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Abstract

The article proposes a new technique for proving the undefinability of logical con-
nectives through each other and illustrates the technique with several examples. Some
of the obtained results are new proofs of the existing theorems, others are original to
this work.

1 Introduction

Studying the definability (expressibility) of logical connectives in terms of one another has
a long history in logic. Proving the definability of one connective through another is usually
done by providing an explicit formula that expresses one connective through others. Once
such a formula is found, proving definability is usually a straightforward exercise. Proving
undefinability is significantly harder and usually requires sophisticated techniques. Different
domain-specific techniques have been proposed for various logical systems. Among them,
the best-known is the bisimulation method for modal logics [19, 1, 2, 5, 15, 18, 4, 17, 16]. It
is not clear how bisimulation can be applied to non-modal logics where completely different
methods have been proposed [13, 20]. In addition, even for modal logics, some proofs of
undefinability use non-bisimulation methods [12, 9].

In this article, we propose a new technique for proving the undefinability of logical
connectives which is applicable to a wide range of settings. The technique consists in defining
the “truth set” of a formula and studying the patterns of these truth sets obtainable through
the given connectives. The exact definition of “truth set” varies depending on the logical
system. For example, in the context of definability of Boolean connectives through each
other, the truth set is defined as a set of valuations that satisfy a given formula. In the
context of modal logics, the truth set is the set of worlds of a fixed given Kripke model in
which the formula is true. In the context of three-valued logics, the “truth set” is a fuzzy
set of valuations.

We illustrate this technique on the examples from Boolean, three-valued, intuitionistic,
and temporal logics. We have chosen these specific examples to make the presentation
accessible to a broader logical audience: we assume that most logicians are familiar with
these logical systems.

We use the Boolean logic example to introduce the basic idea behind our technique. We
are not aware of any published work containing the undefinability result in that example,
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but it is so simple that we assume that somebody has observed it before. Our temporal logic
and intuitionistic logic examples reprove known results using the newly proposed technique.
We discuss the related literature after we present these results. Our 3-valued logic results
are original to this article.

2 Classical Propositional Logic

This section illustrates our technique using a simple undefinability result in propositional
logic. In the rest of the article, we assume a fixed nonempty set of propositional variables.
Consider language Φ1 defined by the following grammar:

φ := p | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ,

where p is a propositional variable. As usual, we assume that constant ⊤ is defined as
p → p for some propositional variable p and constant ⊥ is defined as ¬⊤. There are many
well-known definability results in propositional logic:

φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ),

φ ∧ ψ ≡ ¬(φ→ ¬ψ),

φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ),

φ ∨ ψ ≡ ¬φ→ ψ,

φ→ ψ ≡ ¬φ ∨ ψ,
φ→ ψ ≡ ¬(φ ∧ ¬ψ).

However, it is perhaps less known that disjunction can be defined through implication alone
without the negation:

φ ∨ ψ ≡ (φ→ ψ) → ψ.

The last fact and the well-known symmetry between disjunction and conjunction in propo-
sitional logic naturally lead to the question of whether conjunction can be defined solely
through implication. Perhaps surprisingly, the answer is negative and we prove this as our
first example.

Before formally stating the result, we introduce several auxiliary notions. First, a valua-
tion is an arbitrary assignment of Boolean values to propositional variables. Second, for any
formula φ ∈ Φ1, by JφK we denote the set of all valuations that satisfy formula φ. We refer
to set JφK as the “truth set” of formula φ ∈ Φ1. Finally, we define the semantic equivalence
of formulae:

Definition 1 Propositional formulae φ,ψ ∈ Φ1 are semantically equivalent if JφK = JψK.

Next is our first undefinability result.

Theorem 1 (undefinability) The formula p∧ q is not semantically equivalent to any for-
mula in language Φ1 containing only connectives ∨ and →.

Because the formula p ∧ q contains only propositional variables p and q, without loss of
generality, we can assume the language Φ1 contains only propositional variables p and q. As
a first step towards the proof, we introduce a way to visualise the truth set of any formula
in language Φ1 using “diagrams”. As an example, the diagram for the truth set Jp ∧ qK is
depicted in Figure 1. In general, a diagram is a 2 × 2 table whose cells represent valuations
(mappings of the set {p, q} into Boolean values). In the diagram, the cells representing
elements of the given truth set are shaded grey. In other words, each element of the truth
set of formula φ represents a valuation under which formula φ is true. As another example,
the diagrams at the top of Figure 2 depict the truth sets JpK, JqK, Jp∨ qK, Jp→ qK, Jq → pK,
and J⊤K.

The next lemma is the key step in our technique.
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Figure 1: Truth set diagram.

Lemma 1 Jφ → ψK ∈ {JpK, JqK, Jp ∨ qK, Jp → qK, Jq → pK, J⊤K} for any formulae φ,ψ ∈ Φ1

such that JφK, JψK ∈ {JpK, JqK, Jp ∨ qK, Jp→ qK, Jq → pK, J⊤K}.

The lemma is proven by considering 6 × 6 = 36 different cases corresponding to different
combinations of possible values of sets JφK and JψK. We show all these cases in Figure 2.
For example, if JφK = Jp → qK and JψK = JqK, then Jφ → ψK = Jp ∨ qK. We show this in
Figure 2 by placing the diagram of the set Jp ∨ qK in the cell located at the intersection of
the row labelled with the diagram Jp→ qK and the column labelled with the diagram JqK.

