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by Jacob Thomas Harper

Silicon (Si) distribution in the world’s oceans is biologically controlled by silica-shelled
phytoplankton called diatoms, which contribute 20% of global primary productivity.
Diatoms decouple Si from other macronutrients that are upwelled in the Southern
Ocean (SO), trapping Si and limiting the growth of siliceous algae elsewhere. This is
caused by high diatom Si:N uptake ratios under Fe deficiency in combination with low
attenuation through the water column and deep circulation back to the SO. The way
diatom physiology is parameterised in biogeochemical models can lead to contrary
responses to Fe fertilisation that occurred in past glaciations. It is important to under-
stand the effect of diatom physiology on Si trapping to ensure models can address past
climates and future changing oceans. This study firstly investigates the core mecha-
nisms of SO Si trapping by using a simple 3-box model to represent the overturning
circulation between the deep ocean SO and subtropical ocean. The model reproduced
expected nutrient concentrations for P, Fe and Si as well as distributions of diatoms
and non-diatoms. However, the addition of an Fe-dependent or Fe and Si-dependent
diatom Si:N ratio led to near complete Si trapping and sensitivity testing showed that
parameters and initial conditions required dramatic alteration to allow Si to escape to
the subtropics. A simulation of Fe fertilisation produced no increase in Si leakage as
the decrease in Si:N was overtaken by the growth of diatom productivity. In the sec-
ond part of this study, two models with different representations of diatom physiology
were tested against the observations of a series of SO nutrient addition experiments.
A quota model which allowed for luxury uptake of Si and emergent Si:N stoichiome-
try outperformed a simple model using direct parameterisations of Si:N. The winning
model was adapted to include an additional Chl state variable and then optimised us-
ing a genetic algorithm to fit the parameters. The algorithm was able to dramatically
reduce the deviation between the model and the experiments. However, a sensitivity
test that performed 120 optimisations found that many parameters were unconstrained
by the data. This led to the adoption of a hybrid approach where only well-constrained
parameters were fitted by the algorithm. The hybrid approach resulted in only a small
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reduction in the fit of the model to the observations while hopefully avoiding over-
tuning and retaining a higher performance at broader scales. When used to fit the
initial proportion of diatoms in the model, the algorithm correlated with the results of
pigment data implying the importance of community structure in addition to Fe and Si
concentrations. Overall, this study suggests that raised Si:N ratios in SO diatoms can
drastically reduce Si leakage even in the presence of Fe fertilisation and also presents
a quota model approach to simulating diatom physiology, tuned to a powerful set of
observations, which can be applied to other model frameworks.
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Introduction

The ocean is the largest reservoir of inorganic carbon holding around 38,000 gigatons
(Sarmiento and Gruber, 2002), and has played a huge role in mitigating climate
change having sequestered about a third of anthropogenically released CO2

(Khatiwala et al., 2009; Sabine et al., 2004). Two main mechanisms contribute to the
oceanic storage of carbon, the so-called solubility pump and biological carbon pump
(BCP) (Volk and Hoffert, 1985).

The BCP results from the sinking flux of organic and calcium carbonate detritus from
the surface to the deep ocean where it can be trapped for hundreds to thousands of
years (Volk and Hoffert, 1985). It is estimated that, without the BCP, atmospheric CO2

levels would be ∼200 ppmv higher than in the present day (Parekh et al., 2006; Boyd,
2015). This pump helps maintain a gradient of surface dissolved organic carbon (DIC)
15% lower than in the deep which is crucial as, if carbon was vertically homogeneous,
atmospheric CO2 would be ∼50% higher (Gruber and Sarmiento, 2002). The BCP
begins with the fixation of inorganic carbon in the surface by unicellular autotrophs
known as phytoplankton, which are collectively responsible for nearly half of the
carbon fixation associated with global net primary production (Longhurst et al., 1995;
Field et al., 1998). A fraction of this organic matter is exported to the deeper ocean,
mainly through gravitationally settling particles (Boyd et al., 2019) whereupon it is
remineralised. This results in the net transfer of inorganic carbon to depth, removed
from contact with the atmosphere.

Phytoplankton use light to fix carbon and so must remain in the uppermost well-lit
layer of the ocean known as the euphotic zone, which has a maximum extent of
around 200 m deep. The essential elements, or nutrients, required by phytoplankton
include nitrogen, phosphorus and in some cases silicon although multiple
micronutrients such as iron are also required and have been shown to limit production
in certain regions (Moore, Mills, Arrigo, Berman-Frank, Bopp, Boyd, Galbraith,
Geider, Guieu, Jaccard, Jickells, La Roche, Lenton, Mahowald, Marañón, Marinov,
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Moore, Nakatsuka, Oschlies, Saito, Thingstad, Tsuda and Ulloa, 2013). Redfield (1934)
discovered that the ratio of C:N:P is an average of 106:16:1 throughout the world’s
oceans, both in the composition of phytoplankton biomass and in dissolved nutrient
pools. Although, important deviations from this ratio exist regionally due to species
composition, nitrogen fixation and nutrient limitation (Weber and Deutsch, 2010;
Singh et al., 2013; Guildford and Hecky, 2000).

If not for the BCP, nutrients in the ocean would be as uniformly distributed as salinity
in the oceans (Sarmiento and Gruber, 2006). However, as well as sequestering carbon,
the BCP acts to strip these nutrients from the surface layer and transport them to
depth. As organic matter sinks, nitrate and phosphate undergo bacterial
remineralisation while biogenic opal (hydrated, polymerized silica) dissolution is
primarily temperature dependent (De La Rocha, 2006). Through successive utilisation
of nutrients by phytoplankton, the surface seasonally becomes depleted while deep
waters are continually enriched. Physical processes such as mixing and upwelling act
to re-homogenise the distribution of nutrients.

The surface and the deep are locally connected through diffusive vertical mixing and
entrainment during winter deepening of the mixed layer; and globally connected
through the meridional overturning circulation (MOC). This large-scale ocean
circulation system, also commonly known as the “ocean conveyor belt”, connects the
Arctic, Atlantic, Indian, and Pacific Oceans via the Southern Ocean (SO). It is driven
by a combination of mechanical and density forcing, involving the surface winds,
exchanges of heat, fresh water and salt, as well as tidal activity (Munk, 1966; Broeker,
1991; Toggweiler and Samuels, 1998; Talley, 2013). Deep water formation caused by
decreased temperature and increased salinity occur in the high-latitude North Atlantic
and the Weddell and Ross seas surrounding Antarctica resulting in the North Atlantic
Deep Water (NADW) and the Antarctic Bottom Water (AABW) (Talley, 2013). These
are mainly balanced by the gradual upward return flow of the Pacific Deep Water
(PDW), Indian Deep Water (IDW) and the NADW to the surface of the SO driven by
the circumpolar westerly winds (Toggweiler and Samuels, 1995). Deep water
formation removes carbon from contact with the atmosphere while upwelling exposes
it. As deep water masses continue along their meridional pathways they become
enriched in carbon and nutrients thanks to the organic matter constantly raining from
above (Sarmiento and Gruber, 2006).

It is clear that the SO has a particularly key role in regulating the Earth system as a
whole; being responsible for approximately 40% of the global ocean uptake of
anthropogenic CO2 , predominantly through the solubility pump (Devries, 2014) and
for around 75% of the excess heat generated in the Earth system (Frölicher et al., 2015),
as well as being a key component region for the BCP. The powerful meridional
circulation responsible for this also upwells abundant quantities of nutrients to the
surface, which do not illicit the level of phytoplankton production we might expect
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FIGURE 1.1: A map of the Southern Ocean depicting the latitudes of different oceano-
graphic features and how their position varies longitudinally. Reproduced from ’Dive

and Discover: Antarctica: Circulation’ 2005

due to the low deposition of iron-rich continental dust that makes it so far south
(Jickells et al., 2005).

1.1 The Southern Ocean

1.1.1 Physical Structure

The SO is most commonly defined as the circumpolar waters south of the subtropical
front, which is located around an average latitude of ∼40°S (Figure 1.1). This vast
water mass, which covers 20% of the world’s ocean’s surface, encircles Antarctic
unimpeded by continental barriers, but remains under-sampled relative to the rest of
the world’s oceans. Strong westerly winds drive these waters in an eastward flow
known as the Antarctic Circumpolar Current (ACC) (Nowlin and Klinck, 1986) which
connects the major ocean basins.
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The SO exists between the southern boundary of the Antarctic continent and the
northern boundary of the Sub-tropical front which marks the divide between
Sub-tropical and Subantarctic waters (Figure 1.1). It plays a key role in the global
thermohaline circulation as the lack of continental boundaries allows it to connect the
three major ocean basins and the exchange of properties between them. Between the
Polar and Subantarctic fronts lies the Antarctic Circumpolar Current (ACC) which is
the most powerful current on Earth because of strong westerly winds and a latitudinal
density gradient (Post et al., 2014). Further south exists a counter-current flowing in
the opposite direction to the ACC, fed by easterly winds though in places it is
impeded by the Antarctic coastline.

While Ekman transport in the ACC draws surface waters north, this southern ‘East
Wind Drift’ draws surface waters to the south leading to upwelling at what is known
as the Antarctic Divergence. Here, nutrient rich Circumpolar Deep Water comes to the
surface and enters two pathways (Figure 1.2). Water that moves south loses its
buoyancy through atmospheric cooling and salt enrichment due to sea ice formation.
It sinks and becomes dense Antarctic Bottom Water. Water moving north becomes
more buoyant due to precipitation and warming, with the biogeochemical properties
also being modified by the actions of biology in the surface. Upon exiting the north of
the ACC the northward flowing waters are subducted during deep winter mixing to
form Subantarctic Mode Water (SAMW) which continues to carry its properties
northwards (Hanawa and Talley, 2001). The SO acts to both downwell and upwell
large water masses and distributes them across the oceans, making it a central driver
to the upper and lower limbs of the Meridional Overturning Circulation (Toggweiler
and Samuels, 1998; Sloyan and Rintoul, 2001; Marshall and Speer, 2012).

1.1.2 Biological characteristics

Upwelling in the SO draws up aged water masses from around 2000-3000 m that have
accumulated large nutrient inventories over time from the remineralisation of sinking
matter (Morrison et al., 2015). The result is that surface waters of the SO have the
highest nutrient concentrations in the world’s oceans with nitrate, phosphate and
silicic acid concentrations exceeding 24 µM, 1.6 µM and 50 µM respectively (Levitus
et al., 1993). In other upwelling regions phytoplankton would have stripped the
surface of these nutrients if they were so abundant. Holm-Hansen (1985) estimated
that after upwelled water had travelled roughly 200 days to reach the Polar Front, the
nutrients should have been completely removed.

The SO has been classified as one of the High Nitrate, Low Chlorophyll (HNLC) zones
due to the low phytoplankton activity in the region that defies what is expected from
the normal correlation between macronutrient availability and phytoplankton
production (de Baar et al., 1995). This phenomenon was initially spotted by Ruud
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FIGURE 1.2: The components of Southern Ocean circulation: upwelling of the Cir-
cumpolar Deep Water in grey; sinking of the Antarctic Bottom Water in blue; and
subduction and northwards transport of the Subantarctic Mode Water in red. Each is

traced by its signature density profile (γ). Reproduced from Pellichero et al. (2018)

(1930) and was dubbed the “Antarctic Paradox” with Gran (1931) first postulating a
possible connection to iron limitation, a trace element required by phytoplankton for
key components of photosynthesis; this was later supported by more observations
and iron enrichment experiments that led to enhanced growth (Martin et al., 1989,
1990, 1991). Martin (1990) further postulated that if iron were to be provided to this
region, such as in past glacial periods, phytoplankton productivity would increase
and subsequently sequester more carbon to depth, famously joking “Give me a half
tanker of iron, and I will give you an ice age” (Weier, 2001). These findings drove
decades of research and, despite alternative suggestions that light limitation and
grazing pressure were more dominant contributors (Frost, 1991; Fasham, 1995), many
iron fertilisation experiments have witnessed the clear response of SO phytoplankton
to the relief of iron stress (Boyd et al., 2007).

River discharge and glacial inputs of iron are generally trapped in coastal regimes
(Poulton and Raiswell, 2002) while hydrothermal vent iron may help buffer short term
iron fluctuations despite forming particulates at depth (Tagliabue et al., 2010).
However, in the oxygenated modern ocean where iron remains very insoluble
(Kraemer, 2004), the main external source of iron to the world’s oceans is aeolian dust
transport from the world’s deserts (Jickells et al., 2005). The surface of the SO is iron
depleted due to its distance from the northern hemisphere dust sources from which
90% of total dust emissions originate (Li et al., 2008), the prevailing westerly winds
that form a barrier to southward dust transport (Li et al., 2008), and the limited
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resupply from deep winter mixing (Tagliabue et al., 2014). Ice cores suggest that,
during glacial times, iron deposition to the world’s oceans was approximately an
order of magnitude higher than during interglacial periods; Martin (1990)
hypothesised that this extra iron fertilisation led to the lower atmospheric CO2 in
these periods.

Under iron limited conditions, small phytoplankton groups in the pico- to
nanophytoplankton range succeed, as iron uptake efficiency is dependent on cell
surface area (Sunda and Huntsman, 1997). Abundant haptophytes such as Phaeocystis
may be favoured under these conditions as they form colonies which may aid in
grazer defence and help trap iron in the community’s mucilage (Hamm, 2000;
Schoemann et al., 2001); are more resilient to fluctuating light conditions (Arrigo et al.,
1999); and have superior uptake of reduced forms of nitrogen when access to nitrate is
limited (Tungaraza et al., 2003). This group and other small phytoplankton that
dominate under iron deficiency (Cullen, 1991; Smetacek et al., 2004) are kept in check
by small microzooplankton grazers that can respond quickly to population growth
due to their quick generation times (Coale et al., 2004). However, during episodic
inputs of iron or when a combination of abundant nutrients and the end of light
limitation makes bloom conditions tenable, large diatoms take over, using their opal
cell wall grazer defence (Hamm et al., 2003) and fast growth rate to escape grazer
control before larger zooplankton with longer generation times are able to respond
(Banse, 1995; Gall et al., 2001; Timmermans et al., 2001; Gervais et al., 2002;
Timmermans et al., 2004). This leads diatoms to dominate blooms in the SO
(Brzezinski et al., 2001; Petrou et al., 2016; Deppeler and Davidson, 2017).

Diatoms have an obligate requirement for silicon in order to build their strong cell
wall, for which silica content has been demonstrated to be approximately inversely
proportional to grazing by adult copepods and nauplii (Pančić et al., 2019). These
blooms quickly use up available iron, or in some places silicon and then decline.
Arrigo et al. (1999) observed that in some regions Phaeocystis and diatoms were
separated based on mixed layer depth, with Phaeocystis likely out-competing in
weakly stratified waters due to its adaptation to low light.

1.2 The Silicon Trap

Silicic acid distribution in the world’s oceans bears broad similarity to that of nitrate,
with high concentrations in the SO and the North Pacific (Figure 1.3), while
concentrations are heavily depleted in the subtropical gyres (World Ocean Atlas,
Garcia et al., 2018). Additionally, diatoms growing without restraints from light or
nutrient availability exhibit a Si:N ration of 1:1 (Brzezinski, 1985). On the other hand,
in contrast to nitrate and phosphate which are required by all phytoplankton, silicic
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FIGURE 1.3: Mean annual surface silicic acid from the
World Ocean Atlas (Garcia et al., 2018).

acid is used almost solely by diatoms and while the remineralisation of N and P is
biologically mediated, dissolution of opal back to silicic acid is a temperature
dependent chemical process (Lerman and Lal, 1977; Dugdale and Wilkerson, 2001).
Sinking opal is further protected from dissolution by an organic matrix that covers the
frustule exterior (Bidle and Azam, 1999).

However, when comparing distributions of silicic acid and nitrate in the SO, there is a
clear discrepancy in the circumpolar region between 40°S and 60°S, where nitrate
carried northwards from the nutrient-rich upwelling of the CDW remains high but
silicic acid is suddenly absent (Smith et al., 2000; Dafner and Mordasova, 1994). What
process decouples Si from N in this region and creates such a meridional gradient of
silicic acid across the surface of the SO?

1.2.1 Causes of Silicon Trapping

Diatoms are the dominant force in the modern biological silicon pump, as the main
contributor to the gross production of 240 Tmol Si yr−1 biogenic silica in the ocean
(Tréguer and De La Rocha, 2013). The stripping of Si from surface waters by diatoms
is thought to be particularly strong in this band of the SO because of the tendency of
many species to increase their Si to N uptake ratios under Fe stress (Brzezinski, 1985;
Takeda, 1998; De La Rocha et al., 2000; Brzezinski et al., 2003; Timmermans et al., 2004;
Hoffmann et al., 2007). Reasons suggested for this phenomena include an increase in
surface area to cell volume ratio associated with reduced cell size (Martin-Jézéquel
et al., 2000; Marchetti and Harrison, 2007); increased formation of heavily silicified
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resting spores among some species (Sugie et al., 2010); and an interplay of reduced N
uptake and increased Si uptake (M. Franck et al., 2000; Timmermans et al., 2004).

As discussed, the regeneration of Si is different to that of N and P and this leads to
separate fates for these elements after being utilised in the surface. On average, 50% of
opal produced in the euphotic zone is preserved to sink out and this rises to 84% in
the cold waters of the SO which inhibit the process of dissolution (Sarmiento and
Gruber, 2006). Comparatively, for ∼25% of the Si utilised during spring growth in the
HNLC Gulf of Alaska, only ∼4% of the N was exported past 200 m (Whitney et al.,
2005). Holzer et al. (2014) estimated that the mean depth of Si regeneration in the SO
reached 2300 m, as opposed to 600 m for phosphate remineralisation.

Through the increased Si:N ratio of diatom uptake and the enhanced export of opal to
deeper depths relative to organic material, silicon is decoupled from other
macronutrients in both the surface and sub-surface of the lower latitude SO. But why
does this decoupling in one location radically effect the distribution of silicon in the
ocean as a whole? As discussed in Section 1.1.1, the SO is an exceptionally important
hub in the global overturning circulation. A large part of the material that sinks out of
the euphotic zone is regenerated in the CDW which subsequently returns these
nutrients to the surface creating a loop of utilisation, export and upwelling (Sarmiento
and Gruber, 2006). Modelling by Holzer et al. (2014) found that about half of the
global Si inventory is successively involved in paths to subsequent SO utilisations,
with Si last utilised in the SO having only a 5% chance of being next utilised outside
the SO compared with a 44% chance for phosphate. Furthermore, the northwards
decline in silicic acid occurs in the region of mode water formation; crucially the
SAMW, which is the main source of nutrients for the thermocline and supplies the
entire Southern Hemisphere and the North Atlantic Ocean (Hanawa and Talley, 2001).
In fact, the decoupling silicic acid and nitrate created here has been used to observe
the reach of the SAMW pycnostad (a layer of relatively uniform density)through the
ocean using the tracer Si∗ = [Si(OH)4]− [NO3

−] (Sarmiento et al., 2004).

The result of exacerbated removal of silicon by diatoms combined with the return
pathway of the CDW in a region that supplies nutrients responsible for about 75% of
the biological production north of 30°S (Sarmiento et al., 2004) is extreme trapping of
silicon within the SO. This trapping limits the production of diatoms over a large part
of the world’s oceans (Ragueneau et al., 2000; Hauck et al., 2018).

It should be said that simulations by Demuynck et al. (2020) suggest that physical
processes are predominantly responsible for the creation of the gradient in Si across
surface of the SO over the timescale of years to decades. They find these processes
connecting the deep Si gradient to the surface play a greater role than local biology but
leave the door open for biological control of those deep concentrations, for example
via diatom stoichiometry.
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1.2.2 Silicic Acid Leakage Hypothesis

Investigations of silicon trapping in the modern ocean may be a key to unlocking
drivers of aspects of paleoclimatology. Antarctic ice cores show that past glacial
maxima recorded CO2 values 80-100 ppm lower than the interglacial period between
them (Barnola et al., 1987; Petit et al., 1999; Lüthi et al., 2008). Hypotheses to explain
this fluctuation have focused on the ocean due to its large carbon reservoir (Sigman
and Boyle, 2000).

One hypothesis, named the ‘Silicic Acid Leakage Hypothesis’ (SALH) has sought to
answer this question with the observation that supply of iron by atmospheric dust
was higher during glacial intervals due to a drier climate and a more turbulent
atmospheric circulation in high southern latitudes (Petit et al., 1999). Initially, these
observations led to the idea that the relief of iron stress in iron-limited regions of the
ocean would simply enhance production and therefore drawdown CO2 (Martin,
1990), however, this was hampered by most data in fact showing a lower export
production in glacial periods (Kumar et al., 1995; François et al., 1997). The SALH
proposes that the addition of dust-borne iron in the Antarctic reduces the Si:N uptake
ratios of diatoms and therefore alleviates silicon trapping in the SO and makes silicic
acid available in the wide portion of the ocean supplied by the SAMW. The increased
availability of silicic acid in the rest of the ocean then lead to a floristic shift away from
coccolithophores, which lowered export of calcium carbonate. The reduction in
carbonate burial increased the alkalinity of the oceans and allowed greater CO2

drawdown by the oceans (Brzezinski et al., 2002; Matsumoto et al., 2002; Matsumoto
and Sarmiento, 2008). An alternate “silica hypothesis” also exists which states that it
was an increased dust flux of Si that lead to the floristic shift toward diatoms and
subsequent CO2 drawdown (Harrison, 2000).

However, evidence that leakage of Si from the SO occurred mainly during
deglaciations rather than glacial maxima has lead to a new Silicic Acid Ventilation
Hypothesis (SAVH) (Hendry and Brzezinski, 2014). This hypothesis puts forth that,
although iron fertilisation increased the Si:N of mode waters during the Last Glacial
Maximum (LGM), stratification and weakened upwelling and mixing reduced the Si
concentration escaping in these waters. During the initiation of deglaciation, sea ice
retreat and southward westerly wind migration is thought to have induced greater
overturning in the SO resulting in both high Si:N and high Si concentration in mode
waters.

1.2.3 Future Implications

As evidenced above by paleoceanography, stoichiometry and circulation centred in
the SO have the power to drive changes in global climate. As humanity brings forth its
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own climate change, how will this influential region of the ocean react? Earth system
modelling by Moore et al. (2018) under a future climate scenario (RCP 8.5, a high
baseline emission scenario) predicts that subsurface Fe concentrations south of 60°S
will increase 34% by 2300 and that this, combined with warming waters and increased
stratification resulting from the poleward shift of westerly winds encircling the SO,
will lead to intense nutrient trapping and subsequent declines in primary production
(24%) and carbon export (41%). Meanwhile, analysis of chlorofluorocarbons has
suggested that these shifting westerlies have also decreased the age of subtropical
subantarctic mode waters and increased the age of circumpolar deep waters (Waugh
et al., 2013). Moreover, calcifying plankton may have to live in a SO undersaturated in
aragonite as soon as 2030 if atmospheric CO2 reaches 450 ppm by this time (McNeil
and Matear, 2008). In summation, anthropogenic climate change has the potential to
dramatically alter the physical, chemical and biological characteristics of the SO and
therefore, understanding this region’s role has never been more important.

1.3 Diatom Physiology

1.3.1 Cellular Silicon Cycle

The distinct, defining feature of the diatom cell is its silica frustule consisting of two
intersecting valves: the smaller hypotheca fitting within the larger epitheca like the
base and lid of a petri dish. Indeed, the name diatom comes from the greek diatomos
meaning ”cut in two”. A silica band, called the girdle band, wraps around the equator
of the diatom and holds the valves together (Round et al., 1990). Evolutionary
advantages of a non-organic skeleton may have included being energetically
“cheaper” to construct and offering enhanced protection from grazers
(Martin-Jézéquel et al., 2000; Hamm et al., 2003). Deposition of silicic acid into a cell
wall is calculated to require only 8% of the energy required for organic carbon (Raven,
1983). Experimentation by Hamm et al. (2003) has shown that frustules are
mechanically strong, able to resist pressures ranging from 1 to 7 N mm−2 perhaps
leading to copepods and euphausiids co-evolving silica-edged mandibles.
Furthermore, feeding experiments have found that diatom silica content was inversely
proportional to grazing by adult copepods and nauplii (Pančić et al., 2019) and that
weakly silicified diatoms with fast growth rates were more susceptible to grazers than
those with more complex frustules (Friedrichs et al., 2013). Other advantages may
include the action of frustule opal as a pH buffer for converting more readily available
HCO3

– to CO2 (Milligan and Morel, 2002).

Diatoms reproduce asexually by binary fission to produce two daughter cells which
inherit one of the frustule halves from the parent as their epitheca and then generate a
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new smaller hypotheca. This results in one same-sized and one smaller-sized
daughter cell, thus decreasing the average size of the diatom population over cycles of
mitosis. This continues until a critical size threshold is reached whereupon sexual
reproduction occurs restoring cell size via a specialised cell called an auxospore
(Chepurnov et al., 2004). Diatoms appear to divide at any point of the diel cycle,
unlike many other algae (Martin-Jézéquel et al., 2000).

Because silicon is structurally integral to the diatom cell it is closely coupled to the cell
cycle rather than directly to photosynthesis. Diatoms, like other eukaryotic cells,
separate mitosis (M) and cell division (cytokinesis) from the phase of DNA replication
(S) with two gap phases where growth occurs (G1 and G2) (Huysman et al., 2014).
Starving diatoms of silicon arrests the cell cycle near the point of frustule formation in
G2 or M and just prior to DNA synthesis near the G1/S boundary (Brzezinski et al.,
1990). Some studies suggest that, at low growth rates induced by nutrient and light
limitation, the length of the G2+M phase leads to an increase in cell silicification as
deposition continues in these conditions (Martin-Jézéquel et al., 2000; Claquin et al.,
2002). Claquin et al. (2002) suggest while Si metabolism is energetically cheaper and
controlled by the cell cycle, N and C are linked by the energetic provision from
photosynthesis and the processes of amino acid and protein synthesis.

Surface waters are highly undersaturated with respect to opal, requiring diatoms to
actively transport silicic acid across the cell wall in order to maintain cellular
concentrations high enough to precipitate opal (Paasche, 1973b,a; Azam et al., 1974).
Silicon is used within organelles called silica deposition vesicles (SDV’s) to construct
new inner valves and girdle bands during asexual reproduction, after which they’re
exocytosed to the cell exterior (Zurzolo and Bowler, 2001). Soluble intracellular silicon
brought into the cell but not yet incorporated into the insoluble silica phase are termed
silicon pools (Azam et al., 1974). How much silicon is in these pools, where it is stored
and in which chemical forms is still under debate.

A review by Martin-Jézéquel et al. (2000) compiled a range of 19 to 340 mM (assuming
the form of monosilicic acid) across several species, representing up to 50% of the total
cellular biosilica. Recent three-dimensional cryo–electron spectroscopy by (Kumar
et al., 2020) landed in this range with ∼150 mM for T. pseudonana, three orders of
magnitude higher than the external environment. These values strongly exceed
saturation for silica solubility, which is around 2 mM below pH 9 (Iler, 1979) making
the internal silicon pool supersaturated. The question therefore changes from how
diatoms are able to precipitate silica to how they are able to stop the precipitation of
silica in their supersaturated cellular environment.

The prevailing theory as to how diatoms are able to maintain these concentrations is
that silicon is bound in organic molecules within the cell (Azam et al., 1974; Sullivan,
1977; Chisholm et al., 1978). The most common method for examining intracellular Si
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pools, the molybdate method (Martin-Jézéquel et al., 2000), will not detect silicon
bound to organic matter and therefore many measurements may be underestimating
the total storage pool (Gröger et al., 2008). Brzezinski and Conley (1994) found that in
Si-starved T. weissflogii deposition of an entire frustule was provided by the internal Si
pool but that this pool was not sustained having been substantially acquired during
G2. This is in keeping with the ‘dynamic’ view of the intracellular pool: which
describes the level of intracellular silicon as transitory, coupled to the relative timing
of silicic acid uptake and silica deposition (Martin-Jézéquel et al., 2000, and references
therein). Kumar et al. (2020) instead find evidence for almost constant intracellular
silicon levels within T. pseudonana and this was also found in C. fusiformis
(Martin-Jézéquel et al., 2000), suggesting a degree of homeostasis. Hildebrand (2000)
proposed that levels were determined by the capacity of intracellular silicon-binding
components, with a greater availability of organic binding component allowing
greater storage of Si leading uptake to fill the maximum pool. Furthermore,
Hildebrand (2008) summarises the idea that because silica deposition draws Si from
the cellular pool, silicic acid uptake acts as a feedback to sustain that pool in three
modes. Surge uptake occurs when an Si-starved cell has depleted its intracellular pool
and upon access to silicic acid achieves maximum uptake rates. Internally controlled
uptake exists when the intracellular pool acts as a buffer to maintain equilibrium
between deposition and uptake. Finally, externally controlled uptake arises when
uptake is limited by the extracellular concentration of silicic acid where pool levels
have minimal influence.

