (FMCAD), pages 41–48, 2016. doi:
10.1109/FMCAD.2016.7886659.

[56] Dan R. Ghica and Achim Jung. Categorical semantics of digital circuits. In 2016
Formal Methods in Computer-Aided Design (FMCAD), pages 41–48, 2016. doi:
10.1109/FMCAD.2016.7886659.

[57] Dan R. Ghica, George Kaye, and David Sprunger. A compositional theory of
digital circuits, 2022.

http://jmlr.org/papers/v20/18-598.html
https://klein.mit.edu/~etingof/egnobookfinal.pdf
https://arxiv.org/abs/1502.00872
https://arxiv.org/abs/1903.03671
https://arxiv.org/abs/1711.10455
https://airflow.apache.org/
https://www.foundry.com/products/nuke-family/nuke
http://dx.doi.org/10.1080/00927877608822127
https://arxiv.org/abs/2209.09351

168 REFERENCES

[58] Jonathan S. Golan. Linear Algebra over a Semiring, pages 211–221. Springer
Netherlands, Dordrecht, 1999. ISBN 978-94-015-9333-5. doi:
10.1007/978-94-015-9333-5_19. URL
https://doi.org/10.1007/978-94-015-9333-5_19.

[59] Jonathan S Golan. Semirings and their Applications. Springer, Dordrecht,
Netherlands, 2010. doi: 10.1007/978-94-015-9333-5.

[60] John L. Gustafson and Isaac T. Yonemoto. Beating floating point at its own
game: Posit arithmetic. Supercomputing Frontiers and Innovations, 4(2), 2017. doi:
10.14529/jsfi170206.

[61] Fred G. Gustavson. Two fast algorithms for sparse matrices: Multiplication and
permuted transposition. ACM Trans. Math. Softw., 4(3):250269, September 1978.
ISSN 0098-3500. URL https://doi.org/10.1145/355791.355796.

[62] Amar Hadzihasanovic and Diana Kessler. Data structures for topologically
sound higher-dimensional diagram rewriting, 2022. URL
https://arxiv.org/abs/2209.09509.

[63] Jules Hedges. Limits of bimorphic lenses, 2018. URL
https://arxiv.org/abs/1808.05545.

[64] Benjamin Heintz, Rankyung Hong, Shivangi Singh, Gaurav Khandelwal, Corey
Tesdahl, and Abhishek Chandra. Mesh: A flexible distributed hypergraph
processing system, 2019.

[65] Peter Hines. Identities in modular arithmetic from reversible coherence
operations, 2013. URL https://arxiv.org/abs/1304.7128.

[66] Peter Hines. Coherence and strictification for self-similarity, 2015.

[67] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359–366, 1989. doi:
10.1016/0893-6080(89)90020-8.

[68] Nathan Jacobson. Basic Algebra I: Second Edition. Courier Corporation, December
2012. ISBN 978-0-486-13522-9.

[69] Jeff Johnson. Rethinking floating point for deep learning, 2018. URL
https://arxiv.org/abs/1811.01721.

[70] André Joyal and Ross Street. The geometry of tensor calculus, i. Advances in
Mathematics, 88(1):55–112, 1991. ISSN 0001-8708. doi:
https://doi.org/10.1016/0001-8708(91)90003-P. URL
https://www.sciencedirect.com/science/article/pii/000187089190003P.

https://doi.org/10.1007/978-94-015-9333-5_19
https://doi.org/10.1145/355791.355796
https://arxiv.org/abs/2209.09509
https://arxiv.org/abs/1808.05545
https://arxiv.org/abs/1304.7128
https://arxiv.org/abs/1811.01721
https://www.sciencedirect.com/science/article/pii/000187089190003P

REFERENCES 169

[71] A. B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558562,
nov 1962. ISSN 0001-0782. doi: 10.1145/368996.369025. URL
https://doi.org/10.1145/368996.369025.

[72] Lukasz Kaiser, Aidan N. Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar,
Llion Jones, and Jakob Uszkoreit. One model to learn them all, 2017. URL
https://arxiv.org/abs/1706.05137.

[73] Aleks Kissinger. Abstract tensor systems as monoidal categories, 2013. URL
https://arxiv.org/abs/1308.3586.

[74] Aleks Kissinger and John van de Wetering. PyZX: Large Scale Automated
Diagrammatic Reasoning. In Bob Coecke and Matthew Leifer, editors,
Proceedings 16th International Conference on Quantum Physics and Logic,
Chapman University, Orange, CA, USA., 10-14 June 2019, volume 318 of
Electronic Proceedings in Theoretical Computer Science, pages 229–241. Open
Publishing Association, 2020. doi: 10.4204/EPTCS.318.14.

