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ABSTRACT 

In a recent work, the beamsteering characteristics of parametric loudspeaker were validated in 

experiment. It was shown that based on the product directivity model, the locations and 

amplitudes of the mainlobe and grating lobes could be predicted within acceptable errors. 

However, the measured amplitudes of sidelobes have not been able to match with the theoretical 

results accurately. In this paper, the original theories behind the product directivity model are 

revisited, and three modified product directivity models are proposed: (i) the advanced product 

directivity model, (ii) the exponential product directivity model, and (iii) the combined product 

directivity model. The proposed product directivity models take the radii of equivalent Gaussian 

sources into account and obtain better predictions of sidelobes for the difference frequency 

waves. From the comparison between measurement results and numerical solutions, all the 

proposed models outperform the original product directivity model in term of selected sidelobe 

prediction by about 10 dB. 

PACS numbers: 43.25.Lj, 43.60.Fg, 43.38.Fx 
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I. INTRODUCTION 

The parametric loudspeaker has been demonstrated to be one of the most effective ways to 

generate a low frequency directional sound field. The discovery of the parametric array effect 

and its theoretical explanation can be traced back to 1963 when Westervelt1 published his 

observation and equation on the generation of low-frequency wave (also known as the difference 

frequency wave), through the interaction of high-frequency waves (also known as the primary 

frequency waves). Subsequently, Bennett and Blackstock2 brought the parametric acoustic array 

experiment from underwater to air. They verified experimentally that parametric array effect can 

also be generated in air, creating highly directional sound beam. In 1965, Berktay3 analyzed the 

propagation effect of collimated primary plane waves along their propagating axes, and 

simplified the Westervelt’s equation for a far-field solution. Till now, the Berktay’s far-field 

solution is still widely used to evaluate the performance of parametric loudspeakers and provides 

important guidelines in designing preprocessing approaches to reduce harmonic distortions4. In 

1969, Zabolotskaya and Khokhlov5 developed a nonlinear parabolic wave equation for 

non-dissipative fluids, which describes the combined effects of diffraction and nonlinearity. 

Darvennes and Hamilton6-7 investigated the scattering of sound by sound from Gaussian beams 

that intersect at moderate angles. A closed-form equation was derived and validated throughout 

the entire paraxial field. One observation derived from the closed-form equation is that the 

far-field directivity of the difference frequency wave is governed by the product of the primary 

beam directivities. This is commonly known as the product directivity (PD) model and used as 

the fundamental principle in many later works on beamsteering of parametric loudspeakers8-11. 

Based on the PD model, one of the earliest attempts on digital beamsteering approach for the 

parametric loudspeaker was carried out by Tan8. Each ultrasonic transducer in the parametric 
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loudspeaker was treated as one bifrequency Gaussian source, and thus, a constant-beamwidth 

beamformer was worked out for the difference frequency wave through simulation. Later, 

Olszewski9 suggested that several guidelines known to conventional phase array theory could not 

be realized for parametric loudspeakers. Therefore, a hybrid system combining a digital phased 

array technique with mechanical tilting louvers was proposed. However, mechanical structure in 

the hybrid system is bulky in size, and cannot be easily scaled down. Furthermore, reflection 

caused by neighboring louvers leads to another problem of this hybrid system that degrades its 

ability to control the directivity of the sound beam accurately. Subsequently, Gan10 studied the 

digital implementation of beamsteering algorithms for parametric loudspeakers. By applying 

separate delays to different primary signals, limitation of the steering angles caused by the 

sampling rate is circumvented, and the increase in computation can be readily handled by a 

baseband digital processor. More recently, Lee11 proposed a beamsteerer with complex weights 

in place of time delays, which result in versatile transmitting beampatterns. 

