UNIVERSITY OF

Southampton

Copyright (© and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal non-
commercial research or study, without prior permission or charge. This thesis and the accompanying
data cannot be reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content of the thesis and accompanying research data (where appli-
cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.
When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Francis De Voogt (2023) “Data Driven Methods for Separated Flow over Airfoils”, University
of Southampton, Faculty of Engineering and Physical Sciences, PhD Thesis, pagination.

Data: Francis De Voogt (2023) Data Driven Methods for Separated Flow over Airfoils. URI [dataset]






UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
Aeronautics & Astronautics
School of Engineering

Data Driven Methods for Separated Flow
over Airfoils

Francis De Voogt
ORCiD: 0000-0002-7229-7160

A thesis for the degree of
Doctor of Philosophy

November 2023


http://www.southampton.ac.uk
http://orcid.org/0000-0002-7229-7160




University of Southampton
Abstract

Faculty of Engineering and Physical Sciences
Aeronautics & Astronautics
School of Engineering

Doctor of Philosophy

Data Driven Methods for Separated Flow over Airfoils
by Francis De Voogt

The investigation of separated flows over airfoils is notoriously difficult due to three-
dimensional and unsteady effects. These flows require extensive experimental or com-
putational data that can be analysed using a variety of tools. In this work, various data-
driven methods have been used to examine flow over stalled wings to understand the

flow physics and develop reduced-order models for predictions.

It is shown that sparsely distributed sensors in the flowfield can also predict the state
of the flow. Performance of multiple data-driven reduced-order models (linear and
non-linear) together with pseudo probes in the flow are used to reconstruct the sepa-
rated flow. A non-linear neural network based approach is found to perform better in

reconstructions across different cases.

To enhance physical interpretation of non-linear reduced-order modelling (such as au-
toencoders), a hierarchical approach is examined. Subnetworks are trained to rank the
non-linear modes according to their contributions to the reconstruction. By forcing the
latent space distributions towards a unit normal distribution, with a variational autoen-
coder, it becomes possible to disentangle the separate modes. It has been shown that
with the proper regularisation the non-linear modes become nearly orthogonal, and
offer a better reconstruction than the truncated proper orthogonal decomposition.

A large computational data set of flow over a NACA 0012 wing has been created with
different types of flow ranging from attached to fully separated flow. The importance
of the flow characteristics near the surface of the wing has been indicated. It is shown
that surface pressure can be used to predict these flow characteristics in liaison with a

data-driven stall detection model.

Finally, leveraging flow visualisation using tufts, a data driven model that estimates
the unsteady lift fluctuations based on tuft motions is developed. A proof of concept is
examined with computational data and subsequent wind tunnel experiments together
with a neural network reduced order model to provide accurate estimates of lift and

pitching moment fluctuations.
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Chapter 1

Research Background

The airfoil shape is ubiquitous in aerodynamic applications because it is able to gen-
erate a large lift force with minimal drag. This characteristic allows for the design
of efficient wings, which are used in a wide variety of applications. It is not uncom-
mon for these applications to encounter situations that lead to flow separation over the
wing. A critical challenge is to model, understand and control the behavior of separated
flows over airfoils. Flow separation can cause significant loss of lift and increased drag,
leading to a reduction in the overall efficiency of an aircraft or any other aerodynamic
system. Despite decades of research, the precise nature of separated flows remains a
challenging problem, with no clear analytical solutions or efficient modelling method
available. However, advances in data driven techniques have opened up new possibili-
ties. In this thesis, data driven methods are explored for analysing separated flows and
the influence thereof on airfoil shaped wings. Specifically, the use of machine learning
methods has been investigated for large scale data sets generated by both numerical
simulations and experiments. This research has the potential to significantly improve
the efficiency of aerospace engineering designs by offering a data driven approach for

problems with no trivial analytical solution.

1.1 Separated flow over airfoils

Some of the earliest research into airfoils was conducted by the Wright brothers in a
home build wind-tunnel in 1901. They measured the lift and drag at different angles
of attack for a range of airfoil shapes. A NACA technical report by Jacobs et al. (1933)
described for the first time the NACA 4 digit airfoil series. The report also included
similar lift measurements at varying angles of attack. These initial investigations al-
ready showed that increasing the angle of attack of a wing increases the lift up to a
maximum value which is observed at the stall angle of attack. Increasing the angle of
attack beyond the stall angle of attack results in a lower lift coefficient. McCullough
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FIGURE 1.1: Suction surface view of a stalled NACA 0012 wing. A flow pattern is
indicated by surface oil flow visualisation. Original image from Moss and Murdin
(1968).

and Gault (1951) described the classification of three different types of stall which are
distinguished by the manner in which the flow separates from the airfoil. Each type of
stall was also indicated to be characteristic for different airfoil thicknesses. The relation
between the shape of an airfoil and its post stall characteristics appears to be simple
however the actual flow mechanisms leading to the different stall type observations
are complex. The complexity of stall behaviour was further described by Moss and
Murdin (1968) who found unexpected spanwise variations in the flow over a stalled
wing as shown in fig. 1.1. This three dimensional separated flow is highly turbulent
but still contains a coherent flow pattern which later has been referred to as a stall
cell. Yon and Katz (1998) showed that stall cells tend to occur when the angle of attack
is increased beyond stall. Further increases in angle of attack may result in the stall
cells disappearing. Different investigations have found similar behaviour for different
airfoils. Additionally Reynolds number variations at a constant angle of attack may
introduce or eliminate stall cells. The coherence in stalled flow patterns has created
significant research interest, which is aimed at understanding stall cell characteristics.
Finding patterns in chaotic and turbulent flow offers a chance to create a more gen-
eralised understanding of the flow as a whole and estimate the influence that specific

flow patterns have on the wing performance.

1.2 Data driven methods

The earliest efforts in aerodynamics research used wind-tunnels in combination with
a force balance. Wind-tunnels are still an essential tool for aerodynamics research in
combination with new experimental methods. These methods allow for the collection
of large amounts of data that capture the flow under investigation. Experimental mea-
surement methods in a wind-tunnel can be restricted to localised measurements of the
flow characteristics, making it difficult to capture the interaction of large scale 3D flow
features.
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Computational fluid dynamics (CFD) simulations are able to provide information in
the entire computational domain. CFD solvers use models that are analytically de-
rived simplifications of the Navier-Stokes equations. This approach allows for general
applicability, control of the accuracy and interpretable results. Unfortunately when
separated flow is included in the simulated domain the accuracy requirements and

computational cost increase substantially.

Data driven methods aim to create a model from data. Many different data driven
methods exist and most are based on using data to obtain converged coefficients for a
model. As the model is not linked directly to any known concisely written equations,
the description of the model can require thousands to millions of coefficients. Due to
the large number of coefficients such a model can approximate complex relations. With
a limited amount of data to optimise these coefficients the model might not generalise
well to new data. To prevent this issue more data can be used to obtain the converged

coefficients of the model, or a model with less coefficients can be used.

Both experimental and computational methods can produce vast amounts of data. This
data can be used to construct a data driven model. The proper orthogonal decompo-
sition (POD), also referred to as principle component analysis (PCA), is a data driven
method which was introduced by Payne and Lumley (1967) as a tool for the analysis of
coherent structures in turbulent flow. Recent investigations such as Ceglia et al. (2023)
and Liu et al. (2023) still utilise the POD for the same purpose. However, the POD is
also an important tool for dimentionality reduction as illustrated by Zhang (2023) and
Geibel and Bangga (2022). The POD is a popular tool as it is fast and interpretable.
The implementation of POD varies in different software packages, however generally
it is derived from the Singular Value Decomposition (SVD). The SVD also has vary-
ing implementations but will result in the linear decomposition of a data set into three
matrices. These matrices represent the spatial modes which is a set of orthonormal
multidimensional vectors, these vectors indicate directions of variance in the data set
scales. The singular values are scaling factors for the spatial modes and the temporal
modes which is a set of orthonormal vectors containing the coefficients correspond-
ing to the spatial modes for each temporal sample. The multiplication of these three
matrices results in the original data set (with linearly independent samples and more
samples than variables in the data set). Larger singular values for a spatial mode indi-
cate that more variance in the data set is represented by this spatial mode. This allows
to capture most of the variance in the data set with a limited amount of modes which

is less than the original number of parameters in the data set.