Lemma 2 JφK ∈ {JpK, JqK, Jp ∨ qK, Jp → qK, Jq → pK, J⊤K} for any formula φ ∈ Φ1 that uses
only connective →.

Proof. The lemma is proven by induction on the structural complexity of formula φ.
The base case is true because truth sets JpK and JqK belong to the family of truth sets
{JpK, JqK, Jp ∨ qK, Jp→ qK, Jq → pK, J⊤K}. The induction step follows from Lemma 1. ⊠

Lemma 3 Jp ∧ qK /∈ {JpK, JqK, Jp ∨ qK, Jp→ qK, Jq → pK, J⊤K}.

Proof. See Figure 1 and the top row in Figure 2. ⊠ The statement of Theorem 1 follows
from Lemma 2, Lemma 3, and Definition 1.

3 Temporal Logic

In this section, we show how the truth set algebra technique can be used to prove the
undefinability of one modality through another. To do this, we use several modalities from
linear temporal logic. We assume that time is discrete, starts at moment 0, and runs ad
infinitum. We denote the set of nonnegative integers by N. In the context of temporal logic,
a valuation is any function π that maps propositional variables into subsets of N.

The language Φ2 of temporal logic is defined by the following grammar:

φ := p | ¬φ | φ ∨ φ | Fφ | Xφ | φUφ | φWφ,

where p is either of the two propositional variables. We read F as “at some point in the
future”, X as “at the next moment”, U as “until”, and W as “weak until”. The formal
semantics of these modalities is defined below.

Definition 2 For any fixed valuation π, any integer n ∈ N, and any formula φ ∈ Φ2, the
satisfaction relation n ⊩ φ is defined recursively as follows:

1. n ⊩ p if n ∈ π(p),

2. n ⊩ ¬φ if n ⊮ φ,

3. n ⊩ φ ∨ ψ if either n ⊩ φ or n ⊩ ψ,
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⟦p⟧ ⟦q⟧ ⟦p∨q⟧ ⟦p→q⟧ ⟦q→p⟧

⟦p⟧

⟦q⟧

⟦p∨q⟧
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⟦q→p⟧

⟦⊤⟧

⟦⊤⟧

⟦!⟧

⟦"⟧

Figure 2: Truth set Jφ→ ψK for different combinations of truth sets JφK and JψK.

4. n ⊩ Fφ if there is m ≥ n such that m ⊩ φ,

5. n ⊩ Xφ if n+ 1 ⊩ φ,

6. n ⊩ φUψ when there is m ≥ n such that m ⊩ ψ and for each i, if n ≤ i < m, then
i ⊩ φ,

7. n ⊩ φWψ, when for each m ≥ n such that m ⊮ φ, there is m′ ≥ n such that m′ ⊩ ψ
and for each i, if n ≤ i < m′, then i ⊩ φ.

Note that item 4 of the above definition contains inequality m ≤ n rather than m < n.
Thus, informally, in our system “the future” includes the current moment. We believe that
this is a common approach in temporal logic, but this choice is not significant for our results.

Definition 3 In the context of temporal logic, for any given valuation π, let the truth set
JφK of a formula φ ∈ Φ2 be the set {n ∈ N | n ⊩ φ}.

Definition 4 In the context of temporal logic, formulae φ,ψ ∈ Φ2 are semantically equiva-
lent if JφK = JψK for each valuation π.
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3.1 Undefinability of U and W through F

In this subsection, we use the truth set algebra method to show that both versions of “until”
modalities, regular U and weak W, are not definable through modality F and Boolean connec-
tives. Without loss of generality, we assume that our language contains only propositional
variables p and q. To start the proof, consider valuation π defined as follows:

π(p) ={n ≥ 0 | n ≡ 1 (mod 2)},
π(q) ={n ≥ 0 | n ≡ 0 (mod 4)}.

We visualise the truth sets of temporal formulae by drawing a one-way infinite linear sequence
of cells and shading grey the cells whose position index belongs to the truth set (the left-most
position corresponds to moment 0). The linear sequences in Figure 3 labelled with JpK and
JqK visualise the corresponding truth sets. It is easy to verify that the other sequences also
visualise the truth sets with which they are labelled.

… ⟦¬(p⋁q)⟧

…

…

…

…

…

…

…

0 1 2 6 7 8

…
12 13 143 4 5 9 10 11

⟦p⟧

⟦p⋁q⟧

⟦⊤⟧

⟦¬q⟧

⟦¬p⟧

⟦q⟧

⟦⊥⟧

⟦pUq⟧, ⟦pWq⟧

F
F
F

F

F

F
F

F

Figure 3: Visualisation of nine truth sets.

The next lemma shows that the set of eight truth sets depicted above the horizontal bar
in Figure 3 is closed with respect to modality F.

Lemma 4 JFφK ∈ {J⊤K, J⊥K} for any temporal formula φ ∈ Φ2 such that JφK ∈ {J¬(p ∨
q)K, JpK, Jp ∨ qK, J⊤K, J¬qK, J¬pK, JqK, J⊥K}.

Proof. If JφK ∈ {J¬(p ∨ q)K, JpK, Jp ∨ qK, J⊤K, J¬qK, J¬pK, JqK}, then statement n ⊩ φ holds
for infinitely many values of n, see Figure 3. Thus, n ⊩ Fφ for each natural number n by
item 4 of Definition 2. Therefore, JFφK = J⊤K by Definition 3.