[75] Aleks Kissinger and Vladimir Zamdzhiev. Quantomatic: A proof assistant for
diagrammatic reasoning. In Automated Deduction - CADE-25, pages 326–336.
Springer International Publishing, 2015. doi: 10.1007/978-3-319-21401-6_22.
URL https://doi.org/10.1007%2F978-3-319-21401-6_22.

[76] Yves Lafont. Towards an algebraic theory of Boolean circuits. Journal of Pure and
Applied Algebra, 184(2-3):257–310, 2003. ISSN 00224049. doi:
10.1016/S0022-4049(03)00069-0.

[77] Yves Lafont. Equational reasoning with 2-dimensional diagrams, volume 909, pages
170–195. 01 2006. ISBN 978-3-540-59340-9. doi: 10.1007/3-540-59340-3_13.

[78] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. In Proceedings of the IEEE, pages
2278–2324, 1998. doi: 10.1109/5.726791.

[79] Moshe Leshno et al. Multilayer feedforward networks with a nonpolynomial
activation function can approximate any function. Neural Networks, 6(6):
861–867, 1993. doi: 10.1016/s0893-6080(05)80131-5.

[80] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1997.
ISBN 978-1-4419-3123-8. doi: 10.1007/978-1-4757-4721-8.

[81] Paul-André Melliès. Functorial boxes in string diagrams. In Zoltán Ésik, editor,
Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual
Conference of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings,
volume 4207 of Lecture Notes in Computer Science, pages 1–30. Springer, 2006. doi:
10.1007/11874683_1. URL https://doi.org/10.1007/11874683_1.

https://doi.org/10.1145/368996.369025
https://arxiv.org/abs/1706.05137
https://arxiv.org/abs/1308.3586
https://doi.org/10.1007%2F978-3-319-21401-6_22
https://doi.org/10.1007/11874683_1

170 REFERENCES

[82] Evan Patterson and other contributors. Algebraicjulia/catlab.jl: v0.12.2, May
2021. URL https://doi.org/10.5281/zenodo.4736069.

[83] Evan Patterson, David I. Spivak, and Dmitry Vagner. Wiring diagrams as
normal forms for computing in symmetric monoidal categories. In Proceedings of
the 2020 Applied Category Theory Conference, 2020. URL
http://dx.doi.org/10.4204/EPTCS.333.4.

[84] Evan Patterson, Owen Lynch, and James Fairbanks. Categorical data structures
for technical computing. 06 2021. URL https://arxiv.org/abs/2106.04703.

[85] Evan Patterson, David I. Spivak, and Dmitry Vagner. Wiring diagrams as
normal forms for computing in symmetric monoidal categories. Electronic
Proceedings in Theoretical Computer Science, 333:49–64, feb 2021. doi:
10.4204/eptcs.333.4. URL https://doi.org/10.4204%2Feptcs.333.4.

[86] Roger Penrose. Applications of negative dimensional tensors. In Combinatorial
Mathematics and its Applications, 1971. URL
https://www.mscs.dal.ca/~selinger/papers/graphical-bib/public/
Penrose-applications-of-negative-dimensional-tensors.pdf.

[87] D. PLUMP. TERM GRAPH REWRITING, pages 3–61. doi:
10.1142/9789812815149_0001. URL
https://www.worldscientific.com/doi/abs/10.1142/9789812815149_0001.

[88] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. Large-scale deep
unsupervised learning using graphics processors. In Proceedings of the 26th
Annual International Conference on Machine Learning - ICML ’09, pages 1–8,
Montreal, Quebec, Canada, 2009. ACM Press. ISBN 978-1-60558-516-1. doi:
10.1145/1553374.1553486.

[89] Mitchell Riley. Categories of optics, 2018. URL
https://arxiv.org/abs/1809.00738.

[90] Sebastian Ruder. An overview of gradient descent optimization algorithms,
2016. URL https://arxiv.org/abs/1609.04747.

[91] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, jan 2015. doi: 10.1016/j.neunet.2014.09.003. URL
https://doi.org/10.1016%2Fj.neunet.2014.09.003.

[92] P. Selinger. A survey of graphical languages for monoidal categories. In New
Structures for Physics, pages 289–355. Springer Berlin Heidelberg, 2010. doi:
10.1007/978-3-642-12821-9_4. URL
https://doi.org/10.1007%2F978-3-642-12821-9_4.

https://doi.org/10.5281/zenodo.4736069
http://dx.doi.org/10.4204/EPTCS.333.4
https://arxiv.org/abs/2106.04703
https://doi.org/10.4204%2Feptcs.333.4
https://www.mscs.dal.ca/~selinger/papers/graphical-bib/public/Penrose-applications-of-negative-dimensional-tensors.pdf
https://www.mscs.dal.ca/~selinger/papers/graphical-bib/public/Penrose-applications-of-negative-dimensional-tensors.pdf
https://www.worldscientific.com/doi/abs/10.1142/9789812815149_0001
https://arxiv.org/abs/1809.00738
https://arxiv.org/abs/1609.04747
https://doi.org/10.1016%2Fj.neunet.2014.09.003
https://doi.org/10.1007%2F978-3-642-12821-9_4

REFERENCES 171

[93] Claude E. Shannon. The Theory and Design of Linear Differential Equation
Machines, pages 514–559. Jan 1942. doi: 10.1109/9780470544242.ch33.