1.3.2 Iron response

Diatoms contribute about 40% of the annual fixation of organic carbon in the ocean
(Nelson et al., 1995) and are chiefly responsible for the two-thirds of total ocean silica
burial that presently occurs under the ACC (Tréguer and De La Rocha, 2013). For some
time, scientists were perplexed by high accumulation of opal in SO sediments contrary
to the iron deficient, low productivity, HNLC waters above (Pondaven et al., 2000).
More recently this has been understood as an influence of ambient iron concentration
on diatom overall chemical ratios, or stoichiometry. Specifically, the ratio of silicon to
nitrate (Si:N) at a cellular level increases under conditions of iron limitation, utilising a
greater proportion of the silicon available in the SO’s surface per cell (Table 1.1). This
enlarged silicon removal in the SO, a hub of global circulation responsible for nutrient
supply to much of the world’s oceans (Sarmiento et al., 2004), limits the growth
potential of diatom communities further north fed by Subantarctic Mode Water.

Recently, growing concern over elevating atmospheric CO2 has made the SO, high in
macro-nutrients, a ripe candidate for geoengineering. It was controversially suggested
that iron fertilisation could boost growth and result in more organic carbon sinking
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into deep waters or deep-sea sediments where it would be trapped for a long time
(Martin and Fitzwater, 1988). However, the elevated silicification of diatoms found in
iron-limited waters has been suggested to act as a dense opal ballast for cell sinking
and flux of silicon from the surface has been correlated to deep carbon fluxes
(Armstrong et al., 2002; Honda and Watanabe, 2010; Brzezinski et al., 2015). This next
section aims to establish whether alleviating iron stress and thus decreasing Si:N
ratios therefore counteract or at least limit supplementary carbon export from
fertilisation via less favourable sinking dynamics. Parameters that might be used in
models to shed light on the interaction of iron and deep carbon storage in the SO are
also evaluated.

Multiple studies (Table 1.1) have established that iron deficiency can lead to elevated
S:N ratios in diatom cells; often in the region of 2 to 3-fold from the normal,
iron-replete value of ∼1 (Brzezinski, 1985), but occasionally up to 4.1 (Timmermans
et al., 2004) and 6.5 (Brzezinski et al., 2003) in extreme cases. This departure from
normal stoichiometry creates a preferential depletion of Si in areas of mode water
formation in the Antarctic Circumpolar Current, decoupling silicon from the abundant
nutrients the SO otherwise feeds northwards (Sarmiento et al., 2004). Various theories
have been put forward to explain this phenomenon. Firstly, because reduced iron
leads to slowing of growth rate, the duration of the cell wall synthesis phase in cell
development may be extended, leading to a thicker frustule (Claquin et al., 2002).
Secondly, while nitrate uptake rate will decrease under iron limitation, silicic acid
uptake by the cell may decrease to a lesser extent or not at all leading to a Si:N
differential (Hutchins and Bruland, 1998; Takeda, 1998). Finally, at the community
level, species composition and succession can change with iron availability resulting
in a greater proportion of thinner or thicker-shelled species (Assmy et al., 2013).

Taking a closer look at how uptake rates affect Si:N, Marchetti and Harrison’s 2007
study of stoichiometry in the pennate diatom Pseudo-nitzschia showed declines in both
Si and N consumption but an increase in Si:N ratio suggesting that the more severe
effect of iron limitation on nitrate uptake over silicic acid uptake was responsible.
However, Marchetti and Cassar’s 2009 paper includes a compendium of Si:N
responses to iron deficiency from different studies which features a variety of cases:
decreasing Si, increasing Si, or no change with declining N. Cell uptake kinetics
conform to the Michaelis-Menten model, characterised by an initially steep increase in
uptake rate with nutrient availability followed by the reaching a saturation point.
Table 1.1 shows two parameters that describe the shape of this model: the maximum
specific uptake rate Vmax, and the half saturation constant Ks which determines uptake
efficiency at low nutrient concentrations. In oligotrophic conditions Ks is expected to
decrease, conferring a greater advantage at low nutrient concentrations and Vmax, or
technically apparent Vmax as iron limitation has been introduced, is expected to do the
same. The studies in Table 1.1 agreed that maximum Si uptake rate VSi−max decreases
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TABLE 1.1: Changes in diatom physiological parameters under iron deficiency.

Parameter Under iron deficiency Reference

KSi (Si uptake
half-saturation
constant)

3.2-fold decrease (Leynaert et al., 2004)

No effect (De La Rocha et al., 2000)

No effect in 3 experiments, 3-fold in-
crease in one

(Franck et al., 2003)

VSi−max
(maximum Si
uptake rate)

7-fold decrease (no additional influ-
ence of iron above 0.120 nmol Fe L−1)

(Leynaert et al., 2004)

3-fold decrease (De La Rocha et al., 2000)

2-fold decrease (Hutchins et al., 1999)

2.7-fold decrease (M. Franck et al., 2000)

2 to 3-fold decrease (Franck et al., 2003)

Cell Size 3-fold decrease (increased S/V) (Leynaert et al., 2004)

Reduction in length-normalized width
resulting in 1.4-fold increase in S/V

(Marchetti and Cassar, 2009)

VN−max
(maximum N
uptake rate)

2 to 3-fold decrease (Franck et al., 2003)

2.2-fold decrease (Hutchins et al., 1999)

Diatom Si:N ratio 2-fold increase (Takeda, 1998)

2 to 3-fold increase (Hutchins and Bruland, 1998)

0, 1.6, 2.3, 6.5- fold increase (Timmermans et al., 2004)

2-fold increase (Hoffmann et al., 2007)

1.1 to 2.4-fold increase (Marchetti and Harrison,
2007)

No change (De La Rocha et al., 2000)

Net uptake increased 4.1-fold relative
to normal iron-replete value (∼1)

(Brzezinski et al., 2003);
(Brzezinski, 1985)

Sinking 5-fold increase in sinking rate (Muggli et al., 1996)

4-fold decrease in sinking rate under
iron fertilisation linked to 2-fold
decrease in Si:C ratio

(Watson et al., 2000)

(Waite and Nodder, 2001)

2.3-fold decrease in sinking rate 11
days after iron enrichment

(Boyd et al., 2000)

100 m BSiO2 and POC export increase
37-fold and 2-fold respectively

(Brzezinski et al., 2015)

Cell Silicification 4-fold increase in BSi content per unit
of cell volume

(Leynaert et al., 2004)

1.7-fold increase in BSi content per unit
of cell volume for two species

(Takeda, 1998)

1.4-fold increase in BSi per cell (De La Rocha et al., 2000)

2.9-fold increase in BSi per cell (Hutchins and Bruland, 1998)

2-fold increase in silicic acid cell quotas (Coale et al., 2004)
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under iron limitation while the Si half saturation constant KSi has mixed responses.
Leynaert et al. (2004) carried out a detailed study of the silicic acid uptake kinetics of
the pennate diatom Cylindrotheca fusiformis, monitoring Vmax and Ks over a gradient of
iron concentrations. In both cases, these parameters decreased in the shape of a
Michaelis-Menten type curve with decreasing iron. As no other study has reported
over such a gradient, this is the best available picture of how Si uptake declines under
iron limitation and may be a good model for this effect. Although a more severe
reaction to iron deficiency is expected in nitrate maximum specific uptake rate VN−max,
the limited studies available (Table 1.1) show a similar decrease to that of Si. A
similarily thorough study of nitrate uptake with rising iron is needed to make a better
comparison.

1.3.3 Silicification

The suggestion that a thicker diatom frustule is concomitant to increased Si:N is
supported by studies that specifically note an increase in biogenic silicification of the
cell (Table 1.1, and refs. therein). This has been found both in single species
experiments (Takeda, 1998) and in-situ additions to whole communities (Hutchins
and Bruland, 1998), and also, normalised to cell volume (Leynaert et al., 2004) and not
normalised (De La Rocha et al., 2000). At least in some cases, regardless of possible
reductions in cell size under nutrient limitation, cell silicification has increased
suggesting a mix of individual physiological response and community composition is
at play (Takeda, 1998; Leynaert et al., 2004).

Increased silicification of a cell resulting in increased cell density may have a ballasting
effect, weighing the cell down so it sinks faster (Brzezinski et al., 2015). Though this
has not been shown directly, Muggli et al. (1996) have shown that iron deficiency
increased the sinking rate of the diatom Actinocyclus sp. 5-fold while a coccolithophore
underwent no change and Brzezinski et al. (2015) suggest that higher export efficiency
under low Si:N waters, likely depleted in Si by high Si:N diatoms, was due to this
ballasting effect. The studies of the SO Iron RElease Experiment (SOIREE), involving
an iron fertilised bloom, also noted declines in sinking rates following alleviation of
iron deficiency (Boyd et al., 2000; Watson et al., 2000; Waite and Nodder, 2001). Higher
sinking rates would give dead cells less time to be remineralised in the surface and,
furthermore, a thicker frustule offers protection from grazers during that time.

However, silicification is not the only way that iron deficiency could lead to increased
sinking rate. While sinking phytoplankton generally adhere to Stokes Law (larger
cells sink faster), large diatoms use energy in processes to bolster their buoyancy. This
energy mainly comes from respiration in which electron transport processes can
become iron-limited (Waite et al., 1992; Muggli et al., 1996).
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Shifting from an individual cell focus to assess the community level, aggregation and
repackaging of cells is the other major contributor to sinking efficiency. Repackaging
can be instituted biologically by grazing and subsequent repackaging into dense
faecal pellets. Diatom species grown under iron deficiency had mechanically stronger
frustules which were more resistant to zooplankton grazing and therefore negatively
affecting faecal repackaging (Wilken et al., 2011). However, some mesozooplankton
can enhance remineralisation by processing faecal pellets within the upper mixed
layer, reducing export into deep waters (Wassmann, 1997). Physical processes
dominate aggregate formation when grazers can’t keep up with sudden large blooms
(Thornton, 2002). Of these physical factors the primary driver is concentration, or in
fact the reaching of a critical concentration (Ccr) (Jackson, 1990). Another important
factor is the presence of sticky extracellular polymeric substances (EPS) released by
phytoplankton and, in the case of diatoms, especially a form of EPS called transparent
exopolymer particles (TEP). TEP production by diatom C. calcitrans was greater under
nitrate limitation than in nutrient-replete cultures (Corzo et al., 2000) and nutrient
limitation has been suggested to increase the stickiness of diatoms in culture (Drapeau
et al., 1994), although this likely involves additional factors such as spiny morphology.

As seen above, surface studies have suggested that increased Si:N could potentially
lead to cells sinking faster and further, but is there research that connects changes in
Si:N to deep-sea carbon export? Traditionally, flux of particulate organic carbon to the
deep has been simulated using a power-law curve from Martin et al. (1987). Based on
some near-surface organic carbon flux, the power-law models increasing removal of
organic matter by remineralisation as it sinks to the deep, allowing for the estimation
of how long carbon may be sequestered in the deep ocean based on the water flow of
the water masses in the region.

However, more recently, Armstrong et al. (2002) have proposed that fluxes of ballast
minerals (silicate and carbonate biominerals, and lithogenic material) determine
deep-water POC fluxes instead. Working on evidence that flux of organic matter at
depths sub-1800m were directly proportionate to the fluxes of ballast minerals, they
have put forward that sinking organic matter can be divided into matter that is
associated to ballast minerals that are dense and protect from remineralisation and
residual matter that is not mineral-associated (Figure 1.4).

This new model has been supported by Honda and Watanabe (2010) who found deep
sea POC flux was highly correlated with mineral ballast flux, accounting for almost
100% in the Western Pacific Subarctic Gyre, and also found that mineral associated
flux increased proportionally with depth while residual flux declined. Furthermore,
they found that opal was responsible for 70% of deep POC flux, outlining the
importance of silicon-integrating organisms in deep carbon export and contradicting
previous sediment trap data analysis downplaying the role of opal vs CaCO3 (Klaas
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FIGURE 1.4: Reproduction of Armstrong et al.’s 2002 model hypothesis of organic car-
bon fluxes. Total flux of particulate organic carbon (POC) is denoted by the solid line
while POC flux quantitatively associated with ballast minerals shown by the dashed

line. Residual POC flux is shown by the crosshatched area.

and Archer, 2002) which may not have taken into account varying Si:C ratios (Passow
and De La Rocha, 2006).

So, presence of silicified cells has been connected to deep export, but does the degree
of silicification make a difference? Nelson et al. (1995) found that while
heavily-silicified F. kerguelensis and moderately-silicified F. curta can both dominate
diatom blooms in the SO; F. curta and other moderately silicified species are much less
common in abyssal sediments; although, selective removal of species from the
sediment and interspecific differences in diagenesis, the conversion of sediment into
sedimentary rock, are not taken into account (Shemesh et al., 1989). However, Assmy
et al. (2013) presented evidence that thick-shelled species like F. kerguelensis represent
“silicon-sinkers” that, despite their persistence in low-iron environments release
mainly empty or solitary low-carbon frustules from the surface; while, on the other
hand, thin-shelled species such as Chaetoceros dichaeta are “carbon-sinkers” that
employ a boom-and-bust strategy, undergoing mass mortality which is responsible for
large high-carbon aggregates.

Literature regarding the relationship between iron and stoichiometry in diatom cells
contains repeated references and links to cell size. When iron becomes deficient, cell
volume scales down while surface area to volume ratio (S/V) scales up (Muggli et al.,
1996; Leynaert et al., 2004; Sarthou et al., 2005; Marchetti and Cassar, 2009); therefore,
while some cell processes are directly affected by iron, some are influenced indirectly
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via these physical changes. For instance, when Leynaert et al. (2004) recorded
changing KSi and VSi−max across decreasing iron concentration (Figure 1.5), they were
able to reliably calculate the response of these parameters in C. fusiformis from the
increasing S/V of the cells. Similarly, S/V has been used to determine power-law
relationships for nitrate and iron half-saturation constants across species (Hein et al.,
1995; Sarthou et al., 2005). There is also some suggestion that as the amount of silica in
a cell wall is proportional to the surface area, this is to some extent responsible for
increasing cell biogenic silica content (Takeda, 1998; Leynaert et al., 2004). However,
other parameters, such as growth rate, have a more complex relationship with cell
size. Maximum growth rate (µmax), achieved by the cell in light and nutrient replete
conditions, scales inversely with cell size across diatom species due to a combination
of surface area and diffusion boundary thickness effects on nutrient uptake and the
decrease in effectiveness of increased pigmentation in light harvesting at greater cell
size known as the ‘package effect’ (Sarthou et al., 2005). On the other hand, under iron
stress at the species level, cell’s specific growth rate (µ) decreased proportionally with
decreasing cell size and decreasing iron concentration (Sunda and Huntsman, 1995;
Leynaert et al., 2004).

There is evidence for increased silicification resulting in higher sinking speed and
likely protecting diatoms from remineralisation (Muggli et al., 1996; Boyd et al., 2000;
Watson et al., 2000; Waite and Nodder, 2001; Brzezinski et al., 2015). Separately, there
is evidence that the silicon flux from the surface is correlated to deep carbon flux
(Armstrong et al., 2002; Honda and Watanabe, 2010; Brzezinski et al., 2015). However,
the key gap in understanding is whether one is linked to the other; does Si:N play a
significant role in determining silicon supported export? Or, are community
composition and diatom success over non-silicified phytoplankton the dominant
factors in regulating deep carbon flux?

While the Armstrong model should be tested against real SO surface and deep-water
fluxes, it might also be integrated into models that factor in iron reliant Si:N ratios in
order to test it’s sensitivity to this dynamic. To better realise changing stoichiometry, a
greater understanding of nitrate uptake kinetics in a gradient of iron conditions would
be useful for combination with the detailed experiments with silicic acid already
carried out. Si:N could further be functional in models as a negative impact on
zooplankton grazing rates. Finally, cell size has already been used to reduce multiple
parameters into one in more complex models (e.g. Ward et al., 2018) and this review
finds that many of the factors correlated with cell size are relevant to the effects of
changing iron.
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FIGURE 1.5: A reproduction from Leynaert et al. (2004) illustrating the relationship be-
tween surface to volume ratio and (a) apparent maximum uptake rate (Vmax) and (b)
the half-saturation constant for silicic acid (KSi). These measurements of Cylindrotheca

fusiformis were taken across a gradient of iron limitation.

1.4 Modelling Approaches

As access to computing power has become more readily available over the past few
decades, numerical marine biogeochemical models have become an ever more
important tool in addition to and complementing field and laboratory approaches.
Numerical biogeochemical models have been used to estimate concentrations and
fluxes; to elucidate the processes behind past and present data; and to make
predictions about future conditions (Gentleman, 2002). Models are typically separated
into the biochemical component and the physical component which are coupled
together to provide global or regional products.

The most common structure of the biochemical component is the
nutrient–phytoplankton–zooplankton–detritus (NPZD) ecosystem model which
represents the flow of elements through a highly idealised ecosystem (Steele, 1958;
Fasham et al., 1990). More complex models have been developed that represent a
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more extensive trophic structure by grouping organisms as plankton functional types
(PFTs) for example: diatoms, coccolithophores, nitrogen fixers, meso and
microzooplankton (Le Quéré et al., 2005; Stock et al., 2020; Long et al., 2021).

The most basic formulations of phytoplankton growth need only include a nutrient
limitation term but often also use terms for light limitation and temperature
dependence (Haney and Jackson, 1996; Ilyina et al., 2013; Yool et al., 2013; Stock et al.,
2020; Long et al., 2021). Nutrient limitation is generally formulated through Liebig’s
Law of the Minimum (1840) which was developed as an agricultural principle and has
since been applied to phytoplankton ecology through the idea that the least available
nutrient governs phytoplankton biomass accumulation or growth rate (de Baar, 1994).
Models with multiple limitation terms have traditionally calculated fractional growth
rates for each term and then found the minimum or threshold rate in accordance with
Blackman’s Law 1905 while others have used a multiplicative approach (O’Neill et al.,
1989; Haney and Jackson, 1996). Nutrient uptake by phytoplankton has mainly
followed the parameterisation set out by Caperon (1967) and Dugdale (1967) who
used Michaelis-Menten kinetics to describe a saturating, hyperbolic relationship
between external nutrient concentration and specific growth rate. However, Droop
(1973) argued that there was a step between these factors, which was the internal
nutrient pool or cell quota, defined as a ratio of the nutrient to cellular carbon, and this
was what directly drove growth rate. These models are analogous under steady-state
conditions (Burmaster, 1979).

Complexity in the physical component of biogeochemical models is mainly the result
of resolution, both of depth and of latitude and longitude. At their simplest, a 2-box or
‘slab’ model may simply be used to resolve a mixed layer and a deep layer (Steele,
1958; Evans and Parslow, 1985; Anderson et al., 2015). Meanwhile, global scale
biogeochemical models, which may also be paired with atmospheric and terrestrial
models to produce whole Earth System Models (ESMs), contain many vertical layers,
commonly increasing in thickness with depth. These large-scale models represent the
ocean’s horizontal plane in a grid structure, often with a ∼1° resolution to balance
complexity with simulation time (Collins et al., 2011; Seland et al., 2020; Gurvan and
The NEMO Team, 2022). However, the most recent generation of ESMs from the
Coupled Model Intercomparison Project Phase 6 (CMIP6) use a minimum resolution
of 100 km up to 25 km which enables the representation of finer-scale ocean physical
processes such as mesoscale eddies (Séférian et al., 2020).

Complexity in biogeochemical models comes at a cost. Firstly, the computational
power required to run them and the difficulty of accessing those sometimes expensive,
shared resources. Secondly, the increased time taken per run, which can limit the
length of the simulation or the number of ensembles or sensitivity tests that can be
accomplished. Finally, a greater number of parameters are required to tune more
complex models, some of which may not be based on observations. Furthermore, the
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increased number of variables and parameters can make it harder to ascribe a model
result to a particular cause.

Among the models that have chosen to resolve diatoms and silicon, most choose to
take into account the stochiometric variability in diatom silicon content/uptake
relative to other major nutrients and have parameterised this in a myriad of ways Yool
and Tyrrell (2003); Yool et al. (2013); Aumont et al. (2015); Stock et al. (2020); Long et al.
(2021). A 2019 study by Holzer et al. used a data constrained model to investigate
how different parameterisations of diatom Si stoichiometry respond to iron
fertilisation. They found that depending on the parameterisation, iron fertilisation
could result in strengthened trapping of silicic acid in the SO or enhanced leakage
instead. This divergence suggests that how variable diatom stoichiometry is
formulated could pace a large bias on future predictions of SO silicon trapping and
therefore global biogeochemistry (Sarmiento et al., 2004).

1.5 Research Aims

The overall aim of this study is to understand how diatom physiology influences the
trapping of Si in the SO and to investigate the best approaches to successfully
modelling the important aspects of that physiology. The first main area of research
focuses on the broader scale of SO Si trapping, investigating how phytoplankton
production, nutrient availability and regeneration, dust deposition and the circulation
of water masses affects the fate of Si upwelled in the SO. To investigate this topic in
Chapter 2 I aim to:

• Build a 3-box model (3BOX-SIMPLE) of the key regions and processes involved
in trapping Si in the SO using a simple setup of 2 phytoplankton groups and 3
nutrients.

• Observe the effect of different parameterisations of diatom Si:N ratios in
response to Fe within the 3-box model.

• Perform sensitivity testing of the effect of relevant model parameters and
starting conditions on the leakage of Si from the SO.

• Evaluate the model’s response to Fe fertilisation that occurred during past
glaciations.

The second main area of research focuses on the smaller scale detail of diatom uptake
stoichiometry in response to Fe availability. This research revolves around nutrient
addition experiments that were separately conducted in the SO as part of a research
cruise. To investigate this topic in Chapters 3 and 4 I aim to:
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• Establish the relationship of community Si:N uptake ratios to Fe deficiency at the
research site.

• Build and compare two different models, a simple model and a more complex
quota model, against the cruise dataset.

• Observe the ratio of chlorophyll to carbon in the nutrient addition experiments
and incorporate an additional state variable to the quota model to represent a
dynamic cellular chlorophyll pool.

• Optimise the variable chlorophyll quota model by using a genetic algorithm to
select parameters.

• Perform a sensitivity optimisation using the genetic algorithm to observe the
parameters that are most well constrained by the dataset.

• Compare the community structure picked by the genetic algorithm with HPLC
data from the cruise.

1.6 Thesis Overview

• Chapter 1 presents an introduction to the physical and biological characteristics
of the SO, an overview of the causes and implications of Si trapping in the region
and a review of diatom physiology especially targeting their use of Si and
response to Fe availability. This chapter also provides an outline of the thesis
and its aims.

• Chapter 2 presents a simple 3-box model (3BOX-SIMPLE) representation of the
core components of Si trapping in the SO. These components include the
upwelling of nutrients in the SO, the attenuation of Si dissolution and the
parameterisation of diatom Si:N stoichiometry by different methods. Sensitivity
testing is conducted to compare how each factor mediates the leakage of Si from
the SO.

• Chapter 3 presents the modelling of a set of multifactorial nutrient addition
experiments conducted on an SO cruise. The outputs of a simple model and a
more complex quota model are compared against the dataset to evaluate their
performance with particular focus on their replication of Si:N uptake ratios.

• Chapter 4 presents an optimisation of the quota model to improve its simulation
of the nutrient addition experiments. Firstly, an additional state variable is
incorporated to represent a dynamic cellular chlorophyll pool. Secondly, a
genetic algorithm is used to explore model parameters and to investigate
community structure between the different experiment sites.
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• Chapter 5 summarises the scientific findings of Chapters 2-4, discusses the links
between them and their context within the literature. The potential for future
avenues of research within the topics outlined in this thesis are also discussed.
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Chapter 2

Investigating the effect of diatom

physiology on silicon trapping in

the Southern Ocean with a 3-box

model

2.1 Introduction

The structure and movement of water masses in the Southern Ocean (SO) is of major
importance as a closure term in the global overturning circulation (Toggweiler and
Samuels, 1993; Marshall and Speer, 2012; Talley, 2013) and key to the distribution of
global nutrients (Sarmiento et al., 2004). A deep well of nutrients is upwelled in the
Circumpolar deep water (CDW) to the surface of the Southern Ocean south of the
Polar Front (Figure 2.1). Upon reaching the surface, the upper limb of the CDW is
transported northwards undergoing transformation by biological processes as well as
atmospheric forcing (Sigman et al., 2010). Crucially, these waters are then subducted
into mode waters that supply the nutrients for the majority of the ocean’s surface
productivity and, therefore, alterations in the subantarctic have a far reaching
influence (Sarmiento et al., 2004). While the lack of iron in this high nutrient low
chlorophyll (HNLC) zone prevents phytoplankton from stripping most nutrients from
the surface (Landry et al., 2000; Boyd and Law, 2001; Coale et al., 2004), a gradient of
decreasing Si relative to N and P emerges as the upwelled waters move north
(M. Franck et al., 2000). This creates mode water depleted in Si relative to other
nutrients with knock-on effects for diatom productivity in the rest of the world’s
oceans (Sarmiento et al., 2004). Si removed by phytoplankton is exported by the
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FIGURE 2.1: Diagram of the meridional overturning circulation in the Southern Ocean
adapted from Post et al. (2014) and Speer et al. (2000). STF, Subtropical Front; SAF,
Subantarctic Front; PF, Polar Front; SAMW, Subantarctic Mode Water; AAIW, Antarc-
tic Intermediate Water; UCDW, Upper Circumpolar Deep Water; LCDW, Lower Cir-
cumpolar Deep Water; AABW, Antarctic Bottom Water; SAZ, Sub-Antarctic Zone;
PFZ, Polar Frontal Zone; AZ, Antarctic Zone; SPZ, Subpolar Zone. Arrows indicate

the mean direction of flow

biological pump and may re-enter the CDW to create a loop known as the Southern
Ocean silicon trap (Primeau et al., 2013).

The main theory as to why Si becomes so depleted relative to other macronutrients is
founded on the stoichiometry of the diatoms which dominate SO blooms. Under the
iron stress phytoplankton experience in this region, diatoms can increase their Si:N
ratios from 1:1 to as much as 6.5 (Timmermans et al., 2004). This decoupling is
enhanced by the increased likelihood of N recycling in the surface compared to the
remineralisation of biogenic opal which occurs at greater depths (Nodder and Waite,
2001; Salter et al., 2007). The silicon trap is an interplay of upwelling nutrients; diatom
growth and stoichiometry; and silicon remineralisation which may balance differently
in the future SO. Anthropogenic forcing may lead to variation in the supply of iron to
the SO via aeolian dust transport (Mahowald et al., 2005); enhanced diatom growth
due to temperature increases (Boyd et al., 2015); and decreased nutrient supply to the
surface (Moore, Lindsay, Doney, Long and Misumi, 2013). Therefore, it is important to
understand the balance of the factors that create silicon trapping to predict the
outcomes if they may change in the future.

Simple box models have a long history of use in biogeochemical modelling and are
still utilised despite the high resolution models available today (Tyrrell, 1999; Martin
et al., 2002; Matsumoto et al., 2002). Box models have the advantage of being quick to
run and are therefore useful for sensitivity testing. In addition, by removing
complexity from the model and only considering the system’s most important



27 Chapter 2

components, it becomes easier to diagnose the effect of changing parameters. In this
chapter a 3-box model designated as 3BOX-SIMPLE is developed and used to
undertake an idealised examination of silicon trapping in the SO through its core
components: the upwelling of nutrients to the SO surface; the biology that modifies
nutrient stoichiometry in the euphotic zone; and the export of SO surface waters to the
subtropical ocean. The aim of this chapter is to parameterise this model to
approximate the modern silicon trap and the environment that causes it and then to
observe how key parameters effect its strength.

2.2 Methods

The SO silicon trap is represented in an idealised 3-box model based on the models of
Tyrrell (1999), Yool and Tyrrell (2003) and Weber and Deutsch (2012) (Figure 2.2). The
physical structure is comprised of a deep box from 500 to 3720 m and two surface
boxes of 0 to 500 m representing the southern and subtropical oceans (Weber and
Deutsch, 2012) and represents a generalised vertical-horizontal slice of any segment
beginning from Antarctica. . Constant mixing occurs vertically between the surface
and deep boxes and an overturning circulation transports nutrients between boxes.
The circulation upwells nutrients from the deep box to the SO box, transports them
north into the subtropical box and then downwells them back into the deep box. This
represents the upwelling of the CDW, northward transport out of the subantarctic and
the eventual return paths (North Atlantic, Pacific and Indian Deep Waters; Talley,
2013) from all basins to the deep southern ocean and subsequently into the CDW. For
simplification, this scheme ignores the proportion of CDW that is transported south
upon reaching the surface and forms the Antarctic bottom water.