By utilising less than the total amount of modes for a reconstruction of the original data,
a truncated reconstruction is obtained. Such a truncated reconstruction has an error in
comparison to the original sample because not all modes from the decomposition of

the original data set are included in the reconstruction.
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Another method which has gained significant popularity is neural networks. This
method builds a model that consists of different nodes that take several inputs and
produce an output. Multiple nodes in parallel, which form a layer, can use the same set
of inputs. Different layers can be connected to form a network.

The manner in which the nodes are organised within a network is referred to as the net-
work architecture. This is an important consideration as it directly influences both the
training and performance of the network. The architecture has unlimited possibilities
for how different layers of nodes can be connected. This flexibility also allows to use

neural networks for a wide variety of applications such as addressed in this research.

A good understanding of the problem under consideration is necessary to choose the
neural network approach with the best outcome. The network should be suitable for
the data that is available and the input to output mapping that is desired. The available
data should be formulated optimally for the problem and neural network, in combina-
tion with the metric which guides the training of the network.

1.3 Research gaps

In some applications there can be a set of high quality data available from which pat-
terns or relations can be learned. Afterwards we want to obtain the full data from just
a sparse subset of that data. This process is called sparse reconstruction and applies
to range of applications from the reconstruction of faces by Wright et al. (2008) to re-
constructing sea surface temperature measurements by Manohar et al. (2018). For the
investigation of separated flows it would be of interest to obtain velocity fields at a very
high sampling frequency. Experimental methods are continuously evolving to expand
their capabilities. It is possible to acquire PIV snapshots at a very high frequency with
a dedicated setup. By using a data driven sparse reconstruction approach it is possi-
ble to take probe measurements with for example hot wire anemometry to reconstruct
PIV velocity fields. This reduces the need for the continued use of a complicated ex-
perimental setup. Previous investigations have focused on flow over a flat plate, over
a cylinder or within a channel (Nair and Goza (2020), Erichson et al. (2020), Guastoni
et al. (2021)). A similar approach can be very useful for the investigation of separated
flow fields if successful. A range of sparse reconstruction methods exist. A compari-
son of several of these methods on experimental data of separated flow over an airfoil
is necessary as a first step towards improving experimental investigations with prior
knowledge. An extensive comparison on a complex data set with many parameters,

requiring many modes does not yet exist.

POD allows decomposition of a data set into linear components. The use of linear
modes is sub optimal for many non-linear flow phenomena. The exploration of how

non-linear modes can capture more of the flow phenomena with less modes can further
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improve the solution of a variety of problems which require a data driven description
of the flow. The use of non-linear modes has been investigated by Saegusa et al. (2004)
from a fundamental perspective. More recently the application of non-linear modes to
the field of fluid dynamics has been explored by Fukami et al. (2020) and Eivazai et al.
(2022). From these investigations it is clear that there are a variety of methods available
with their own strengths and weaknesses. Finding the best method for the investiga-
tion of separated flows can potentially significantly improve dimensionality reduction.
Novel non-linear mode decomposition methods should be compared through the use

of a single data set, to clearly illustrate the differences.

Simulations with RANS are common in both industry and research but have reduced
accuracy for turbulent flow. Manni et al. (2016) used both unsteady RANS simulations
and delayed detached eddy simulations to investigate stall cells. Simulations which
model turbulent separated flow more accurately are significantly more computation-
ally expensive which prohibits their use for optimisations. Experiments can produce
accurate data, but changes to a test object or the setup are often difficult. Some ex-
perimental methods are invasive and require careful consideration in the setup, so as
to not disturb the flow to such an extent that it might become unrepresentative for
the desired measurements. Different investigations such as Liu and Nishino (2018)
or Zarutskaya and Arieli (2005) have computationally simulated stall cells. Previous
investigations have typically used a limited set of Reynolds numbers and angles of
attack. However experimental investigations such as De Voogt and Ganapathisubra-
mani (2022) and Dell’Orso and Amitay (2018) indicate that stall cells are present in a
wide range of angles of attack and Reynolds numbers. Simulations of stall cells which
cover a large range of angles of attack and Reynolds numbers can produce a range of
data which could not all be produced experimentally. Such a data set can provide de-
tailed characteristics of the flow within a stall cell, while illustrating the range in which
they are relevant. Experimental investigations such as Gregory and O’Reilly (1970) or
more recently Dell’Orso et al. (2016) have relied on surface flow visualisation to indi-
cate the presence stall cells. The importance of the visual identification of stall cells is
also due to a lack of a method to clearly identify their presence. The detection of stall
is crucial to the safety of modern aircraft. With a good knowledge of the surface flow
over a range of angles of attack and Reynolds numbers it becomes possible to construct
a data driven approach which relies on surface pressure inputs to detect stall. The pre-
liminary work by Zhou et al. (2021) presents a POD based data driven approach for
one dimensional stall detection for a single spanwise location. This work can be ex-
panded to incorporate distributed pressure measurements on the entire wing surface.

By including spanwise variation it becomes possible to detect the presence of stall cells.

The surface flow on an object can be visualised with tufts to provide a dynamic as-
sessment of the sparse surface flow directions. Due to the imperfections of tufts it
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is intractable to formulate an analytical expression for the relation between tuft mea-
surements and other aerodynamic parameters. Data driven analysis of tufts to provide
aerodynamic parameters is relatively new and rapidly evolving. Swytink-Binnema and
Johnson (2016) used tufts to obtain an estimate of the stall fraction of wind turbine
blades. More recently Steinfurth et al. (2020) used tufts to obtain velocity field estima-
tions. It is known that the surface flow over a wing is related to the surface pressure.
As such the flow direction as sparsely indicated by the tufts should provide partial in-
formation related to the surface pressure. With a non-linear data driven approach it
could be possible to estimate aerodynamic parameters related to the surface pressure
based on sparse tuft measurements. There is currently not yet an investigation which
indicates the ability to use tufts for a quantitative estimate of the aerodynamic force

influence on an object.

1.4 Thesis research contributions

In the current thesis several problems associated with separated flow over airfoils will
be addressed with data driven methods. In chapter 5 a data set of separated flow sim-
ulations over a NACA 0012 wing is presented. This data set provides valuable insights
in the behaviour of flow separation for a range of angles of attack and Reynolds num-
bers. Surface pressure measurements taken experimentally show good agreement with
the computational results which indicates that the computational results are represen-
tative for the performance of complex separated flow. An investigation of the flow near
the wing surface indicates how the flow patterns near the surface are closely related to
the wing lift coefficient. Based on the surface pressure a data driven stall detection al-
gorithm is created. In order to optimise such a stall detection system the amount of

surface pressure measurements that are required should be minimised.