If JφK = J⊥K, then n ⊮ φ for each integer n ≥ 0. Hence, n ⊮ Fφ for each n by item 4 of
Definition 2. Therefore, JFφK = J⊥K by Definition 3. ⊠

Lemma 5 JφK ∈ {J¬(p∨ q)K, JpK, Jp∨ qK, J⊤K, J¬qK, J¬pK, JqK, J⊥K} for any temporal formula
φ ∈ Φ2 that does not contain modalities X, U, and W.
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Proof. We prove the lemma by induction on the structural complexity of formula φ. For
the base case, note that

JpK, JqK ∈ {J¬(p ∨ q)K, JpK, Jp ∨ qK, J⊤K, J¬qK, J¬pK, JqK, J⊥K}.

Suppose formula φ has the form ¬ψ. By item 2 of Definition 2 and Definition 3, the truth
set J¬ψK is the complement of the truth set JψK. Note that the complement of each set in the
family {J¬(p∨q)K, JpK, Jp∨qK, J⊤K, J¬qK, J¬pK, JqK, J⊥K} also belongs to the same family. This
can be observed in Figure 3. For example, the complement of the set J¬(p∨q)K is the set Jp∨
qK. Therefore, set J¬ψK belongs to the family {J¬(p∨q)K, JpK, Jp∨qK, J⊤K, J¬qK, J¬pK, JqK, J⊥K}
by the induction hypothesis.

Assume that formula φ has the form ψ1∨ψ2. By item 3 of Definition 2 and Definition 3,
the truth set Jψ1 ∨ ψ2K is the union of the truth sets Jψ1K and Jψ2K. Note that the family
{J¬(p∨q)K, JpK, Jp∨qK, J⊤K, J¬qK, J¬pK, JqK, J⊥K} is closed with respect to union. This can also
be observed in Figure 3. For example, the union of the sets J¬(p∨q)K and JpK is the set J¬qK.
Therefore, set Jψ1∨ψ2K belongs to the family {J¬(p∨q)K, JpK, Jp∨qK, J⊤K, J¬qK, J¬pK, JqK, J⊥K}
by the induction hypothesis.

If formula φ has the form Fψ, then the statement of the lemma follows from Lemma 4
and the induction hypothesis. ⊠

Lemma 6 JpUqK, JpWqK /∈ {J¬(p ∨ q)K, JpK, Jp ∨ qK, J⊤K, J¬qK, J¬pK, JqK, J⊥K}.

Proof. The truth sets JpUqK and JpWqK are equal and they are visualised below the
horizontal bar in Figure 3. The correctness of the visualisation follows from item 6 and
item 7 of Definition 2. Observe that these sets are different from the sets J¬(p ∨ q)K, JpK,
Jp ∨ qK, J⊤K, J¬qK, J¬pK, JqK, and J⊥K visualised above the horizontal bar on the same
diagram. ⊠

The next result follows from Definition 4 and the two lemmas above. A similar result
for brunching time logic is shown in [12] using a different technique. Other undefinability
results for a temporal logic are given in [9].

Theorem 2 (undefinability) Neither the formula pUq nor the formula pWq is semanti-
cally equivalent to a formula in language Φ2 that does not contain modalities X, U, and
W.

3.2 Undefinability of F through X

In this subsection, we use a modified version of the truth set algebra method to show that
modality F is not definable through modality X and Boolean connectives. Without loss
of generality, in this subsection, we assume that our language contains only propositional
variable p.

In Subsection 3.1, we have shown that a certain pattern can never be reached by applying
only modality F and Boolean connectives. Here we show that a certain pattern cannot be
reached in a fixed number of steps and use this observation to prove the undefinability.

We state and prove the undefinability result as Theorem 3 at the end of this subsection.
Throughout this subsection, until the statement of that theorem, we assume that T ≥ 1 is
an arbitrary fixed positive integer. We specify the value of T in the proof of Theorem 3.
Consider a valuations π defined as follows:

π(p) = {T}. (1)

We visualise the truth sets in the same way as we did in the previous subsection. In Figure
4, the top linear sequence visualises the truth set JpK.

For each integer t such that 1 ≤ t ≤ T , we consider families of sets αt and βt defined as

αt =
{
X | X ⊆ {t, . . . , T}

}
,

βt =
{
{0, . . . , t− 1} ∪X ∪ {T + 1, . . . } | X ⊆ {t, . . . , T}

}
.
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In other words, αt is the powerset of the set {t, . . . , T} and βt is the set of the complements
of sets in αt with respect to N. We visualise families αt and βt in the middle of Figure 4.
The asterisk ∗ is used as the “wildcard” to mark the integers that may but do not have to
belong to a set in the corresponding family. It is easily seen that for any integer t ≥ 2,

αt ⊊ αt−1 and βt ⊊ βt−1. (2)

!t
……

0 1 2 t-1 t t+1

…
T-1 T T+1

⟦p⟧……
0 1 2 t-1 t t+1

…
T-1 T T+1

"t
……

0 1 2 t-1 t t+1

…
T-1 T T+1

……
0 1 2 t-1 t t+1

…
T-1 T T+1

⟦Fp⟧

Figure 4: Visualisation of the truth sets for valuation πT .

Lemma 7 For any formulae φ,ψ ∈ Φ2 and any t ≥ 1, if JφK, JψK ∈ αt ∪ βt, then Jφ ∨
ψK, J¬φK ∈ αt ∪ βt.