The biogeochemical component of this model includes three nutrients and two
phytoplankton groups. The nutrients include phosphate and iron which are utilised
by all phytoplankton in the model and silicic acid which is only consumed by the
siliceous algae. Iron, which is a trace nutrient, is included due to its relative scarcity in
the Southern Ocean and subsequent limitation of phytoplankton growth there.
Furthermore, iron deficiency can cause increased silicic acid uptake relative to N in the
diatoms that reside there (Hutchins and Bruland, 1998; Takeda, 1998; Timmermans
et al., 2004; Hoffmann et al., 2007; Marchetti and Harrison, 2007). Phytoplankton in the
model are divided into diatoms and other algae where diatoms use all three nutrients
and the other algae do not require Si. While other silicifiers exist and a broad range of
diversity in both diatoms and other algae, this is considered unnecessary to resolve in
a coarse exploration of the silicon trap. The two groups compete for resources in the
two surface boxes corresponding to the SO and subtropical ocean (ST) respectively but
do not enter the deep box.
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FIGURE 2.2: A diagram of 3BOX-SIMPLE containing three limiting nutrients (phos-
phate, iron and silicic acid) and two classes of phytoplankton (ordinary, non-silicified
algae and diatoms). Boxes SO and ST represent the Southern Ocean and the ‘Sub-
Tropical’ Ocean which are connected by the overturning circulation (Ψ) and mixing
denoted by K. The red arrow represents the key purpose of the model: to understand

what effects how much silicon can escape the Southern Ocean.

2.2.1 Model Equations

Each nutrient in the model is divided into three separate state variables corresponding
to boxes SO and ST, which are labelled a and b in their respective equations, and the
deep box while each phytoplankton group has two state variables limited to boxes SO
and ST. Although not explicitly present in this version of the model, nitrate in mol
m−3 remains the currency of the model to facilitate introduction of Si:N uptake ratios,
using an assumed constant N:P stoichiometry of 16:1 (Redfield, 1934).
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Nutrients in the surface boxes SO and ST (Pa, Pb, Fea, Feb, Sia, Sib) are used up by
phytoplankton growth, replenished by phytoplankton mortality and redistributed by
mixing and overturning circulation (Equations 2.1-2.6). In the growth terms both
phytoplankton groups, diatoms and ’ordinary’ phytoplankton, are given a separate
maximum growth rate (µO and µD) which is factored by a Michaelis-Menten term for
nutrient limitation. Following Liebig’s law 1840, the minimum term limits growth;
although for diatoms this includes Si in addition to P and Fe. All possible return
pathways of nutrients from algal matter to the bioavailable pool are simplified to a
single loss term in order to remove the complexity of multiple zooplankton and
detrital variables. This includes independent mortality parameters for each group
(MO, MD) and the fraction of each nutrient remineralised in the surface
(SRP, SRFe, SRSi). The equations for Si only require diatom growth and loss terms.
Mixing is simply determined by the concentration gradient between the surface and
deep boxes and a constant (K). Similarly, the overturning constant (Ψ) is factored by
the concentration difference between the current box and the preceding box in the
circulation (Figure 2.5) to represent influx and efflux. In the case of iron, additional
dust terms are included (Equations 2.3 and 2.4) to represent aeolian supply from land
which are necessary to maintain surface concentrations. Finally, variable Si:N ratio
(Equation 2.12) is applied to the growth and loss terms for Si to represent the changing
stoichiometry of diatoms.

The equations for deep nutrients (Equations 2.7-2.9) share all but the phytoplankton
growth terms from the surface nutrient equations. However, in the deep box, separate
remineralisation parameters (DRP, DRFe, DRSi) are described as the remainder of the
surface remineralisation fraction; meaning that anything not recycled in the surface is
returned to the nutrient pool at depth. In addition, deep Fe has a scavenging term
which occurs at a constant rate (Ksc) (Parekh et al., 2004). This scavenging term
represents all processes which convert soluble iron into colloidal or particulate forms
and has been included due to its important impact on deep Fe concentrations (Boyd
and Ellwood, 2010).
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The equations for phytoplankton biomass in this model (Equations 2.10 and 2.11)
simply contain a growth and loss term parameterised in the same manner as those in
the nutrient equations. Diatoms and other algae are the only biological components of
the model acting on nutrient concentrations. The Liebig’s minimum term within the
phytoplankton’s growth ensures that once they have used up a nutrient there is a
feedback to limit their growth, which over the course of the model integration leads to
a steady state.

A key theory behind the gradient of Si across the surface of the SO is the increased
drawdown of Si by diatoms under iron stress. Given that the removal of Si by surface
biology is assumed to be key to silicon trapping in this region, this model must
include a parameterisation of this effect on diatom stoichiometry. The ratio RSi:N

represents the Si:N uptake ratio of diatoms and in this case is formulated by a direct
parameterisation shown in Equation 2.12.
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Si:N

+ RSi:N
max (2.12)

The model using this equation, which will be referred to as “Fe-dependent”, is based
on available Si:N data shown in (Chapter 1), producing a specific Si:N ratio between
RSi:N

min and RSi:N
max for a given iron concentration. The steepness of the rise in Si:N at low

iron is governed by the parameter KSi:N . This parameterisation is also compared in
this chapter to formulations used by Holzer et al. (2019) to examine the effect of
modelled diatom stoichiometry on the silicon trap. These include a hyperbolic form
(HYP: Equation 2.13) and an exponential form (EXP1 and EXP2: Equation 2.14):
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The model is run for 6000 years to attain a steady state with a timestep of 0.005 years
or 1.83 days.
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TABLE 2.1: Parameters for Si:N formulations including those from Holzer et al. (2019).

Parameter Fe-dependent EXP1 EXP2 HYPR Units

X0 — 0.1 0.2 — µmol Fe m-3

KFe
Si:N 0.022 — — 0.077 µmol Fe m-3

RSi
min 1 1.4 1.4 1.2 (mol Si)/(mol N)

RSi
max 4 37 18 19 (mol Si)/(mol N)

KSi
Si:N — 3.5 3.3 4.0 mmol Si m-3

2.2.2 Model Parameters and Initial Conditions

Base parameters in Table 2.2 are taken from the work of Yool and Tyrrell (2003). The
diatom class is differentiated not only by their reliance on silicic acid but also a higher
maximum growth rate matching what was seen in the literature (Timmermans et al.,
2004) and a reduced mortality due to their silica grazer protection (Pančić et al., 2019).
They are given a less competitive half-saturation constant for iron representing the
dominance of small non-silicified phytoplankton during non-bloom periods. The Fe
scavenging rate is chosen in the range of rates that best reproduced observations in
Parekh et al. (2004) and this is balanced with the half saturation for iron uptake. The
parameters for the Si:N parameterisations used in these experiments are compiled in
Table 2.1 while initial conditions are provided in Table 2.3.

The model was tuned by varying the aeolian iron input to the surface boxes until
nutrient distribution more closely approximated that of the real system. This meant
high P and Si in the SO; low iron in the SO; and highest nutrient concentrations the
deep boxes.

2.2.3 Experiments

In this chapter, the 3BOX-SIMPLE model will be run with and without variable Si:N
parameterisations and sensitivity analysis will be conducted on the parameters most
relevant to silicon trapping. In order to make these comparisons and analyses a metric
of silicon escape efficiency will be used. This was calculated as:

Overturning Si export f rom A
Overturning input to A + Si mixing between A and Deep

(2.15)

As a base run, the model will firstly be utilised with a constant 1:1 Si:N ratio to
observe the Si escape efficiency and nutrient and phytoplankton distributions without
the effects of a variable Si:N ratio. Two different Si:N parameterisations will then be
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TABLE 2.2: Model parameters and their values.

Symbol Parameter Value

SD depth of surface layer 500 m

DD depth of deep layer 3230 m

K ocean mixing coefficient 3.5 m yr−1

Ψ overturning strength 0.5

SRP fraction of P remineralised in surface 95%

DRP fraction of P remineralised in deep 5%

SRS fraction of Si dissolution in surface 50%

DRS fraction of Si dissolution in deep 50%

Rorg minimum Si:P ratio in organic matter 16

µO maximum O growth rate 91.25 yr−1

µD maximum D growth rate 94.9 yr−1

KP P uptake half-saturation constant 0.03 nmol P m−3

KFe−O Fe uptake half-saturation constant for O 0.01 nmol Fe m−3

KFe−D Fe uptake half-saturation constant for D 0.012 nmol Fe m−3

KSi Si uptake half-saturation constant 0.5 mmol Si m−3

MO O mortality rate 73 yr−1

MD D mortality rate 70 yr−1

ExFe−A external Fe input into box a 0.002 mmol yr−1

ExFe−B external Fe input into box b 0.0086 mmol yr−1

KSC scavenging rate for Fe 0.005 yr−1

KSi:N half-saturation constant for Si:N ratio to iron curve 0.022 µmol Fe m−3

TABLE 2.3: Initial conditions for the 3BOX-SIMPLE model.

State
Variable

SO ST Deep Units

O 20 20 ∼ µmol N m-3

Di 20 20 ∼ µmol N m-3

P 0.15 0.15 1.75 mmol m-3

Si 2.4 2.4 112 mmol m-3

Fe 0.1 0.1 0.7 µmol m-3

introduced to the model: an Fe-dependent formula (Equation 2.12) and three Fe and
Si-dependent parameterisations taken from Holzer et al. (2019) (Equation 2.13 and
2.14). This will enable comparison of the results of different Si:N modelling
methodologies, particularly in regard to Si trapping. The effect of raising and
lowering parameter values on silicon escape efficiency will then be observed for a set
of important parameters under the Fe-dependent formula. These parameters include:
surface dissolution fraction of silicon; initial deep silicic acid concentration; aeolian
iron input; iron scavenging; maximum diatom growth rate; diatom and non-diatom
iron uptake half-saturation constant; diatom mortality rate; half-saturation constant of
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the silicon to nitrate ratio curve; strength of the overturning circulation; and silicic
acid uptake half-saturation constant. Finally, based on the results of sensitivity testing
on aeolian iron input, a further investigation was carried out on the effects of
enhanced Fe fertilisation to the model equipped with different Si:N parameterisations.
This included increasing aeolian input to the model and additionally limiting diatom
growth in order to separate the effects of Fe-enhanced Si:N uptake ratios and
Fe-enhanced diatom growth.

2.3 Results

The base run of the model is shown in Figure 2.3, where Si:N ratios are kept at a
constant 1:1 ratio. Although this means that diatoms will uptake Si and P in the same
proportion, their inventories are still differentiated by the lack of Si requirement in the
other algae and separate remineralisation fractions. Model outputs for nutrients in
each box are displayed in Table 2.4 in comparison to values from the literature. The
base model exhibits plausible nutrient concentrations when compared to ocean data
with the main exception being lower SO Si than might be expected. Most importantly,
the dynamics needed to answer the questions of this chapter are present. P and Si are
both high in the SO box relative to the ST box, while iron is the reverse. The deep
nutrient pools have the highest concentrations except iron which is affected by
scavenging. Phytoplankton production is highest in the ST box where non-diatoms
contribute more, while in the SO box diatoms dominate completely (Table 2.5). The Si
escape efficiency of this constant Si:N model was 0.25.

TABLE 2.4: Comparison of 3BOX-SIMPLE’s steady state outputs with observations.

State
Variable

Units 1:1 Fe-
Dependent

EXP2 Literature

SO P mmol P m-3 1.22 1.22 1.22 1.57

World
Ocean
Atlas
(Garcia
et al., 2018)

ST P mmol P m-3 0.12 0.12 0.12 0.73

Deep P mmol P m-3 1.67 1.67 1.67 2.18

SO Si mmol Si m-3 36.8 1.41 1.41 34.3

ST Si mmol Si m-3 1.41 1.41 1.41 6.90

Deep Si mmol Si m-3 110 112 112 85.4

SO Fe µmol Fe m-3 0.034 0.040 0.040 0.05-0.2 (Tagliabue
et al., 2012)

ST Fe µmol Fe m-3 0.51 0.51 0.51 0.42 (Schlitzer
et al., 2018)

Deep Fe µmol Fe m-3 0.30 0.30 0.30 0.3-0.7 (Tagliabue
et al., 2012)
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FIGURE 2.3: Distribution of state variables at steady state after the 3BOX-SIMPLE
model is run with a constant 1:1 Si:N ratio. Phytoplankton are depicted solely for the
surface boxes they are limited to, SO and ST, while nutrients are present in all 3 boxes.

These diagrams do not represent the depth of the boxes to scale.

The model results for the addition of a variable Si:N ratio are shown in Figure 2.4. The
parameterisation from Equation 2.12 allows the diatoms to vary their Si:N uptake
ratio between 1:1 when iron is in abundance and 4:1 when iron is deficient. Table 2.4
shows that concentrations of P and Fe remain similarly distributed throughout the
model while Si in the SO box has been diminished. In this model, phytoplankton are
balanced equally between the SO and ST boxes with a decrease in diatoms in both
surface boxes while non-diatoms increase by the same amount. The Si escape
efficiency is reduced to 0.0084 with the inclusion of a variable Si:N parameterisation.

The sensitivity analysis presented in Figure 2.5 examines the response of Si escape
efficiency to different model parameters and initial conditions. The fraction of Si
remineralised in the surface boxes is set to 0.5 in the default configuration, however
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FIGURE 2.4: Distribution of state variables at steady state after the 3BOX-SIMPLE
model is run with an iron dependent Si:N ratio. Phytoplankton are depicted solely for
the surface boxes they are limited to, SO and ST, while nutrients are present in all 3

boxes. These diagrams do not represent the depth of the boxes to scale.

raising it above 0.7 creates a rapid increase in Si escape until there is no trapping
effect. The deep box silicon concentration is initially set to 112 mmol m−3. Removing
more than 90% of this value begins to substantially remove diatoms with lack of Si.
Above 179 mmol m−3 Si escape efficiency begins to increase up to an escape efficiency
of 0.12. Altering aeolian iron input yields no change within the range of -30% to
+100%. Below a 40% reduction a fairly linear rise exists to complete Si leakage.
Diatom KFe is responsible for the steepness of the initial slope of the Michalis-Menten
curve for nutrient uptake. A species with a smaller KFe is better able to compete for
low concentrations of Fe. The sensitivity test found that a doubling of the initial value
is required to decrease Si trapping and behaved similarly to increasing Ksc. In the case
where diatom maximum growth rate was altered, a 10% reduction led to complete Si
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FIGURE 2.5: Sensitivity analysis of the 3BOX-SIMPLE model with a variable diatom
Si:N ratio. Model parameters and initial conditions are altered to observe their ef-
fect on the efficiency of silicic acid escape from the Southern Ocean (SO). Parameters
altered are (A) Surface dissolution fraction of silicon; (B) initial deep silicic acid con-
centration; (C) aeolian iron input; (D) iron scavenging strength; (E) maximum diatom
growth rate; (F) diatom and non-diatom iron uptake half-saturation constant; (G) di-
atom mortality rate; (H) half-saturation constant of the silicon to nitrate ratio curve;
(I) strength of the overturning circulation; and (J) silicic acid uptake half-saturation

constant.

escape and this was also the case when diatom mortality is raised to 88 yr−1 from the
original value of 73 yr−1. The degree of scavenging of iron from the deep box has no

TABLE 2.5: Phytoplankton biomass distribution in the 3BOX-SIMPLE model
at steady state (nmol N L−1).

Phytoplankton 1:1 Fe-Dependent EXP2

SO ST SO ST SO ST

Di 21.8 17.9 16.1 9.9 7.5 7.9

O 0 40.3 5.2 48.1 13.3 50.0

Total 79.9 79.2 78.8
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FIGURE 2.6: Michaelis-Menten limitation terms in the SO box are plotted for P, N and
Si over the length of model runs using different Si:N parameterisations. These include
a constant 1:1 Si:N ratio (A), an Fe dependent ratio (B) and the Fe and Si dependent

EXP2 parameterisation from Holzer et al. (2019) (C).

appreciable effect until increased to 150% its value, above which escape efficiency rises
gradually to a maximum of around 0.16. KSi:N represents the steepness of the increase
in diatom Si:N uptake with decreasing Fe concentration. In the model, changing KSi:N

has limited effect until reduced by 80%, below which leads to high Si:N being reached
at lower Fe. Finally, diatom half saturation constant for Si uptake and strength of the
overturning circulation had little to no effect on overall Si escape efficiency.

Figure 2.6 shows the Michaelis-Menten limitation terms for N, P and Si in the SO box
under different Si parameterisations (Michaelis and Menten, 1913). These terms are
given by the formula in Equation 2.16 where S is N, P or Si and KS is the
half-saturation constant.

S
S + KS

(2.16)

The lowest value term on the graph represents the most limiting nutrient at that point
in time. It does not take long for these limitation outputs to reach a steady state. In
Figure 2.6a, giving the model a constant 1:1 Si:N ratio leads to Fe limitation overall
with the lowest value of 7.4 while P and Si are comparatively non-limited at around
0.98. However, in both the Fe-dependent and EXP2 parameterisations (Figure 2.6b and
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FIGURE 2.7: Distribution of state variables at steady state after 3BOX-SIMPLE is run
with an Fe and Si dependent Si:N ratio (EXP2 from Holzer et al. (2019)). Phytoplankton
are depicted solely for surface boxes SO and ST, while the deep box is also included

for nutrients. These diagrams do not represent the depth of the boxes to scale.

c), Si limitation overtakes Fe limitation at 0.74 compared to 0.77 while P remains the
same.

The results of the model paired with the EXP2 parameterisation, which characterises
Si:N as Fe and Si dependent, are shown in Figure 2.7. The steady state nutrient
concentrations in Table 2.4 show identical values to those of the Fe-dependent
parameterisation. However, there is a large redistribution among the phytoplankton
(Table 2.5) whereby SO diatoms are cut in half. The Si escape efficiency was 0.0084 as
with the Fe-dependent parameterisation.

A further sensitivity analysis was performed on the response of the escape efficiency
with different Si:N parameterisations to changing aeolian iron input (Figure 2.8).
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FIGURE 2.8: Si escape efficiency is plotted over changing aeolian Fe input for model
simulations of different Si:N ratio parameterisations. Here, ‘constant’ refers to a 1:1
ratio, ‘Fe dependent’ is the equation constructed for this work and ‘EXP1’, ‘EXP2’,
‘HYP’ refer to the exponential and hyperbolic parameterisations of Holzer et al. (2019).
Plot A shows the reaction of the model to iron addition, while B exhibits the same
when Southern Ocean box diatoms are capped to their max population at normal iron
levels. The same cap is applied to plot C with the addition of extra initial Si in the deep

box (150%).
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Initially, raising the availability of iron led to no change in Si escape efficiency for any
of the Si:N parameterisations and led to a complete reduction of Si escape when a
constant 1:1 Si:N was applied (Figure 2.8a). To investigate further, the response of Si:N
ratios and the response of diatom growth to iron were separated. Diatom growth in
the SO box was capped at its maximum value achieved for original iron levels to
independently view the effect of variable Si:N ratios on Si escape efficiency
(Figure 2.8b). Although artificial in the context of the current model, such a cap might
be considered to represent an additional constraint not currently included within this
simple formulation such as a more complex loss / grazing term and/or light
limitation. Under this regime every model equipped with a variable Si:N ratio exhibits
an increase in Si escape efficiency in response to increased aeolian Fe input. For the
Fe-dependent parameterisation, the minimum threshold for increase is around 100%
additional aeolian Fe at which point it reaches a value of 0.24 and then remains mostly
static. Each of the Holzer parameterisations increase escape efficiency from a
threshold of 250% extra Fe input and rise to 0.63 and 0.40 for EXP1 and EXP2
respectively while HYP shows an initial jump to 0.11 and then a gradual rise to 0.26 by
600% aeolian Fe. On the other hand, increasing aeolian Fe input still has a negative
effect on escape efficiency for the model equipped with a constant 1:1 Si:N ratio, but it
stabilises 0.14 Si escape efficiency. In an attempt to stimulate a response at a lower
degree of Fe fertilisation, the initial deep Si concentration was raised by 50%
(Figure 2.8c). This had very little effect on EXP1, but did increase the rise of Si escape
efficiency observed in EXP2 and HYP at 250% extra aeolian Fe to 0.46 and 0.21
respectively with HYP reaching a new maximum escape efficiency of 0.35. The
additional Si produces an earlier and greater response from the Fe-dependent
parameterisation which yields an Si escape efficiency of 0.31 at 200% aeolian Fe input.
The model equipped with a constant 1:1 Si:N ratio shows a higher base escape
efficiency of 0.44 which descends to 0.38 at 125% of aeolian Fe input.

The changing Si:N ratio of different parameterisations in the same Fe fertilisation
experiments presented above are presented with the constant 1:1 ratio from those
model runs provided as reference (Figure 2.9). This shows that the EXP1
parameterisation has the highest base Si:N ratio at 7.1, followed by EXP2 and HYP at
4.4 and 4.2 respectively and finally the Fe-dependent parameterisation shows the
lowest Si:N at 2.1 (Figure 2.9a). Each parameterisation begins to decline in Si:N past
225% additional aeolian Fe input. The models equipped with EXP formulas both
decrease to an Si:N of 1.4 by 300% extra Fe input while HYP shows a gradual slowing
decline to 1.5 at peak fertilisation. The Fe-dependent form initially descends to 1.3 at
300% extra Fe input and then gradually declines to meet the 1:1 constant. When
diatom growth is capped (Figure 2.9b) a decrease in SI:N is triggered at the same
threshold of fertilisation with the exception of the Fe-dependent parameterisation
which now declines past 150%. Additionally, though each variable Si:N
parameterisation decreases to near the same final value as the previous experiment,
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FIGURE 2.9: Diatom Si:N ratio in the SO box is plotted against changing aeolian Fe
input for model simulations of different Si:N ratio parameterisations. Here, ‘con-
stant’ refers to a 1:1 ratio, ‘Fe dependent’ is the equation constructed for this work
and ‘EXP1’, ‘EXP2’, ‘HYP’ refer to the exponential and hyperbolic parameterisations
of Holzer et al. (2019). Plot A shows the reaction of the model to iron addition, while
B exhibits the same when Southern Ocean box diatoms are capped to their max pop-
ulation at normal iron levels. The same cap is applied to plot C with the addition of

extra initial Si in the deep box (150%).
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the decline occurs sharply within a 25% interval of aeolian Fe input (the minimum
interval of the experiment). Finally, when diatom growth is capped and an additional
50% of extra initial Si is added to the deep box (Figure 2.9c), there is no change except
for the further decrease in the threshold for Si:N drop-off in the Fe-dependent run
which now begins at 100% additional aeolian Fe.

2.4 Discussion

In this chapter, a simple 3-box model approach (3BOX-SIMPLE) was used to
investigate Southern Ocean Si trapping especially focusing on the effect of variable
Si:N parameterisations. To the author’s knowledge this is the first time variable
diatom Si:N ratios have been incorporated into a box model framework. The benefits
of using this tool include extremely rapid run times (4.56 s) for fast sensitivity and
scenario testing. The 3-box design including a deep box and Sothern Ocean and
Subtropical surface boxes (Weber and Deutsch, 2010) captures the upper limb of SO
circulation: the upwelling of Circumpolar Deep Water, northward flow across the
surface, and subsequent formation and subduction of mode waters (Talley, 2013). In
this case, the return of nutrients from the ST box to the deep is an idealised view of the
formation of North Atlantic Deep Water.

The first run of the model with a constant 1:1 Si:N ratio was performed as a baseline
from which to check parameter settings and to compare against variable Si:N runs.
The results of this run (Figure 2.3) agree reasonably well with observations (Table 2.4).
The important divisions this model attempts to capture are the deep reservoirs of
nutrients that are upwelled to the SO; the SO surface where iron availability prevents
full utilisation of those nutrients (a “missed opportunity” for the biological pump
(Primeau et al., 2013)); and the ST surface where sufficient iron leads to complete
removal of macronutrients in the surface and N or NP co-limitation forms (Moore,
Mills, Arrigo, Berman-Frank, Bopp, Boyd, Galbraith, Geider, Guieu, Jaccard, Jickells,
La Roche, Lenton, Mahowald, Marañón, Marinov, Moore, Nakatsuka, Oschlies, Saito,
Thingstad, Tsuda and Ulloa, 2013). This model run distributes the highest P and Si
concentrations to the deep box, leaves fairly replete residual levels in the SO and
leaves the ST box macro-nutrient depleted. The scarcity of Fe in the SO results from
both the lower aeolian dust forcing and also the removal of Fe from deep waters by
scavenging before it can upwell (Parekh et al., 2004; Moore, 2016). Deep Fe is close to
that found for the deep SO and Indo-Pacific in the global iron cycle model of Parekh
et al. (2004) for the same Ksc. In the SO box diatoms dominate non-diatoms completely
while in the ST non-diatoms perform better. The diatoms outcompete in the SO
because they have been given a competitive advantage with a higher maximum
growth rate (Furnas, 1990) and a lower mortality on the assumption that their silica
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tests offer enhanced grazer protection (Hamm et al., 2003). However, in the ST box
diatoms become limited by Si availability and non-diatoms are able to succeed.

After the model was shown to compare reasonably with observations, a variable Si:N
ratio was added to the diatoms. This raises their Si:N uptake ratio with decreasing Fe
concentration from 1:1 up to a maximum of 4:1. Comparing Figure 2.3 to Figure 2.4
shows that this addition has little to no effect on P and Fe distribution in the model.
However, Si in the SO box is almost fully depleted to 1.4 mmol m−3 compared to the
previous value of 30.6 mmol m−3. This is a consequence of the Si:N ratio rising to 2.1
in the SO leading the diatoms to draw down double the Si per mol N (i.e. equivalently
2.1 x 16 = 33.6 mol Si per mol P) that they were previously. Obviously, to say the
Southern Ocean surface is low in Si is counter-intuitive considering it is clearly
defined as a high macronutrient region. However, the scale of this model is
insufficient to capture the gradient of Si from the point of upwelling in the Antarctic
Zone to the mode water formation areas of the Polar Frontal Zone (PFZ) and
Subantarctic Zone (SAZ). Therefore, with the simple configuration adopted, the SO
box of this model can simultaneously be considered the region of upwelling and of
depletion of the Si transported from the SO to the ST box, i.e. representative of what is
exported in the northward flowing intermediate and mode waters.

The low SO Si in this model run is reasonable compared to PFZ/SAZ observations of
<10 mmol m−3 (Garcia et al., 2018). Steady state diatom biomass is reduced in both
surface boxes by a combination of increased Si requirement in the SO box and
subsequent lack of transport into the ST. This benefits non-diatoms which gain the
losses incurred by the diatoms. The inclusion of the variable Si:N (or effectively P)
ratio only marginally lowers the total surface phytoplankton biomass. In order to
measure Si trapping in the two models, the metric of Si escape efficiency is used to
describe the amount of Si leaving the SO box compared to that which enters it. The
introduction of variable Si:N reduces Si escape efficiency from 0.2 to 0.01. Considering
an Si escape efficiency of 1 represents all Si entering the SO box escapes to the ST, the
variable Si:N model run shows almost complete trapping of Si in the SO. This is
unsurprising considering, as stated previously, the iron deficiency present there causes
diatoms to uptake double the Si per mol of N. The Si escape efficiency measured here
is on the same scale as that found by Holzer et al. (2014) who calculated that Si last
utilised in the SO only had a (5±2)% chance of next being utilised outside the SO.

Changing relevant parameter values and initial conditions can effect silicon trapping
in the variable Si:N model (Figure 2.5). The SRs or surface dissolution fraction of Si is
the portion of Si in dead diatoms that is recycled in the surface boxes rather than the
deep. Si trapping appears to be fairly stable to SRs with a 40% increase required to
yield a rapid rise in Si leakage due a reduced export flux from the SO (Figure 2.5a). In
an Fe limited SO, it would be predicted that any additional Si made available would
be able to leak as diatoms are unable to take up more. Upon inspection, while the
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constant Si:N model is Fe limited in the SO box (Figure 2.6a), the addition of variable
Si:N causes Si limitation to overtake (Figure 2.6b, 2.6c). This creates a buffer, whereby
any additional Si available can initially be used by diatoms before Fe then becomes
limiting. Si trapping also appears to be stable to the initial deep Si concentration,
deviating only at around ±60% (Figure 2.5b). Below this value, upwelling of Si
becomes too low, while above, upwelling Si overcomes limitation and escapes the SO.
However, these ranges produce unrealistic deep Si concentrations.

Varying aeolian iron input creates little effect above -40%. Minimising Fe this far limits
diatom growth to the point of Si leakage. As Fe fertilisation is hypothesised by some
to reduce Si trapping due to reduced Si:N uptake ratio (Martin, 1990; Petit et al., 1999;
Brzezinski et al., 2002; Matsumoto et al., 2002), it might be expected this would appear
at higher percentages in Figure 2.5c. One possibility is that the additional Si uptake
caused by intensified diatom growth has outstripped the reduction in Si uptake
stemming from a lower S:N ratio. This will be explored further below. Fe upwelling to
the SO box responds linearly to dust input.