One application of steerable parametric loudspeakers that was implemented by Tanaka12-13 is 

an active noise control system with a steerable beam control. In this system, a compact 

transducer array was fabricated with reduced spacing to suppress grating lobes in order to obtain 

a controllable directivity. However, in another recent development, the authors14 have also 

verified the beamsteering capabilities of the parametric loudspeaker of two different transducer 

array configurations. These array configurations are achieved by grouping transducers into 

several channels in different grouping array and applying delay-and-sum approach to control the 

directivity of primary frequency waves. In addition, partial or full grating lobe eliminations were 

observed at the difference frequency generated from various primary frequency waves. But it is 

noted that there are some discrepancies between the measured directivities and the theoretical 
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beampatterns of the primary frequency waves. The mismatch problem becomes more evident 

when the measured directivities of the difference frequency waves are compared with the 

theoretical beampatterns derived from the PD model. 

In this paper, we approximate the directivity characteristics of a linear ultrasonic transducer 

array by using an equivalent circular Gaussian source array, which satisfies the prerequisites of 

applying the PD model. Furthermore, we revisit the original theories behind the PD model and 

propose three modified product directivity models, namely, (i) the advanced product directivity 

model, (ii) the exponential product directivity model, and (iii) the combined product directivity 

model. The proposed product directivity models take the radii of equivalent Gaussian sources 

into account and can result in a better prediction of sidelobes for the difference frequency waves.  

This paper is organized as follows. The theories and equations behind the PD model are 

examined and three proposed product directivity models are derived in Section II. In Section III, 

directivities at both the primary frequencies and the difference frequencies measured in 

experiments are used to compare with the numerical solutions to the proposed product directivity 

models and the PD model. Section IV summarizes the key findings in this paper. 

II. THOERY 

 The nonlinear effect produced by sound beams whose axes intersect at nonzero angles is 

referred as scattering sound by sound7. The nonlinear interaction region is formed by the 

intersection of two non-collinear primary beams. When Gaussian sources are used to model the 

primary sound beams, a closed-form solution to the second-order wave equation can be derived 

from quasilinear approximation. A solution for the far-field directivity of the difference 

frequency wave is given by the product of the primary beam directivities regardless of whether 

primary sources are displaced and steered.6 This solution, commonly known as the PD model, 
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has been used to design and predict the directivities of the parametric loudspeaker. However, the 

measured beampatterns of the difference frequency wave usually do not match the theoretical 

beampatterns perfectly. To solve this practical problem, we revisit the PD model, and propose 

three modifications to the PD model that are more applicable to predict the steerable 

beampatterns of the parametric loudspeakers. 

(a) Gaussian source 

In acoustics, Gaussian sources are acoustic sources with Gaussian amplitude shading. The 

advantage of considering Gaussian sources is its closed-form solution for second-harmonic 

pressure that can be derived from the quasilinear approximation.7 The source function gq  of 

Gaussian sources is defined as 

 ( ) ( )
2

0 exp ,gq r p r a 
  

= −  (1) 

where r  is the distance to the center of the source; 0p  and a  are the peak source pressure 

and the effective source radius, respectively. 

The directivity function of Gaussian source can be derived from the linear solution 

component by substituting (1) into the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation5,15 

under the assumption of quasilinear approximation. The KZK equation describes the entire 

process (diffraction, absorption and nonlinearity) of self-demodulation throughout the near-field 

and into the far-field, for both on-axis and off-axis of the beam, and is expressed as follows:  
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where 2
⊥  is the Laplacian operator that operates in the plane perpendicular to the axis of the 

sound beam; z  is the coordinate along the beam propagation direction; p  is the acoustic 

pressure;   is the retarded time;   is the diffusivity of sound; 0c  is the small-signal sound 
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speed;   is the coefficient of nonlinearity; and 0  is the ambient density. 

Thus, the far-field Gaussian directivity gD  is given by 

 ( ) ( )
2 21

exp tan ,
4

gD ka 
 
 
 

= −

 

(3) 

where   is the angle (in degree) with respect to the axis of the beam, and k  is the 

wavenumber. When considering the difference frequency wave due to the radiation from a 

bifrequency Gaussian source, the difference frequency wave is given by the product of the 

directivities of the two primary frequency waves in the far-field, which is known as the PD 

model.7 Let ( )1D   and ( )2D 
 
denote the directivities of Gaussian sources defined by (3) at 

the lower primary frequency and the higher primary frequency, respectively. Thus, the directivity 

of the difference frequency wave is given by 

 ( ) ( ) ( )1 2 .diffD D D  =  (4) 