Proof. Observe from Figure 4 that the family of sets αt ∪ βt is closed with respect to
union and complement. Then, the statement of the lemma follows from item 2 and item 3
of Definition 2. ⊠

Lemma 8 For any formulae φ,ψ ∈ Φ2 and any t ≥ 1, if JφK ∈ αt ∪ βt, then JXφK ∈
αt−1 ∪ βt−1.

Proof. By item 5 of Definition 2, JXφK = {i | i ∈ N, i + 1 ∈ JφK}. Thus, if JφK ∈ αt,
then JXφK ∈ αt−1; if JφK ∈ βt, then JXφK ∈ βt−1. Therefore, when JφK ∈ αt ∪ βt, JXφK ∈
αt−1 ∪ βt−1. ⊠

Lemma 9 For any integer k ≤ T and any formula φ ∈ Φ2 that contains only modality X
and Boolean connectives, if formula φ contains at most k occurrences of modality X, then
JφK ∈ αT−k ∪ βT−k.

Proof. We prove the statement of this lemma by structural induction on formula φ. If φ
is a propositional variable p, then

JφK = JpK = π(p) = {T} ∈ αT ⊆ αT−k

by item 1 of Definition 2, statement (1), and statement (2).
If formula φ is a disjunction or a negation, then the statement of this lemma follows from

the induction hypothesis by Lemma 7.
If formula φ has the form Xψ, then formula ψ contains at most k − 1 occurrences of

modality X. The statement of this lemma follows from Lemma 8. ⊠
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Lemma 10 If T ≥ 1, then 0 ∈ JFpK and T + 1 /∈ JFpK.

Proof. Since JpK = π(p) = {T}, by item 4 of Definition 2. Then, JFpK = {0, . . . , T}, see
the bottom linear sequence in Figure 4. Therefore, 0 ∈ JFpK and T + 1 /∈ JFpK. ⊠

The next theorem shows that modality F is not definable through modality X and Boolean
connectives.

Theorem 3 (undefinability) The formula Fp is not semantically equivalent to any for-
mula in language Φ2 that does not contain modalities F, U, and W.

Proof. Assume there is a formula φ ∈ Φ2 that contains only modality X and Boolean con-
nectives which is semantically equivalent to Fp. Suppose k to be the number of occurrences
of modality X in formula φ. Let T = k + 1. Then, JφK ∈ αk+1−k ∪ βk+1−k = α1 ∪ β1 by
Lemma 9. However, JFpK /∈ α1 ∪β1 by Lemma 10. Therefore, JFpK ̸= JφK, which contradicts
the assumption that formulae Fp and φ are semantically equivalent by Definition 4. ⊠

4 Intuitionistic Logic

In this section, we illustrate the truth set algebra method by proving the mutual undefin-
ability of connectives in Heyting [6] calculus for intuitionistic logic. These results1 were
independently obtained by McKinsey [13] and Wajsberg [20] in 1939. Note that there were
no Kripke semantics [8] for intuitionistic logic at the time [13, 20] were written. Our proof
of definability uses Kripke models and, thus, is also significantly different from the original
proofs in [13, 20].

We start by recalling the standard Kripke semantics for intuitionistic logic [14]. As usual,
by “partial order” we mean a reflexive, transitive, and antisymmetric binary relation.

Definition 5 An intuitionistic Kripke model is a tuple (W,⪯, π), where

1. W is a (possibly empty) set of “worlds”,

2. ⪯ is a partial order on set W ,

3. for each propositional variable p, valuation π(p) ⊆ W is a set of worlds such that for
any worlds w, u ∈W , if w ∈ π(p) and w ⪯ u, then u ∈ π(p).

In this section, we use the same language Φ1 as defined in Section 2.

Definition 6 For any world w ∈W of a Kripke model (W,⪯, π) and any formula φ ∈ Φ1,
the satisfaction relation w ⊩ φ is defined as follows:

1. w ⊩ p, if w ∈ π(p),

2. w ⊩ ¬φ, if there is no world u ∈W such that w ⪯ u and u ⊩ φ,

3. w ⊩ φ ∧ ψ, if w ⊩ φ and w ⊩ ψ,

4. w ⊩ φ ∨ ψ, if either w ⊩ φ or w ⊩ ψ,

5. w ⊩ φ→ ψ, when for each world u ∈W if w ⪯ u and u ⊩ φ, then u ⊩ ψ.

Note that item 3 of Definition 5 and items 2 and 5 of Definition 6 capture the intuitionistic
nature of this semantics.

Definition 7 For any given intuitionistic Kripke model (W,⪯, π), the truth set JφK of an
arbitrary formula φ ∈ Φ1 is the set {w ∈W | w ⊩ φ}.

Definition 8 In the context of intuitionistic logic, formulae φ,ψ ∈ Φ1 are semantically
equivalent if JφK = JψK for each intuitionistic Kripke model.

1McKinsey [13] and Wajsberg [20] talk about definability in terms of provable equivalence not semantical
equivalence that we use in this article. The provable equivalence is equal to semantical equivalence due to
the completeness theorem for intuitionistic logic proven by Kripke [8] in 1965.
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⟦p⟧ ⟦q⟧

⟦⟂⟧

⟦p⟧

⟦q⟧

⟦⊤⟧
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⟦⟂⟧

⟦p⟧

⟦q⟧

⟦⊤⟧

⟦!⟧⟦!⟧

⟦"⟧

⟦￢!⟧

⟦p→q⟧

w
u

v

s

t

Figure 5: Truth set Jφ∨ψK for different combinations of truth sets JφK and JψK (left). Truth
set J¬φK for different truth sets JφK (centre). Hasse diagram for a Kripke model and the
truth set Jp→ qK (right).