Fe scavenging and the Fe half-saturation constants for phytoplankton are both key
controls on Fe distribution within the model, and their similar trajectories in
Figures 2.5e and 2.5f show that they are well connected. Scavenging acts in the deep
box model to remove Fe making it less available for upwelling to the SO box
(Fig 2.5D). Eventually this reduces diatom growth to the point of overcoming the
effect of increased Si:N and yields Si leakage. If altered individually, a threshold
change occurs if the diatom half-saturation constant for Fe is allowed to decline to the
point of complete non-diatom control of the Fe-supply. However, Figure 2.5e instead
displays the outcome if the half-saturation for Fe is altered for all phytoplankton. In
this case, Si leakage gradually increases from double the original value onward
because their rate of uptake for low concentrations of Fe is reduced. Increasing either
Ksc or KFe independently is a sure way of provoking Si leakage. However, maintaining
the Fe cycle of a model requires achieving balance between Fe uptake by
phytoplankton governed by phytoplankton and scavenging, with complexing by
ligands and other unrepresented aspects of the Fe cycle potentially adding further
complexity. In this case, Si trapping is stable to ±100% of either parameter.

It is evident in Figures 2.5f and 2.5g that both parameters react in a threshold manner
to allow complete Si escape. This is because each of these parameters control diatom
net growth: diatom maximum growth rate (µD) and diatom mortality rate (MD).
Adjusting either to the point of making diatoms weaker than non-diatoms in the SO
allows the other phytoplankton to dominate and ends Si trapping. Finally, the
half-saturation constant for Si:N, overturning circulation strength, and Si
half-saturation constant all yield little to no change in Si trapping. Though they might
be expected to increase Fe or Si in the SO box, these parameters are likely overcome by
the action of diatoms with high Si:N.
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FIGURE 2.10: A diagram to describe the feedback imposed by an Si:N parameterisa-
tion that is dependent upon both Fe and Si concentration. Fe limitation causes raised
Si:N uptake ratios in diatoms, which leads to enhanced Si drawdown in the mode /
intermediate water formation zone. Depending on the initial availability of Si, concen-
trations could become low enough to become limiting or reduce the Si:N ratio. In this

case, Si deficiency would be alleviated and iron would once again become limiting.

As seen in Figure 2.6b, the inclusion of an Fe-dependent Si:N parameterisation causes
the SO to become Si rather than Fe limited. It proves very difficult to produce the
observed Fe limited state (Moore, Mills, Arrigo, Berman-Frank, Bopp, Boyd, Galbraith,
Geider, Guieu, Jaccard, Jickells, La Roche, Lenton, Mahowald, Marañón, Marinov,
Moore, Nakatsuka, Oschlies, Saito, Thingstad, Tsuda and Ulloa, 2013) by limiting Fe
supply via reduced aeolian input and initial deep Fe or increased scavenging. This is
because lowering available Fe to promote limitation simultaneously has the effect of
raising Si:N and therefore further reducing Si and driving the diatoms towards Si
limitation. This is a limitation of a solely Fe-dependent parameterisation for a variable
Si:N uptake ratio. In contrast, if Si:N is a balance of Si uptake rate and N uptake rate
(Marchetti and Harrison, 2007) then low Si conditions should also cause Si:N to
decrease per Michaelis-Menten kinetics (Leynaert et al., 2004). This can be tested by
switching to an Fe and Si dependent Si:N parameterisation, in this case an exponential
relationship (EXP2) proposed by Holzer et al. (2019). However, Figure 2.6c shows that
this parameterisation also leads to the same state of Si limitation in the SO surface.
This can also be observed in the identical steady state nutrient distribution observed in
Figure 2.7. The implication of the same result being produced despite the inclusion of
Si dependency in the parameterisation is that Si:N has not been sufficiently decreased
to prevent diatoms from stripping the Si from the surface before it can escape to the
ST. In this model, with its base parameter set, Si can barely escape the SO.

Parameterisations that decrease Si:N due to Si deficiency create a buffer at low Si
concentrations because they directly relate Si concentration to diatom Si:N uptake
ratio. A feedback loop could emerge whereby low Si triggers a decrease in Si:N uptake
ratio which in turn forces diatoms to take up less Si thereby increasing Si concentration
and raising Si:N which returns the system to Si deficiency (Figure 2.10). Therefore the
parameterisation may determine the lower limit of Si achievable in the model.

After testing the model’s ability to replicate present day conditions, different
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parameterisations were experimented with under Fe fertilisation (Figure 2.8). During
past glacial intervals Fe fertilisation may have occurred due to atmospheric dust flux
to Antarctica up to 50 times greater (Angelis et al., 1987; Lambert et al., 2008).
Increased aeolian Fe input has been one method by which scientists have sought to
explain lower CO2 concentrations during glacial periods. In addition, changes to the
marine calcium carbonate budget are thought necessary to achieve this (Sigman and
Boyle, 2000). The Silicic Acid Leakage Hypothesis (SALH) proposed that decreased
diatom Si:N ratios in response to the extra iron could have allowed more Si to escape
the SO, triggering a floristic shift to diatoms over calcifying phytoplankton
(Matsumoto et al., 2002). The reduction in carbonate burial resulting from decreased
export raised ocean alkalinity allowing greater CO2 uptake by the oceans. Competing
theories exist as to the extent diatom Si:N was involved in increased Si supply to
lower latitudes (Harrison, 2000; Hendry and Brzezinski, 2014; Matsumoto et al., 2014),
and therefore, modelling is an important tool to investigate the effects of Fe
fertilisation on the SO.

The effect of fertilisation on the current model acts to either maintain or create the
highest possible Si trapping (Figure 2.8a). Where it would be expected that increased
Fe availability would lead to lower a Si:N and therefore allow Si to escape, no increase
in escape efficiency is observed whatsoever. Figure 2.9a shows that every
parameterisation exhibits a decrease in Si:N after just over a doubling of Fe input, but
this yields no increase in Si leakage. One explanation for this could be that increased
diatom productivity and nutrient utilisation due to fertilisation exceeds the gain of Si
from lower Si:N. In Figure 2.8b this hypothesis is tested by capping diatom growth in
the SO box to that which existed at the original aeolian Fe level. A rise in Si escape
efficiency is seen that corresponds exactly to the decrease in Si:N in each variable Si:N
parameterisation (Figure 2.9b), while the 1:1 Si:N ratio exhibits a slight decline before
stabilising presumably due to the uncapped diatoms in the ST box. This shows
increased diatom uptake due to relief of Fe limitation has indeed overcome the effect
of a lower Si:N. Figure 2.8c shows the effect of rising Fe input when SO diatoms are
capped and initial deep Si is raised by 50%. Although the parameterisations from
(Holzer et al., 2019) are dependent on both Fe and Si concentrations, the addition of
extra Si upwelling in the SO box does not lead to a further decrease in Si:N at high Fe
fertilisation. Therefore, the higher Si escape efficiency observed for some
parameterisations is purely a function of more Si upwelling equalling more Si leakage.
It should be noted that the thresholds of aeolian Fe that these changes occur at are
arbitrary due to the capping of diatom growth.
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2.5 Conclusions

A simple 3-box model (3BOX-SIMPLE) to represent Southern Hemisphere meridional
circulation was constructed and was able to reasonably replicate observed nutrient
concentrations for P, Fe and Si and recreate expected distributions of diatoms versus
non-diatoms. The addition of an Fe-dependent diatom Si:N ratio created near
complete Si trapping, drawing down Si to the extent of establishing Si limitation in the
SO box. In general, many parameters and initial conditions needed to be pushed to
extremes in order to generate Si leakage. Alternatively, removing the competitiveness
of diatoms against non-diatoms allowed a complete floristic shift and total Si escape
from the SO. Si limitation in the SO box was difficult to alleviate as removing Fe to
make it limiting raised Si:N which further removed Si. The use of an Fe and Si
dependent parameterisation, EXP2 (Holzer et al., 2019) allowed adjustment of the Si:N
ratio based on Si deficiency but yielded no increase in Si escape efficiency and retained
Si as the limiting nutrient in the SO box. However, Si dependent parameterisations
place a lower limit on the Si concentration of the system.

An Fe fertilisation experiment was conducted by increasing the aeolian iron input to
the model by up to 500%. This yielded no change or an increase in Si trapping, which
was due to the added Fe enhancing diatom growth and therefore Si uptake to the
point of surpassing the Si gain from a reduced Si:N ratio. Consequently, the currently
configured model using any of the Si:N parameterisations disagrees with the SALH,
which posits reduced Si:N due to fertilisation should yield Si leakage (Matsumoto
et al., 2002). However, the work reinforces how different parameterisations of the Fe
and Si dependencies of Si:N uptake can lead to different levels of Si trapping and, in
the absence of increased diatom growth, for example due to other constraining factors,
would result in different responses to Fe fertilisation (Holzer et al., 2019).

The simplicity of this approach makes these results faster and easier to interpret but
does yield limitations in exploring the whole SO system. The SO is characterised as
one homogenous box within the model, but in reality is divided by the decreasing
gradient of Si from the Antarctic Zone to the Polar Frontal Zone, as well as by the
species composition and growth strategies of diatoms (Assmy et al., 2013) and other
ecosystem processes. As the silicifying phytoplankton, diatom dominance establishes
the degree to which enhanced Si:N is applied. It is possible that a more complex
model might have more flexibility in responding to perturbations under different Si:N
parameterisations. Nevertheless, this investigation shows the far reaching and
perhaps unexpected consequences of Si:N parameterisation choice that can be caused
by the feedback mechanisms inherent in tying Fe availability and Si uptake by
diatoms together.
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Chapter 3

A physiological approach to

parameterising Diatom Si

upregulation using a quota model to

reproduce nutrient addition

experiments in the Southern Ocean

This chapter contains data collected by colleagues on the DY111 cruise of the RRS Discovery.

They conducted factorial nutrient addition experiments on deck which are interpreted and

modelled herein. Their paper on this topic is referenced here:

Wyatt, N.J., Birchill, A., Ussher, S., Milne, A., Bouman, H.A., Shoenfelt Troein, E., Pabortsava, K.,

Wright, A., Flanagan, O., Bibby, T.S. and Martin, A., 2023. Phytoplankton responses to dust addition

in the Fe–Mn co-limited eastern Pacific sub-Antarctic differ by source region. Proceedings of the

National Academy of Sciences, 120(28).

3.1 Introduction

As discussed in Chapters 1 and 2, diatom physiology is important in understanding

the distribution of nutrients in the Southern Ocean (SO) due to their impact on surface

stoichiometry of macronutrients including N, P and Si, which moreover can vary

under iron stress. Because this transformation occurs in a hub of mode water

formation, these changes ripple outward to the rest of the ocean (Sarmiento et al.,
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2004). As phytoplankton respond rapidly to environmental forcing, future changes to

the Southern Ocean may thus have far reaching connotations.

A 2019 study by Holzer et al. used a data constrained model to investigate how

different parameterisations of the Fe dependence of diatom Si:P respond to Fe

fertilisation. Parameterisations with an exponential functional form for the Fe to Si:P

relationship increased Si leakage from the Southern Ocean whereas an alternative

hyperbolic form led to strengthened Si trapping as diatom Si:P did not decline sharply

enough with increasing Fe availability to counteract enhanced diatom growth.

Detailed understanding of the mechanisms of SO Si trapping alongside accurate

predictions of the impacts of climate change for the future of our oceans thus likely

require the correct formulation of the Si:N:P Fe dependence.

In December of 2019, the RRS Discovery ventured just west of the southerly tip of Chile

(Figure 3.1) to investigate upper ocean biogeochemistry as a component of the Carbon

Uptake and Seasonal Traits in Antarctic Remineralisation Depth (CUSTARD)

programme. During this cruise factorial nutrient addition experiments were

conducted with incubated water samples to assess how the provision of a range of

nutrients including Si, Fe and Mn, both separately and in combination, influenced

phytoplankton physiology, growth and nutrient uptake ratios. A smaller set of

experiments where a gradient of Si was provided either with or without the addition

of Fe were also undertaken. This experimental data set provides the opportunity to

address Si:N parameterisation at the experimental level for future expansion to

general circulation models (GCM). In this chapter, models are fit to the CUSTARD

experimental data, which offers a controlled and rigorous testing environment for

parameterisations, serving in contrast to previous studies that have been tested only

against coarse scale ocean observations.

The first model used to fit the CUSTARD data was a simple formulation adapted from

Yool and Tyrrell (2003) which represents phytoplankton growth as a function of

external nutrient concentrations and in this case assumes diatoms dominate

sufficiently to ignore other phytoplankton groups. Direct parameterisations are then

added to this model to create an Si:N ratio that responds to Fe availability (Holzer

et al., 2019) This model was named CUSTARD-SIMPLE. A quota model approach

(CUSTARD-QUOTA) (Droop, 1983; Geider et al., 1998; Buitenhuis and Geider, 2010) is

then employed as a more mechanistic and physiologically based consideration which

represents both external and intracellular nutrient concentrations. Finally, the

CUSTARD-QUOTA model is expanded to include diatoms and a non-silicified ‘other’

phytoplankton as two separate groups. This final novel model’s ability to represent

intracellular ratios makes it a more versatile tool and hence potentially a better fit for
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FIGURE 3.1: The cruise transect and key sampling stations including the site of the
Ocean Observative Initiative (OOI) data buoy.

the SO environment where diatom Si:N ratios are a crucial part of the system

(Brzezinski, 1985; Takeda, 1998; De La Rocha et al., 2000; Brzezinski et al., 2003;

Timmermans et al., 2004; Hoffmann et al., 2007). Within the CUSTARD-QUOTA

model, no direct parameterisation is applied but rather the Si:N ratio is left to arise

implicitly from the model structure. To our knowledge, this is the first time a

multi-element quota model has been developed and tuned to experimental data

collected on natural phytoplankton communities.

3.2 Methods

3.2.1 CUSTARD Dataset

The data against which to fit and calibrate the models was obtained from the DY111

cruise of the CUSTARD project (Carbon Uptake and Seasonal Traits in Antarctic

Remineralisation Depth) which lasted from the 2nd of December 2019 to the 9th of

January 2020. This cruise sampled a latitudinal transect along 89° W comprised of

three main stations: the Ocean Observative Initiative (OOI) data buoy at 54° S;

‘Transect North’ (TN) at 57° S; and ‘Transect South’ (TS) at 59.99° S (Figure 3.1).

Of interest to this study were two designs of factorial nutrient addition experiments

conducted across the transect and the time period of the cruise that sought to assess

changes in community physiology, elemental stoichiometry and nutrient limitation.

Firstly, seven ‘large-type’ experiments (LTE) were performed at the locations and dates
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FIGURE 3.2: The distribution of factorial nutrient addition experiments during the
CUSTARD cruise. This included 7 ‘large-type’ experiments (LTE) and 2 gradient ex-

periments (GE) distributed between 3 sampling locations: OOI, TN and TS.

shown in Figure 3.2. Surface seawater samples (2-3m) were collected with a Teflon

diaphragm pump connected to a towed ”Fish” sampler. For each treatment, triplicate

water samples were passed unfiltered into 4 L acid-washed polycarbonate bottles in a

clean air laboratory. These bottles were filled halfway in random order and then filled

to to total volume again in random order. Prior to any nutrient amendment, initial

measurements of chlorophyll-a, macronutrients and photophysiology were made.

With the exception of three unamended controls, bottles were spiked with 2 nM Fe,

2 nM Mn and 5 µM Si in factorial combinations. The preparation of nutrient additions

is further described in Wyatt et al. (2023). Following nutrient amendment, the bottles

were parafilm-sealed and then placed into a temperature-controlled incubation

container set to approximately local sea surface temperature (5.5 - 6.5 °C). The bottle

shelves were surrounded by light banks with ∼200 µmol photons m−2 s−1 irradiance

and set to a local day/night cycle of 6 h dark and 18 h light. After day 2 and day 6,

sub-samples were taken in the clean air laboratory for the analysis of chlorophyll,

macronutrients, photophysiology, biogenic silica and HPLC pigment analysis. Further

detail of how these measurements were made can be found in Wyatt et al. (2023).

Additionally, two gradient experiments (GE) were completed on smaller 125 ml

samples using a progression of Si amendments up to 80 µM which were performed in

duplicate under low and high iron availability treatments (0 and 2 nM added).

Monitoring of dissolved inorganic nitrogen (DIN: nitrate plus nitrite) and Si

concentrations over time in the closed system of the experiments enabled calculation
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of uptake over the course of the incubation (∆DIN and ∆Si). ∆Si:∆DIN was used to to

compare the model against observations.

On the cruise, Fast Repetition Rate fluorimetry (FRRf) was used to measure the

changing photophysiology of phytoplankton within the incubation bottles over the

course of the experiments. This technique uses a a sequence of excitation flashlets to

cumulatively saturate photosystem II (PSII). The fluorometer measures the curve of

fluorescence produced as chlorophyll-a absorbs light at a shorter wavelength and

emits it at a higher wavelength. Fluorescence continues to increase in response to the

excitation flashlets until the light-harvesting antenna become saturated. From this

measurement one can derive values of the minimum and maximum fluorescence (Fo

and Fm, respectively) and calculate the apparent photochemical efficiency of PSII,

Fv/Fm (where Fv = Fm − Fo) (Kolber et al., 1998). Fv/Fm has been shown to relate to

nutrient stress in phytoplankton and the provision of nutrients to nutrient-limited can

elevate their Fv/Fm measurement (Parkhill et al., 2001). On this cruise, variable

chlorophyll fluorescence was measured using a Chelsea Scientific Instruments

FastrackaTM Mk II Fast Repetition Rate fluorimeter integrated with a FastActTM

laboratory system suplied with 125 mL samples that were dark-acclimated for 30

minutes. One again further details can be found in Wyatt et al. (2023).

3.2.2 CUSTARD-SIMPLE Model

The first model used in this study is a simplified version of the formulations found in

Yool and Tyrrell (2003). Diatoms (D) are assumed to be the dominant phytoplankton

type and therefore the only algae included to simplify the model. Their growth is

determined by the availability of four nutrient variables including the main factorial

additions in the CUSTARD long-term incubation experiments: nitrogen (N), iron (Fe),

silicon (Si) and manganese (Mn). Phytoplankton are expressed in terms of mol N m−3

and later converted to Chlorophyll for comparison to observations by use of

chlorophyll to N ratios measured during each experiment.
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The growth component of the diatom equation is comprised of a maximum growth

rate term (µD) and a Liebig’s Law 1840 term where the minimum Michaelis-Menten

term (minimisation term inside square brackets in Equations 3.1-3.3) is the growth

limiting nutrient. Rather than explicitly including all possible means of diatom loss

such as grazing, viruses and sinking, a single mortality term is used which depletes a

constant fraction of the diatom pool at every timestep. In fact, mortality was later set

to zero as it is assumed this had a minimal impact in the low volume and short time

period of the experimental setup. In this model, the general nutrient equations (X) are

simply the inverse of that for diatoms; nutrients are lost from their pool by diatom

growth and gained by diatom mortality. Terms for mixing, riverine input and deep

remineralisation considered in the box-model of Yool and Tyrrell (2003) are removed

as these equations now represent the dynamics of an incubation bottle rather than the

ocean. In the case of Si, an extra ratio is factored into the growth term to enact the

effect of variable diatom Si:N uptake ratios explored in the introduction. The direct

parameterisations tested on this model include a hyperbolic form (HYP) and an

exponential form (EXP1 and EXP2):
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max − RSi
min

)︂(︄ Si
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These parameterisations are taken from Holzer et al. (2019) and further details

regarding these formulations are available therein. A further ‘Trial’ parameterisation

was created as a point of comparison for this study which does not bear any specific

physiological representation beyond its dependency on both Fe and Si concentrations

but was purely based on adherence of its functional form to the available Si:N data

(Figure 3.4):

RSi:N =

(︂
Si

Si+KSi

)︂
min

(︂
N

N+KN
, Fe

Fe+KFe

)︂ (3.6)

Following the results of Figure 3.8, the EXP1 parameterisation was chosen for the

main model simulations of the ‘large-type’ experiments. The model run time is set to 6

days to mirror the length of the shipboard experiments.

The model parameters listed in Table 3.1 were hand-picked to coincide with the

bounds of literature values and a reasonable model fit to observations. The initial

conditions shown in Table 3.2 were taken from the mean of triplicate initial
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TABLE 3.1: Model parameters and their values.

Symbol Parameter Value

µD maximum D growth rate 130 yr−1

KN N uptake half-saturation constant 0.25 µmol N L−1

KFe Fe uptake half-saturation constant 0.25 nmol Fe L−1

KSi Si uptake half-saturation constant 0.25 µmol Si L−1

KMn Mn uptake half-saturation constant 3.38 × 10−3 nmol Mn L−1

M Mortality rate 0 yr−1

concentration measurements from the incubation bottles for N and Si. Fe and Mn

were hand-set to a reasonable starting level. These initial nutrient values were

amended with 2 nM Fe, 2 nM Mn and 5 µM Si in the relevant treatments matching the

factorial nutrient addition experiments. The initial diatom value was calculated by

multiplying the time zero chlorophyll measurements from the bottles by the N:Chl

ratio found in the data.

TABLE 3.2: Model initial conditions.

LTE01 LTE02 LTE03 LTE04 LTE05 LTE06 LTE07 Units

Di 0.42 1.44 0.46 2.62 0.63 0.76 0.86 µmol N L−1

N 20.22 24.12 19.62 21.24 19.13 23.09 17.14 µmol L−1

Fe 0.05 0.05 0.05 0.05 0.05 0.05 0.05 nmol L−1

Si 4.84 7.06 3.83 1.01 3.43 0.73 0.10 µmol L−1

Mn 0.01 0.01 0.01 0.01 0.01 0.01 0.01 nmol L−1

3.2.3 CUSTARD-QUOTA Model

The second model used in this study allows for phytoplankton to differentiate

between the uptake of nutrients and the use of those nutrients within the cell.

Additionally, the CUSTARD-QUOTA model is formulated in a manner which allows

for uptake and intracellular storage of nutrients above the amount required for

saturation of instantaneous growth, a process typically termed ‘luxury uptake’

(Buitenhuis and Geider, 2010). Although phytoplankton only have limited capacity

for luxury uptake of N, this is not the case for Fe (Sunda and Huntsman, 1995;

Marchetti et al., 2009), Si (Martin-Jézéquel et al., 2000) or Mn (Peers and Price, 2004).

The model is based on the structure outlined by Buitenhuis and Geider (2010) as

developed from (Geider et al., 1998) and Droop (1983). The base variable for

phytoplankton biomass is now represented as cellular carbon (C), with cellular quotas

(QX) for each modelled nutrient (X) represented by the cellular X:C ratio:
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Here, as in Buitenhuis and Geider (2010), luxury uptake is achieved by defining an

optimum nutrient to carbon ratio (Qopt). At cellular quotas below this value, all the

nutrient is utilised functionally by the cell and growth is directly related to this

‘sub-optimal’ quota. At cellular quotas above Qopt, the excess nutrient is stored by the

cell, which may be subsequently utilised at a later time period. Both diatoms (D) and

‘other’ phytoplankton (O), which lack a requirement for Si, are represented in the

model with diatom starting fraction RD:O initially set to 0.8 as diatoms are assumed to

dominate in the sampled waters. Growth terms once again involve a max growth rate

(µO and µD) and a minimisation function; however, this is now formulated such that

growth increases linearly with actual ratio Q between the minimum required (Qmin)

and the optimum ratio (Qopt) but is capped at the maximum value (µmax). Loss is

again condensed into a single mortality term.

The maximum uptake rate term (ρmax), expanded in Equation 3.9, is responsible for

reducing the rate of nutrient uptake when the cell has accumulated excess nutrient.

Nutrient-saturated maximum uptake rate ρhi
max is reached when cellular nutrient

approaches Qmin while the maximum nutrient uptake rate decreases to the actual

uptake rate at Qmax, (Morel, 1987; Buitenhuis and Geider, 2010). The same four
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TABLE 3.3: CUSTARD-QUOTA model parameters and their default values.

Symbol Parameter Value

µD maximum D growth rate 130 yr−1

µO maximum O growth rate 100 yr−1

KN N uptake half-saturation constant 5 umol N L−1

KFe Fe uptake half-saturation constant 0.004 umol Fe L−1

KSi Si uptake half-saturation constant 5 umol Si L−1

KMn Mn uptake half-saturation constant 0.004 umol Mn L−1

M mortality rate 0 yr−1

QN
min minimum N:C ratio 0.05 mol N : mol C

QN
opt optimum N:C ratio 0.167 mol N : mol C

QN
max maximum N:C ratio 0.167 mol N : mol C

QFe
min minimum Fe:C ratio 2×10-6 mol Fe : mol C

QFe
opt optimum Fe:C ratio 5×10-6 mol Fe : mol C

QFe
max maximum Fe:C ratio 50×10-6 mol Fe : mol C

QSi
min minimum Si:C ratio 0.05 mol Si : mol C

QSi
opt optimum Si:C ratio 0.167 mol Si : mol C

QSi
max maximum Si:C ratio 0.5 mol Si : mol C

QMn
min minimum Mn:C ratio 0.2×10-6 mol Mn : mol C

QMn
opt optimum Mn:C ratio 1×10-6 mol Mn : mol C

QMn
max maximum Mn:C ratio 30×10-6 mol Mn : mol C

Nρhi
max/ρlo

max ratio of N-limited and N-saturated
maximum uptake rate

1

Feρhi
max/ρlo

max ratio of Fe -limited and Fe-saturated
maximum uptake rate

20

Siρhi
max/ρlo

max ratio of Si -limited and Si-saturated
maximum uptake rate

1

Mnρhi
max/ρlo

max ratio of Mn-limited and Mn-saturated
maximum uptake rate

20

RD:O Initial diatom starting fraction 0.8
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TABLE 3.4: CUSTARD-QUOTA model initial conditions.

LTE01 LTE02 LTE03 LTE04 LTE05 LTE06 LTE07 Units

N 20.22 24.12 19.62 21.24 19.13 23.09 17.14 µmol L−1

Fe 0.05 0.05 0.05 0.05 0.05 0.05 0.05 nmol L−1

Si 4.84 7.06 3.83 1.01 3.43 0.73 0.10 µmol L−1

Mn 0.02 0.02 0.02 0.02 0.02 0.02 0.02 nmol L−1

Di 2.11 9.53 2.83 14.53 3.31 5.77 4.46 µmol C L−1

O 0.53 2.38 0.70 3.63 0.83 1.44 1.12 µmol C L−1

Di QN 0.35 1.59 0.47 2.43 0.55 0.96 0.74 mol N: mol C

Di QFe 7.39e-6 3.34e-5 9.92e-6 5.09e-5 1.16e-5 2.02e-5 1.56e-5 mol Fe: mol C

Di QSi 0.53 2.38 0.71 3.63 0.83 1.44 1.11 mol Si: mol C

Di QMn 2.11e-6 9.53e-6 2.83 1.45e-5 3.31e-6 5.77e-6 4.46e-6 mol Mn: mol C

O QN 0.09 0.40 0.12 0.61 0.14 0.24 0.19 mol N: mol C

O QFe 1.85e-6 8.34e-6 2.48 1.27e-5 2.89e-6 5.05e-6 3.90e-6 mol Fe: mol C

O QMn 5.28e-7 2.38e-6 7.08 3.63e-6 8.27e-7 1.44e-6 1.11e-6 mol Mn: mol C

nutrient variables, nitrate (N), iron (Fe), silicon (Si) and manganese (Mn) are

represented in Equation 3.12 for a generic nutrient (X) with Si uptake occurring only

in the diatoms. The loss terms are uptake by diatoms and others which include a

Michaelis-Menten form factored by the maximum uptake rate, while nutrients return

to the extracellular pool following phytoplankton mortality. Individual uptake terms

in Equation 3.10 and Equation 3.11 are set to zero if their sum exceeds the total

nutrient available to both plankton groups.

3.2.4 Experiments

In this chapter, before any modelling is undertaken, the observations collected during

the CUSTARD cruise will be considered. Firstly, a spatio-temporal picture of

chlorophyll, N and Si will be provided to establish the background biogeochemistry

under which the nutrient addition experiments took place. Secondly, using the data

obtained from those experiments, the response of Si:N uptake ratios to Fe and Si

availability will be compared to the expected dynamics discussed in Chapter 1

(Section 1.3.2).

Two models, described in detail in Sections 3.2.2 and 3.2.3, were applied to replicate

the observations of the CUSTARD incubation experiments. In the first case, a model

with a direct parameterisation of Si:N uptake ratio was tested against observations. A

number of parameterisations were then compared by their effect on the model’s fit to

the data. In the second instance, a quota-type model (CUSTARD-QUOTA) was

applied recreate the experiments, which rather than having nay direct
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parameterisation, allowed internally flexible stoichiometric ratios by representing

both nutrient uptake to the cell from the external environment and cellular usage of

those nutrients. By utilising these two different methods to achieving a variable Si:N

ratio, it is hoped that the approaches can be compared in addition to finding the

superior fit to the observations.