(b) Advanced product directivity 

 Our following analysis is based on {Eq. (24) in (Darvennes and Hamilton, 1990)}. Assume 

that the two primary Gaussian sources are concentric but steered to different angles, as shown in 

Fig. 1. A function of which the value is related to the relative strength of the scattered sound field, 

( )  is given by 

 ( )
( ) ( )1 2 1 2 0

2 2
1 2

tan sin
,

i z z z z

a a

 


 
 + − −

 =
+

 (5) 

where 1z  and 2z  are Rayleigh distances for Gaussian sources at the lower primary frequency 

1f  and at the higher primary frequency 2f , respectively; 0  is half the intersection angle of 

the two primary Gaussian sources. 
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Fig.1 Symmetric source geometry for two intersecting Gaussian beams. 

 When ( )  is sufficient large, i.e. ( ) 1 , an explicit expression for nonlinearly 

generated sound field may be obtained as 

 

( ) ( )

( ) ( )
( ) ( ) ( )

( )

2 2 2
1 2 1 2 1 2
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1 2 1 2

, exp tan 2

1
,

8 2

s

q r ip p k k k a a ik r

ik k a a D
D D E
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− − −

−

  
   

    

−

+ 
 −



 (6) 

where ( ),q r−  is the complex pressure at the difference frequency when observation point is 

given by angle   and distance r ; 1p  and 2p  are the maximum on-source pressures at the 

lower primary frequency and the higher primary frequency, repetitively; 1k , 2k  and k−  are the 

wavenumbers of the lower primary frequency, the higher primary frequency, and the difference 

frequency, respectively; 1a  and 2a  are the radii of the Gaussian source of the lower primary 

frequency and the higher primary frequency, respectively; ( )sD 
 
describes the directivity of 

the scattered sound; and ( )1E  is the exponential integral.6 
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 Note that the exponential integral can be extended and approximated as 

 ( )
( )

( )

( )1

1
0

exp exp!
, 1.

N

n
n

x xn
E x x

x xx

−

=

− −
=  

−
  (7) 

Further, if x  is purely imaginary and has large magnitude, i.e. ( ) 1
1E x x− . Thus, we obtain 
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( ) ( )

2 2 2
1 2 1 2

1 2 2 2
1 2 1 2

2

2

ik k a a k z
E

k z k k a a





−

−

 
 
 
 

+ 


+ 
 (8) 

Substitute (8) into (6), and by taking the absolute value on both sides of (6), we get 

 ( )
( )

( ) ( )

( )

2 2 2
1 21 2 1 2

22 2
1 2

, .
4

D Dp p k a a
q z

a a

 




−
−

+
 (9) 

Since it is assumed that ( )  is sufficient large, ( )2   can be treated as a constant value 

when   varies in a limited range. Therefore, based on (9), we propose the advanced product 

directivity (APD) model for the difference frequency wave generated from the parametric 

loudspeaker, where the directivity of the difference frequency wave is given by 

 ( ) ( ) ( )
2 2
1 2

1 1 2 22 2
1 2

.diff

a a
D p D p D

a a
  =

+
 (10) 

(c) Exponential product directivity 

 In the Berktay’s far-field solution3, the demodulated wave along the axis of propagation is 

proportional to the second-time derivative of the square of the envelope of the modulated wave. 

If we generate two pure sine waves at the primary frequencies as the modulated wave, its 

frequency components are similar to a modulated wave generated by single side band 

modulation. Thus, the sound pressure of the difference frequency wave p−  can be computed by 

 ( )
2 2 2

20
4 2

0 0

,
16

p a d
p E

c z d




  
− =  (11) 

where a  is the source radius; 0p  is the pressure amplitude at source; and ( )E   is the 
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modulation envelop; the other notations have similar definitions as in the KZK equation (2). 

 Because of the second-time derivative in (11), the contribution to the sound pressure level 

generated by the parametric array varies with the square of the difference frequency 

( 2 1difff f f= − ), i.e. 2
difff . In other words, the sound pressure level at the difference frequency 

increases by 12 dB per octave. Equation (9) also indicates that the sound field along the 

propagating axis is proportional to the square of the wavenumber at the difference frequency. 