4.1 Undefinability of → through ¬, ∧, and ∨
In this subsection, we use our truth set algebra method to prove that implication → is
not definable in intuitionistic logic through negation ¬, conjunction ∧, and disjunction ∨.
Without loss of generality, assume that language Φ1 contains only propositional variables
p and q. Let us consider the Kripke model whose Hasse diagram is depicted in the upper-
right corner of Figure 5. It contains five worlds, w, u, v, s, and t. The partial order ⪯ on
these worlds is given by the diagram. For example, w ⪯ v because the diagram contains an
upward path from w to v. We assume that π(p) = {v, s, t} and π(q) = {v, t}.

Recall that we define constant ⊤ as p→ p and constant ⊥ as ¬⊤. We visualise the truth
set of a formula in language Φ1 by shading the worlds that belong to the set. For example,
the rows and the columns in the left-most table in Figure 5 are labelled by the diagrams
visualising the truth sets JpK, JqK, J⊤K, and J⊥K.

Lemma 11 For any formulae φ,ψ ∈ Φ1, if JφK, JψK ∈ {JpK, JqK, J⊤K, J⊥K}, then Jφ∨ψK, Jφ∧
ψK, J¬φK ∈ {JpK, JqK, J⊤K, J⊥K}.

Proof. Let us first prove that Jφ∨ψK ∈ {JpK, JqK, J⊤K, J⊥K} if JφK, JψK ∈ {JpK, JqK, J⊤K, J⊥K}.
We do this in the left table depicted in the left of Figure 5. The proof consists of explicitly
constructing the truth set Jφ ∨ ψK for each possible combination of sets JφK and JψK.

Alternatively, one can also see, by Definition 6 and Definition 7, that Jφ∨ψK = JφK∪JψK.
Then, Jφ ∨ ψK ∈ {JpK, JqK, J⊤K, J⊥K} because the family of truth sets {JpK, JqK, J⊤K, J⊥K} is
closed with respect to union.

The proof for the truth set Jφ ∧ ψK is similar: either by building a table or observing
that Jφ∧ ψK = JφK∩ JψK and that the family of truth sets {JpK, JqK, J⊤K, J⊥K} is closed with
respect to intersection.

Finally, for the truth set J¬φK, see the middle table in Figure 5. It shows the truth set
J¬φK for each formula φ such that JφK ∈ {JpK, JqK, J⊤K, J⊥K}. The validity of this table can
be verified using item 2 of Definition 6. ⊠

Lemma 12 JφK ∈ {JpK, JqK, J⊤K, J⊥K} for any formula φ ∈ Φ1 that does not use implication.
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⟦!⟧

⟦"⟧

⟦⊤⟧⟦p⟧

⟦p⟧

⟦⊤⟧

⟦￢p⟧

Figure 6: Truth set Jφ → ψK for different combinations of truth sets JφK and JψK (left).
Truth set J¬pK (right).

Proof. We prove the statement of the lemma by induction on the structural complexity of
formula φ. In the base case, the statement of the lemma is true because the truth sets JpK
and JqK are elements of the family {JpK, JqK, J⊤K, J⊥K}.

In the induction case, the statement of the lemma follows from Lemma 11 and the
induction hypothesis. ⊠

Lemma 13 Jp→ qK /∈ {JpK, JqK, J⊤K, J⊥K}.

Proof. We visualise the truth set Jp → qK on the right of Figure 5. The validity of this
visualisation can be verified using item 5 of Definition 6. ⊠

The next theorem follows from the two lemmas above.

Theorem 4 (undefinability) Formula p → q is not semantically equivalent to any for-
mula in language Φ1 that does not use implication.

4.2 Undefinability of ¬ through ∧, ∨, and →
In this subsection, we show that, in intuitionistic logic, negation is not definable through
conjunction, disjunction, and implication. Because negation is a unary connective, in this
section, without loss of generality, we assume that language Φ1 contains a single propositional
variable p.

The proof follows the same pattern as the one in the previous subsection, but it uses a
simpler Kripke model. In this case, the Hasse diagram of the model is a tree consisting of a
root node and two child nodes: the left child and the right child. Set π(p) contains only the
left child node. In Figure 6, we show the truth sets JpK, J⊤K, and J¬pK for this model.

Lemma 14 For any two formulae φ,ψ ∈ Φ1, if JφK, JψK ∈ {JpK, J⊤K}, then Jφ ∨ ψK, Jφ ∧
ψK, Jφ→ ψK ∈ {JpK, J⊤K}.

Proof. Suppose that JφK, JψK ∈ {JpK, J⊤K}. Then, JφK ∪ JψK, JφK ∩ JψK ∈ {JpK, J⊤K}, see
visualisation of the truth sets JpK and J⊤K in Figure 6. Hence, Jφ ∨ ψK, Jφ ∧ ψK ∈ {JpK, J⊤K}
by items 3 and 4 of Definition 6 and Definition 7.

On the left of Figure 6, we visualise the truth set Jφ → ψK as a function of the truth
sets JφK and JψK. The validity of this table can be verified using item 5 of Definition 6 and
Definition 7. ⊠

The proof of the next lemma is similar to the proof of Lemma 12, but instead of Lemma 11
it uses Lemma 14.

Lemma 15 JφK ∈ {JpK, J⊤K} for any formula φ ∈ Φ1 that does not use negation.