In chapter 6 neural networks have been used to create a surrogate model for the lift and
pitching moment of stalled wing, based on the visual observation of tufts. A complex
relation between the motion of tufts and the variation in aerodynamic performance pa-
rameters exists but cannot be easily formulated analytically. Measurements of the wing
performance combined with concurrent tuft observations have been used to create a
neural network which approximates this relation. It has been shown on both compu-
tational and experimental data that this is possible with high accuracy. Whereas tufts
are commonly used as a qualitative validation tool, they have now been illustrated to
be suitable for obtaining valuable quantitative data. The ubiquitous use of tufts further
underscores the importance of this method which could be adapted to obtain a wide
range of aerodynamic parameters for a variety of applications.
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In chapter 3 a data set of velocity fields of separated flow over a NACA 0012 wing
has been used to investigate sparse reconstruction methods. A minimal set of local ve-
locity measurements are taken as inputs for a data driven method which reconstructs
the full velocity fields. The investigation compares several linear methods which es-
timate the coefficients for a POD reduced order model of the velocity fields. The re-
construction of the velocity fields then follows from the combination of the estimated
coefficients and POD modes. In this work it is shown that by introducing a non-linear
neural network the estimate of the coefficients can be significantly improved result-
ing in better reconstructions compared to the purely linear methods. Additionally the
selection of the local measurements has also been investigated by comparing random
measurement locations to measurement locations adapted to the known POD modes.
The optimised measurement locations provided an improvement in the reconstruction
which was larger for the full linear reconstruction method. The non-linear updating of
the estimated coefficients was shown to be less sensitive to the location of the sparse

velocity measurements.

The use of POD for the reduced order model provides a basis which requires a large
amount of modes to capture the variance in the data set. The use of non-linear modes
has the ability to capture separated flow with less modes. Several methods for non-
linear modes of the separated velocity flow fields have been investigated in chapter 4.
The relation between POD and neural networks with an autoencoder architecture is ad-
dressed to illustrate the similarities and differences. The use of neural networks with
non-linear activation functions allows to create non-linear modes. By training succes-
sive subnetworks it becomes possible to create modes which are ranked according to
the part of the data set that they are able to represent. Several different methods for
obtaining non-linear modes exist, most of which have a latent space which is not in-
terpretable. A beta variational autoencoder has been used to create modes which have
a latent space which is approximately N'(0,1) distributed for each mode. The latent
space regularisation creates a continuously representative latent space. Therefore, re-
alistic samples can be created by sampling latent space coefficients from a unit normal
distribution.
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Chapter 2

Data and methods

In section 2.1 two data sets are described. These data sets are used multiple times
throughout the research presented in this thesis. In section 2.2 the fundamentals of two

commonly used data driven methods are explained.

2.1 Data sets

Two data sets reoccur in the thesis. The first data set, described in section 2.1.1, contains
velocity fields of separated flow over a NACA 0012 wing. These velocity fields were
experimentally captured with Particle Image Velocimetry (PIV). The second data set,
described in section 2.1.2, contains the results from Computational Fluid Dynamics
(CFD) simulations of a stalled NACA 0012 wing. This wing was simulated over a wide

range of Reynolds numbers and angles of attack.

2.1.1 Separated flow PIV velocity fields

First the experimental setup for the PIV measurements is described, followed by the

processing of the experimental data.

Contributions statement

The data acquisition has been performed by R. Soares and D.W. Carter, and processed
by D.W. Carter. The text concerning the data acquisition and processing was initially
written by D.W. Carter.
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2.1.1.1 Water flume experiment

To obtain planar time-resolved velocity fields on the suction side of a separated NACA
0012 aerofoil, a PIV campaign was performed in the water flume flow facility located
at the University of Southampton as illustrated in figure 2.1. A NACA 0012 airfoil
model of chord length ¢ = 15 cm and span s = 70 cm was fixed vertically in the centre
of the span of the flume immediately following the contraction into the test section.
The airfoil was fixed at angle of attack « = 12° using a stepper motor attached to
an overhead carriage system with precise control over the stepper motor angle. A 4
Megapixel Phantom v641 camera mounting a 105 mm Ex Sigma lens (f = 5.6) was
directed upward from underneath the flume at a standoff distance 88 cm, resulting
in a stream-wise wall-parallel field of view approximately 16 cm in the stream-wise
direction x and 10 cm in the stream-normal wall-parallel direction y. The field of view
was illuminated via a set of sheet-forming optics directing laser light from a Litron 527
nm Nd:YLF high-speed laser into the test section from the side of the facility at a wall-
normal height of h; = 248 mm from the bottom of the flume. The flume was filled
until the water reached a height /1, = 500 mm. At this height the maximum frequency
of the flume pumps yielded a free stream velocity U, = 0.5 m/s, corresponding to
a Reynolds number based on the chord length Re, = Usc 75,000, where v is the

v
kinematic viscosity.

FIGURE 2.1: Illustration of the experimental setup focusing on the test section of the

water flume flow facility at the University of Southampton. The NACA 0012 aerofoil

is illuminated from both sides, however for this study a field of view focusing on the

suction side of the aerofoil is used to capture the separation of the wake. The water
level hy, and laser sheet level h are indicated

w

To collect the images, Davis 8.3.1 PIV software was used with a LaVision high-speed
controller to ensure synchronous timing of laser and camera. The flow was seeded

with Vestosint 2157 polyamide particles of nominal diameter 55 pum verified to behave
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as faithful flow tracers. The seeding density was iteratively adjusted until a satisfactory
number of particle reflections across the field of view were observed. The images were
captured at full resolution (2560 x 1600 pixels) at a frequency of 750 Hz.

In total, 13 fully time-resolved runs of 5468 sequential snapshots across 7.3 seconds each
were collected for a total of 71084 snapshots. At an angle of attack & = 12°, substantial

unsteady separation from the surface of the airfoil was observed.

2.1.1.2 Data post-processing

The images were background-subtracted and low frequency noise was attenuated us-
ing a convolution with a Gaussian high-pass filter of standard deviation of 5 pixels. A
mask corresponding to the location of the aerofoil in the images was stored and applied
during PIV processing. The images were processed using a verified in-house PIV code
based in MATLAB with iterative interrogation window stepping from 64 x 64 pixels to
32 x 32 pixels to 24 x 24 pixels with 50% overlap. Subpixel displacements were obtained
via a Gaussian 3-point fit, and detected outliers were flagged and replaced via local in-
terpolation. Interrogation windows found to overlap with the image mask by greater
than 25% were discarded.

For each component of the velocity field, the velocity was decomposed into a mean
and fluctuating component u = U + 1’ and v = V + v’ where the the capitals here de-
note the mean velocity field and the prime denotes the fluctuating components of the
horizontal (streamwise) u and vertical (stream normal) fields v. To reduce the random
noise of the PIV fields, the filtering method based on POD described in Raiola et al.
(2015) was used with the suggested value of the parameter F = 0.999 (the ratio of for-
ward to backward residuals of the rank-restricted POD reconstruction). The location of
the rank-order filtering truncation was found to correspond to only 5% of the energy
of the velocity fluctuations. To improve the accuracy of the velocity fields, particularly
in the separated region, gappy POD was employed using iterative replacement of de-
tected outliers (Gunes et al., 2006) until satisfactory convergence was achieved. It was
verified that the number of POD modes used to reduce random noise and improve
the accuracy of the velocity fields was greater than the number of modes used to test
the sparse reconstructions. Examples of the resulting velocity fields for the streamwise

fluctuations (1) are shown in fig. 2.2.
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FIGURE 2.2: The streamwise velocity fluctuations (u') for four samples out of the PIV
data set of separated flow over a NACA 0012 wing at Re = 75 000 and « = 12°.
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2.1.2 Stalled wing CFD simulations

By utilising unsteady Reynolds averaged Navier Stokes (URANS) simulations it is pos-
sible to obtain a data set which spans many angle of attack and Reynolds number com-
binations within several weeks of wall clock time on a computer cluster. Other meth-
ods such as large eddy simulations (LES) or direct numerical simulations (DNS) with
potentially better results for separated flow are not feasible to be executed for a large

number of cases in a timely manner.