However, Wygant16 fabricated their capacitive micro-machined ultrasonic transducers and tested 

them in both experiment and simulation (based on numerical solution to the KZK equation). 

Their results indicate that the sound pressure level at the difference frequency increase by 9 dB 

per octave, which correspond to 1.5
difff . Therefore, Wygant et al. suggested that the sound pressure 

level of the difference frequency is proportion to n
difff , where n  depends primarily on the ratio 

of the diffraction length (i.e. the area of the transmitter divided by the wavelength at the primary 

frequencies) to the absorption length (i.e. the inverse of the nominal absorption coefficient at the 

primary frequencies). For the Westervelt’s solution1, it was proposed that 2n =  is a good 

approximation of the frequency dependence. However, for the solution obtained by Berktay and 

Leahy17 and the experimental results obtained by Vos18, 1n =  gives better approximations of the 

frequency dependence in highly nonlinear distortion cases.  

 Based on the above methodology16, another modification to the PD model is proposed. We 

refer to this model as the exponential product directivity (EPD) model, and can be written as 

 ( ) ( ) ( )1 1 2 2 ,n
diffD f p D p D  −=  (12) 

where 1,2n     is the tuning factor16; and f−  is the difference frequency. 

 The combination of APD and EPD models, without conflicting to (8), gives the combined 

product directivity (CPD) model, written as 
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 ( ) ( ) ( )
2 2
1 2

1 1 2 22 2
1 2

.n
diff

a a
D f p D p D

a a
  −=

+
 (13) 

(d) Equivalent Gaussian source array 

 All the above product directivity models can only be applied to Gaussian sources. However, 

the ultrasonic transducer array in the parametric loudspeaker8-14 is usually separately weighted 

and equally spaced, and every transducer in the linear array is assumed omnidirectional instead 

of Gaussian source (see Fig. 2). In one seminal paper19 and another related survey paper20, the 

authors demonstrated that it is possible to accurately simulate the sound beam of a piston source 

by the superposition of sufficient Gaussian beams. The coefficients are obtained by fitting the 

Gaussian sources to match the piston velocity distribution on the surface of the transducer using 

a nonlinear least squares approach. Thus, the prerequisites of the PD model can be fulfilled and 

the PD model can be applied to the parametric loudspeaker with a linear transducer array.14 

According to the PD model, the directivity of the difference frequency wave can be adjusted by 

controlling the directivity of the primary waves. A simplified structure of the beamsteerer used in 

the acoustic parametric array is shown in Fig. 2.  
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Fig. 2 Beamsteering structure for parametric loudspeaker and equivalent Gaussian 

source array. 

 Let M  denote the total number of channels. Assume that the ultrasonic transducer array is 

steered to the same direction and shares the same group of weights for two primary frequency 

waves, and the difference frequency wave is also steered to the same direction. It is noted that 

each lobe in the beampattern of a uniform linear transducer array has a bell shape similar to the 

directivity of a single Gaussian source. Thus, a transformation to an equivalent Gaussian source 

array from a linear uniform transducer array, whose beampattern is given, can be proposed. The 

beampattern of the linear transducer array is denoted as ( ),H k  , and the number of lobes is 

denoted as N . Each Gaussian source in the equivalent array corresponds to an initial pressure 

level iB , an effective radius iA  and an angular offset i . Therefore, the summed square of 

residuals over the range of angle   is given by 

 ( ) ( ) ( ) ( )
2

2 2

1 2

1
, exp tan .

4

N

i i i
i

R k H k B kA  
=

 
 
 

= − − −  (14) 
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By minimizing the value of ( )R k , the Gaussian source array configuration that fits the 

beampattern of the linear transducer array best can be solved at each primary frequency. 