Lemma 16 J¬pK /∈ {JpK, J⊤K}.
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⟦⊤⟧
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Figure 7: Truth set Jφ → ψK for different combinations of truth sets JφK and JψK (left).
Truth set J¬φK for different truth sets JφK (centre). Truth set Jp ∨ qK (right).

Proof. We visualise the truth set J¬pK on the right of Figure 6. The validity of this
visualisation can be verified using item 2 of Definition 6. ⊠

The next theorem follows from the two lemmas above.

Theorem 5 (undefinability) Formula ¬p is not semantically equivalent to any formula
in language Φ1 that does not use negation.

4.3 Undefinability of ∨ through ¬, ∧, and →
The proof of the next theorem is similar to the proof of Theorem 5 except that it uses
Figure 7 instead of Figure 6.

Theorem 6 (undefinability) Formula p∨ q is not semantically equivalent to any formula
in language Φ1 that does not use disjunction.

4.4 Undefinability of ∧ through ¬, ∨, →
The proof of the next theorem is similar to the proof of Theorem 5 except that it uses
Figure 8 instead of Figure 6.

Theorem 7 (undefinability) Formula p∧ q is not semantically equivalent to any formula
in language Φ1 that does not use conjunction.

5 Three-Valued Logic

In this section, we apply our technique to investigate the definability of logical connectives
in 3-valued logic. This logic contains three truth values: 0, 1

2 , and 1, often referred to as
“false”, “unknown”, and “true”, respectively. The meanings of propositional connectives ∧,
∨, and ¬ in 3-valued logic are a straightforward generalisation of their meanings in Boolean
logic: p ∧ q = min{p, q}, p ∨ q = max{p, q}, and ¬p = 1 − p. Thus, for example, if the
value of p is “unknown”, then the value of the expression p ∨¬p is also “unknown”. In this
article, we visualise values “false”, “unknown”, and “true” as a white square, a diagonally
crossed square, and a grey square, respectively. The first two diagrams in Figure 9 show
truth tables for connectives ∧ and ∨. For example, in the left-most diagram, the crossed
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Figure 8: Truth set Jφ → ψK for different combinations of truth sets JφK and JψK (left).
Truth set J¬φK for different truth sets JφK (centre). Truth set Jp ∧ qK (right).

p⋀q p∨q p→Łq p→Kq

Figure 9: Truth tables for binary connectives in 3-valued logic.

cell in the middle of the last row represents the fact that if p = 1 (the third row) and q = 1
2

(the second column), then p ∧ q = 1
2 .

Defining the meaning of implication in 3-valued logic is less straightforward. Two such
definitions are suggested: one by  Lukasiewicz [10, p.213] and the other by Kleene [7]. We
denote their implications by → L and →K, respectively. The truth tables for these impli-
cations are shown in the two right-most diagrams in Figure 9. In this section, we study
interdefinability of 3-valued connectives ¬, ∧, ∨, →K, and → L.

By Φ3 we denote the language defined by the following grammar:

φ := p | ¬φ | φ ∧ φ | φ ∨ φ | φ→ L φ | φ→K φ,

where p is a propositional variable. Because each of the connectives has at most two argu-
ments, for the purposes of proving undefinability, it suffices to assume that there are only
two propositional variables, p and q.

5.1 Fuzzy Truth Sets

To apply the truth set algebra technique in the setting of 3-valued logic, we need to make one
small modification to this technique. Namely, instead of regular truth sets, we consider fuzzy
truth sets of formulae. In our case, a fuzzy set can have only three degrees of membership:
an element can belong, half-belong, or not belong to a fuzzy set.

We consider operations union, intersection, and complement on fuzzy sets. We define
the degree of membership in a union of two fuzzy sets as the maximum of the degrees of
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membership in the two original fuzzy sets. For example, suppose fuzzy set X contains an
apple and half-contains a banana. In addition, let fuzzy set Y half-contain a banana and
contain a carrot. In that case, the union of fuzzy sets X and Y contains an apple, a carrot,
and half-contains a banana.

Similarly, we define the degree of membership in an intersection of two fuzzy sets as the
minimum of the degrees of membership in the two original fuzzy sets. In our example, the
intersection of fuzzy sets X and Y half-contains a banana and nothing else.

Finally, consider any regular (not fuzzy) set U and any fuzzy set S of elements from
set U . We define a complement of the fuzzy set S with respect to the universe U . The
degree of the membership of an element in the complement is 1 − d, where d is the degree
of membership of the same element in the fuzzy set S. In our example, assuming that the
universe consists of an apple, a banana, and a carrot, the complement of the fuzzy set X is
the fuzzy set Y .

Recall our assumption that language Φ3 contains only propositional variables p and q.
For any formula φ ∈ Φ3 and any values b1, b2 ∈ {0, 12 , 1}, by φ[b1, b2] we denote the value of
the formula φ when p has value b1 and q has value b2. We are now ready to define a fuzzy
truth set.

Definition 9 For any formula φ ∈ Φ3, the fuzzy truth set JφK is a fuzzy set of all pairs
(b1, b2) ∈ {0, 12 , 1}

2 such that

1. (b1, b2) belongs to the fuzzy set JφK if φ[b1, b2] = 1,

2. (b1, b2) half-belongs to the fuzzy set JφK if φ[b1, b2] = 1
2 .

We visualise the fuzzy truth set JφK of an arbitrary formula φ as a 3×3 table. A cell (b1, b2)
is coloured white if the pair (b1, b2) does not belong to JφK, it is crossed if the pair (b1, b2)
half-belongs to JφK, and it is coloured grey if the pair (b1, b2) belongs to JφK. For example,
the four diagrams in Figure 9 visualise the fuzzy truth sets Jp ∧ qK, Jp ∨ qK, Jp → L qK, and
Jp→K qK.