A NACA 0012 airfoil profile has been used with a one meter chord length (c), with
orientations as shown in fig. 2.3. A C-shaped mesh grid has been used which extends 15
chord lengths to the circular inlet section and outlet from the leading edge of the airfoil.
A 2D configuration of the NACA 0012 profile has been used to assess the required
number of circumferential mesh nodes for URANS simulations. Each different mesh
has been evaluated at three different angles of attack (5°, 10° and 15°) at a chord based
Reynolds number of 10° to assess the consistency of the obtained lift coefficient for
different meshes. The Reynolds number in this investigation refers to the chord based

Uoso'C
v 7/

chord length and v is the kinematic viscosity of air at 15°C (v = 14.61 - 10~ %, p =
1.225 %) The resulting lift coefficients are shown in table 2.1.

Reynolds number defined as Re = where 1, is the freestream velocity, c is the

< =<

v

. Vi
Vu X

FIGURE 2.3: The orientation of the setup, with the x axis aligned with the chord and

the y axis with the span. The velocity vector directions 7u, » and 710 are indicated
along the X, Y and Z directions.

The mesh convergence study showed that the mesh with 420 circumferential nodes pro-
vides a suitable balance between accuracy and computational cost for the 3D URANS
simulations. A detailed view of the mesh with 420 circumferential nodes around the
airfoil is shown in fig. 2.4a. The first node wall normal distance from the airfoil surface
is set to 8 - 107% m such that the y™ < 1 for wall adjacent nodes at the highest Reynolds
number that has been simulated, which is 10°.
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Circumferential nodes Cpata=5°/10°/15°

240 0.529 /1.012 / 1.353
360 0.527 /1.013 / 1.355
420 0.527 / 1.015 / 1.369
480 0.527 / 1.015 / 1.364
720 0.527 / 1.017 / 1.372

TABLE 2.1: 2D mesh convergence study. The resulting lift coefficient for three different
angles of attack when using meshes with varying amounts of circumferential nodes on
the airfoil surface.

To minimise the computational cost the spanwise domain size is kept as small as pos-
sible. For full stall cells to occur the spanwise domain should be large enough to fit
at least a full stall cell with periodic boundary conditions. Based on previous inves-
tigations such as De Voogt and Ganapathisubramani (2022), Manni et al. (2016) and
Zarutskaya and Arieli (2005) it has been estimated that a spanwise extrusion of 2.5
chord lengths should allow for the formation of a single full stall cell. The drawback
of the minimal spanwise extension is that there is little room left for potential unsteady
spanwise behaviour of a stall cell. The 2D mesh with 420 circumferential nodes has
been extruded to obtain a spanwise uniform 3D wing. In fig. 2.4b the full domain is
shown for the 3D configuration. The spanwise mesh spacing is 0.1 ¢, based on the find-
ings of Liu and Nishino (2018) to allow for the formation of stall cells. This results in a
3D mesh with 25 spanwise sections. The wing surface has been set as a smooth no-slip
wall. Periodic boundary conditions are used for the sidewalls of the domain. As such,
a wing with infinite span and periodicity of 2.5 chord lengths along the span is mod-
elled. The inlet is defined by the Cartesian velocity components for each case (x — Re
combination), and the outlet uses an average static pressure condition. Although a 5%
turbulence intensity has been set at the inlet, the turbulence intensity has been verified
to have fully dissipated when the flow reaches the airfoil. The fluid domain has been

initialised with the freestream velocity components.
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(4) (B)

FIGURE 2.4: The computational domain of the NACA 0012 wing. (a) Detail of the
mesh around a NACA 0012 profile. (b) The boundaries of the 3D C-grid. Periodic
boundary conditions are applied to the sides of the domain which are not shown.

A shear stress transport turbulence model has been used with automatic wall functions
in ANSYS CFX 18.1. The boundary layer has been assumed to be fully turbulent. A high
resolution advection scheme in combination with high resolution turbulence numerics
and a second order backward Euler transient scheme was used for the URANS solver.
The time step size was set to 0.001 s, which is significantly smaller than the timescale
of interest for the analysis. The investigation of Liu and Nishino (2018) did not find
an influence of the time step size on the results of the simulations. The convergence
criterion for the RMS residuals was set to 10~°, with a maximum of 15 coefficient loops
per time step. In order to limit the size of the raw data output of the simulations, the
results of the simulations have only been saved every 0.1 seconds. Simulations have
been run for 10 to 20 seconds of simulated time, depending on the flow case, to obtain
a statistically representative time frame for the flow case. As each flow case simulation
takes up to two weeks on a quad-core CPU desktop, the simulations have been run on
the IRIDIS high-performance computing cluster of the University of Southampton to
speed up the data acquisition process of the simulations.

For validation of the results, a comparison of the time averaged lift coefficient (ex-
cluding the transient phase at the start of the simulation) is presented in fig. 2.5. The
spanwise spacing of the mesh grid can influence the flow patterns that occur on the
wing post stall (and thus lift), as such these are also mentioned Liu and Nishino (2018).
The use of different solvers and other small differences can lead to differences in the
resulting lift coefficient values, however all presented investigations in fig. 2.5 find the
maximum lift coefficient at an angle of attack of 16 degrees. At higher angles of attack
similar trends can be observed in the lift polar with an offset relative to each other. This

is the angle of attack range for the specific Reynolds number in which stall cells occur.
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At an angle of attack of 20 degrees and beyond the results appear to converge again. In
this range the stall cell was observed to have disappeared and the surface flow showed
fully separated flow along the entire span in the current investigation. The consistency
of the trends shown in fig. 2.5 for the post stall lift polar however indicates that the re-
sults are representative of the specific flow behaviour which is consistently reproduced
in different investigations.
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FIGURE 2.5: Comparison of the time-averaged lift coefficient obtained from CFD at

a Reynolds number of one million. Validation data obtained from Manni et al. (2016)

and Liu and Nishino (2018). The spanwise meshgrid spacing (Az/c) is indicated in the
legend for the different data sets.

With this computational setup a wide range of cases have been simulated as shown in
fig. 2.6. The Reynolds number ranges from 3.1 - 10° to 10° and the angle of attack ranges
from 14° (10° for Re = 10°) to 20°. These unsteady simulations showed varying flow
behaviours over the wing suction surface. Slight variations in computational setup can
lead to significant changes in the results as shown by Manni et al. (2016) and Lehmkuhl
et al. (2011). The type of flow separation that has been present most prominently for a
case has been manually identified in fig. 2.6.
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FIGURE 2.6: Identification of the flow type based on the angle of attack and Reynolds
number.

2.2 Data driven methods

A succinct overview of commonly used data driven methods relevant to the research
in this thesis is given. In section 2.2.1 the proper orthogonal decomposition (POD) is
described. In section 2.2.2 some of the fundamental aspects of neural networks and the
implementation thereof are described.