III. MEASUREMENT AND RESULT 

 The beampatterns of the primary waves and the difference frequency waves were measured 

in an anechoic chamber with a dimension of 6 m × 3 m × 3 m. The primary waves were captured 

by an 1/8 inch microphone (B&K 4138). The difference frequency waves were measured using a 

1/2 inch microphone (B&K 4134). The ultrasonic transducer array was configured in 

column-wise, as shown in Fig. 3. The ultrasonic transducer array was mounted on a motorized 

rotation stage, and the microphones were placed at a location 4 m away from the center of the 

ultrasonic transducer array. Figure 3 also shows the overall setup of the measurements. The 

beampatterns of the primary frequency wave, as well as the difference frequency wave were 

restricted to a measuring angle between -40˚ to 40˚ with a resolution of 1˚. All the channels in the 

ultrasonic transducer array were equally weighted, but differently delayed to achieve 

beamsteering. A beamsteering algorithm was implemented using a data acquisition board (NI 

PCI-6733) connected to a personal computer.  
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Fig. 3 The setup of the transducer array with column-wise configuration and the 

microphones used in the experiments. 

The measured beampatterns of the primary frequencies are used to compute the 

configurations of the equivalent Gaussian source array. Otherwise, the system errors incurred at 

different stages of implementation, which include the transducer positions, transducer gain or 

phase response, mutual coupling, and receiver equipment effects, must be considered and 

compensated by array calibration approaches.21 Both the measured beampatterns and the 

beampatterns of the equivalent Gaussian source array are plotted in Fig. 4 at primary frequencies 

of (a) 36 kHz, (b) 38 kHz, (c) 39 kHz, (d) 40 kHz, (e) 42 kHz, and (f) 44 kHz. The radii of each 

Gaussian source (in cm) are labeled next to its corresponding lobes as well. It is observed that the 

Gaussian sources corresponding to the mainlobes and the grating lobes are with relatively small 

radii, due to their wider beamwidths compared to other sidelobes. Significant mismatches can be 

observed at the troughs between two lobes where the normalized amplitudes are lower than 0.1 

(i.e. -20 dB). However, the mismatches at the troughs rarely appear and are relatively slight. The 

least square curve fitting approach given by (14) has been proved to be adequate to derive an 

equivalent Gaussian source array that match the overall beampattern of the ultrasonic transducer 

array in the parametric loudspeaker. 
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Fig. 4 The measured beampatterns (marker: ▲) and the beampatterns of equivalent 

Gaussian source array (solid line) at primary frequencies of (a) 36 kHz, (b) 38 kHz, (c) 39 
kHz, (d) 40 kHz, (e) 42 kHz, and (f) 44 kHz. The radii of each Gaussian source (in cm) 

are marked next to its corresponding lobes. 
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From the aspect of complexity, the PD model can be applied, as long as the beampatterns of 

the primary frequency waves are known. In contrast, the APD model requires additional step to 

compute the equivalent Gaussian source array configurations from the measured beampatterns. 

Subsequently, the APD model is applied directly to every two Gaussian sources in the array and 

the resulting sound fields are summed together to obtain the beampattern of the difference 

frequency wave. Due to the fact that the EPD and CPD models introduce the tuning factor n  in 

their expressions, the factor has to be determined before the EPD and CPD models can be 

applied. It was reported that n  depends primarily on the ratio of the diffraction length (i.e. the 

area of the transmitter divided by the wavelength at the primary frequencies) to the absorption 

length (i.e. the inverse of the nominal absorption coefficient at the primary frequencies).16 In our 

experiments, the primary frequencies are within a narrow band centered at 40 kHz. Therefore, 

the wavelength and the absorption coefficient can be approximately constant. Furthermore, we 

consider the intersection of two Gaussian sources rather than a single transmitter in the reference. 

The area of the transmitter is therefore approximated by the product of the radii of the two 

Gaussian sources. Thus, the tuning factor is proposed in the form of 

 1 2 1,n a a= +  (15) 

where   is computed from the measured beampatterns of the difference frequency wave at 8 

kHz. For the EPD model, 39.4 = . For the CPD model, 7.8 = . Once the tuning factor is 

determined, the EPD and CPD models can be applied to the measured beampatterns of the 

primary frequency waves to predict the beampatterns of the difference frequency waves at 1 kHz 

and 4 kHz. 