Definition 10 In the context of 3-valued logic, formulae φ,ψ ∈ Φ3 are semantically equiv-
alent if JφK = JψK.

Next, we state and prove a very simple undefinability result about 3-valued logic that
does not require the truth set algebra technique.

Theorem 8 Formula ¬p is not semantically equivalent to any formula containing only con-
nectives ∧, ∨, →K, and → L.

Proof. Observe that if all propositional variables are assigned value 1, then the value of
any formula that contains only connectives ∧, ∨, →K, and → L is 1, see Figure 9. At the
same time, the value of ¬p is 0. ⊠

5.2 Expressive Power of Kleene’s Implication

In this subsection, we illustrate how the truth set algebra method can be used to prove
undefinability results in 3-valued logic. Namely, we show a relatively simple observation
that neither of the other connectives can be defined through Kleene’s implication.

In the rest of this subsection, we use names A, . . . , R to refer to the 18 fuzzy truth
sets depicted in Figure 10. Note that P = JpK and Q = JqK. Let S be the family
{A,B,C,D,E, F,G,H, I, J,K,L,M,N,O, P,Q,R} of these 18 fuzzy truth sets.

Lemma 17 For any formulae φ,ψ ∈ Φ3, if JφK, JψK ∈ S, then Jφ→K ψK ∈ S.
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G H I J K L

M N O P Q R

Figure 10: Towards the proof of Theorem 9.

Proof. Consider first the case when JφK = A and JψK = Q. To compute the fuzzy truth
set Jφ→K ψK, we compute the degree of membership for each pair (b1, b2) in this fuzzy set.
Consider, for example, the case b1 = 1

2 and b2 = 0 which is visualised as the middle-left
cell in each diagram. Note that the middle-left cells in the diagrams of fuzzy sets A and
Q are crossed and white, respectively, see Figure 10. Hence, pair (b1, b2) half-belongs to
the fuzzy truth sets JφK = A and does not belong to the fuzzy truth set JψK = Q. Thus,
by Definition 9, the values φ[ 12 , 0] and ψ[ 12 , 0] are 1

2 and 0, respectively. Observe that the
value of 1

2 →K 0 is 1
2 , see the last diagram in Figure 9. Hence, (φ →K ψ)[ 12 , 0] = 1

2 . Then,
by Definition 9, the pair (b1, b2) half-belongs to the fuzzy truth set Jφ →K ψK. Thus, the
middle-left cell in the diagram visualising the fuzzy truth set Jφ →K ψK is crossed. By
repeating the same computation for each pair (b1, b2), one can see that the fuzzy truth set
Jφ→K ψK is fuzzy set G, see Figure 10. We show this result by placing the letter G in row
A, column Q of Table 1. Therefore, Jφ→K ψK ∈ S.

The other cases are similar. We show the corresponding fuzzy sets Jφ→K ψK in Table 1.
The statement of the lemma holds because all sets in Table 1 belong to family S. ⊠

Lemma 18 JφK ∈ S for any formula φ ∈ Φ3 that uses connective →K only.

Proof. We prove the statement of the lemma by induction on the structural complexity
of formula φ. If φ is propositional variable p, then JpK = P ∈ S, see Figure 10. Similarly, if
φ is propositional variable q, then JqK = Q ∈ S. If formula φ has the form φ1 →K φ2, then
the statement of the lemma follows from Lemma 17 and the induction hypothesis. ⊠

Theorem 9 (undefinability) Each of the formulae p∧q, p∨q, and p→ L q is not 3-value-
equivalent to a formula that uses connective →K only.

Proof. The fuzzy truth sets Jp ∧ qK, Jp ∨ qK, and Jp → L qK are depicted in Figure 9. Note
that none of them belongs to the family S, see Figure 10. Thus, the statement of the theorem
follows from Lemma 18 and Definition 10. ⊠

In the rest of this section, we present our main technical results about the connectives
¬, ∧, ∨, →K, and → L.

5.3 Undefinability of Conjunction

In this subsection, we focus on the definability of conjunction ∧ through the rest of the
connectives. First, let us start with three definability facts. Each of them is easily verifiable
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A B C D E F G H I J K L M N O P Q R

A A B C D E F G H I J K L M N O P G R
B A I C D E F H H I J K L M N O P H O
C A B K D E F G H I J K J N N O J Q R
D A B C D E F G H I J K L M N O P Q R
E A B C D E F G H I J K L M N O L Q R
F A B C D E F G H I J K L M N O P Q R
G A I C D E F O O I N K M M N O M O O
H A B C D E F R O I N K M M N O M R R
I A B C D E F G H I J K L M N O P G R
J A B C D E F R O I N K M M N O M R R
K A B C D E F G H I J K L M N O L Q R
L A B K D E F R O I N K N N N O N R R
M A B K D E F G H I J K J N N O J G R
N A B C D E F G H I J K L M N O L G R
O A B C D E F G H I J K L M N O L G R
P A B D D F F B I I A D A A A I A B B
Q D F C D E F E E F K K C C K E C E E
R A I C D E F H H I J K L M N O L H O

Table 1: The fuzzy truth set Jφ →K ψK, where JφK is the row label and JψK is the column
label.

using Figure 9 and the definition of negation. In the theorem below and the rest of this
section, by ≡ we denote 3-value-equivalence of formulae in language Φ3.