221 POD

The proper orthogonal decomposition (POD), also referred to as principal component
analysis (PCA), is a data driven method which was introduced by Payne and Lumley
(1967) as a tool for the analysis of coherent structures in turbulent flow. The POD is
still a popular tool as it is fast, interpretable and easy to implement. The POD typically
relies on the covariance matrix of a data set X with n rows for n samples and p columns

for p variables:

(X-X) (X-X)

COV = p—]

, 2.1)

with a mean X for n samples. The spectral theorem for real symmetric matrices, such as
the covariance matrix, states that these matrices can be diagonalised by an orthogonal

matrix W:

COV=WAW, (2.2)
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where W represents the eigenvectors of the covariance matrix, with diagonal matrix A
containing the eigenvalues. When these directions are given as unit vectors, they are
often referred to a POD modes or spatial modes. POD, therefore, decomposes the data
into linearly independent directions. The data can be projected onto the spatial modes
to obtain the corresponding POD coefficients. The decomposition of a centred data set
(X,) into POD coefficients (A) and POD modes (®) is described as:

X, =Ad, (2.3)

where X, has n rows for n samples and p columns for p variables. The rows of the ®
matrix contain the spatial modes. Where an individual spatial mode ¢ satisfies:

¢x € RP, (2.4)

for p variables in the training data. The linear decomposition is limited by the amount
of available samples. When more samples than parameters are available (n > p) the
linear decomposition results in an amount of modes (1) equal to the amount of param-
eters (m = p). When less samples are available than parameters (n < p) the number
of modes that can be obtained is equal to the amount of samples (m = n). Matrix A in
eq. (2.3) has n rows of POD coefficients for n samples, and m columns corresponding
to m spatial modes.

The vector norm of the POD coefficients for a single spatial mode across all samples
in the data (column of A), is referred to as the singular value for that spatial mode.
POD coefficients normalised with their respective singular values, are referred to as

temporal modes. The full decomposition can then be written as:

X, = YZP, (2.5)

where Y has size [n x m] for n samples and m modes. Diagonal matrix X with size
[m x m] contains the singular values for the spatial modes. The magnitude of a singular
value reflects the amount of variance that the corresponding spatial mode represents in
the data set. Typically spatial modes are ordered according to their singular values. The
decomposition shown in eq. (2.5) is referred to as the Singular Value Decomposition
(SVD).

By using the first j spatial modes, with j < m, a rank truncated reconstruction of a
data sample can be created. The limited set of j spatial modes can be multiplied with
the respective singular values and the temporal modes of each sample, to result in a
lower order representation of the original data. The truncated reconstruction (X/) with
j modes can be formulated as:



18 Chapter 2. Data and methods

j
Xp =) axdi, (2.6)
k=1

where ¢y represents the k'

spatial mode and 4y represents corresponding POD coef-
ficients. In order to quantify the amount of modes which are necessary to achieve an
accurate representation of the original data, the cumulative variance explained by a
number of SVD components is a commonly used ratio. This ratio captures the variance
in the data set which can be represented by the first j modes, where the modes have
been ranked starting with the mode with the highest singular value and ending with
the mode with the lowest corresponding singular value. The cumulative explained

variance (CEV) is then calculated as:

J 2
Yi—1 %

CEV ===,
Ykt ‘71%

2.7)

where 0y is the singular value for the k™ spatial mode. This ratio can be calculated for
increasing numbers of modes included. It is then possible to determine the necessary
amount of modes to reconstruct a certain percentage of the variance in the original
data set. The POD constructs the principal components based on the distribution of a
given data set. The use of these components is thus only representative for samples
belonging to a similar distribution. Samples from unrepresentative data sets may have
the principal components for the variance oriented differently with different scaling,
leading to the ineffective use of prior obtained principal components with differently
distributed data.

2.2.2 Neural networks

Neural network nodes were inspired by biological neurons as described by McCulloch
and Pitts (1943). A standard node for a neural network is constructed such as shown
in fig. 2.7. In this node the output of previous nodes is the input. For each input into
the current node there is a different weight. Additionally there is a constant bias value
per node. The bias is added to the sum of the inputs multiplied with their respective
weight. Then an activation function is applied and the result is the output of this single

node.
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FIGURE 2.7: A single node of a neural network.

The activation function is traditionally non-linear for layers which are not the input or
output of a network. An example of the mathematical operation of a single layer with
three nodes and four inputs is shown:

y1 = g(Whix1 + Wiaxp + Wizxsz + Wigxg + Wis - 1),
yo = g(Warx1 + Wapxp + Wasxz + Waaxy + Wos - 1), (2.8)

y3 = §(Wa1x1 + Waoxy + Wazxz + Wagxy + Was - 1),

where the output of the layer is represented by y, the input by x, the weights of the layer
by W and g() is the activation function. The mapping of the input onto the output
is achieved by the weights matrix W, which contains the weights for each input for
each node in the layer, plus an extra weight per node for the bias. After the linear
transformation the activation function is applied, to give the complete output vector y.

Two functions are commonly used as activation functions in a neural network. The first
of which is the Sigmoid function:

1

S(x) = 11 ex

(2.9)
and the function is also shown in fig. 2.8. For values smaller than -5 the Sigmoid func-
tion outputs approximately 0, and for values larger than 5 the output approximates 1.
The non-linearity in the function is smooth.
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FIGURE 2.8: The Sigmoid and ReLU activation functions.

The second activation function which is used often is the rectified linear unit (ReLU)
function:

R(x) = max(0, x), (2.10)

which simply sets negative input values to zero. The non-linearity is not smooth. The
function is extremely easy to compute and therefore fast, both in forward and back-
propagation calculations. The specific data available, network architecture and other
parameters determine the optimal choice for the activation function. While not specifi-
cally considered an activation function, a unit linear activation function (or simply lack
of an activation function) is used to obtain the network outputs and other operations
within the network.

Ivakhnenko and Lapa (1965) introduced the method of stacking multiple layers to-
gether to create a neural network, which is still common practice today. The concise
mathematical notation for a full neural network with L amount of layers, is given by:

Y =W, g<WL,1 g(Wi o ... g(WlX))), (2.11)

which is a series of nested transformations with activation functions applied. Using
multiple layers consecutively increases the amount of connections which allows to

form more complex models.
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Chapter 3

Data-driven Sparse Reconstruction
of Flow over a Stalled Airfoil

Recent work has demonstrated the use of sparse sensors in combination with the proper
orthogonal decomposition (POD) to produce data-driven reconstructions of the full ve-
locity fields in a variety of flows. The present work investigates the fidelity of such
techniques applied to a stalled NACA 0012 aerofoil at Re; = 75000 at an angle of
attack & = 12° as measured experimentally using planar time-resolved Particle Im-
age Velocimetry (PIV). In contrast to many previous studies, the flow is absent of any
dominant shedding frequency and exhibits a broad range of singular values due to
the turbulence in the separated region. Several reconstruction methodologies for linear
state estimation based on classical compressed sensing and extended POD methodolo-
gies are presented as well as non-linear refinement through the use of a shallow neural
network (SNN). It is found that the linear reconstructions inspired by the extended
POD are inferior to the compressed sensing approach provided that the sparse sensors
avoid regions of the flow with small variance across the global POD basis. Regardless
of the linear method used, the non-linear SNN gives strikingly similar performance in
its refinement of the reconstructions. The capability of sparse sensors to reconstruct
separated turbulent flow measurements is further discussed and directions for future

work suggested.

Contributions statement

The current chapter has been published as:

Data-driven sparse reconstruction of flow over a stalled aerofoil using experimental data.
by D.W. Carter, F. De Voogt, R. Soares, and B. Ganapathisubramani

in Data-Centric Engineering, volume 2, issue 5 in 2021. (Carter et al. (2021))
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This work has been created in collaboration with the authors of the paper. The data
acquisition has been performed by R. Soares and D.W. Carter. The idea for sparse
reconstruction with POD was formulated by D.W. Carter and B. Ganapathisubramani.
The linear approach for sparse reconstruction has been performed by D.W. Carter. The
neural network refinement for the non-linear reconstruction has been performed by F.
De Voogt. The sign correction matrix idea was formulated by F. De Voogt and worked
out by D.W. Carter. The text concerning the non-linear reconstruction method and
results was written by F. De Voogt. All other text was written by D.W. Carter. Some of
the text has been adapted to suit the thesis format.