The beampatterns predicted by the three proposed models (APD, EPD, and CPD) are 

compared with the measured beampattern (MP) as well as the beampatterns based on the PD 
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model. Figure 5 shows the difference frequency at (a) 1 kHz, (b) 4 kHz, and (c) 8 kHz. Table I 

shows the normalized amplitudes of selected sidelobes (labeled in Fig. 5 as “S1”, “S2”, “S3”, 

and “S4”) and the grating lobe (labeled as “G”) in the measured beampatterns (MP) versus the 

numerical solutions to different product directivity models. Note that when the difference 

frequency is 8 kHz, the numerical solutions to the EPD and CPD models are not available for 

comparison, as the tuning factors for both the EPD and CPD models are computed based on the 

measured beampatterns at 8 kHz.  
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Fig. 5 The measured beampatterns (MP), the beampatterns computed by product 

directivity (PD) model , advanced product directivity (APD) model, exponential product 
directivity (EPD) model, and combined product directivity (CPD) model at the difference 

frequencies of (a) 1 kHz, (b) 4 kHz, (c) 8 kHz. 
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Table I The normalized amplitudes of selected sidelobes and the grating lobe in the 
beampatterns of measurement, APD model, EPD model, CPD model and PD model at 

the difference frequencies of 1 kHz, 4 kHz, and 8 kHz. 

Diff. Freq. 1 kHz 4 kHz 8 kHz 

Lobe Label S1 S2 S3 G S1 S2 S3 G S4 S1 S2 S3 G S4 

Loc (degree) -29 -12 21 30 -29 -12 23 29 35 -28 -11 -17 25 33 

MP (dB) -7.087 -4.46 -6.95 -2.087 -8.073 -6.127 -17.77 -9.983 -16.78 -9.17 -8.07 -15.06 -12.66 -15.24 

APD (dB) -11.69 -7.387 -11.37 -2.864 -13.77 -7.595 -15.19 -9.466 -13.88 -15.67 -8.036 -12.66 -8.822 -14.78 

EPD (dB) -14.19 -10.17 -12.36 -2.591 -13.79 -8.536 -14.58 -9.652 -14.51 n.a. n.a. n.a. n.a. n.a. 

CPD (dB) -10 -6.012 -8.934 -2.894 -11.67 -5.957 -14.37 -9.409 -13.64 n.a. n.a. n.a. n.a. n.a. 

PD (dB) -20.91 -15.94 -21.42 -3.317 -22.45 -14.81 -17.45 -9.577 -16.57 -22.74 -16.06 -13.98 -10.74 -14.36 

 

In Fig. 5(a), the CPD model gives the best prediction of the three sidelobes adjacent to the 

mainlobe and the grating lobe at the difference frequency of 1 kHz. The APD and EPD models 

give comparatively good prediction as well. A 10 dB improvement in predicting the sidelobes is 

observed using the CPD model when compared to the PD model. Among the 3 models, the EPD 

model has the best performance in predicting the grating lobe. All proposed models have better 

grating lobe performance compared to the PD model, though the improvements are moderate. 

In Fig. 5(b), the CPD model gives the best prediction of the two sidelobes adjacent to the 

mainlobe at the difference frequency of 4 kHz. The improvement between the CPD model and 

the PD model achieves 10.78 dB and 8.85 dB for the sidelobes labeled as “S1” and “S2”, 

respectively. The PD model gives the best prediction of the sidelobe adjacent to the grating lobe, 

and the EPD model gives the best prediction of the grating lobe. However, all product directivity 

models perform similarly in term of predictions of the grating lobe and sidelobes adjacent to the 

grating lobe. 