3.3 Results

3.3.1 Findings from Shipboard Experiments

3.3.1.1 Background Measurements

In Figure 3.3, contour plots of chlorophyll, Si and N concentration are plotted using

underway data that was collected during the cruise. The chlorophyll plot shows low

values in the north but a raised signature in the south from around day 7 to day 28

which peaks at 2.4 µg L−1 suggesting a bloom in this region. N similarly shows a

higher concentration in the south than the north (reaching 23.4 µM), although the

lowest values appear centrally around station TN in the latter half of the cruise.

Finally, Si initially appears higher in the south but quickly decreases leaving most Si

remaining in the north by the end of the cruise.

3.3.1.2 Si:N Response to Iron

Although direct iron (Fe) concentrations were not collected for all but the starting

conditions of the experiments, Fe limitation has been shown to negatively impact the

quantum efficiency of photochemistry in photosystem II (Greene et al., 1991), which

can be measured using fast repetition rate fluorometry using the fluorescence

parameter Fv/Fm. This technique uses pulsed high intensity flashes to saturate

reaction centres, driving changes in fluorescence yield which enable determination of

whether various stress factors may be influencing the cellular physiology (Greene

et al., 1994; Falkowski and Kolber, 1995; Boyd and Abraham, 2001).

By using Fv/Fm as an indicator of Fe (and potentially Mn) stress, the measured Si:N

uptake ratio could be compared to the relative Fe stress across both treatments and

locations over the course of the experiments (Figure 3.4). The trend of higher Si:N

ratios present at low Fv/Fm, indicative of greater Fe stress, is clear. Experimental

treatments where no additional Fe was provided show the greatest Si:N, mainly

peaking at around 2.5:1 or up to 4 in one case. A band of measurements appears
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FIGURE 3.3: The concentrations of chlorophyll, N and Si across the CUSTARD cruise
region plotted over time elapsed since the cruise began. The track of the cruise is

overlaid in white.

FIGURE 3.4: Phytoplankton Si:N uptake ratios across the ‘large type’ experiments are
plotted against Fv/Fm; a measure of the quantum efficiency of photochemistry in pho-
tosystem II determined by fast repetition rate fluorometry, which provides an index of
the extent of Fe limitation (Greene et al., 1991). The are separated by experiment (a);

iron amendment and location (b); and treatment.
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between 0.5 and 1 suggesting that Fe-replete phytoplankton in these experiments

experience lower Si:N than what is considered the ocean average of 1:1 (Brzezinski,

1985). Of these Fe-replete plankton, those sampled from the south of the study region

(at station TS) had a much broader range of Fv/Fm values whereas those from the

north of the study region (at OOI) were very closely distributed. When broken down

by individual treatment, comparing +FeMn and + FeSi clearly shows that Mn has an

important secondary limitation effect in terms of the stress on the photosynthetic

apparatus. The lowest Si:N values in Figure 3.4 all correspond to treatments where Si

was not added. When the data are divided into the more northerly (1, 3, 5) and more

southerly experiments (2, 4, 6), the iron-replete incubations from the north exhibit a far

tighter grouping of high Fv/Fm values (>0.39) compared to their southern

counterpart which spread down to 0.25 close to iron-deficient values.

3.3.1.3 Gradient Experiments

The results of the two Si gradient experiments GE01 and GE02 are shown in

Figure 3.5, with non-Fe amended and +Fe treatments separated. These data were fit

with a non-linear regression based on a Michaelis-Menten form. While reproducing

the positive effect of Fe stress on Si:N seen in Figure 3.3, Figure 3.5 demonstrates that

Si concentration is also a clear driver of Si:N. The northerly OOI experiment, GE01 has

an Si:Nmax of 0.95 and 1.54 for the high and low Fe conditions respectively while

GE02 in the south at TS exhibited higher values of 1.45 and 3.49. The half-saturation

constant, KSi:N , rises from 0.82 with Fe to 1.59 without in GE01 whereas in GE02 it

decreases from 2.57 to 1.78. In both GE01 and GE02, the curves appear to saturate at

concentrations between 10 – 15 µM of Si above which iron limitation is the only factor

and below which Si limitation begins to take effect.

3.3.2 CUSTARD-SIMPLE Model

3.3.2.1 Large-Type Experiments

The observed final chlorophyll concentrations for each large-type experiment were

compared against the basic model estimates in Figure 3.6. Experiments 2, 4, 5 and 7

appear to match the observed values best overall, though the model tends to

underestimate the magnitude of the responses. The +Fe and +FeMn response is

captured in 1, 2, 3 and 5 but notably absent elsewhere. However, all experiments

produce responses for +FeSi and +FeSiMn suggesting a Si deficit may be responsible

of limiting the magnitude of the positive Fe response in these cases. The addition of
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FIGURE 3.5: Si:N uptake ratios from the 2 gradient experiments are plotted against
silicic acid concentration. Data are separated by whether they were iron amended and

a saturating Michaelis-Menten curve is fitted.

Mn and Si alone or in combination is accurately represented as having no effect by the

model.

Overall, the modelled responses appeared to overestimate the extent of Si limitation,

in some cases suppressing the response to the relief of Fe limitation. Consequently,

additional model runs were performed where, starting Si was increased to the starting

condition of experiments 4, 6 and 7 where no Fe response was previously achieved by

the model. A strong response was now produced by the model for the Fe and +FeMn

treatments in these experiments, matching the observed data well, although

overshooting the +FeMn response in experiment 7 (Figure 3.7).

The basic model framework was then used to test how well different

parameterisations of the Si:N to Fe response fit the data (Figure 3.8). Here, a

comparison is made between a fixed 1:1 ratio, a new ‘trial’ parameterisation, and three

parameterisations used previously by Holzer et al. (2019): exponential relationships

EXP1, EXP2 and hyperbolic relationship HYP. Root mean square error was used to

compare each model run to the experimental results with a lower error, indicating the

model run more accurately represented observations. As previously discussed, the

model struggles with Si and this is clear in the much greater error for Si when

compared to estimates of chlorophyll and N across the board. The 1:1 and ‘trial’

parameterisation are better at approaching the real chlorophyll and N, however, the

main effect of these parameterisations is upon Si uptake. Here, the Holzer et al. (2019)

parameterisations all produce a lower deviation for Si, at the expense of a higher

deviation for N.
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FIGURE 3.6: Average chlorophyll at the 6th day endpoint is plotted for each treatment
in every ‘large-type’ experiment. This is compared against the results of the basic
model adapted from Yool and Tyrrell (2003). The model was provided accurate start-

ing conditions for N, Si while Fe and Mn were approximated.

FIGURE 3.7: Average chlorophyll at the 6th day endpoint is plotted for each treatment
in every ‘large-type’ experiment. This is compared against the results of the basic
model adapted from Yool and Tyrrell (2003). An additional 10 µmol of starting Si was
supplied to the starting condition of experiments 4,6 and 7 where no Fe response was

previously achieved.

3.3.2.2 Gradient Experiments

It is also possible to use the model to recreate experiments GE01 and GE02 where

incubations were run over a gradient of Si additions paired with added iron or no
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FIGURE 3.8: The results of the basic model are compared to the CUSTARD experiment
observations using Root Mean Square Error. Several types of Si:N parameterisation are
also compared: a 1:1 ratio; a ‘trial’ formula created for this study and 3 forms taken

from Holzer et al. (2019).

added iron (Fig 3.9). This provides another opportunity to test the integrity of the

model, particularly in regards to Si:N, or more specifically the ratio of change in Si

concentration to change in N concentrations over the course of the experiment . For

GE01, it is clear that all of the parameterisations overshoot the Si:N by a large amount

reaching a max Si:N of 7.2, 22, 13 and 12 for the trial, EXP1, EXP2 and HYP

parameterisations respectively, in the low iron treatment. However, in that treatment,

they do exhibit the correct shape of a saturating curve and this is also true of the high

iron treatment for the trial and HYP parameterisations. The trial parameterisation

deviates least from the observations, overestimating the high iron treatment by ∼0.15

but still with around 6 times the maximum Si:N of the low iron treatment.

During GE02 experiment (Figure 3.5), the maximum Si:N of the low-iron non-linear

regression reaches 3.4 compared to 1.5 in GE01. Correspondingly, all

parameterisations increase the maximum Si:N in the low iron treatment, with the

Holzer et al. (2019) equipped models showing a 0.1-0.6 increase and the trial

parameterisation rising by 1 to an Si:N of 8.2 (Figure 3.10). In the high iron treatment,
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FIGURE 3.9: The results of the incubation experiment GE01 and model simulations
of those experiments are shown by markers and lines respectively. The ratio of ∆Si to
∆DIN over a gradient of Si concentration and high (red) and low (blue) iron conditions
is simulated using four different Si:N parameterisations: a ‘trial’ formula created for
this study (A) and 3 forms taken from Holzer et al. (2019), EXP1 (B), EXP2 (C) and
HYP (D). The markers showing the results of the incubation experiments are shaded
by their Fv/Fm; a marker for stress in photosystem II. In this case, a low Fv/Fm is
indicative of phytoplankton suffering from iron limitation in the treatments where

none was added.

EXP1, EXP2 and HYP show almost no change but fit the higher observations better

than in GE01 while the trail parameterisation exhibits an excellent fit to the data.
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FIGURE 3.10: The results of the incubation experiment GE02 and model simulations
of those experiments are shown by markers and lines respectively. The ratio of ∆Si to
∆DIN over a gradient of Si concentration and high (red) and low (blue) iron conditions
is simulated using four different Si:N parameterisations: a ‘trial’ formula created for
this study (A) and 3 forms taken from Holzer et al. (2019), EXP1 (B), EXP2 (C) and
HYP (D). The markers showing the results of the incubation experiments are shaded
by their Fv/Fm; a marker for stress in photosystem II. In this case, a low Fv/Fm is
indicative of phytoplankton suffering from iron limitation in the treatments where

none was added.

3.3.3 CUSTARD-QUOTA Model

3.3.3.1 Large-Type Experiments

To better recreate the drawdown of Si observed in these experiments, which appeared

to be a complex emergent property of both Fe amendment, location and Si availability

(Figures 3.4 and 3.5) not captured well in the basic model, a model that considers the

internal nutrient quota of phytoplankton cells, as well as the external nutrient

concentration, was used. The results of the model are compared to the endpoint

measurements of chlorophyll, dissolved inorganic nitrogen (DIN), Si and the ratio of

Si to N. In Figure 3.11, the model recreates the patterns of all the +Fe treatments, also

recreating some of the secondary limitation of Si and Mn in experiments 2, 4, 6 and 7

in which the +FeMnSi treatment produces the highest chlorophyll concentration. The

responses of N uptake to the different experimental treatments are tightly linked to

those of chlorophyll. Si uptake reproduced by the model appears to perform well

except for treatments where both Fe and Si are added, where uptake typically

exceeded observed values. The low uptake ratio of Si to N when Fe is added is much

more closely replicated by the CUSTARD-QUOTA model than the ratio at low Fe

which is too high in almost every experiment. This is created by a combination of

underestimated N uptake in these treatments and sometimes overestimated Si uptake,
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FIGURE 3.11: Comparison of data from the endpoint of each ‘large-type’ experiment is
compared against the results of the CUSTARD-QUOTA model. Triplicate experimen-
tal observations for chlorophyll, change in dissolved inorganic nitrogen (DIN), change
in silicic acid (Si) and the ratio of ∆Si to ∆N are indicated by white markers. Model
results for both diatom and the ‘other phytoplankton’ class have blue bars while the

diatom class alone are shown in red bars.
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as mentioned above. Accurate measurement of Si:N in low Fe conditions is extremely

important as it is these high values that affect the broader dynamics, both inside the

SO and consequently the global scale implication (Sarmiento et al., 2004). However,

the lower uptake of nutrients in this state makes it more difficult to measure

accurately.

3.3.3.2 Gradient Experiments

A similar story can be found in Figure 3.12, where the fit to gradient experiment GE01

is plotted. While reproduced chlorophyll and N appear close to the observed data, Si

uptake is significantly overestimated producing a corresponding overestimate in the

Si:N uptake ratio. The picture of GE02 in Figure 3.13 follows the same pattern, though

a closer fit is achieved. In order to try and reduce the uptake of Si in these

experiments, the QSi
max was lowered from 0.5 to 0.2 for GE01 and to 0.4 for GE02. The

results, in Figures 3.14 and 3.15, show that this approach succeeded in reducing Si

uptake and subsequently led to a closer approximation of the Si:N trend in GE02,

however, this effect seems to have gone too far in the case of GE02, producing a lower

Si:N at lower Fe.

FIGURE 3.12: The results of the first gradient experiment (GE01) for chlorophyll,
change in dissolved inorganic nitrogen (N), change in silicic acid (Si) and the ratio
of ∆Si to ∆DIN are plotted with markers and shaded by their Fv/Fm; a marker for
stress in photosystem II. In this case, a low Fv/Fm is indicative of phytoplankton
suffering from iron limitation in the treatments where none was added. Results of
the CUSTARD-QUOTA model simulating this experiment are shown by plotted lines;

blue corresponding to the low iron treatment and red to the high iron treatment.
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FIGURE 3.13: The results of the first gradient experiment (GE02) for chlorophyll,
change in dissolved inorganic nitrogen (N), change in silicic acid (Si) and the ratio
of ∆Si to ∆N are plotted with markers and shaded by their Fv/Fm; a marker for
stress in photosystem II. In this case, a low Fv/Fm is indicative of phytoplankton
suffering from iron limitation in the treatments where none was added. Results of
the CUSTARD-QUOTA model simulating this experiment are shown by plotted lines;

blue corresponding to the low iron treatment and red to the high iron treatment.

FIGURE 3.14: A repeat of the information shown in Figure 3.12 for the gradient exper-
iment GE01 with observations shown with markers and CUSTARD-QUOTA results
plotted in blue lines for the low iron treatments and red lines for the high iron treat-
ments. However, in this case the CUSTARD-QUOTA model QSi

max was lowered from
0.5 to 0.2.
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FIGURE 3.15: A repeat of the information shown in Figure 3.13 for the gradient exper-
iment GE02 with observations shown with markers and CUSTARD-QUOTA results
plotted in blue lines for the low iron treatments and red lines for the high iron treat-
ments. However, in this case the CUSTARD-QUOTA model QSi

max was lowered from
0.5 to 0.4.

3.4 Discussion

Experimental data from the sub-Antarctic South East Pacific revealed clear changes in

major element stoichiometry in response to the availability of different nutrients.

Comparison of the data with models of different structures and complexities enabled

evaluation of the ability of these models to reproduce those observations. The Si:N

with Fv/Fm data in Figure 3.4, strongly suggest that Si:N increases with Fe stress as

found in many other experiments and ocean regions (Brzezinski, 1985; Takeda, 1998;

De La Rocha et al., 2000; Brzezinski et al., 2003; Timmermans et al., 2004; Hoffmann

et al., 2007). Moreover, considering the data across all experiments and treatments

(Figure 3.12), it appears that, as might be expected, the lowest Si:N values were seen in

treatments with no Si addition. The greater spread of Fv/Fm values observed in the

southerly iron replete treatments (Figure 3.4b) is likely linked to the higher initial

chlorophyll there (Figure 3.6), an indication of greater productivity in the area. In

addition, iron amendments to the southern experiments 2, 4 and 6, in combination

with other nutrients, created a maximum chlorophyll concentration of 18.8 µg L−1

compared to 5.5 µg L−1 in experiments 1, 3 and 5. In the southern experiments, the

further addition of Mn yields a secondary chlorophyll response suggesting the

alleviation of iron has pushed these phytoplankton to Mn limitation, triggering a

lower Fv/Fm (Browning et al., 2014, 2021; Pausch et al., 2019; Balaguer et al., 2022).

This is supported by cross-referring Figures 3.4b and 3.4c where the southern

iron-replete data points with low Fv/Fm correspond to +Fe and +FeSi treatments

while higher Fv/Fm values correspond to +FeMn and +FeMnSi treatments.
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The independent gradient experiments (Figure 3.5) further confirmed that Si:N uptake

ratios were dependent on Si availability as well as Fe. Fe availability limits N

acquisition; mainly by affecting photosynthetic activity and therefore the reductive

power accessible to uptake N (Morel et al., 1991); and, to a smaller extent, due to the

direct role of Fe in N-reducing enzymes including nitrate reductase (Timmermans

et al., 1994). Si uptake is also decreased under Fe stress, although, rather than this

being a direct influence of Fe on Si uptake, it is instead thought to be linked to the

cellular growth cycle (Meyerink et al., 2017). However, as might be expected, the

gradient experiments show Si uptake reduction by low Si availability can produce low

Si:N,. The <1:1 Si:N ratio data points observed in the ‘large-type’ experiments

(Figure 3.4) are also present in these gradient experiments, mainly appearing in the

initial slope of the curve at <10 µM Si (Figure 3.5). These low values, are therefore

caused by low concentrations of Si in combination with Fe replete conditions. When

Fe is available but Si is low, N acquisition is not limited by Fe but sparse Si creates low

diatom uptake, possibly silicifying less or shifting to less silicified species. Although

these values are below the ocean average diatom composition of 1:1 found in

Brzezinski (1985), the lowest Si:N value found in that study is 0.28. However, as

discussed in Chapter 1, the composition of the cell and the frustule can be

disconnected from uptake.

3.4.1 CUSTARD-SIMPLE Model

Patterns of Fe limitation were observed across all the LTE experiments, with further

indications of secondary Mn and Si limitation present in the more southerly

experiments where the in situ bloom was stronger (experiments 2, 4, 6 and 7, see

Figures 3.7 and 3.11), represented by the enhanced starting chlorophyll

concentrations. The variation present in these results which includes primary and

secondary limitation, and different levels of productivity create an ideal testing

dataset for the effects of iron limitation.

While both models were able to broadly reproduce these patterns, the more basic

model (Figure 3.7) struggled to reproduce a realistic response to Fe addition in

experiments 4, 6 and 7 as reduced Si availability exerted too much of a restriction on

the modelled response. This model deficit was clearly demonstrated when the

addition of extra Si to the modelled simulation of these experiments immediately

rectified the discrepancy. It was therefore hypothesised that a model able to replicate

the ability of diatoms to store Si within intracellular pools (Martin-Jézéquel et al.,

2000) might better reproduce the observations.
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3.4.2 CUSTARD-QUOTA Model

The CUSTARD-QUOTA model was thus developed as an alternative framework

which allowed for so-called ‘luxury’ uptake of multiple nutrients (Buitenhuis and

Geider, 2010). This formulation was more able to capture the patterns of chlorophyll

response, not only to relief of Fe limitation following Fe addition within the

experiments but also to Si and Mn in those southerly experiments where secondary

responses to addition of those nutrients were observed (Figure 3.9). Additionally,

despite no direct relationship of Fe to Si:N being included in the model, a qualitative

agreement was found between modelled and observed Si:N uptake ratios in all but

the first two experiments. Within these experiments, with the parameter sets and

starting conditions used, Si limitation is wrongly prescribed by the model in LTE01

while Si limitation is missed in the non-Fe treatments of LTE02. It is suggested that

accounting for more of the divergent starting conditions between experiments might

provide a better fit. Of the direct parameterisations trialled on the basic model in

Figure 3.8, the exponential based curves from Holzer et al. (2019) best matched

observations of Si, although, this seemed to come with a slight penalty in the accuracy

with which N uptake was reproduced. However, across the board reproduction of Si

uptake had markedly higher divergence from experimental results than N uptake.

Such errors point towards Si being the hardest nutrient to model, regardless of which

parameterisation is used.

While the CUSTARD-QUOTA model presents a better fit for the patterns in the

CUSTARD experimental data (Figure 3.9), it bears the cost of requiring many more

parameters than the simpler model (6 in the basic model vs. 23 in the

CUSTARD-QUOTA model). The model requires starting conditions for cellular N, Fe,

Si and Mn quotas in addition to phytoplankton biomass in carbon units for two

groups of organisms, a nominal non-diatom and siliceous diatom population. When

comparing the performance of the basic model with that of the CUSTARD-QUOTA

model, the additional variables available in the latter make it harder to distinguish

whether improved accuracy is due to a more realistic physiological representation or

because of a greater ability to fine tune the model with these variables. Therefore,

CUSTARD-QUOTA is first presented here without additional fine tuning for better

comparison. Absence of data for starting conditions such as Fe and diatom to

non-diatom ratio and the starting cellular elemental quotas must therefore all be

assumed and/or tuned to match observed response. Inaccuracies in assumed

parameter values may also have contributed to quantitative discrepancies between the

model and the observations. An example can be seen in the improved fit produced in

the quota gradient experiments (Figure 3.13) when the QSi
max was lowered from 0.5 to
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0.4. To improve the accuracy of the model and handle the large number of parameters,

a genetic algorithm (Mitchell, 1996) will next be used to fine tune the model to the

conditions at each individual station. Additionally, more CUSTARD data will soon

become available which will provide greater constraints on the initial conditions

including biogenic Si, particulate organic carbon and particulate organic nitrate

(PON), allowing starting quotas for these elements to be set. Initial Fe dissolved and

Mn concentrations will also be available alongside quantitative measures of the

starting diatom to non-diatom ratio in the community.

Holzer et al. (2019) show how the influence of Fe on Si:N stoichiometry is interpreted

in models can be important in determining modelled (de-)coupling of Si and N in the

Southern Ocean and consequently in producing significant disparity in predictions of

future nutrient distributions. The gradient experiments, shown in Figures 3.4 and 3.5,

and both experimental LTE experiments and the CUSTARD-QUOTA based

reproduction of these experiments, make it clear that the phytoplankton community

Si:N ratio is dependent not only on Fe availability but also Si availability. Therefore,

models that seek to represent Si:N uptake ratios in the Southern Ocean, likely need to

incorporate both of these dependencies in order to fully represent system behaviour.

The application of a relatively well-established quota model format (Droop, 1968,

1973; Geider et al., 1998; Buitenhuis and Geider, 2010) was able to reproduce much of

the qualitative response observed in the CUSTARD data. Crucially, the Si:N ratio

emerges implicitly from this model, as a response to Fe influencing growth, which

determines both Si and N uptake, with Si influencing only Si uptake. Such a

mechanism is supported by Brzezinski et al. (2011), who undertook similar nutrient

addition experiments on diatoms in the equatorial Pacific. Si addition increased Si use

and biogenic silica production but had no significant effect on the use of nitrogen. Fe

addition similarly increased the rate of Si use and biogenic silica production, however,

it also increased rates of organic matter production by affecting growth rate and this

was what led to the removal of nitrate. In contrast to indirect links between Fe

availability and Si uptake, Mock et al. (2008) found that among genes they identified

that control the manipulation of Si in diatoms, a set of 75 genes were only induced

under low concentrations of Si while a set of 84 genes were unexpectedly induced by

both silicon and iron limitation. They suggest that Fe could be tightly coupled to Si by

acting as a cofactor for silicon-specific gene products. Experimental and model results

presented here suggest that such a direct linkage may not be necessary in

representation of the Si:N stoichiometry. Questions thus remain relating to the

importance of these genetic signals for the resulting physiological response.
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3.5 Conclusions

Although the CUSTARD-QUOTA model described here requires more fine tuning of

parameters due to its increased complexity, models that assume a direct dependence

of Si:N on Fe availability could be prone to producing artificial responses as they are

based on an empirical rather than a physiological mechanism. Prior to the work of

Pasquier and Holzer (2017), parameterisations have not included Si and Fe

concentration as duel determinants of Si:N but rather one or the other (Jin. et al., 2006;

Matsumoto et al., 2013). It is worth noting that an important feature of Southern

Ocean biogeochemistry is the latitudinal silicon gradient that exists from above 50

mmol m−3 at the southern winter-ice boundary, to 10 mmol m−3 and below at the

Polar Front (Tréguer and Jacques, 1993). In the broader context, a strong dependence

of Si uptake and hence Si:N stoichiometry on Si availability is likely to enhance the

potential for the Southern Ocean to trap Si (Dugdale and Wilkerson, 2001; Holzer

et al., 2014). Representation of these processes is thus likely important in the context of

both, understanding SO Si trapping in the modern ocean and the potential for this to

have changed at times in the past (Nozaki and Yamamoto, 2001; Brzezinski et al., 2002;

Matsumoto et al., 2002).
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Chapter 4

Using a genetic algorithm approach

to parametrise a quota model and

interrogate community structure

within incubation experiments

4.1 Introduction

As part of the Carbon Uptake and Seasonal Traits in Antarctic Remineralisation Depth

(CUSTARD) programme, a series of factorial nutrient addition experiments were

conducted in the Southern Ocean to investigate how the addition of nutrients

including silicic acid (Si), iron (Fe) and manganese (Mn), both separately and in

combination, influenced phytoplankton physiology, growth and nutrient uptake ratios

within the mixed communities present. Among these, a series of ‘large-type’

experiments (LTE’s) observed primary limitation by Fe and secondary limitation by Si

and Mn, while a separate set of gradient experiments recorded the dual effects of Si

concentration and Fe limitation on the Si:N uptake ratio in the incubations.

In Chapter 3, these experiments were used as a robust test of the modelling of diatom

physiology, in particular, the effect of nutrient concentrations on Si:N uptake ratios.

The way that this physiology is parameterised in models can lead to dramatically

different outcomes to conditions such as Fe fertilisation (Holzer et al., 2019), and so,

testing the effectiveness of modelling approaches on such a dataset is an important

tool for improving the modelling of coupled nutrient cycles. In the Chapter 3, a simple

model (CUSTARD-SIMPLE) including diatoms and extracellular nutrients was paired
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with direct parameterisations linking Fe and Si concentrations to Si:N. However, this

approach had deficiencies in how Si availability limited Fe response in the LTE’s and

largely overestimated Si:N response to iron deficiency in the gradient experiments

(GE’s). A subsequent quota model approach (CUSTARD-QUOTA) that included two

phytoplankton groups and internal nutrient quotas in addition to extracellular

concentrations improved the simulation of both sets of experiments without the need

for direct Si:N parameterisations.

The current chapter seeks to further improve the model of the CUSTARD incubation

experiments and to better understand the mechanisms, on a community and cellular

level, that enable a tight fit to observations. Variability in the chlorophyll to carbon

ratio which was observed in the experiments is described and subsequently a

dynamic cellular chlorophyll pool is introduced as an additional state variable to the

model following Buitenhuis and Geider (2010). A genetic algorithm approach is then

used to parameterise the model and explore how the experimental data constrains the

parameter choice. Of particular interest, is the algorithm’s choice of initial diatom

fraction in the different LTE’s which are compared to latitudinal patterns in

community structure observed in the high performance liquid chromatography

(HPLC) data collected on the cruise.

4.2 Methods

4.2.1 Variable Chlorophyll Model

In seeking what might be holding back the CUSTARD-QUOTA model and the ability

to compare the model against observations, it was decided to explicitly model

chlorophyll (Chl) as a separate state variable associated with the phytoplankton,

where before it had been ascribed post-hoc at a constant ratio to carbon (C). This could

be misleading to comparative and algorithmic attempts to fit the model to the

incubation experiments.

Indeed, the Chl:POC ratio measured during the experiments showed considerable

variance across different treatments (Figure 4.1). In general, Fe-limited treatments,

characterised by the lowest values of Fv/Fm (Explained in 3.3.1.2), around 0.2,

exhibited lower Chl:POC ratios compared to that within treatments that included Fe

addition. Experiments 1, 4, 5 and 7 clustered around 0.1 g/mol Chl:POC while 2, 3

and 6 reached values up to 0.24. On the other hand, the Fe amended and hence higher

Fv/Fm treatments (0.25-0.45) ranged from a Chl:POC of 0.14 up to 0.43 g/mol. Such

reduction in Chl:C ratios under iron limitation has been well documented (Sunda and
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Huntsman, 1995), but more generally, Chl:C is responsive to ambient light,

temperature, and nutrient conditions (Cloern et al., 1995; Geider et al., 1997; Wang

et al., 2009).

Therefore, chlorophyll is now modelled directly following the formulation of

Buitenhuis and Geider (2010) allowing for a variable Chl:C ratio which prevents the

fitting of chlorophyll observations being offset by unknown Chl:C. This also facilitates

the inclusion of light and Chl:C in the calculation of carbon biomass. This new version

of the model is referred to as CUSTARD-QUOTA-V2.
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FIGURE 4.1: The ratio of chlorophyll to particulate organic carbon (µg Chl : µmol POC)
is displayed against Fv/Fm; a marker for stress in photosystem II. In this case, a low
Fv/Fm is indicative of phytoplankton suffering from Fe limitation in the treatments

where none was added. Data points are colour-coded by treatment.