3.1 Introduction

Sparse reconstruction is a technique used to obtain accurate details about the full scale
features of a system using a sparse subset of information (for example, a few pixels or
measurements within the system) and has been the subject of interest for some decades
(Donoho, 2006; Candes and et al., 2006). Applications for such state estimation prob-
lems range from reconstructing faces from limited or corrupted data (Wright et al.,
2008) to deblurring and improving image resolution (Dong et al., 2011) to estimating
global sea surface temperatures (Manohar et al., 2018; Callaham et al., 2019). The liter-
ature concerning state estimation and sparse reconstruction is rapidly developing. In
the following we motivate and present a brief review of the literature as it relates to
the present study. For a more comprehensive review, we refer the interested reader to
Manohar et al. (2018) and Nair and Goza (2020).

In general, the requirements for accurate sparse reconstructions from limited data are
that (i) the basis underlying the data exhibits sparsity (as will be discussed) and (ii)
that full-state information for the system can be obtained or approximated a-priori to
generate a global basis applicable to any sample or instant (Brunton and Kutz, 2019).
For example, suppose a set of images of weathered ancient hieroglyphics are only par-
tially discernible. If a library of images of known undamaged hieroglyphics is tabu-
lated a-priori, the principle of sparsity can be used to estimate the weathered hiero-
glyphics before they were damaged (Roman-Rangel et al., 2012). Further examples of
sparse reconstruction exist over a diverse range of engineering disciplines. Liu et al.
(2017) demonstrated the use of sparsity to monitor and detect faults in an industrial
Tennessee Eastman Process using a novel variation of principal component analysis.
Bao et al. (2017) showed the use of sparse strain sensors to estimate the full stress state
of a structure using a Fourier basis. Iyer et al. (2020) used recurrent neural networks

and sparse observations for reconstructing and forecasting road traffic.

There remains much to be done in order to test the limitations of sparse reconstructions

numerically, experimentally, and for a variety of engineering systems. For example:
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FIGURE 3.1: Instantaneous velocity fields (a,b) from the PIV data (every fifth vector

shown for clarity) presented in this study at two separate instants; highlighting the

variation in the size of the separated wake. The singular values are shown in (c) nor-

malised by the first singular value (inset: up to 9000 modes). This is also shown for the

laminar cylinder wake (dashed) of diameter D at Rep = 100 from the DNS of Brunton
and Kutz (2019) for comparison

how do variations of non-dimensional parameters that characterise a system impact
the reconstruction? How many known full-state snapshots are required to generate
a global basis? How many sparse sensors or probes are needed to achieve a desired
reconstruction accuracy? Where should the probes be placed? These are some of the
underlying questions that motivate the current study seeking to expand the application

of sparse sensing to engineering problems.

The key underlying principle that allows for full reconstructions using only limited
measurements is the sparsity of the representative basis. For the application of interest,
a suitable basis must be chosen onto which to project the sparse signal (the limited mea-
surements) for the full reconstruction. The basis of choice depends on the data in ques-
tion but is typically taken to be either a Fourier transform (Candés and Wakin, 2008)
or a data-driven basis such as the proper orthogonal decomposition (POD: Sirovich,
1987b; Berkooz et al., 1993). If the basis contains many entries that are small (near-zero)
then the system is said to exhibit sparsity. For example, a Fourier transform may in-
dicate only a few frequencies have significant amplitudes. Sparse reconstruction takes
advantage of the sparsity of the basis functions to produce full reconstructions (Brunton
and Kutz, 2019) that can yield surprisingly accurate full state estimations. For exam-
ple, using POD as a representative basis Manohar et al. (2018) showed that using only
7 probes they could reconstruct the full vorticity field of laminar flow over a cylinder

exceeding 90% accuracy.
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POD is a data-driven method commonly used as a basis for reconstructions due to
its attractive properties of being energy optimal and having time-independent spa-
tial modes, though other choices are possible (Bai et al., 2015; Jayaraman et al., 2019).
Manohar et al. (2018) demonstrated that the reconstruction accuracy is significantly
improved if the choice of probe locations is made carefully such that it takes better ad-
vantage of the sparse basis. They demonstrated that the use of greedy algorithms to
intelligently place probes within the flow improved the reconstructions greatly com-
pared to random probe placement. However, this also depends on the complexity of
the underlying system. When the analysis was applied to sea surface temperatures
whose POD basis requires many more modes, the reconstruction accuracy relied more
heavily on the optimal probe placement; pointing to the difficulty of reconstructing

systems with a large range of spatio-temporal scales.

Several alternative methods originating in the fluid mechanics literature have been pro-
posed for sensing turbulent flow structures and obtaining reconstructions, such as lin-
ear stochastic estimation (LSE: Adrian and Moin, 1988). In LSE, the state of the flow
field is tabulated and conditioned upon the state of an event, leading to a linear map
through an /; minimisation procedure. Several studies have demonstrated the fidelity
of reconstructions based on the concept of LSE (Picard and Delville, 2000; Lasagna et al.,
2013). Borée (2003) showed that LSE is equivalent to the so-called extended POD, where
the temporal POD modes of one quantity are projected onto by the state of the flow
field. This produces a set of extended modes revealing the spatial structures of the
flow that are correlated with the quantity of interest. The extended POD framework
is a straightforward and flexible approach offering alternative means of obtaining re-
constructions using the temporal modes of the sparse information, as demonstrated by
Hosseini et al. (2015). Extended POD was pushed further by Discetti et al. (2018) to ob-
tain up-sampled time-resolved velocity fields from sparse sensors; demonstrating the
flexibility of the framework.

Although the aforementioned techniques produce sparse reconstructions that are ob-
tained entirely linearly, supervised machine learning provides a non-linear framework
with additional flexibility. In fact, POD itself is a form of unsupervised machine learn-
ing (Brunton et al., 2020) and one may interpret the POD as an unsupervised neural
network with a single layer and linear activation function (Milano and Koumoutsakos,
2002). The use of neural networks (NNs) to obtain sparse reconstructions has seen re-
cent attention in the literature. Nair and Goza (2020) demonstrated the ability of NNs
to outperform the linear counterparts using a network of three layers for low Reynolds
number flow over a flat plate at high angles of attack. Similarly, Erichson et al. (2020)
introduced a “shallow” neural network (SNN) consisting of two layers for reconstruct-
ing laminar flow over a cylinder or sea surface temperatures with high fidelity. They
further applied this method to a comparatively more challenging numerical simula-
tion of isotropic turbulence and found good results when interpolating, but difficulty
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in predicting future states. They discussed the use of regularisation of the loss func-
tion to avoid overfitting; a problem that can easily arise with limited training data.
Intelligent choices for loss functions offers promising potential for improved neural
network performance and generalisation. For example, imposing physical constraints
on the loss function has been demonstrated as a successful approach for a variety of
systems governed by partial differential equations (Raissi et al., 2019; Sun and Wang,
2020). More recently, convolutional neural networks have been demonstrated for flow
reconstruction from wall shear measurements in a turbulent channel flow (Guastoni
et al., 2021), however the inherent spatial dependence renders convolution-based ap-
proaches unattractive for the particular case of spatially sparse reconstruction. This
does however represent progress in the direction of reconstructing turbulent flows, as
their inherent range of spatial and temporal scales makes them significantly more chal-

lenging than the laminar case.

The present study focuses on the problem of sparse sensing motivated by the need to
detect flow structures in aerospace applications. For example: to detect anomalous
structures, the onset of stall over an aerofoil, or to inform control systems designed
to reduce drag. Here the focus is on the situation of an aerofoil in stalled conditions.
We seek to explore how a global basis may be used to predict the unseen flow about a

stalled aerofoil using limited single-point sensors placed in the flow.