Theorem 10 The following equivalences hold in 3-valued logic:

1. p ∧ q ≡ ¬(¬p ∨ ¬q),

2. p ∧ q ≡ ¬(p→K ¬q),

3. p ∧ q ≡ ¬(p→ L ¬(p→ L q)).

The first two equivalences in the above theorem are well-known. We are not aware of the
third equivalence being mentioned in the literature. It was discovered by our computer pro-
gram while trying to prove the undefinability of ∧ through ¬ and →K. All three equivalences
could be easily verified using the definitions of the connectives.

Let us now discuss the undefinability results about the conjunction. Note that binary
connective ∧ cannot be defined through unary connective ¬. If ¬ is combined with any one
of the remaining connectives, then ∧ becomes definable, see Theorem 10. To completely
answer the question about the definability of conjunction, it suffices to show that it cannot
be defined without the use of negation. We prove this in the next theorem.

Theorem 11 Formula p ∧ q is not 3-value-equivalent to any formula in language Φ3 con-
taining only connectives ∨, →K, and → L.

The proof of the above theorem follows the same pattern as the proof of Theorem 9. However,
instead of the 18 fuzzy truth sets depicted in Figure 10, it uses 176 fuzzy truth sets. The
equivalent of Table 1 in the new proof is a table containing 176 rows and 176 columns. We
used a computer program written in Python to find 176 diagrams like the ones in Figure 10.
The same program also verifies, similarly to how we do in Table 1, that the set of 176
diagrams is closed with respect to the operations ∨, →K, and → L. Finally, it checks that
this set does not contain the diagram for the fuzzy truth set Jp ∧ qK. The algorithm that
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we used starts with fuzzy truth sets JpK and JqK and applies the operations ∨, →K, and → L

until no new diagrams could be generated.
It is interesting to point out that the 18 diagrams depicted in Figure 10, as well as the

LATEX code for Table 1, are also generated by the same program.

5.4 Undefinability of Disjunction

In this subsection, we analyse the definability of disjunction through the rest of the con-
nectives in 3-valued logic. Let us start with the following observation which can be verified
using the definitions of the connectives.

Theorem 12 The following equivalences hold in 3-valued logic:

1. p ∨ q ≡ ¬(¬p ∧ ¬q),

2. p ∨ q ≡ ¬p→K q,

3. p ∨ q ≡ (p→ L q) → L q.

All of the above equivalences are well-known in 3-valued logic. In fact, the last of them is the
3-valued version of Boolean equivalence φ ∨ ψ ≡ (φ→ ψ) → ψ that we used in Section 2 of
this article. Note that Theorem 12 shows that the disjunction is definable through → L alone
or also when ¬ is used with any other connective. The only case not covered by Theorem 12
is resolved in the next theorem.

Theorem 13 Formula p ∨ q is not 3-value-equivalent to any formula containing only con-
nectives ∧ and →K.

The computer-generated proof of the above theorem uses 36 fuzzy truth sets.

5.5 Undefinability of Kleene Implication

Let us again start with three definability results verifiable through the definitions of the
connectives.

Theorem 14 The following equivalences hold in 3-valued logic:

1. p→K q ≡ ¬p ∨ q,

2. p→K q ≡ ¬(p ∧ ¬q),

3. p→K q ≡ p→ L ¬(p→ L ¬q).

The first two equivalences are well-known. The third equivalence was discovered by our
computer program. We are not aware of it ever being mentioned in the literature. The
only question about the definability of →K, which is not answered by the above theorem, is
answered by the one below.

Theorem 15 Formula p →K q is not semantically equivalent to any formula containing
only connectives ∧, ∨, and → L.

The computer proof of this theorem uses 72 diagrams.
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5.6 Undefinability of  Lukasiewicz Implication

Out of the five connectives that we study only negation (see Theorem 8) and  Lukasiewicz
implication are not definable through the others.

Theorem 16 Formula p→ L q is not semantically equivalent to any formula containing only
connectives ¬, ∧, ∨, and →K.

The computer proof of the above result uses 82 diagrams. However, in this case, there is
a simple argument that does not require the use of a computer. Indeed, if the value of all
variables is set to 1

2 (“unknown”), then the value of any expression that uses only connectives
¬, ∧, ∨, and →K is 1

2 . At the same time the value of 1
2 → L

1
2 is 1, see Figure 9. Therefore,

connective → L is not definable through ¬, ∧, ∨, and →K.
Although our fuzzy truth sets technique is not required to prove Theorem 16, this tech-

nique could be used to strengthen the theorem. Namely, we can show that connective → L

is not definable through connectives ¬, ∧, ∨, and →K and 3-valued constants 0 (“false”), 1
2

(“unknown”), and 1 (“true”). The computer proof of this fact already uses 197 diagrams.
This is the largest proof mentioned in this section.

Definability results for many other 3-valued connectives are discussed in [3]. We are
not aware of any existing proofs of undefinability in 3-valued logic besides the two proofs
mentioned above that don’t use fuzzy truth sets: the proof of Theorem 8 and the proof of
the original (without constants) version of Theorem 16.

6 Conclusion

In this work, we introduced a new method for proving the undefinability of logical connectives
and demonstrated it on examples from Boolean logic, temporal logic, intuitionistic logic, and
three-valued logic. Although the technique is potentially applicable to other, more modern
logical systems, we have chosen to use these classical examples to make the work accessible
to a wider logical audience.
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