Figure 5(c) shows the performance at the difference frequency of 8 kHz. As mentioned 

above, the results of the EPD and CPD models are not taken into comparison. The APD model 

outperforms the PD model for the three sidelobes labeled as “S1”, “S2”, and “S4”, but does not 

predict the grating lobe and the sidelobe labeled as “S3” well. 
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It is concluded based on the comparison results that all the proposed models outperform the 

PD model in terms of prediction of sidelobes adjacent to the mainlobe. However, when the 

grating lobe is eliminated, the PD model can be used to predict the grating lobe and the sidelobes 

adjacent to the grating lobe without lose of accuracy, although the prediction of the eliminated 

grating lobe is not of importance to the beampattern design of the parametric loudspeaker. In 

terms of overall performance, the APD model is recommended when the grating lobe is not 

significantly eliminated. Another advantage of the APD model is its simplicity that it can be 

readily applied once the beampatterns of the primary frequency waves are known. Both the EPD 

and CPD models require additional measurement results to determine the tuning factor. The CPD 

model is found to give more accurate predictions to the overall beampatterns of the difference 

frequency waves, in comparison to the EPD model that can only predict the amplitude of the 

grating lobe accurately. 

IV. CONCLUSION 

 In this paper, we proposed three modified product directivity models, namely (i) the 

advanced product directivity model, (ii) the exponential product directivity model, and (iii) the 

combined product directivity model. All the proposed product directivity models are based on 

the transformation of linear transducer array to an equivalent Gaussian source array, and taking 

the radii of the Gaussian sources into account to obtain better predictions of beampatterns of the 

difference frequency waves. Based on the comparison between measurement results and 

numerical solutions, all the proposed models outperform the PD model in terms of prediction of 

sidelobes adjacent to the mainlobe. The advantage of the APD model is its simplicity that it can 

be readily applied once the beampatterns of the primary frequency waves are measured or 

computed based on calibration methods. When the grating lobe is eliminated, the PD model can 
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be used to predict the grating lobe and the sidelobes adjacent to the grating lobe without lose of 

accuracy. Though in the case of grating lobe elimination, the prediction of the grating lobe is not 

important to the beampattern design of the parametric loudspeaker, the PD model remains a good 

and simple model to determine the level of grating lobe elimination. Judged by overall 

performance, the APD model is recommended when the grating lobe is not significantly 

eliminated. When additional measurements can be conducted to determine the tuning factor, the 

CPD model is found to give more accurate predictions to the overall beampatterns of the 

difference frequency waves, compared to the EPD model that can only predict the amplitude of 

the grating lobe accurately. 
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Table I The normalized amplitudes of selected sidelobes and the grating lobe in the 
beampatterns of measurement, APD model, EPD model, CPD model and PD model at 

the difference frequencies of 1 kHz, 4 kHz, and 8 kHz. 

Diff. Freq. 1 kHz 4 kHz 8 kHz 

Lobe Label S1 S2 S3 G S1 S2 S3 G S4 S1 S2 S3 G S4 

Loc (degree) -29 -12 21 30 -29 -12 23 29 35 -28 -11 -17 25 33 

MP (dB) -7.087 -4.46 -6.95 -2.087 -8.073 -6.127 -17.77 -9.983 -16.78 -9.17 -8.07 -15.06 -12.66 -15.24 

APD (dB) -11.69 -7.387 -11.37 -2.864 -13.77 -7.595 -15.19 -9.466 -13.88 -15.67 -8.036 -12.66 -8.822 -14.78 

EPD (dB) -14.19 -10.17 -12.36 -2.591 -13.79 -8.536 -14.58 -9.652 -14.51 n.a. n.a. n.a. n.a. n.a. 

CPD (dB) -10 -6.012 -8.934 -2.894 -11.67 -5.957 -14.37 -9.409 -13.64 n.a. n.a. n.a. n.a. n.a. 

PD (dB) -20.91 -15.94 -21.42 -3.317 -22.45 -14.81 -17.45 -9.577 -16.57 -22.74 -16.06 -13.98 -10.74 -14.36 
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Fig.1 Symmetric source geometry for two intersecting Gaussian beams. 

Fig. 2 Beamsteering structure for parametric loudspeaker and equivalent Gaussian 
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are marked next to its corresponding lobes. 

Fig. 5 The measured beampatterns (MP), the beampatterns computed by product 
directivity (PD) model , advanced product directivity (APD) model, exponential product 
directivity (EPD) model, and combined product directivity (CPD) model at the difference 
frequencies of (a) 1 kHz, (b) 4 kHz, (c) 8 kHz. 

 