As of yet, data-driven sparse sensing has not been widely applied to advective turbu-
lent flows such as the case of a stalled aerofoil due to the inherently large range of scales
and difficulty in capturing a low-order representation of the dynamics. As a result, the
flow requires many modes compared to e.g. the case of a laminar cylinder (figure 3.1)
to capture the dynamics. This fact motivates exploration of reconstructions obtained
outside the classic compressed sensing approach, which relies more heavily on optimal
placement for systems with many modes. The present study seeks to explore how effec-
tively the various linear and non-linear approaches for sparse reconstruction perform
for (i) a situation which is highly turbulent and (ii) data generated via experiment and

therefore contaminated by experimental noise.

The present study will be structured as follows. The experiments performed to obtain
the two-dimensional time-resolved flow fields of the separated aerofoil are outlined in
section 3.2. The methodology used to select probe placements and obtain the sparse
reconstructions with and without neural network refinement is presented in section
3.3. The results are presented in section 3.4. Conclusions and outlook for future work

are finally presented in section 3.5.
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3.2 Experimental method

Particle image velocimetry (PIV) has seen widespread use in experimental fluid me-
chanics over the past decades due to its ability to obtain highly spatially-resolved
instantaneous planar two-component velocity fields (Adrian et al., 2011). Combined
with time-resolved capabilities of high-speed cameras, it is the measurement method
of choice for the present data-driven analysis due to the ability to generate large spatial
domains (and resulting spatial modes) as well as time information at each point in the
flow, enabling the sparse reconstruction investigation via a pseudo-probe analysis. The
details of the data collection and post-processing were outlined in section 2.1.1.

3.3 Sparse reconstruction methodology

3.3.1 Probe placement

The optimal placement of probes for sparse reconstruction is a challenging and on-
going subject of research (Manohar et al., 2018). As the problem involves both the
number of sensors as well as the number of modes used for reconstruction, the opti-
misation is combinatorial in nature; making it intractable for even a modest number of
possible sensor locations. The objective is to maximise the signal to noise ratio of the
reconstruction by minimising the condition number of the sparse basis (Manohar et al.,
2018; Jayaraman et al., 2019). A body of literature has been reported exploring heuris-
tic greedy algorithms known as empirical interpolation methods (EIM: Barrault et al.,
2004; Willcox, 2006; Yildirim et al., 2009) or discrete EIMs (DEIM: Chaturantabut and
Sorensen, 2010; Drmac and Gugercin, 2016) to identify optimal locations for the probes.
In addition, optimal design literature provide methods of identifying probe locations
based on the moment matrix of the basis (e.g. A, C, D, E-optimal design, see Atkinson
and Donev, 1992; Cox and Reid, 2000). Considerations for non-linear placement have
also been explored as summarised in the recent work of Otto and Rowley (2022) and

references therein.

The work of Manohar et al. (2018) shows that the optimal choice of placement (for the
linear reconstruction) corresponds to the locations that contribute the maximum vari-
ance (I;-norm) across the spatial basis. The QR decomposition with pivoting (Van Loan
and Golub, 1983) is a commonly utilised heuristic for identifying such locations, result-
ing in an upper-triangular matrix R with entries ordered accordingly. The resulting
pivot locations approximate the best sensor locations. When the number of modes
used for the reconstruction is equal to the number of probes, the QR with column piv-
oting is applied to the spatial basis and is known as the Q-DEIM (Drmac and Gugercin,
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FIGURE 3.2: Conceptual illustration of the instantaneous reconstruction methodology

using p = 5 probes and Q-DEIM placement. The global basis is obtained a-priori

and the real-time probe signals are used to approximate the instantaneous fields. The

probe signals are shown with a solid line for u” and dashed for v" and colour-coded

according to their indicated locations. The total velocity shown in the plots are cal-

culated by summing the mean and fluctuating fields. See sections 3.3.2 and 3.3.3 for
details of the methods

2016). When the number of probes exceeds the number of modes used for reconstruc-
tion the problem is over defined and the QR-based method requires additional treat-
ment (Manohar et al., 2018). As the present study will investigate reconstructions us-
ing non-linear methods (in addition to linear), the optimal placement is not trivial. The
scope of the present study will be limited to considering probes placed randomly (the
sub-optimal case) and using the Q-DEIM with pivoting (to approximate the optimal
placement). For the case of randomly placed probes, one set of random locations is
used (as opposed to testing multiple sets of random locations). This is due to the dif-
ficulty in generating and storing a large number of random global probe libraries, the
need for which is presented in section 3.3.2.2.

3.3.2 Reconstruction

The accuracy of the reconstruction is a matter of approximating the real POD coeffi-
cients of the full velocity fields using a set of “dynamic” coefficients Apyy that are esti-
mated via the sparse probes signals U,. For the present analysis, the probe signals are
obtained via U, = UC, where C is a Boolean matrix known as the sparse matrix of size
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FIGURE 3.3: Block diagram of the reconstruction starting from the probe signal U,,.

2n, X p, where p is the number of probes. Each column of the sparse matrix contains
a single entry equal to one and zero elsewhere; providing a map that subsamples from
all spatial locations x to the sparse locations of the probes x, (Jayaraman et al., 2019).
With the POD coefficients estimated, the reconstruction is obtained via the global POD
basis

Urec = ADYN(I)gr (31)
or, more explicitly, for a up to a specified number of modes at a particular instant:

k

urec(t) - Za(t>DYN,k¢g,k (32)
1

where ®, are the global spatial modes from the POD performed on a set of training
data Ug. There lies an implicit assumption in the application of equation 3.2 such that
the external state of the system is unchanged during the reconstruction compared to
the conditions under which the global basis was tabulated. The instantaneous state
must remain within the bounds of the variation captured by the training data. In other
words, using the aerofoil as an example, variations in the fixed free stream velocity or
angle of attack are not accounted for. As such, the scope of the methodology is limited
to testing the efficacy of the sparse reconstructions without external changes to the state
of the system.

For the present study, the training data consists of 9000 samples. The training data is
used to generate the time-independent global basis ®, in order to predict the complete
spatio-temporal evolution of the flow based on sparse time-resolved measurements
via equation 3.2. The large training data set is needed due to the high spatio-temporal
variability of the turbulent separated flow, leading to a slowly decreasing set of singular
values X, compared to e.g. a laminar flow (figure 3.1) and therefore many modes are
required within the global basis. The global POD was calculated accordingly using n; =
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9000 and 21, = 50,952, resulting in a computation time of 418 seconds (7 minutes) on a
single desktop computer (double precision with 3.6GHz CPU and 16GB RAM). It was
determined that a larger set of training data was not required as the global POD library
was found to be satisfactorily converged up to the maximum number of modes used
for reconstructions at k = 500. As such the accuracy of the reconstructions depends
only on how closely the dynamic coefficients Apyx approximate the real ones up to the
number of modes used for the reconstructions. The time-resolved reconstruction was
then tested on all 5468 samples of the time-resolved data set, resulting in a training-to-

validation ratio of approximately 1.65.

There are several methods used in order to approximate the coefficients that will be
outlined in the following subsections. For all of the methods, provided that the global
POD and optimal placement calculations are performed using a training data set a-
priori, the calculations are possible to be performed in real-time. This is conceptually
illustrated in figure 3.2. These methods are therefore highly relevant to flow-sensing
and control applications. The methods for approximating the coefficients originating
from the probes A, can either be used for reconstruction immediately, or improved

using a shallow neural network (figure 3.3).