[94] Michael Shulman. A practical type theory for symmetric monoidal categories,
2019. URL https://arxiv.org/abs/1911.00818.

[95] Pawel Sobocinski, Paul W. Wilson, and Fabio Zanasi. CARTOGRAPHER: A Tool
for String Diagrammatic Reasoning (Tool Paper). In Markus Roggenbach and
Ana Sokolova, editors, 8th Conference on Algebra and Coalgebra in Computer
Science (CALCO 2019), volume 139 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 20:1–20:7, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-120-7. doi:
10.4230/LIPIcs.CALCO.2019.20. URL
http://drops.dagstuhl.de/opus/volltexte/2019/11448.

[96] David I. Spivak. Learners' languages. Electronic Proceedings in Theoretical
Computer Science, 372:14–28, nov 2022. doi: 10.4204/eptcs.372.2. URL
https://doi.org/10.4204%2Feptcs.372.2.

[97] David Sprunger and Shin-ya Katsumata. Differentiable causal computations via
delayed trace, 2019. URL https://arxiv.org/abs/1903.01093.

[98] Richard S Sutton and Andrew G Barto. Reinforcement Learning. Adaptive
Computation and Machine Learning series. Bradford Books, Cambridge, MA, 2
edition, November 2018.

[99] Unity Software. Unity3d, 2022. URL https://unity3d.com/.

[100] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need,
2017. URL https://arxiv.org/abs/1706.03762.

[101] Erwei Wang, James J. Davis, Peter Y. K. Cheung, and George A. Constantinides.
LUTNet: Rethinking Inference in FPGA Soft Logic. IEEE International
Symposium on Field-Programmable Custom Computing Machines, April 2019. doi:
10.1109/FCCM.2019.00014.

[102] William Wernick. Complete sets of logical functions. Transactions of the American
Mathematical Society, 51(1):117, 1942. doi: 10.2307/1989982.

[103] Paul Wilson and Fabio Zanasi. The cost of compositionality: A
high-performance implementation of string diagram composition, 2021. URL
https://arxiv.org/abs/2105.09257.

[104] Paul Wilson and Fabio Zanasi. Reverse derivative ascent: A categorical
approach to learning boolean circuits. Electronic Proceedings in Theoretical

https://arxiv.org/abs/1911.00818
http://drops.dagstuhl.de/opus/volltexte/2019/11448
https://doi.org/10.4204%2Feptcs.372.2
https://arxiv.org/abs/1903.01093
https://unity3d.com/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2105.09257

172 REFERENCES

Computer Science, 333:247–260, feb 2021. doi: 10.4204/eptcs.333.17. URL
https://doi.org/10.4204%2Feptcs.333.17.

[105] Paul Wilson and Fabio Zanasi. Categories of differentiable polynomial circuits
for machine learning, 2022. URL https://arxiv.org/abs/2203.06430.

[106] Paul Wilson and Fabio Zanasi. An axiomatic approach to differentiation of
polynomial circuits. Journal of Logical and Algebraic Methods in Programming, 135:
100892, 2023. ISSN 2352-2208. doi:
https://doi.org/10.1016/j.jlamp.2023.100892. URL
https://www.sciencedirect.com/science/article/pii/S2352220823000469.

[107] Paul Wilson, Dan Ghica, and Fabio Zanasi. String diagrams for non-strict
monoidal categories, 2022. URL https://arxiv.org/abs/2201.11738.

[108] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius.
Integer quantization for deep learning inference: Principles and empirical
evaluation, 2020. URL https://arxiv.org/abs/2004.09602.