Both the formulation of Chl and C synthesis requires the calculation of PC
max, the

carbon-specific light-saturated photosynthesis rate (Equation 4.1). Maximum growth

rate (µmax) is factored by a quota term of the limiting nutrient so that PC
max rises

linearly between Qmin and Qopt but plateaus between Qopt and Qmax.
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PC
max = µmax × min

(︃
Q − Qmin

Qopt − Qmin
, 1
)︃

(4.1)

The rate of carbon synthesis (photosynthesis) (Equation 4.2) is comprised of the

carbon-specific photosynthesis rate PC, defined by the first two terms in the equation,

and the current C biomass. PC is a function of irradiance (E), Chl:C ratio (θC) and αchl ,

the initial slope of the photosynthesis-irradiance curve. The effect of temperature and

the cost of biosynthesis are ignored (Geider et al., 1998).

δC
δt

= PC
max ×

(︃
1 − exp

(︃
−αchlθCE

PC
max

)︃)︃
× C (4.2)

The rate of chlorophyll synthesis (Equation 4.3) is a product of PC and C modified by a

ratio denoting the proportion of photosynthate that goes into chlorophyll biosynthesis

(Geider et al., 1997). This ratio is formulated by the maximum Chl:C ratio (θC
max)

divided by the instantaneous light harvesting capacity (αchlθCE).

δChl
δt

=

(︃
PC

max ×
(︃

1 − exp
(︃
−αchlθCE

PC
max

)︃)︃)︃2

× θC
max

αchlθCE
× C (4.3)

The value for αchl was taken from Buitenhuis and Geider (2010), while the value of

θC
max was taken from experimental observations of Chl:POC (Figure 4.1) (Table 4.1).

The mean irradiance of the incubation lighting scheme detailed in Chapter 3 was

chosen for E. In later experiments, αchl and θC
max were separated into diatom and

non-diatom parameters to allow for the effect of their different physiology. Initial Chl,

N, Si, Mn were provided by the mean initial conditions in the control bottles

(Table 4.2). In addition, final observations of biogenic silica were used for initial

cellular Si.

4.2.2 Genetic algorithm

In general, a genetic algorithm (GA) is a means of parameter optimisation which

draws inspiration from natural selection and has been used to parameterise

biogeochemical models (Ward et al., 2010; Kelly-Gerreyn et al., 2014; Wood et al., 2014;

Wang et al., 2020; Falls et al., 2022). In general, GA’s start with a population of

randomly generated parameter sets and a cost function, which is describing the

distance between the solution using a given parameter set and observations. The

lowest cost parameter sets are then stochastically selected from the current and

modified (mutated or mated) to form the next generation. By iteratively selecting the
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TABLE 4.1: CUSTARD-QUOTA-V2 model parameters and their default values.

Symbol Parameter Value Units

αchl initial slopePE curve 0.23 g C m2 (g Chl mol photons)−1

θC
max maximum Chl : C ratio 0.50 µg Chl : µmol C

E light intensity 4730 µmol photons m−2 s-1

θC Chl : C ratio µg Chl : µmol C

αchl
D diatom αchl g C m2 (g Chl mol photons)−1

αchl
O non-diatom αchl g C m2 (g Chl mol photons)−1

θCmax
D diatom θC

max µg Chl : µmol C

θCmax
O non-diatom θC

max µg Chl : µmol C

fittest parameter sets and keeping their offspring or mutants for the next generation,

the model solution trends closer to the observations over generations. The

combination of ‘survival of the fittest’ and genetic exploration by crossover or

mutation within the GA creates a good balance between reaching a cost minimum and

exploration which helps avoid it becoming stuck in local minima (Falls et al., 2022).

TABLE 4.2: CUSTARD-QUOTA-V2 model new or altered initial conditions.

LTE01 LTE02 LTE03 LTE04 LTE05 LTE06 LTE07 Units

Mn 0.17 0.09 0.18 0.04 0.15 0.22 0.26 nmol L−1

Di Chl 0.30 1.36 0.40 2.07 0.47 0.82 0.64 µg L−1

O Chl 0.08 0.34 0.10 0.52 0.11 0.21 0.16 µg L−1

Di QSi 0.72 4.41 0.80 6.55 1.20 4.34 1.01 mol Si : mol C

In this case, the GA was given a range within which to pick the random first

generation of parameter sets or ‘genotypes’, which was initially set to a factor of 2

either side of the original parameters described in Table 3.2, with the exception of the

initial condition of starting diatom fraction which was allowed to vary between 0 and

1. The rule of thumb is that the population size or ‘number of genotypes’ should

match the number of parameters being chosen. Each ‘genotype’ is used to run the

model and its performance relative to the experiment incubations is returned

according to a cost function. Here, the cost function is described as the total misfit of

the model to observations of Chl, DIN and Si (Equation 4.4) where n is the number of

observations, Mi is the model output for each treatment in each experiment and Oi is

the corresponding observation. This was performed separately for each observation

type and then summed to be able to compare their contribution to the misfit.
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n

∑
i=1

(︃
Mi − Oi

Oi

)︃2

(4.4)

The fittest ‘genotype’ of that generation i.e. the one with the lowest cost is passed to

the next without modification. The remaining genotypes are weighted by their cost

and then two are randomly selected so that those with the lowest cost are more likely

to be chosen. Within a genotype, the parameter set is stored as a binary number. A

random point is chosen along this parameter chain, dividing it into two sets of

parameters. One of these segments is then switched with the other genotype creating

a new genotype with elements of both parents. Once the new population has been

filled by this method, known as crossover, the genotypes are run in the model and the

process repeats.

The number of generations should be determined by the point at which the cost of the

parameter ceases declining and levels out. In this case, 3000 generations were

sufficient. This process was repeated a minimum of 10 times per optimisation to

increase the chances of avoiding local minima by allowing the random element of the

algorithm to explore more of the parameter space.

In this study the GA optimisation technique was chosen over other methods to suit

the parameter set at hand. Stochastic optimisation methods are superior for searching

large parameter spaces and in this case as many as 42 parameters will be optimised.

Compared to another popular stochastic method, the simulated annealing algorithm,

the GA has been found to converge faster on an optimal solution (Athias et al., 2000).

The GA technique is also less prone to falling into local minima than deterministic

techniques such as variational adjoint modelling. Methods such as Latin Hypercube

are better suited toward setting up model ensembles with a smaller number of

parameters (Urban and Fricker, 2010).

4.2.3 Experiments

This section will explain the order of the experiments conducted in this chapter to

provide an overview and give context for the work undertaken. Because of the

variance in Chl:POC ratio observed across the experiments and the desire to provide

direct modelling of chlorophyll for fitting to observations by the GA; the

CUSTARD-QUOTA model used in chapter 3 was updated with a chlorophyll state

variable which is allowed to vary relative to carbon (CUSTARD-QUOTA-V2).

Therefore the first results shown in this chapter are runs of this new model setup to

check its suitability for use with the GA.
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TABLE 4.3: A description of each optimisation carried out with the genetic algorithm.

Optimisation Observations used Parameters fitted Diatom fraction condition

1 LTE’s 1-7 42 1

2 LTE’s 1-6 42 1 north, 1 south

3 - North LTE 1, 3, 5 42 3 (one per exp.)

3 - South LTE 2, 4, 6 42 3 (one per exp.)

4 LTE’s 1-7 42 7 (one per exp.)

Sensitivity LTE’s 1-7 42 7 (one per exp.)

Hybrid LTE’s 1-7 22 7 (one per exp.)

Evaluating the work conducted with the GA on the variable chlorophyll model, the

results are divided into a number of different optimisations which were undertaken to

find the ideal way to fit the parameters using the observations. Table 4.3 describes the

targets of each optimisation in terms of observations fitted to, number of parameters

searched for and one initial condition, the proportion of diatoms to non-diatoms, was

also picked by the GA.

Optimisation 1 is the simplest case scenario, where the GA is used to fit every LTE site

and every model parameter. The GA is also enabled to find one diatom fraction which

is used for all LTE locations.

The contextual data explored in Section X revealed a north-south gradient in

chlorophyll with the bloom captured mainly by the southern stations. It was

hypothesised that southern stations were likely more diatom dominated than in the

north. Optimisation 2 is therefore set up to determine if allowing a separate diatom

fraction between northern (LTE’s 1, 3 and 5) and southern experiments (LTE’s 2, 4 and

6) would improve the parameter fit and whether the GA would pick different diatom

fractions for north and south based on the observations provided.

Optimisation 3 takes this idea further by conducting two separate optimisations for

north and south in order to observe latitudinal variations in all parameters. Diatom

fraction is further divided with one value for each LTE to observe whether they are

consistent within their latitude.

Optimisation 4 is prepared similarly to number 1, fitting all sites and all parameters in

one optimisation. However, in this instance, full freedom is given to the diatom

fraction condition to vary between each LTE. These settings lie above optimisation 2

and below optimisation 3 in terms of degrees of freedom offered to the GA.
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Providing the GA more liberty to vary parameters or diatoms fraction between

experiment sites led to a decreasing cost of fit. However, at some point offering less

constraints to the algorithm must hinder the usefulness and wider applicability of the

parameters picked. Therefore, a sensitivity test was performed by running 120

separate optimisations. If a similar parameter value was picked in each of these runs it

would show that the parameter was well constrained by the observations. On the

other hand, if a parameter did not trend toward a certain value or appeared to be

picked randomly within the range given to the GA, this shows it is unconstrained by

the CUSTARD data. The setup chosen for this test was taken from optimisation 4

which was determined to be a good balance between freedom of community structure

and only one set of parameters.

With some of the parameters determined unconstrained by the sensitivity test, the

next step was to run a hybrid optimisation with the same setup. In this experiment,

well-constrained parameters would be left to be chosen by the GA while all others

would be left as their original hand-picked values.

The final result section of Chapter 4 compares the diatom fractions picked by the GA

for each LTE with HPLC data collected on the cruise which became available after

these algorithm experiments were conducted. The pigment data offers a relative

comparison of diatom fraction between the experiment sites and therefore can help

determine whether the observation data were sufficient to force the GA to replicate

real trends in community structure between north and south when it chose its own

values for diatom fraction.

4.3 Results

4.3.1 Variable Chlorophyll Model

The introduction of a new Chl state variable into the model that allowed differences in

Chl:C produces new model solutions for each experiment and treatment (Figure 4.2)

which can be compared to the original CUSTARD-QUOTA model presented in

Figure 3.10. Despite being independently generated now, the Chl outputs of this

model show very little alteration compared to the previous simpler model, remaining

very well fitted to the observations. While the absolute fit of LTE 1 and 6 in particular

could be improved, they adhere to the patterns of limitation found in the data. There

has been a downregulation in ∆DIN outputs, which has benefited the fit of some

experiments (LTE 1 and 7) at the detriment of the others. ∆Si has remained mostly

unchanged as has the ratio of ∆DIN to ∆Si.
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FIGURE 4.2: Comparison of data from the endpoint of each ‘large-type’ experi-
ment against the results of a quota model with a variable chlorophyll to carbon ra-
tio (CUSTARD-QUOTA-V2). Triplicate experimental observations for chlorophyll,
change in dissolved inorganic nitrogen (DIN) (i.e. drawdown), change in silicic acid
(Si) and the ratio of ∆Si to ∆N are indicated by white markers. Model results for the
sum of both the diatom and the ‘other phytoplankton’ class have blue bars while the
diatom class alone are shown in red bars for the chlorophyll. All nutrient concentra-

tions are given in µmol L−1.

The same CUSTARD-QUOTA-V2 model was run with the addition of observation

based starting conditions for dissolved Mn and cellular Si (Figure 4.3). Although LTE’s



85 Chapter 4

2, 4 and 6 show a slightly worse fit to Chl observations, an improvement is found in

∆DIN : ∆Si for all but LTE 3 and 7 due to minor adjustments in ∆DIN and ∆Si.

FIGURE 4.3: Comparison of data from the endpoint of each ‘large-type’ experiment
against the results of the CUSTARD-QUOTA-V2 model with the addition of observa-
tion driven starting conditions for Mn and cellular Si. Triplicate experimental obser-
vations for chlorophyll, change in dissolved inorganic nitrogen (DIN), change in silicic
acid (Si) and the ratio of ∆Si to ∆N are indicated by white markers. Model results for
both the diatom and the ‘other phytoplankton’ class have blue bars while the diatom
class alone are shown in red bars. All nutrient concentrations are given in µmol L−1.
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4.3.2 Genetic Algorithm

To fit the CUSTARD-QUOTA-V2 model to the observations from the incubation

experiments, a GA was used to select for parameter sets that produced the lowest

deviation, in a process similar to natural selection. The model chosen to run with the

GA has the same number of parameters and same starting conditions as that shown in

Figure 3. This includes a separate αchl and θC
max for diatoms and non-diatoms, as well

as using the observed initial Chl, dissolved N and Si, BSi and dissolved Mn as starting

conditions while leaving the GA to select the initial fraction of diatoms versus

non-diatoms. Below are recorded the cost results for the 4 different optimisation

experiments that were performed (Table 4.4) in addition to a comparison of the

algorithmically derived parameter sets (Figure 4.4).

TABLE 4.4: The total misfit cost of each genetic algorithm experiment and the contri-
bution of each state variable included in the calculation. The total misfit divided by

the number of LTE’s parameterised is included to allow for intercomparison.

Optimisation Mean misfit
per LTE

Total
Misfit

∆Chl
Misfit

∆DIN
Misfit

∆Si
Misfit

Non-GA 135.8 950.67 642.46 60.00 248.21

1 8.43 59.00 21.66 18.22 19.12

2 3.86 23.17 14.32 2.47 6.38

3 - North 2.93 8.79 7.36 0.32 1.11

3 - South 0.95 2.86 1.85 0.50 0.51

3 - Combined 1.94 11.66 9.21 0.82 1.62

4 4.58 32.07 12.53 8.32 11.22

Sensitivity 4.21 29.48 10.78 7.48 11.21

Hybrid 4.63 32.44 12.42 9.11 10.91
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FIGURE 4.4: A table of parameter sets generated by 4 different genetic algorithm pa-
rameterisations. Each value is by the percent of the parameter range given to the
algorithm it represents. Thus a row of similar colours indicates that each optimisation
selected for a similar value relative to the range of possible values. Units are yr−1 for

growth rate, µmol L−1 for half saturation constants and
mol nutrient : mol C for quotas.
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FIGURE 4.5: A table showing how parameter sets generated by 4 different genetic
algorithm optimisations vary from the original hand-picked parameter set. Each value
and colour represents percent change. A row of similar colours indicates that each
optimisation selected for a similar value. Units are yr−1 for growth rate, µmol L−1 for
half saturation constants and mol nutrient : mol C for quotas. Chl:C max values may

eclipse 100% as they were given a wider range.
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FIGURE 4.6: Initial diatom fraction picked by the genetic algorithm is shown for each
optimisation run and each experiment. Optimisations 2 and 3 do not include LTE07 as

they divide experiments into north and south.

4.3.2.1 Optimisation 1

In the first GA optimisation, the model was run in the above manner with 42

parameters and 1 initial condition, the starting diatom fraction (here assumed the

same across all experiments), selected for by the GA (Figure 4.5). The mean misfit per

LTE was 8.43 which is a 93% reduction from the non-GA fitted model (Table 4.4). Chl

misfit contributed the most to this value although there was a relatively even spread

between the misfit of Chl, N and Si. In comparison to the non-GA fitted model

(Figure 4.3), Chl outputs are generally lower and diatoms account for a lower

proportion of the final value despite the starting diatom fraction chosen by the GA

being 0.76 (Figure 4.6), only slightly lower than the original 0.8. ∆DIN remains

relatively unchanged from the base model whereas there seems to be a poorer

representation of limitation patterns in ∆Si with the exception of LTE01 (Figure 4.7).

LTE’s 1, 2, 3, 5 and 6 arguably show improvement in their fit, though sometimes at the

cost of differentiation between treatments.

In comparing the parameters chosen to their ranges (Figure 4.4), 7 parameters

approach the allowed upper limit while 5 approach lower limits. This notably

includes 100% increases in KSi, QFe
opt, QFe

max, QSi
min for diatoms and αchl values for both

groups. In addition, while diatom growth rate was originally chosen to be higher than

the non-diatoms, the GA has given non-diatoms double the growth rate of the other

group (+65 yr−1 from µO to µD). QSi
max was reduced by 50% as was the ratio of

Si-limited and Si-saturated maximum uptake rate for both diatoms and non-diatoms.
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FIGURE 4.7: The results of Optimisation 1 by the genetic algorithm of the CUSTARD-
QUOTA-V2 model compared with data from the endpoint of each ‘large-type’ experi-
ment. Triplicate experimental observations for chlorophyll, change in dissolved inor-
ganic nitrogen (DIN), change in silicic acid (Si) and the ratio of ∆Si to ∆N are indicated
by white markers. Model results for the sum of both the diatom and the ‘other phyto-
plankton’ class have blue bars while the diatom class alone are shown in red bars. All

nutrient concentrations are given in µmol L−1.
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FIGURE 4.8: The results of Optimisation 2 by the genetic algorithm of the CUSTARD-
QUOTA-V2 model compared with data from the endpoint of each ‘large-type’ experi-
ment. A separate initial diatom fraction was fitted for the northern (1, 3, 5) and south-
ern experiments (2 ,4, 6). Triplicate experimental observations for chlorophyll, change
in dissolved inorganic nitrogen (DIN), change in silicic acid (Si) and the ratio of ∆Si to
∆N are indicated by white markers. Model results for the sum of both the diatom and
the ‘other phytoplankton’ class have blue bars while the diatom class alone are shown

in red bars. All nutrient concentrations are given in µmol L−1.

4.3.2.2 Optimisation 2

The model was then run with the same set of parameters left free to be chosen by the

GA, but allowing for the selection of two separate starting diatom fractions; one for

the northern experiments (LTE’s 1, 3 and 5) and one for the southern experiments

(LTE’s 2, 4 and 6). LTE 7 was excluded from this fit as it was located at a latitude

halfway between these other experiments. The lowest cost produced by this GA run
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was a mean of 3.86 per LTE, an 54% improvement on optimisation 1 and a 97%

improvement on the non-GA fitted model (Table 4.4). In this case, Chl dominated

contribution to the total misfit making up 62% while N and Si contributed 11% and

28% respectively. Superior fits appear visually across the board in the southern

experiments (Figure 4.8), producing very good reproductions of the values and

patterns of ∆Si:∆DIN. The northern experiments also produce good fits to ∆DIN but

appear to underestimate Si uptake in non-Fe treatments. Diatoms have a much lower

contribution to final Chl values in the northern experiments while the southern LTE’s

remain at a similar fraction to the non-GA fitted model.

As for optimisation 1, non-diatom growth rate was optimised as higher than that of

diatoms, though in this case to a lesser extent (+24 yr−1 from µO to µD) (Figure 4.4).

Starting diatom fractions were selected as 0.19 in the north compared with 0.81 in the

south (Figure 4.6). The diatom parameters KSi, QSi
min, QSi

max, and ρhi
max/ρlo

max for N and

Mn as well the non-diatom KFe and QFe
opt neared or reached the upper range boundary

of +100% while non-diatom QFe
max and Fe ρhi

max/ρlo
max in addition to diatom Si ρhi

max/ρlo
max

have bottomed out (Figure 4.5). Only 4 parameters remain within ±20% of the

hand-picked value. All diatom Si related parameters have moved to the extreme ends

of their respective ranges.

4.3.2.3 Optimisation 3

In this optimisation, the two separate GA fits were performed for the northern and

southern experiments. Within each run, a separate initial diatom fraction was

provided for each LTE to be chosen by the GA. This resulted in a mean misfit per LTE

of 2.93 and 0.95 for the north and south respectively and 1.94 for both combined; a

99% improvement on the non-GA fitted model (Table 4.4). 79% of total misfit was

accounted for by Chl while N and Si contributed 7% and 14% respectively. Visually

comparing the data, this GA chosen parameter set shows a superior fit in almost every

experiment and treatment for Chl, ∆DIN, ∆Si and ∆DIN : ∆Si (Figure 4.9). Diatoms

dominate Chl production in all but LTE01.

Initial diatom fractions of 0.27, 0.98 and 0.98 were selected for LTE’s 1, 3 and 5 while

values of 0.81, 0.90 and 0.95 were found for LTE’s 2, 4 and 6 (Figure 4.6). Uniquely,

these were the only runs that yielded a higher diatom than non-diatom growth rate.

Both northern and southern GA runs have chosen similarly high diatom QMn
min and

non-diatom QMn
opt . In addition, north places diatom QN

max, QFe
opt, QFe

max and Fe ρhi
max/ρlo

max

as well as non-diatom QN
min and N ρhi

max/ρlo
max at the top of their ranges, while south

tops out diatom KFe, KSi, QN
min, QSi

min, QSi
opt and N ρhi

max/ρlo
max together with non-diatom



93 Chapter 4

FIGURE 4.9: The results of Optimisation 3 by the genetic algorithm of the CUSTARD-
QUOTA-V2 model compared with data from the endpoint of each ‘large-type’ experi-
ment. A separate fit was performed for the northern (1, 3, 5) and southern experiments
(2 ,4, 6) with each LTE given its own initial diatom fraction to be parameterised. Trip-
licate experimental observations for chlorophyll, change in dissolved inorganic nitro-
gen (DIN), change in silicic acid (Si) and the ratio of ∆Si to ∆N are indicated by white
markers. Model results for sum of both the diatom and the ‘other phytoplankton’ class
have blue bars while the diatom class alone are shown in red bars. All nutrient con-

centrations are given in µmol L−1.
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QFe
max. Bottom of range values are incurred for non-diatom QMn

min and Fe ρhi
max/ρlo

max in

the north and non-diatom KFe, QFe
opt and diatom Si ρhi

max/ρlo
max in the south. There is a

clear dichotomy between higher diatom Si quota parameters in the south versus the

north and higher diatom Fe quota parameters as well as Fe and Si half saturation

constants in the north versus the south.

4.3.2.4 Optimisation 4

In optimisation 4, all the LTE’s are parameterised together but each is given its own

initial diatom fraction. Given these parameters to select, the GA produces a mean

misfit of 4.58 per LTE which constitutes an improvement of 97% but does not perform

as well as optimisations 2 and 3 (Table 4.4). Of the total misfit, Chl once again

contributed the most with 39%, though N and Si were not far away with 26% and 35%

respectively. Comparing the model outputs to observations (Figure 4.10) shows good

alignment though not as strong as optimisation 3 (Figure 4.7). Chl, ∆DIN and ∆Si are

mostly underestimated in LTE05 though the ratio of ∆Si to ∆DIN is accurate

nonetheless. In that LTE the model misses a secondary limitation effect of Si whereas

in LTE01 it introduces such an effect that isn’t there.

The initial diatom fractions chosen by the GA for LTE’s 1-7 were 0.38, 0.98, 0.98, 0.92,

0.21, 0.98 and 0.22 respectively (Figure 4.6). As in 3 other optimisations, non-diatom

growth rate is above that of diatoms at similar values to optimisation 2 (+23 yr−1 from

µO to µD) (Figure 4.4). Parameters that reach near or at the top of their range include

diatom KSi, QSi
min and N ρhi

max/ρlo
max as well as non-diatom KFe, QFe

min, QMn
max and Mn

ρhi
max/ρlo

max (Figure 4.5). Meanwhile, diatom KN and non-diatom KMn, QFe
max, QMn

opt and

Fe ρhi
max/ρlo

max.
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FIGURE 4.10: The results of Optimisation 4 by the genetic algorithm of the CUSTARD-
QUOTA-V2 model compared with data from the endpoint of each ‘large-type’ exper-
iment. Each LTE was given its own initial diatom fraction to be parameterised. Trip-
licate experimental observations for chlorophyll, change in dissolved inorganic nitro-
gen (DIN), change in silicic acid (Si) and the ratio of ∆Si to ∆N are indicated by white
markers. Model results for the sum of both the diatom and the ‘other phytoplankton’
class have blue bars while the diatom class alone are shown in red bars. All nutrient

concentrations are given in µmol L−1.
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4.3.2.5 Sensitivity Optimisation

FIGURE 4.11: The results of the sensitivity optimisation by the genetic algorithm of the
CUSTARD-QUOTA-V2 model compared with data from the endpoint of each ‘large-
type’ experiment. Each LTE was given its own initial diatom fraction to be parame-
terised and the algorithm was run 120 times to maximise opportunity for parameter
exploration and finding of the lowest cost parameter set. Triplicate experimental ob-
servations for chlorophyll, change in dissolved inorganic nitrogen (DIN), change in
silicic acid (Si) and the ratio of ∆Si to ∆N are indicated by white markers. Model re-
sults for the sum of both the diatom and the ‘other phytoplankton’ class have blue
bars while the diatom class alone are shown in red bars. All nutrient concentrations

are given in µmol L−1.
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FIGURE 4.12: A table of the lowest cost parameter set generated by a sensitivity op-
timisation of 120 runs and the hybrid optimisation. Each value is by the percent of
the parameter range given to the algorithm it represents. This optimisation features
wider ranges for some parameters which are specified by asterisks. Parameters in the
hybrid parameterisation picked by the genetic algorithm are in bold. Units are yr−1

for growth rate, µmol L−1 for half saturation constants and
mol nutrient : mol C for quotas.

In the sensitivity optimisation run with the GA, 120 iterations were performed in

order to increase the chance of seeking out the lowest possible misfit. The setup

chosen was identical to optimisation 4, with the same parameters fit for all LTE’s but a

separate initial diatom fraction for each. Certain parameters that were commonly

observed to reach their range boundaries in optimisation 4 type runs were given

double their upper limit. These parameters were diatom KSi, QSi
min, QMn

opt with N, Fe

and Si ρhi
max/ρlo

max in addition to non-diatom KFe, QFe
opt, QFe

max, Fe ρhi
max/ρlo

max and αchl .

This optimisation leads to a mean misfit of 4.21 per LTE with a 37%, 25% and 38%

contribution from Chl, N and Si respectively; the first time Si contributed the most

misfit compared to Chl. Visually, the plotting of final Chl, ∆DIN, ∆Si and ∆DIN : ∆Si

(Figure 4.11) show very little disparity to the results of optimisation 4.
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A similar set of initial diatom fractions, 0.29, 0.97, 0.95, 0.94, 0.19, 0.84 and 0.19, are

also chosen for LTE 1-7 (Figure 4.6). Once again, non-diatoms are given a higher

maximum growth rate compared to diatoms (+14 yr−1 from µO to µD) (Figure 4.12).

Despite being provided with wider ranges, diatom KSi, and non-diatom QFe
opt, QFe

max, Fe

ρhi
max/ρlo

max and αchl still approached the top of their new ranges. On the other hand,

non-diatom KFe bottomed out it’s wider range. Diatom αchl also sought the base of its

range in contrast to the other phytoplankton group.

The 120 iterations of this optimisation provide insight into the tendencies of the GA to

optimise different parameters (Figures 4.13 and 4.14). Certain parameters trend

toward a narrow part of their range with decreasing cost and are therefore

well-defined across iterations. These include, µD), all initial diatom fractions, diatom

QN
max, QSi

opt, QSi
max, QMn

opt as well as non-diatom QN
max, QFe

min, QFe
opt, αchl and θC

max.

Non-diatom KFe appears to trend to either extreme of its range.



99 Chapter 4

FIGURE 4.13: A summary of all 120 parameter sets generated for the sensitivity opti-
misation. For each parameter, the cost functions of algorithm final states are plotted
against the corresponding parameter value expressed as percentage of the allowed

range. The 10 lowest cost functions are shown in red. (First half of parameters)
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FIGURE 4.14: A summary of all 120 parameter sets generated for the sensitivity opti-
misation. For each parameter, the cost functions of algorithm final states are plotted
against the corresponding parameter value expressed as percentage of the allowed

range. The 10 lowest cost functions are shown in red. (Second half of parameters)
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4.3.2.6 Hybrid Optimisation

The hybrid optimisation was performed in the same way as the previous optimisation

with a separate initial diatom fraction for each LTE, except for the fact that parameters

which were poorly constrained within the previous optimisations have been removed

from the set picked by the GA. The mean misfit per LTE was 4.63 which is similar to

though above optimisation 4 and the sensitivity run and also bears a similar

distribution of misfit between ∆Chl, ∆N and ∆Si (Table 4.4). Chl endpoints and ∆N

and ∆Si values from the hybrid optimisation remain very similar to those in the

sensitivity optimisation (Figure 4.15). However, minor reductions in ∆N and increases

in ∆Si in the low Fe treatments create overestimations in ∆Si:∆N, particularly in LTE’s

1 and 5. ∆Si in LTE01 does show a large improvement in the fit of the +Fe and +FeMn

treatments. The initial diatom fractions chosen by the GA for LTE’s 1-7 were 0.12, 0.98,

0.98, 0.94, 0.16, 0.90 and 0.21 respectively (Figure 4.6). These values are very similar to

those of the sensitivity and number 4 optimisations, although the fraction diatom

estimate for LTE01 is around half that in those runs. Of the parameters that were

picked in the hybrid optimisation (Figure 4.12, bold values), diatom KSi and

non-diatom KFe, QFe
min, QFe

opt, QFe
max and θC

max were the same as or very close to the values

chosen in the sensitivity optimisation. In fact, when characterising chosen parameters

as a percentage of their range (Figure 4.12), the mean difference in percentage from the

sensitivity optimisation to the hybrid was only -7.86%. The largest deviations were

diatom QSi
min and αchl .
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FIGURE 4.15: The results of the hybrid optimisation by the genetic algorithm of the
CUSTARD-QUOTA-V2 model compared with data from the endpoint of each ‘large-
type’ experiment. Each LTE was given its own initial diatom fraction but uncon-
strained parameters were replaced by the original values. Triplicate experimental
observations for chlorophyll, change in dissolved inorganic nitrogen (DIN), change
in silicic acid (Si) and the ratio of ∆Si to ∆N are indicated by white markers. Model
results for the sum of both the diatom and the ‘other phytoplankton’ class have blue
bars while the diatom class alone are shown in red bars. All nutrient concentrations

are given in µmol L−1.
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4.3.3 Comparison to HPLC data

Across the different optimisations performed, the genetic algorithm has picked

different initial diatom fractions for different incubation experiments (Figure 4.6). This

is unsurprising as a clear latitudinal gradient in productivity is visible in the

chlorophyll pigment data available for the CUSTARD cruise (Figure 4.16a) and this

was found to be associated with a marked shift in community structure. Using HPLC

data collected on the cruise, the ratio of fucoxanthin to total chlorophyll a, which is

indicative of the proportion of phytoplankton that are diatoms at each location, was

derived. It is evident that diatoms have increasing presence to the south where

productivity was higher (Figure 4.16b). When the initial diatom fraction selected in

the sensitivity optimisation is plotted against the ratio of fucoxanthin to total

chlorophyll a, a significant fit is found (Figure 4.16, R2 = 0.82, P = 0.01). This suggests

that the GA has, just based on the experimental data available to it which will include

the Si and N uptake, ascribed a difference in diatom proportion across the experiments

which has some skill in predicting the actual shifts in community structure as

identified within the HPLC data. Specifically, LTE’s 1, 5 and 7 fall into a low diatom

group and LTE’s 2, 3, 4 and 6 exhibit a higher diatom proportion. However,

considering the latitudinal pattern in Figure 4.16b, it is unclear why northern

experiment LTE 3 falls within the higher diatom fraction group according to the GA.

Although, optimisation 3 also came to the same conclusion (Figure 4.6) and there is

some evidence in the HPLC data that the boundary region between relatively high

(south) and low (north) diatom fractions was further to the north during that period.

The regression of initial diatom fraction and pigment ratios allows a separate

prediction to be made for the starting diatom fraction for the gradient experiments on

the basis of the corresponding HPLC data (Figure 4.17). The estimated diatom

fractions thus derived are 0.31 and 0.94 for GE01 and GE02 respectively. Taking the

final parameter set from the GA, the model can thus be used to predict the expected

response within the gradient experiments which can then be independently compared

to the data. Plotting the model results for GE01 (Figure 4.18) yields a reasonable fit for

Chl, but the fit for ∆Si and ∆DIN were poorer. By those measures the model

underestimates uptake of both nutrients, but more so ∆Si leading to overestimation of

∆Si:∆DIN, particularly in the low iron treatment. On the other hand, the fitted diatom

fraction creates an excellent fit for GE02 (Figure 4.19). This seems to continue a trend

of the GA performing better for the southern experiments.
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FIGURE 4.16: The distribution of total chlorophyll a (A) and its ratio with fucoxanthin
(B) over the course of the CUSTARD cruise. This ratio is indicative of the proportion
of diatoms in the sample. The distribution of factorial nutrient addition experiments is
also displayed which includes 7 ‘large-type’ experiments (LTE), 8 ‘small-type’ experi-

ments and 2 gradient experiments (GE).
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FIGURE 4.17: Initial diatom fraction determined by the final genetic algorithm opti-
misation is fitted against the pigment ratio of fucoxanthin to total chlorophyll a. The
regression line equation is used to estimate initial diatom fraction of the gradient ex-

periments (GE) from their pigment ratio.

FIGURE 4.18: Results of the CUSTARD-QUOTA-V2 model using the estimated di-
atom fraction (Figure 4.16) are plotted against observations from the first gradient ex-
periment (GE01). Chlorophyll, change in dissolved inorganic nitrogen (N), change in
silicic acid (Si) and the ratio of ∆Si to ∆N are plotted with markers and shaded by
their Fv/Fm; a marker for stress in photosystem II. In this case, a low Fv/Fm is indica-
tive of phytoplankton suffering from iron limitation in the treatments where none was
added. The CUSTARD-QUOTA-V2 results are plotted with lines; blue corresponding
to the low iron treatment and red to the high iron treatment. All nutrient concentra-

tions are given in µmol L−1.
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FIGURE 4.19: Results of CUSTARD-QUOTA-V2 model using the estimated diatom
fraction (Figure 4.16) are plotted against observations from the second gradient ex-
periment (GE02). Chlorophyll, change in dissolved inorganic nitrogen (N), change in
silicic acid (Si) and the ratio of ∆Si to ∆N are plotted with markers and shaded by
their Fv/Fm; a marker for stress in photosystem II. In this case, a low Fv/Fm is indica-
tive of phytoplankton suffering from iron limitation in the treatments where none was
added. The CUSTARD-QUOTA-V2 results are plotted with lines; blue corresponding
to the low iron treatment and red to the high iron treatment. All nutrient concentra-

tions are given in µmol L−1.
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4.4 Discussion

4.4.1 Variable Chlorophyll Model

A dynamic cellular chlorophyll pool was introduced to the model as an additional

state variable due to the variable Chl:POC ratios visible in the experiments

(Figure 4.1). The northern experiments (LTE’s 1, 3 and 5) were all divided by which

treatments had Fe additions leading to high Chl:POC and Fv/Fm group and a low

group. The reduction of phytoplankton Chl:C ratios due to nutrient and light

(co)limitation is well known (Geider, 1987; Greene et al., 1991; Macintyre et al., 2000)

and Fe in particular is necessary for the proteins involved in chlorophyll synthesis

making decreased cellular chlorophyll (chlorosis) a main symptom of Fe starvation

(Geider and La Roche, 1994). The southern experiments as well as LTE07 similarly

exhibit higher Chl:POC and Fv/Fm in response to Fe addition, but treatments where

both Mn and Fe were added showed a higher Fv/Fm than those where solely Fe was

added. Manganese also plays an important role in photosynthesis with four atoms

forming the core of the water-splitting site of PSII (Dau and Haumann, 2008),

however, the effects of Fe-limitation are generally more severe (Bruland et al., 1991;

Schoffman et al., 2016). Using only two additional parameters, it was possible to

incorporate flexibility between chlorophyll production and carbon biomass into the

quota model. This enabled the chlorophyll observations of the incubation experiments

to be directly compared with a mechanistic reproduction of chlorophyll from in the

model, as opposed to a fixed conversion of carbon biomass.

Despite the introduction of a new state variable equation to the previously

parameterised CUSTARD-QUOTA model, CUSTARD-QUOTA-V2 (Figure 4.2) retains

a similar degree of improvement over the simple model’s chlorophyll output

(Figure 3.5), but retains the same deviations in predictions of ∆DIN, ∆Si and

∆Si:∆DIN compared to the data. Interestingly, the maximum ∆Si : ∆DIN attained by

the model in each experiment is consistently around 4 µM Si : µM N, though this does

not match the observational data. A further improvement from the fit resulted from

the introduction of initial dissolved Mn and BSi observations for initial dMn and

cellular Si in the model. This mainly had the effect of bringing down erroneously high

Si drawdown in treatments with combined Fe and Si additions. Although, initial

dissolved Fe and POC observations were also available, adding these actually resulted

in the model diverging further from the experiments. This may be due to the

complexity of measuring which forms of Fe that are utilisable by algae and the

possibility of non-phytoplankton POC present in the bottles at the start of the

incubation.
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4.4.2 Genetic Algorithm

To further refine the fit of the model to the observations from the incubation

experiments, and in particular the ratio of ∆Si to ∆DIN, a genetic algorithm (GA) was

used. This approach, which draws inspiration from natural selection, picks parameter

values from within the ranges given to provide the lowest cost solution to the model;

that is, the lowest deviation from the observations. Four different optimisations were

performed using the algorithm, each with its own trade-offs, and then one of these

was picked to perform a sensitivity optimisation to observe how much constraint the

data places on different parameters before a final hybrid optimisation combined well

constrained GA-picked parameters with hand-picked values. The algorithm was

given the opportunity to pick every model parameter in addition to the initial

proportion of diatoms to non-diatoms. Furthermore, the new terms added to allow for

a Chl state variable, αchl and θC
max, were each split into a unique parameter for each

phytoplankton group (Table 4.1) to allow for variation in light adaptation between

communities.

4.4.3 Optimisation 1

In the first optimisation (Figure 4.7), one diatom fraction was fitted for the whole

group of LTE experiments as in the previous quota models. Parameterisation by the

algorithm resulted in a 93% reduction in mean misfit per LTE from the hand-picked

parameter set (Table 4.4). A reduced diatom fraction of 0.76 was chosen by the

algorithm (Figure 4.6) and this was likely the main driver of diatoms accounting for

less than half of final Chl in iron additions compared to almost all in the non-GA

model. Diatom productivity was also impeded by a 40% lower growth rate while

non-diatom productivity was raised by the same percentage, and a higher KSi and

QSi
min which limits growth at lower Si concentrations and raises the Si requirement for

growth (Figure 4.4 and 4.5). Therefore, Si drawdown was reduced in every experiment

and in particular to +Si treatments. LTE’s 4, 6 and 7 all exhibit larger Si uptake where

Si is added but no Fe is added and so no additional Chl productivity is seen. This

suggests that extra Si is taken up not to produce new cells but rather to either build

thicker siliceous cell walls or to partly store within the cell. This luxury uptake of Si

has been observed previously (Lynn et al., 2000; Domingues et al., 2011). As ∆Si

values have decreased, so has ∆Si: ∆DIN, resulting in better fits, especially for +Fe

treatments, but losing the Si related patterns as the others.
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4.4.3.1 Optimisation 2

The Chl data available for each location showed that there was greater productivity or

a bloom state to the south of the cruise’s range and this likely entailed a higher

proportion of diatoms in the community (Brzezinski et al., 2001; Petrou et al., 2016;

Deppeler and Davidson, 2017) which was later observed in the HPLC data

(Figure 4.16b). The second GA optimisation (Figure 4.8) therefore only fitted the LTE’s

1-6 and used two diatom fractions; one for the northern experiments (LTE’s 1, 3 and 5)

and one for the southern experiments (LTE’s 2, 4 and 6). The leads to a 54% reduction

in mean misfit per LTE from the prior optimisation (Table 4.4) and the resulting

diatom fractions, 0.19 in the north and 0.81 in the south (Figure 4.6), support the

latitudinal gradient in community make-up. It is most probable that the differences in

the data between north and south that bring the GA to this same conclusion are found

in ∆Si. It appears that lower diatom fractions may be necessary to prevent

exaggerated Si drawdown in northern experiments where both Fe and Si were added.

This behaviour of luxury Si uptake is necessary to recreate observed patterns in the

south but only marginally in the north. In fact, with a diatom fraction chosen by the

GA, the southern experiments produce an extremely tight fit. Once again, a high KSi is

chosen which impairs growth at lower Si concentrations and all diatom Si quota

parameters are maximised which produces a higher minimum Si required for growth,

a higher Si required for optimum growth and a greater Si storage capacity (Figures 4.4

and 4.5). Generally, this would function to increase the Si needed for the same amount

of biomass production. Furthermore, their largely increased maximum Chl:C allows

for diatoms to also decouple biomass production from Chl production.

4.4.3.2 Optimisation 3

To further explore the effect of the latitudinal productivity gradient on the parameter

sets picked by the GA, optimisation 3 ran the algorithm separately for the northern

and southern experiments. In addition, each LTE was allowed a unique initial diatom

fraction. It is unsurprising that setting the GA with a lower bar of fitting only 3 similar

experiments at a time resulted in the lowest cost: a mean misfit of 1.94 per LTE

(Table 4.4). Visually, it is hard to distinguish whether the northern or southern set of

experiments had a better fit to the observations (Figure 4.9) as they have different

magnitudes of absolute nutrient drawdown, however, the northern optimisation has a

mean misfit of 2.93 per LTE compared with 0.95 in the south. Superior fits for southern

experiments have also been observed in the previous optimisations. This is primarily

the result of Chl misfit in LTE03 and underestimated Si uptake in non-Fe treatments.
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With the option of an individual initial diatom fraction for each LTE, the GA picked a

high value (0.8-1) for every experiment except LTE01 (0.27) (Figure 4.6). This is an

interesting divergence from optimisation 2 where a lower diatom fraction was

preferred for the north. However, the higher proportion of diatoms in LTE’s 3 and 5

has fixed the underestimation of Si uptake in non-Fe treatments. Optimisation 3 is the

only optimisation that results in a high diatom maximum growth rate compared to

non-diatoms (Figure 4.4 and 4.5) which is conventionally what would be expected

(Furnas, 1990; Edwards et al., 2015). The northern experiments have selected for low

diatom KSi and KFe by the GA, while the south has top-of-range values. This suggests

the optimisation is seeking to reduce Si and Fe uptake by diatoms at lower

concentrations in the south. The north also maximises diatom Fe quota parameters

while the south maximises diatom Si quota parameters. Although this optimisation

offers the best fit to the observations, it comes at the cost of essentially doubling the

parameters necessary to model them. Not having a single parameter set makes it

implausible to scale this model beyond this particular use case. In a conceptual sense,

it is equivalent to some aspect of any community structure differences between the

northern and southern set of experiments remaining unrepresented by the model as

structured, hence necessitating the different parameter set. Fitting fewer experiments

at a time thus created less constraint on the model from the data as a mechanistic

representation of the whole system, rather than a subcomponent of the system.

4.4.3.3 Optimisation 4

As a balance between the previous approaches, optimisation 4 used one parameter set

for all of the experiments but included a separate initial diatom fraction for each LTE.

The mean misfit per LTE for this experiment was 4.58 (Table 4.4) which constitutes an

improvement from optimisation 1 but not 2 and 3. In this case, initial diatom fraction

was high (>0.9) for LTE’s 2, 3, 4, 6 and low for LTE’s 1, 5 and 7 (Figure 4.6). Here,

LTE05 has switched from the high fraction observed in optimisation 3 back to what

was seen in optimisation 2 and what is expected based on the latitudinal productivity

gradient. This either implies that sharing a parameter set forces a lower diatom

fraction, or that this starting condition is not very strongly constrained for LTE05. This

optimisation for LTE05 certainly has a visibly worse fit than its high diatom fraction

counterpart in optimisation 3 which does suggest it is only a favourable condition

when parameters must apply to both bloom and non-bloom diatoms. LTE07 has a

maximum final Chl below 6 µg L−1 as do the northern experiments whereas the

southern experiments exceed 15 µg L−1, which makes it logical that this LTE was

selecting for a low diatom fraction as it likely fits more with the non-bloom group. The
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southern LTE’s once again exhibit a superior fit with a third of the misfit of the

northern experiments. As in the southern run of optimisation 3, a high KSi and KFe

yield lower Si and Fe uptake for diatoms at lower concentrations (Figure 4.4 and 4.5).

This appears to be a consistent strategy of the GA to avoid the overestimation of Si

uptake in combined Fe and Si additions. Qmin for diatom Si, N, and Mn are all

elevated, raising the minimum requirement for diatom growth.

4.4.3.4 Sensitivity Optimisation

The methodology of optimisation 4 was chosen as the best structure with which to

proceed due to its low cost with one parameter set for all LTE’s and the information on

community structure gained from including unique initial diatom fractions for each

experiment. While optimisation 3 had the lowest deviation from observations,

separate parameter sets are not scalable unless by use of, for example, allometric

relationships (Ward et al., 2018) and they would also limit the constraint of the data on

the GA. Some parameters that consistently reached their limits were provided wider

ranges. To fully understand how well constrained each parameter is by the data and

provide the GA the most opportunity to seek out alternative pathways to low-cost

solutions, this optimisation was performed 120 times. Of these runs, the lowest cost

parameter set yielded a mean misfit of 4.21 per LTE, an 8% improvement from

optimisation 4 (Table 4.4). Within the best parameter set, the initial diatom fraction

chosen by the GA maintained the same profile as optimisation 4 showing that this was

indeed the optimum configuration for this setup (Figure 4.6). The fit is visually almost

indistinguishable from optimisation 4 and no misfit reduction occurs in ∆Si. However,

despite this relatively minimal change in cost, many parameters have been altered,

which suggests that these are not strongly constrained. This optimisation picks the

highest diatom maximum growth rate of any so far (99 yr−1, Figure 4.12) and

maintains a higher maximum growth rate for non- diatoms (114 yr−1). When given a

wider range diatom KSi reached the upper limit of this as well (20 µmol L−1. Setting

this parameter higher further limits the ability of diatoms to take up Si, which is

potentially why maximum growth rate can be raised without overestimating Si

drawdown. But while this parameter adopts a similar part of its range, KFe in both

groups travels from the top 80-100% of their range to the lower limit, reducing Fe

uptake. This may be responsible for the increase in non-diatom Fe ρhi
max/ρlo

max from

optimisation 4 although this does not change in the diatoms. Diatom QSi
min was

provided a wider range in this optimisation as it stayed at its maximum value in all

prior optimisations with the exception of 3-north. The GA utilised this wider

parameter space by further raising QSi
min, though not to the new max. Given that this
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parameter controls the minimum Si required for growth and appears to be well

constrained, it is likely that the GA is attempting to firmly delineate the responses of

∆Si between the +Si and non-Si treatments. Diatom QSi
max also remained high as in 3 of

the previous optimisations. Alpha chlorophyll is set to the bottom of the range for

diatoms but the top of the range for non-diatoms. This parameter determines the rate

of chlorophyll production for a given light intensity below saturation and so

increasing it reduces ∆Chl.

Performing 120 iterations in this optimisation allowed the observation of how well

constrained parameters were by the experimental data used to fit the model in the GA.

When the range of a parameter decreases as cost is reduced it shows that the

parameter is well constrained, whereas when the value of the parameter has no

relationship to cost, the parameter is less well constrained. The top 10 lowest GA

iterations in this optimisation (Figure 4.13 and 4.14, red markers) produced very tight

clusters for the initial diatom fraction in each LTE. Given that other differences

between diatoms and non-diatoms can be altered by the algorithm (e.g. µmax), the

variation in Si drawdown between LTE’s must be responsible for constraining diatom

fraction. This may explain why LTE03 does not fit with the other northern, non-bloom

experiments and why LTE07 does, as the first has the highest ∆Si values of these

experiments while the latter has some of the lowest. As has also been observed in

previous optimisations, diatom µmax is well constrained around 90 yr−1 (mean of top

10 iterations). The non-diatoms avoid taking a lower µmax value than the diatoms but

otherwise are less well constrained with a slight tendency toward around 120 yr−1. If

non-diatom µmax is too low, Chl production and N drawdown is insufficient to match

that found in observations. However, values near the top of the range promote too

much growth unless another parameter is altered. The low trending αchl
O also bolsters

Chl production in non-diatoms. Diatom KN was exclusively in the lower quarter of its

range for the top 10 lowest cost iterations while diatom KSi and KMn skewed to their

upper and lower halves respectively. Non-diatom KFe was more likely to be chosen at

the extremes of its range. Diatom QN
max, QSi

max, QSi
min, QSi

opt, QMn
max and QMn

opt are all also

better constrained as well as all non-diatom QN
opt, QN

max, QFe
min, QFe

opt and QFe
max. For each

nutrient Qmax places an upper limit on cellular uptake, and so a larger value increases

uptake. On the other hand, decreasing Qmin increases uptake because Qmin becomes

closer to Q.

4.4.3.5 Hybrid Optimisation

While feeding all of the model parameters to the GA produces the best results, the

reality is that if those parameters are largely unconstrained then the values chosen for
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them are essentially random. While unconstrained parameters will, by definition,

have little effect on the model being fitted against the observations used for the fit,

they have been shown to decrease performance when running larger scale models

(Ward et al., 2010). Furthermore, providing the GA with so much flexibility may mean

that many parameters of low consequence to the output can be tuned to overcome the

signal of more sensitive parameters. Therefore, the results of the sensitivity

optimisation were used to further select a subset of well-constrained parameters to

pick via the algorithm while retaining the original hand-picked values for

unconstrained parameters. This was one of the approaches suggested by Ward et al.

(2010). The parameters that were fitted by the GA are highlighted in bold in

Figure 4.12. In some cases, relatively unconstrained parameters were still included

due to their association to other parameters, such as non-diatom µmax and diatom αchl

and θC
max. The fact that the mean misfit per LTE only increases slightly from the

sensitivity and number 4 optimisations indicates just how non-influential the

unconstrained parameters were (Table 4.4 and Figure 4.15). This methodology retains

a 97% decrease in cost per LTE over the original non-optimised model. The

distribution of starting diatom fraction found among the two previous optimisations

is maintained here (Figure 4.6), providing further confidence in this distribution. As

previously mentioned, LTE03 consistently deviates from the other northern

experiments with the GA consistently selecting for a relatively high diatom fraction. If

the fraction for LTE03 is set low instead, as is the case for the other northern

experiments, Chl endpoints, ∆DIN and ∆Si are all underestimated, confirming the

necessity of greater diatom presence in that LTE. ∆Si misfit has actually decreased in

this optimisation compared to the sensitivity run, though ∆Chl and ∆DIN misfit have

grown. Many GA picked parameters remained close or identical to their previous

optimisation values, once again implying the lack of influence of the other parameters.

The largest deviations from this were diatom QSi
min and αchl . Diatom αchl was included

due to its possible relationship to non-diatom αchl , but was itself relatively

unconstrained; observing a large shift in its range here suggests that this remains the

case and could probably be left hand-picked in future runs. Diatom QSi
min previously

sought the higher end of its range, but here has been capped by the lower value of

diatom QSi
opt.

4.4.4 Comparison to HPLC data

While optimising the model with the GA, it has become clear that assigning initial

diatom fractions to each LTE is well constrained by the observations (Figure 4.13 and

4.14). With the notable exception of LTE03, these fractions appeared to match the
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north-south gradient of Chl found across the data (Figure 4.16a) if it is assumed that

diatoms dominate in Southern Ocean bloom conditions. Fortunately, HPLC data also

became available for the cruise data which offers quantification of different

phytoplankton pigments. Because fucoxanthin, a carotenoid pigment, is only found in

diatoms (Peng et al., 2011) but chlorophyll a is present in all; the ratio of

fucoxanthin:chlorophyll can be used as a proxy for the proportion of diatoms present

near the incubation locations. When mapped out (Figure 4.16b), these values show a

similar latitudinal gradient to that of chlorophyll, suggesting that there is indeed a

greater proportion of diatoms present in the bloom conditions to the south. Plotting

the GA derived diatom fractions against the HPLC data leads to a significant

correlation showing that the data is leading the GA to rightly vary the diatom fraction

between north and south. The pigment ratio backs up the assertion that LTE07 fits

with the northern experiments. However, while the line of best fit would place LTE03

somewhere between north and south, the GA picks at the higher end placing this

point outside of the confidence bands. Nonetheless, these results make clear the

importance of correctly modelling community structure in order to accurately

simulate Si and N uptake and thus the Si:N ratio. A model must balance the

influences of Fe, Si and community structure in order to estimate Si:N.

Using the correlation of the pigment ratio to diatom fraction, it was possible to

estimate the proportion of diatoms for the GE01 and GE02 where a gradient of silicon

additions was made crossed with a +Fe and non-Fe treatment. Based on their location

in the north and south respectively (Figure 4.16), it would be expected that GE01

would have a low fraction while GE02 would be high. This is indeed what the

pigment data suggests (Figure 4.16b), estimating a diatom fraction of 0.31 for GE01

and 0.94 for GE02. Using this estimation to simulate GE02 works very well

(Figure 4.19), reproducing Chl, ∆DIN, ∆Si and even ∆Si:∆DIN accurately. However,

for GE01 (Figure 4.18), ∆DIN and ∆Si in particular are underestimated and ∆Si:∆DIN

in the low iron treatment is severely raised above observations. This continues the

trend of finding superior fits to observations when working with the southern

experiments within the bloom. This is perhaps unsurprising as bloom conditions are

likely to be dominated by only a limited diversity of phytoplankton groups, in this

case diatoms. Whereas, in non-bloom or low-nutrient conditions a wider diversity of

phytoplankton are able to exploit the available niches (Ignatiades, 1969; Tilman et al.,

1982). Thus, it might be expected that it is easier to model or even measure one group

producing large responses in Chl, Si and N than it is to model multiple groups having

a smaller effect on their environment.
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4.5 Conclusions

This chapter sought to take the CUSTARD-QUOTA model that was successful at

modelling the incubation experiments from the CUSTARD cruise in Chapter 3 and

improve it further through the addition of a dynamic cellular Chl pool as an

additional state variable and through fitting the parameters using a genetic algorithm.

In achieving this, it was also possible to explore how sensitive parameters were to the

data constraining the model and how to best apply the power of a genetic algorithm

without unnecessary and detrimental tuning.

The additional Chl state variable was introduced to the model with little change in

model fit from the previous format, while gaining the ability to directly simulate the

available Chl observation data. Furthermore, this allowed a variable Chl:C ratio to

exist within the model which was observed to exist in the data, where the ratio

increased when iron limitation was alleviated.

When a genetic algorithm was used to fit the model parameters, allowing the

algorithm to fit different initial diatom fractions for LTE’s in the north and south

proved to improve the results of the optimisations. This was corroborated by a

latitudinal gradient of Chl which indicated bloom conditions in the south which were

likely dominated by diatoms. Increasing the specificity of the optimisation, when the

northern and southern experiments were each given their own entire parameter set

was found to provide the best fit to the observations. However, increasing specificity

leads to a degree of overtuning and limits any broader applicability of the model. In

general, the southern bloom experiments (LTE’s 2, 4 and 6) produced stronger fits,

likely because it was easier to model large responses driven by a community

dominated by a single phytoplankton group. A sensitivity optimisation, which

included 120 iterations and produced a range of misfit values, showed that a large

number of parameters were in fact poorly constrained by the data available. This

result warns against a one-step process of feeding parameters to an algorithm without

knowing if they will be well constrained by the data. This could potentially be

achieved by a pre-algorithm sensitivity-test of the model’s parameters or a sensitivity

analysis using the algorithm itself, as is performed here. Based on these findings,

optimisation proceeded with a hybrid approach that left unconstrained parameters

hand-picked and only used the algorithm to find parameters that were well defined

by the observations. The well constrained parameters included µD, all initial diatom

fractions, diatom QN
max, QSi

opt, QSi
max, QMn

opt as well as non-diatom QN
max, QFe

min, QFe
opt, αchl

and θC
max. This approach produced little decrease in the fit of the model compared to

the previous method while avoiding the effectively random tuning of unconstrained

parameters.
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Community composition in the model, represented by starting diatom fraction, was

very well-constrained and appeared to match assumed diatom dominance the south.