[109] Fabio Zanasi. Interacting hopf algebras: the theory of linear systems, 2018. URL
https://arxiv.org/abs/1805.03032.

https://doi.org/10.4204%2Feptcs.333.17
https://arxiv.org/abs/2203.06430
https://www.sciencedirect.com/science/article/pii/S2352220823000469
https://arxiv.org/abs/2201.11738
https://arxiv.org/abs/2004.09602
https://arxiv.org/abs/1805.03032

	Contents
	Declaration of Authorship
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.1.1 String Diagrams and Gradient-Based Learning
	1.1.2 Datastructures for Representing Large Diagrams
	1.1.3 String Diagrams and (Non-)Strictness
	1.1.4 Summary

	1.2 Content of the Thesis
	1.2.1 Part I
	1.2.2 Part II

	1.3 Synopsis and Original Contributions
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

	1.4 Related Work

	2 Background
	2.1 String Diagrams
	2.2 Presentations by Generators and Equations
	2.3 Cartesian Symmetric Monoidal Categories

	I Circuit Models and Machine Learning
	3 Polynomial Circuits
	3.1 Overview
	3.1.1 Relationship to Published Work

	3.2 Synopsis
	3.3 Preliminaries
	3.3.1 Forward Derivatives from Reverse Derivatives

	3.4 RDCs for Categories Presented by Generators and Equations
	3.5 Polynomial Circuits
	3.6 Functional Completeness
	3.7 Case Studies
	3.7.1 Neural Network Layers as Morphisms in PolyCircS
	3.7.2 Finite Semirings

	4 Machine Learning with Circuits
	4.1 Overview
	4.1.1 Relationship to Published Work

	4.2 Synopsis
	4.3 Preliminaries
	4.3.1 Reverse Derivatives as Lenses

	4.4 Reverse Derivative Ascent
	4.4.1 Reverse Derivatives and Learning
	4.4.2 Reverse Derivative Ascent

	4.5 Lenses and Learning
	4.5.1 The Learning Step as a Lens

	4.6 Case Studies
	4.6.1 Datasets
	The Iris dataset
	The MNIST image classification benchmark

	4.6.2 Neural Networks
	4.6.2.1 Simple and Hidden Models and the Iris Dataset
	4.6.2.2 Convolutional model and the MNIST dataset

	4.6.3 Reverse Derivative Ascent
	4.6.3.1 The eval model and the Iris Dataset
	4.6.3.2 The pseudoLinear model and the MNIST dataset

	4.7 Implementation as Lenses of Functions

	II Datastructures for Circuits
	5 Datastructures and Algorithms
	5.1 Overview
	5.1.1 Relationship to Published Work

	5.2 Synopsis
	5.3 Preliminaries
	5.3.1 Open Hypergraphs
	5.3.2 Parallel Hypergraph Processing
	5.3.3 Adjacency Matrices and PROPs of Matrices

	5.4 The Hypergraph Adjacency Representation
	5.4.1 Main Definition
	5.4.2 Permutation Equivalence and Boundary Orderings

	5.5 Operations on HARs
	5.6 The Category of Hars
	5.7 Complexity
	5.8 Empirical
	Experiment Details
	5.8.1 Benchmark #1: Repeated Tensor
	5.8.2 Benchmark #2: Small-Boundary Composition
	5.8.3 Benchmark #3: Large-Boundary Composition
	5.8.4 Benchmark #4: Synthetic Benchmark

	5.9 Extensions to Hars

	6 Strictness and Coherence
	6.1 Overview
	6.1.1 Relationship to Published Work

	6.2 Synopsis
	6.3 Preliminaries
	6.4 Strictification
	6.5 Nonstrictification
	6.6 The Strictness Theorem
	6.7 The Coherence Theorem
	6.7.1 The free monoidal category on one generator
	6.7.2 Graphical proof that W is a preorder

	6.8 Symmetric Monoidal Strictness

	7 Conclusions
	7.1 Future work
	7.1.1 Presentations with Frobenius Structure and Optic Composition
	7.1.2 Designing Model Architectures for PolyCircS
	7.1.3 New Model Classes

	Appendix A Proofs for Chapter 3
	Appendix A.1 Proofs for Theorem 3.15
	Appendix A.2 Interpretation of PolyCircS as Polynomials
	Appendix A.3 Proofs for Theorem 3.14
	Appendix A.4 Proofs for Theorem 3.20
	Appendix A.4.1 Well-definedness of R for Cartesian Distributive Categories
	Appendix A.4.2 RDC Axioms for Cartesian Distributive Structure

	Appendix A.5 Forward Differential Operator and Linear Maps
	Appendix A.5.1 Forward Differential Operator on Cartesian Distributive Structure
	Appendix A.5.2 Daggers and Linear Sandwiches

	Appendix B Proofs for Chapter 5
	Appendix B.1 Composition of Hars is associative up to isomorphism
	Appendix B.2 Experimental Setup
	Appendix B.2.1 Software Versions
	Appendix B.2.2 Hardware Information

	Appendix C Proofs for Chapter 6
	Appendix C.1 Sequential Normal Form
	Appendix C.2 Well-Definedness of N
	Appendix C.3 Coherence Corollary

	Appendix D Additional Material
	Appendix D.1 Implementations

	References