This suggested that these fractions might correlate well to the real proportion of

diatoms at the location of the incubations. Performing a regression between the

estimations of the GA and the fucoxanthin to total Chl a ratio, which is indicative of

the representation of diatoms within the total community, resulted in a significant

positive correlation. The fact that the algorithm was able to mostly predict the correct

gradient in diatom fraction between the north and south shows that community

composition is another key factor to consider when modelling the Si:N drawdown at

different locations in the ocean alongside Si and Fe availability as mentioned in

Chapter 3. Overall, the attempt to fit the model to the multi-factorial experimental

data thus indicated that representation of a two component (diatom and non-diatom)

community was important in addition to allowing flexible quotas and associated

luxury uptake.
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Chapter 5

Synthesis and Concluding Remarks

5.1 Summary

Diatoms are eukaryotic phytoplankton known for their two-part intersecting silica cell

wall and the fact that they contribute 20% of global primary productivity (Nelson

et al., 1995; Falkowski et al., 1998; Field et al., 1998). Since their rise to dominance in

the Cretaceous, diatoms have depleted the world’s oceans of silicic acid (Si), reducing

concentrations by more than 90% from around 1000 µM to <100 µM (Conley et al.,

2017; Sims et al., 2019). Today, the Southern Ocean (SO) is the largest region of carbon

export by diatoms (Schlitzer, 2002; Arteaga et al., 2018). As a key junction of the

Meridional Overturning Circulation, the SO upwells old nutrient rich water masses

via the Circumpolar Deep Water (CDW). However, primary productivity at the surface

is limited by light and iron (Fe) availability (Gran, 1931; Martin et al., 1989; Martin,

1990; Boyd et al., 2007) and so these nutrients are able to escape to the lower latitudes

where they are estimated to support about three-quarters of the biological production

north of 30° S (Sarmiento et al., 2004). Silicic acid (Si), on the other hand, exhibits a

diminishing gradient as surface waters move northward across the SO and so remains

trapped relative to other macronutrients. This decoupling of Si in the surface is caused

by the upregulation of diatom Si:N uptake ratios under Fe stress (Brzezinski, 1985;

Takeda, 1998; De La Rocha et al., 2000; Brzezinski et al., 2003; Timmermans et al., 2004;

Hoffmann et al., 2007) in combination with the decreased dissolution of silica in cold

polar waters (Sarmiento and Gruber, 2006). At depth, Si is attenuated much less than

phosphate and a portion re-enters the CDW to form a continuous loop of SO

utilisation and regeneration with little escaping to lower latitudes (Whitney et al.,

2005; Holzer et al., 2014). SO Si trapping influences global productivity by limiting the

growth of diatoms beyond the SO, although this may have been relieved during some
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glacial – interglacial periods (Harrison, 2000; Nozaki and Yamamoto, 2001; Brzezinski

et al., 2002; Matsumoto et al., 2002; Hendry and Brzezinski, 2014). Therefore,

modelling the global ocean in the past, present and future requires an understanding

of silicon trapping and diatom stoichiometry in the SO. Holzer et al. (2019) have

shown that how diatom Si:N is parameterised in relation to Fe deficiency can lead to

contrary results under a regime of Fe fertilisation. The ultimate aim of this study was

to evaluate the drivers of Si trapping in the SO using models of different scales. In

particular, the specific methodology used to model variable diatom uptake

stoichiometry is interrogated using a powerful set of observations.

Chapter 2 aimed to build a simple 3-box model (3BOX-SIMPLE) representation of the

overturning pathway between the SO upwelling zone, the subtropical (ST) ocean

surface layer and the deep ocean in order to observe how key mechanisms keep Si

from leaving the SO to the ST. These mechanisms included the upwelling of nutrients

in the SO, the attenuation of Si dissolution and the parameterisation of diatom Si:N

stoichiometry by different methods. Sensitivity testing allowed comparison of how

each factor mediates the proportion of Si that leaves the SO surface northwards after

being upwelled.

In December 2019 a cruise of the RRS Discovery, as part of the Carbon Uptake and

Seasonal Traits in Antarctic Remineralisation Depth (CUSTARD) programme,

conducted multifactorial nutrient addition experiments in the SO that revealed the

response of Si:N uptake ratios to the availability of Fe, Si and Mn. Chapter 3 aimed to

use this data as a rigorous test for two modelling approaches: a simple model which

calculates growth via Michaelis-Menten type uptake of external nutrients

(CUSTARD-SIMPLE) (Tyrrell, 1999; Yool and Tyrrell, 2003); and a quota model which

represents cellular nutrient pools and can modulate uptake based upon cellular

accumulation approach (CUSTARD-QUOTA) (Droop, 1983; Geider et al., 1998;

Buitenhuis and Geider, 2010).

Chapter 4 sets out to further the quota model work of chapter 3 to create a closer

simulation of the cruise experiments and explore the influence of parameterisation

and community structure in fitting the model. The chapter introduces an additional

state variable to represent a dynamic cellular chlorophyll pool and uses a genetic

algorithm (GA) approach to fit the resulting CUSTARD-QUOTA-V2 model to

observations and infer community composition from a latitudinal gradient in

experimental responses.
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5.2 Key Results

In Chapter 2, a 3-box model representation of Southern Hemisphere meridional

circulation (3BOX-SIMPLE) was able to reasonably replicate observed nutrient

concentrations for P, Fe and Si and recreate expected distributions of diatoms versus

non-diatoms. However, the addition of an Fe-dependent diatom Si:N ratio led to near

complete Si trapping and their elevated removal of Si was sufficient to replace Fe

limitation with Si limitation in the SO surface box. A sensitivity test determined that

parameters and initial conditions required dramatic alteration to allow Si to escape to

the subtropics. Although, allowing non-diatoms to outcompete diatoms allowed a

complete floristic shift and total Si escape from the SO. The SO box was somewhat

trapped in a state of Si limitation for diatoms as lowering Fe to produce Fe limitation

yielded an increased Si:N and so reinforced Si depletion. Introducing Si:N

parameterisations that were both Si and Fe dependent could also not alleviate Si

trapping. A model Fe fertilisation experiment was performed to observe the response

of Si trapping and Si:N ratios to rising aeolian Fe input. For all parameterisations this

did not produce an increase in Si escape efficiency as additional Si uptake due to

greater productivity surpasses reduction of Si uptake via decreased Si:N ratio. This

was confirmed by the expected reduction in Si trapping appearing when diatom

growth was capped. Overall, this chapter emphasises the strength of Si trapping that

can be implemented by direct parameterisations of diatom Si:N uptake ratios. The

nature of these mechanisms can lead to feedback in both Fe and Fe/Si dependent

parameterisations which stabilise concentrations of Fe and Si.

In Chapter 3, the data from the nutrient addition experiments conducted on a SO

research cruise showed a clear increase in Si:N uptake ratio by the phytoplankton

community in Fe deficient conditions up to ∼2.5 or 4 in one extreme. Incubations

conducted with a gradient of Si determined that the Si:N uptake ratio was reliant on

both Fe and Si concentrations due to the downregulation of Si uptake at low

concentrations. Attempting to fit a simple model (CUSTARD-SIMPLE) to the data

with a direct Si:N parameterisation, that took Fe and Si concentrations into account,

yielded many of the same responses to nutrient additions observed in the experiments.

However, in some experiments, CUSTARD-SIMPLE did not reproduce responses to Fe

addition, due to depleting the available Si. Experimenting with alternative Si:N

parameterisations from Holzer et al. (2019) did not yield a better root mean square

error to the observations. Furthermore, all parameterisations resulted in a poor fit to

the Si gradient experiments, where Si:N uptake ratios were largely overestimated in

the low Fe treatment. A quota model (CUSTARD-QUOTA) that represented internal

cellular nutrients and allowed for luxury uptake of nutrients was able to reproduce all
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of the chlorophyll responses to different nutrient additions, also producing endpoints

very close to those of the observations. This model also performed significantly better

at fitting the Si gradient experiments than any of the CUSTARD-SIMPLE

parameterisations, though ∆Si, and therefore ∆Si:∆DIN, was still overestimated.

In Chapter 4, an additional Chl state variable was introduced to the

CUSTARD-QUOTA model to account for the variable Chl:C ratios observed in the

data, while maintaining an equally good fit to the observations. This new model was

designated CUSTARD-QUOTA-V2. The fit was further improved by using experiment

BSi and Mn data to set the initial cellular Si and external Mn concentrations. When a

GA was used to fit the model parameters and initial fraction of diatoms to

non-diatoms, the distance of the simulation from the observations was reduced

dramatically. The algorithm also set diatom fractions which mostly appeared to match

expected community structure differences in diatom abundance according to the

latitudinal chlorophyll gradient across the cruise area. Increasing the number of

parameters and the specificity of the experiments led to an exceptionally close fit of

the model to the data. However, this likely resulted in over-tuning which may have

led to very low likelihood of this model being applicable outside of this specific

circumstance. Furthermore, a sensitivity test that performed 120 tuning runs of the

GA found that many of the parameters were in fact completely unconstrained by the

data. This led to the adoption of a hybrid approach where poorly constrained

parameters were left at values informed by the literature, while well-constrained

parameters were fitted by the algorithm. The hybrid approach resulted in only a small

reduction in the fit of the model to the observations while hopefully avoiding

over-tuning and retaining a higher degree of scalability to wider problems. Finally,

diatom fractions picked by the GA for each experiment were found to significantly

correlate to a pigment indicator of diatom proportion in the community. Using this

regression to estimate diatom fraction for the gradient experiments yielded a very

strong fit to GE02 but overestimated ∆Si:∆DIN in GE01.

5.3 Discussion

Chapter 2 attempted to model the present day SO Si trap in the simplest manner

possible by reducing the system to a three-box model. This model was based on the

two-box biogeochemical model of Yool and Tyrrell (2003) which successfully used two

functional groups, diatoms and non-diatoms to simulate the broad cycles of Si and P

in the global ocean. The 3-box approach used here contains an SO box, Subtropical

(ST) box and a deep box connected by an overturning circulation which represent the
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upwelling of the CDW into the surface SO, export from the SO to the ST via

intermediate waters and the return path of nutrients to the deep ocean via the North

Atlantic Deep Water (NADW) (Talley, 2013). A basic Fe cycle was also added to the

model as a key limitation of biological productivity in the SO and was made

responsible for the variable diatom Si:N stoichiometry that plays a role in the Si trap.

Basic mechanisms of Fe input to the surface box via aeolian dust and Fe scavenging

from the deep box were included in this cycle which allowed the study of scenarios

such as Fe fertilisation which have been hypothesised by some to reduce SO Si

trapping during past glacial maxima (Brzezinski et al., 2002; Matsumoto et al., 2002).

Without any direct parameterisation of Si:N, the model reaches steady state solutions

conforming to sensible nutrient distributions and establishes a diatom dominance in

the SO but sets up dominance of ordinary phytoplankton in the ST due to the limited

availability of Si (Table 2.5). In this scenario, 25% of the Si that enters the SO box

through upwelling and mixing is transported to the ST box.

When an Fe-dependent Si:N parameterisation is introduced, diatoms deplete all of the

Si in the SO box before it can be transported out and therefore less than 1% of Si

imported to the SO box is carried to the ST, compared to 65% of P. This compares to a

5% chance for Si and 45% chance for P to be next utilised outside of the SO according

to global modelling by Holzer et al. (2014). Consequently, diatom biomass in the ST

box is reduced by 45% and, due to the Si limitation created by the high Si:N in the SO,

other phytoplankton make up 24% of SO production. This SO ratio of diatoms to

non-diatoms is consistent with Assmy et al. (2013) who found that non diatoms

generally made up <30% of phytoplankton carbon, although this was in a single

patch over 5 weeks in austral summer and diatom proportion maybe lower in

non-bloom periods (Hirata et al., 2011; Hashioka et al., 2013). Assuming a N:P ratio

16:1 (Redfield, 1934), the SO box measures an Si* ([Si(OH)4] - [NO3
– ]) of -18 mmol

m−3 which is lower than the range of -10 to -15 mmol m−3 found by Sarmiento et al.

(2004). This could be the result of over-trapping of Si in the box-model. Another

suggestion that trapping may be overly vigorous is the Si-limitation generated by the

model in the SO box, while the SO is thought to be predominantly Fe-limited (Moore,

Mills, Arrigo, Berman-Frank, Bopp, Boyd, Galbraith, Geider, Guieu, Jaccard, Jickells,

La Roche, Lenton, Mahowald, Marañón, Marinov, Moore, Nakatsuka, Oschlies, Saito,

Thingstad, Tsuda and Ulloa, 2013). Using an Fe-dependent Si:N ratio creates an SO

box Si:N of 2:1 which is relatively low compared to some findings (Table 1.1. However,

using one of the three parameterisations employed by Holzer et al. (2019) results in

Si:N ratios from 4:1 to just over 7:1. In these scenarios, Si supply to the SO would need

to be higher or diatom growth would need to be otherwise limited to result in

anything other than total Si trapping. Of these options, it seems that the latter would
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be more likely as sensitivity testing showed that Si escape efficiency was mostly

insensitive to at least ±50% changes in the surface dissolution fraction of Si, the initial

deep Si concentration, the aeolian iron input or the strength of iron scavenging.

Increasing Fe fertilisation in the model was shown to produce no rise in the escape of

Si from the SO box despite the negative effect this had on Si:N ratios under all

parameterisations. This was because the extra Fe available stimulated diatom

productivity to the degree that Si was still fully removed before it could be

transported north. The solution achieved here appears to run contrary to the Silicic

Acid Leakage Hypothesis (SALH) (Brzezinski et al., 2002; Matsumoto et al., 2002)

which proposes that increased Fe deposition in glacial times decreased diatom Si:N

uptake ratios and this let Si escape the SO to fuel diatom production in the rest of the

world’s oceans and drawdown more atmospheric CO2. However, the model of

Matsumoto et al. (2002) does not measure the escape of Si from the SO but rather the

accumulation of excess Si in the subantarctic, the point of mode water formation. They

point out that one possible fate of the excess Si created in the subantarctic could be

consumption by diatoms if productivity was enhanced, which is an expected response

to increased Fe availability (Martin and Fitzwater, 1988; Coale et al., 1996; Boyd et al.,

2000). A later study (Crosta et al., 2007) suggested that Si isotope records do not imply

an increase in diatom productivity outside the SO when the potential for Si leakage

was greatest, which may support the results of this model, although the paper instead

offers a lower rate of intermediate water formation at the time as an explanation.

Matsumoto and Sarmiento (2008) also later argued that the decrease in atmospheric

CO2 could be achieved simply by the dominance of diatoms over coccolithophorids

brought about by Si leakage not necessarily by the magnitude of diatom production.

In Chapter 3, shipboard nutrient addition experiments from the CUSTARD cruise

were used as a basis to constrain different types of model to try to achieve an

optimum solution to the representation of variable diatom stoichiometry. Treatments

with no Fe enrichment displayed Si:N uptake ratios up to ∼2.5:1 with one data point

reaching 4:1. However, in general, the highest Si:N values came in experiments with

added Si while only one data point in the control treatment eclipsed 1.7:1. In

comparison, other shipboard incubation experiments have observed Si:N uptake

ratios of 3:1 in the California coastal upwelling (Hutchins and Bruland, 1998); 2.3:1 in

the Southern Ocean, 2.6:1 in the Subarctic North Pacific and 1.3:1 in the Equatorial

Pacific (Takeda, 1998). The higher Si:N in +Si treatments suggest that while Si was not

the main limiting nutrient, availability was low enough for diatoms not to have

reached maximum uptake rates prior to the addition of Si.
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To the author’s knowledge, this is the first time models have been applied to

recreating the results of an incubation experiment such as this. When using

CUSTARD-SIMPLE to simulate these experiments, diatoms did not have sufficient Si

to yield chlorophyll increases in response to Fe that were observed in the experiments

for LTE’s 4, 6 and 7. Of the initial Si available before additions were made in each

experiment, these LTE’s had the lowest Si concentration of ≤1 µmol L−1 compared to

≥3.4 in the other experiments. This result is observed regardless of Si:N

parameterisation. It was therefore hypothesised that there could be Si available within

the cell to prompt growth upon the relief of Fe limitation. It is debatable whether

intracellular pools of Si stored by diatoms would have any dramatic effect on the

ability of diatoms to respond to Fe addition. Kumar et al. (2020) estimated the cells

they measured held roughly enough Si to form half of a new cell wall. Alternatively,

flexibility in diatom community composition may play a role in varying the Si:C ratio

between experiments. The CUSTARD-SIMPLE model overestimated Si:N in the low

iron treatments of the gradient experiments, however, this in part may be explained

by the sole use of a diatom group within the model. Use of N by other phytoplankton

could lower the community Si:N uptake ratio.

To enable the modelling of cellular nutrient concentrations, a quota model

(CUSTARD-QUOTA) was employed to simulate the CUSTARD experiments. In the

past, quota models have been used to provide the option for luxury uptake of P and Fe

(Droop, 1973; Buitenhuis and Geider, 2010; Aumont et al., 2015). Here, the maximum

nutrient quota Qmax to carbon is set above the optimum quota Qopt for Si, Fe and Mn.

With this model setup, an improved fit was seen to the patterns of Chl in the

observations, suggesting more appropriate levels of Si utilisation were observed in the

experiments that had previously been difficult to replicate. Furthermore, the gradient

experiments were far more closely replicated by the CUSTARD-QUOTA model

compared to CUSTARD-SIMPLE, although, there was still substantial overshoot in the

∆Si:∆DIN of GE01. In general, ∆Si:∆DIN was commonly overestimated for

experiments where no Fe was added, though this was much more extreme in the

CUSTARD-SIMPLE model. Removing ‘other’ phytoplankton from the model only

minorly increases ∆Si:∆DIN in CUSTARD-QUOTA which suggests the higher values

found in CUSTARD-SIMPLE are not solely the fault of having only diatoms.

In Chapter 4, using a GA approach to pick parameters improved the fit of the

CUSTARD-QUOTA-V2 model to the observations. However, the dataset was shown

to poorly constrain many parameters. Ward et al. (2010) show that using poorly

constrained parameters to fit a model means that the model performs badly when

applied to other scenarios. For the hybrid approach settled upon in this study, Ward

et al. (2010) point out that this comes at the risk of reintroducing any uncertainty
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found in literature-based values. However, in this case, the hybrid approach is likely

the best compromise between these two risks. Both in the initial fit of the

CUSTARD-QUOTA-V2 model and the subsequent GA optimisations, it is the high

∆Si:∆DIN values that are hardest for the model to fit. This is likely because high Si:N

values occur in the absence of Fe and therefore tend to coincide with the lowest values

of ∆DIN and ∆Si. This inherently makes high Si:N harder to measure as is evidenced

by a mean standard deviation of 0.02 for ∆Si:∆DIN in +Fe treatments compared to 0.38

in the non-Fe treatments. Although the cost function does not view low values of

∆Si:∆DIN any differently than large values in terms of fitting the model, more

uncertainty in the measurements potentially makes it harder for the model to

reconcile them.

In the sensitivity optimisation, QSi
max and QSi

min were shown to be consistently chosen

high in their potential range of values as well as higher than their original

hand-picked values. The fact that values of QSi
max from the model fits did not trend

toward QSi
opt, supports the idea that a degree of luxury uptake is necessary to simulate

these observations. Maximum diatom growth rate (µmax) is predicted by almost all GA

optimisations to be smaller than that of other algae. This contradicts the general idea

that diatoms tend to have higher growth rates (Furnas, 1990; Edwards et al., 2015).

However, it has been shown that larger diatoms have slower growth rates than

smaller or intermediately sized diatoms (Timmermans et al., 2004; Marañón et al.,

2013). Assmy et al. (2013) also report a progression from small, fast-growing cells with

low iron requirements to large, slow-growing cells with stronger Si armour during the

course of an iron-stimulated bloom. The results from the GA suggest that it is these

larger cells that may be more present, particularly in +Fe treatments or in the southern

experiments which exhibited bloom conditions.

The initial diatom fraction set by the fits to each LTE was strongly constrained by the

GA and correlated to a pigment indicator of the proportion of diatoms in the starting

communities. This shows that community structure played a key role in defining the

responses to the nutrient addition experiments. Just among diatoms, size, growth rate,

silicification and tendency for aggregation result in different contributions to carbon

and Si export and different Si:N uptake ratios (Assmy et al., 2013; Tréguer et al., 2018).

Warming temperatures are also expected to benefit some diatoms more than others

(Jabre et al., 2021). At the community scale, changes in community composition are

predicted as a response to climate change including the colonisation of the Southern

Ocean by small dinoflagellates (Henson et al., 2021). It will be important to combine

predictions of future species and composition with knowledge of their specific uptake

stoichiometries and silicification strategies. Models currently include different size
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classes of diatoms and this could be paired with different levels of silicification and

Si:N uptake ratios to observe emergent classes.

5.4 Limitations

In Chapter 2 a 3-box model (3BOX-SIMPLE) is used to study the mechanics of the SO

Si trap. This simplistic view was chosen in order to reduce the Si trap to its most

important key features and to easily interpret the effects of changing parameters and

starting conditions. However, this necessarily comes with large assumptions. In

reducing the phytoplankton community down to two groups, this model misses the

potential effects of a more diverse phytoplankton assembly on Si:N ratios in the SO.

For instance, the slow growing, thick shelled diatom species like Fragilariopsis

compared to fast-growing, less silicified species like Chaetoceros. The assumption of

diatoms having a faster growth rate than non-diatoms was also called into question by

some optimisations in Chapter 4. Furthermore, seasonality and light-limitation play

an important role in the biology of SO (Thomalla et al., 2011) and therefore, the

transport of Si to the ST and the export of Si to depth. While it is useful to create large

scale steady state estimates, precisely because we cannot directly measure such values,

it can be difficult to translate data taken from a very specific place and time to the

parameterisation of large-scale models. This is why Chapter’s 3 and 4 aim to bridge

the gap between small scale experiments on diatom physiology and such models. A

very simple Fe cycle is used in this model to allow for the limitation of SO production

and enhancement of diatom Si:N ratios in response to Fe deficiency as well as the

reduction of Si:N when fertilisation occurs. Because of the several forms that exist in

seawater and therefore different bioavailability, Fe in the ocean is very difficult to

model (Parekh et al., 2004). From this standpoint, this model likely does not suffer

much compared to much more complex models that still are not able to place great

faith in the realism of their Fe cycles.

In Chapters 3 and 4, two quota model approaches (CUSTARD-QUOTA and

CUSTARD-QUOTA-V2) were used to fit nutrient addition experiments conducted in

the SO. These experiments showed a range of responses to the provision of Si, Fe and

Mn which provided a good target to improve the modelling of diatom physiology.

However, these experiments took place at one time of the year (austral summer) in

one portion (Eastern Pacific) of the SO and therefore do not necessarily represent the

average SO diatom responses, although the latitudinal gradient in productivity and

diatom representation seen in Figure 4.16 do provide some heterogeneity. As

discussed in Chapter 4, utilising a genetic algorithm to fit CUSTARD-QUOTA-V2 to
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the observations carries the risk of over-tuning the model and mistaking this for

model performance. It is hoped that, by using the algorithm to identify and exclude

poorly constrained parameters and making the algorithm pick parameter values from

within ranges based on the literature, a balance between tuning and versatility has

been struck. However, until the model is tested on more data it is not possible to know

this for certain.

5.5 Future Work

In Chapter 3 and 4, quota models were developed and optimised to provide a strong

fit to the observations of the nutrient addition experiments. By exposing SO diatoms

to a range of nutrient conditions these experiments provided a good basis of diatom

physiology on which to target the model. The next step in this research is to apply the

resulting model and parameter set in larger scale models to test how broadly they may

be applied. In Demuynck et al. (2020), a model consisting of a chain of boxes

representing the mixed and subsurface layer of the SO was used to study the

latitudinal Si gradient in the region. In the southern section of the model, upwelling

was introduced from deep layer forced by prior observations while nutrients in the

mixed layer were advected northwards toward the point of mode water formation.

Three classes of diatoms uptake nutrients and interact with two classes of

zooplankton over a seasonal cycle. The variable chlorophyll model from this thesis

has been placed within the structure of the Demuynck et al. model as ongoing work

with the aim of using water column data from the CUSTARD cruise as deep forcing

and trying to replicate the surface observations made there. Furthermore, work has

begun to introduce the parameter set created here to a version of EcoGEnIE (Ward

et al., 2018), a marine ecology enabled Earth system model. This will enable the testing

of the response of the whole ocean to the quota model and parameters developed in

this thesis.

Chapter 2 shows how important parameterisations of diatom Si:N are in determining

Si trapping and therefore diatom productivity in the rest of the world (Sarmiento

et al., 2004). Given the key role Si trapping plays, an intercomparison should be

conducted between earth system models specifically focusing on how much Si they

estimate to leak from the SO based on their particular parameterisation of diatom

physiology and sinking, remineralisation depth and circulation. This research could

potentially use the data from existing runs of the models.

Overall the work presented in this thesis has improved understanding of the coupling

and decoupling of Si:N:P:Fe stoichiometry through community structure and diatom
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physiology over different scales. Further application of this new knowledge in other

model frameworks has the potential to generate an improved understanding of

Southern Ocean Si trapping over multiple time and space scales.
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Greene, R. M., Geider, R. J. and Falkowski, P. G. (1991), ‘Effect of iron limitation on

photosynthesis in a marine diatom’, Limnology and Oceanography 36(8), 1772–1782.

URL: https://aslopubs.onlinelibrary.wiley.com/doi/full/10.4319/lo.1991.36.8.1772

Greene, R. M., Kolber, Z. S., Swift, D. G., Tindale, N. W. and Falkowski, P. G. (1994),

‘Physiological limitation of phytoplankton photosynthesis in the eastern equatorial

Pacific determined from variability in the quantum yield of fluorescence’, Limnology

and Oceanography 39(5), 1061–1074.

URL: http://doi.wiley.com/10.4319/lo.1994.39.5.1061
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Le Quéré, C., Harrison, S. P., Prentice, I. C., Buitenhuis, E. T., Aumont, O., Bopp, L.,

Claustre, H., Cotrim Da Cunha, L., Geider, R., Giraud, X., Klaas, C., Kohfeld, K. E.,

Legendre, L., Manizza, M., Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J.,

Watson, A. J. and Wolf-Gladrow, D. (2005), ‘Ecosystem dynamics based on plankton

functional types for global ocean biogeochemistry models’, Global Change Biology

11(11), 2016–2040.

URL: https://research-portal.uea.ac.uk/en/publications/ecosystem-dynamics-based-on-

plankton-functional-types-for-global-

Lerman, A. and Lal, D. (1977), ‘Regeneration Rates in the Ocean.’, American Journal of

Science 277(3), 238–258.

Levitus, S., Conkright, M. E., Reid, J. L., Najjar, R. G. and Mantyla, A. (1993),

‘Distribution of nitrate, phosphate and silicate in the world oceans’, Progress in

Oceanography 31(3), 245–273.

URL: https://www.sciencedirect.com/science/article/pii/007966119390003V

Leynaert, A., Bucciarelli, E., Claquin, P., Dugdale, R. C., Martin-Jézéquel, V.,
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Martin-Jézéquel, V., Hildebrand, M. and Brzezinski, M. A. (2000), ‘Silicon metabolism

in diatoms: Implications for growth’, Journal of Phycology 36(5), 821–840.

Matsumoto, K., Chase, Z. and Kohfeld, K. (2014), ‘Different mechanisms of silicic acid

leakage and their biogeochemical consequences’, Paleoceanography 29(3), 238–254.

URL: https://onlinelibrary.wiley.com/doi/full/10.1002/2013PA002588

Matsumoto, K. and Sarmiento, J. L. (2008), ‘A corollary to the silicic acid leakage

hypothesis’, Paleoceanography 23(2).

URL: https://onlinelibrary.wiley.com/doi/full/10.1029/2007PA001515

Matsumoto, K., Sarmiento, J. L. and Brzezinski, M. A. (2002), ‘Silicic acid leakage from

the Southern Ocean: A possible explanation for glacial atmospheric pCO2’, Global

Biogeochemical Cycles 16(3).

Matsumoto, K., Tokos, K., Huston, A. and Joy-Warren, H. (2013), ‘MESMO 2: a

mechanistic marine silica cycle and coupling to a simple terrestrial scheme’,

Geoscientific Model Development 6(2), 477–494.

URL: https://gmd.copernicus.org/articles/6/477/2013/

McNeil, B. I. and Matear, R. J. (2008), ‘Southern Ocean acidification: A tipping point at

450-ppm atmospheric CO2’, Proceedings of the National Academy of Sciences of the

United States of America 105(48), 18860–18864.

Meyerink, S., Ellwood, M. J., Maher, W. A. and Strzepek, R. (2017), ‘Iron Availability

Influences Silicon Isotope Fractionation in Two Southern Ocean Diatoms (Proboscia

inermis and Eucampia antarctica) and a Coastal Diatom (Thalassiosira

pseudonana)’, Frontiers in Marine Science 4(JUL), 217.

URL: http://journal.frontiersin.org/article/10.3389/fmars.2017.00217/full

Michaelis, L. and Menten, M. L. (1913), ‘Die Kinetik der Invertinwirkung.’,

Biochemische Zeitschrift 49, 333–369.

Milligan, A. J. and Morel, F. M. (2002), ‘A proton buffering role for silica in diatoms’,

Science 297(5588), 1848–1850.

URL: https://www.science.org/doi/10.1126/science.1074958

Mitchell, M. (1996), An introduction to genetic algorithms., MIT Press, Cambridge, MA.

Mock, T., Samanta, M. P., Iverson, V., Berthiaume, C., Robison, M., Holtermann, K.,

Durkin, C., BonDurant, S. S., Richmond, K., Rodesch, M., Kallas, T., Huttlin, E. L.,

Cerrina, F., Sussman, M. R. and Armbrust, E. V. (2008), ‘Whole-genome expression

profiling of the marine diatom Thalassiosira pseudonana identifies genes involved

in silicon bioprocesses’, Proceedings of the National Academy of Sciences of the United



147 Chapter 5

States of America 105(5), 1579–1584.

URL: www.pnas.orgcgidoi10.1073pnas.0707946105

Moore, C. (2016), ‘Diagnosing oceanic nutrient defciency’, Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences 374(2081).

Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W.,

Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J.,
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