3.3.2.1 Method 1: sparse recovery reconstruction

The first method used is the most common implementation of sparse recovery origi-
nating from the compressed sensing literature (Donoho, 2006; Candes and Wakin, 2008;
Callaham et al., 2019). This method allows to calculate a set of coefficients that approxi-
mate the real coefficients by taking advantage of the fact that many entries of the global
basis are negligibly small (c.f. Jayaraman et al., 2019). With this method, the POD coef-
ficients are estimated by projecting the probes signal into a sparse basis corresponding

to the global POD modes evaluated at the locations of the probes

Al = u,e! (3.3)

where the bracketed superscript denotes the method used. Here, ® is the sparse basis
formed by the product of the global basis with the sparse matrix ® = ®;C. The number
of rows in A, corresponds to the number of samples (rows) of U, and the number of
columns is the number of probe modes. As we centre our analysis around the Q-DEIM
placement method described in section 3.3.1, the sparse basis © is a square matrix with
the number of probes p equal to the number of reconstruction modes k.

As mentioned in section 3.3.1, the optimal locations of the probes are the locations
within d, that minimise the matrix condition number of ®. In other words, locations

within the global basis with very little variance across the modes will lead to error
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propagation and low signal to noise ratio (SNR) upon the inversion in equation (3.3).
Therefore, the best locations will correspond to the locations with the largest variance
across the modes of the global basis.

3.3.2.2 Method 2: extended POD reconstruction

Motivated by studies that seek to approximate the POD coefficients using either a dif-
ferent variable or a separate measurement, extended POD (Borée, 2003) offers a flexible
framework with which to approximate the coefficients. Borée (2003) showed that by
projecting the temporal modes of one quantity into the measurements of another, one
obtains a set of extended spatial modes that can be used as a basis to reconstruct the
part of the measurements that is correlated to the quantity of interest. When all modes
are included, this is equivalent to the well known LSE (LSE: Adrian and Moin, 1988;
Lasagna et al., 2013; Hosseini et al., 2015).

For the present study, a framework inspired by extended POD is implemented treating
the probes as a quantity to be correlated to the full flow field. If the assumption is made
that the coefficients of the probes are highly correlated with the coefficients of the flow
field, one can use the same training data used to calculated the global POD basis ®, to
produce a global probe POD basis ®,,. The coefficients are then obtained as

A = u,@f, (3.4)

where the transpose is used on the global probe basis as it is orthogonal by construction.
The global probe basis is generated for all tested probe numbers and positions across
all 9000 training samples used to construct the global libraries. For the sake of memory
allocation, only one set of random probe locations is tested to avoid calculating and
storing hundreds of additional global probe libraries. It was confirmed after testing two
other sets of random placements that the results presented hereafter were qualitatively
unaffected.

3.3.2.3 Method 3: quasi-orthogonal extended POD reconstruction

Building on the methodology of the previous subsection, the quasi-orthogonal extended
POD reconstruction utilises all of the available information from the global POD and
global probe POD libraries to produce the reconstruction. Instead of simply assuming
that the coefficients produced from the global probe modes will approximate the real
coefficients, instead a quasi-orthogonal basis Yy is calculated using the pseudoinverse
of the singular values of the global probe modes Zg_pl. The term “quasi” is used to em-
phasise that there is no guarantee that the resulting basis will be perfectly orthogonal
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FIGURE 3.4: Global spatial modes (a,c,e) and corresponding global spatial probe
modes (b,d,f) of 1’ mapped to the locations of the full field for 500 probes placed using
the Q-DEIM. The colourbars range across -3¢ of the corresponding global modes (Pg,k

from blue to red. Modes with spatial locations that are in phase give a sign correction
s = 1 (a-b) and out of phase s = —1 (c-f)

as it is constructed using the training data and subsequently projected into by indepen-
dent time-resolved testing data. The coefficients can then be approximated using the
global singular values to re-scale the quasi-orthogonal basis as

(8] ‘I;” 1
Ap = Uy, Xy, Ty (3.5)
A similar principle was used by Discetti et al. (2018) to up-sample time-resolved fields
using simultaneous probe signals at a higher sampling frequency.

We remark that the extended-POD methodologies presented here represent a novel
departure from previous studies, e.g. Hosseini et al. (2015). In their case, the temporal
information contained within the pressure probes were used to reconstruct the velocity
tields using a basis determined by the extended spatial velocity modes. The present
work, by contrast, uses the global POD basis for the reconstruction and estimates the
coefficients using a separate POD basis tailored for the probes. The POD basis tailored
for the specific sets of probes ®,), is the main novelty of the present approach. As the
probes themselves are velocity measurements, the underlying assumption here is in
the inherent correlation between the probe velocities, their coefficients, and the full-

field velocities.
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3.3.2.4 Sign correction matrix

For the extended POD based methods of the two previous subsections, a new global
probe basis is used to obtain an approximation of the coefficients. The velocity autocor-
relation of the probes (the underlying physical quantity used to calculate the POD) is
missing information due to the sparsity of the probe signals. This may necessarily lead
to spatial probe modes @, that, when mapped to the locations of the full field modes
®,, have opposite sign. Especially for modes corresponding to the largest singular val-
ues, this can lead to reconstructions that are anti-correlated with the true underlying
velocity fields. This effect is illustrated in figure 3.4, showing the first three modes for
the fluctuating horizontal velocity component from the global library and the global
probe library side by side for the case of 500 probes placed using Q-DEIM.

To account for this effect, a sign correction matrix calculation is proposed to be calcu-
lated a-priori to ensure that the two spatial bases ®,;, and ®, are not anticorrelated (or
in other words, as correlated as possible):

s(k) = sgn ((ng,k o (pg,kC), (3.6)

where the overline denotes spatial averaging across the locations of the probes and
the o symbol denotes the Hadamard (element-wise) product. The full diagonal (and

orthogonal) sign correction matrix is then

S = diag(s) (3.7)

where the diag function outputs a square matrix of zeros with the entries of the vector
argument s along the diagonal. The coefficients are then updated through multiplica-

tion with S as shown in figure 3.3.

3.3.3 Shallow neural network refinement

As outlined in figure 3.3, the option to apply non-linear refinement via a neural network
is explored. Here we briefly review literature concerning neural network size to frame
the specific implementation utilised in this study. Early on, Cybenko (1989) provided
proof for the universal approximation theorem via neural networks of arbitrary width
with a single hidden layer and a sigmoidal activation function. A remaining issue how-
ever was in the capability to train networks with a large number of nodes in a single
layer, thereby ceding computational advantage to unsupervised methods such as POD.
Further generalisation of the universal approximation theorem was later shown for dif-

ferent activation functions and multiple layers (Hornik, 1991). In combination with
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method 1 using 5 and 500 probes and Q-DEIM placement vs number of epochs g (a)
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placement (b)

new training methods, the differences between networks of a single layer with many
nodes or multiple layers with less nodes has since faded (Hinton et al., 2006). Deep
neural networks with multiple layers remain commonplace, however fewer layers can
provide similar results taking advantage of modern hardware and training methods to
significantly reduce the required training. Although single layer neural networks are
easier to interpret, it has been shown that networks with two layers provide better gen-
eralisation capabilities (Thomas et al., 2017). Networks with few layers are typically
less sensitive to the specific choices of hyperparameters than their deep counterparts.
As such, a shallow neural network (SNN) is adopted for the present study.

We apply an SNN architecture as outlined in the work of Erichson et al. (2020). In
general, we seek a function F that consists of multiple fully connected or convolutional
layers with associated scalar non-linear activation functions ¢ and weights W applied
to input A

./_"(A; W) = WLg(WLflg(Wsz cee g(WlA))) (38)

where a shallow network has a small number of layers L. For the present study L = 3 is
used, where two layers are hidden and followed by an output layer. Due to the spatial
sparsity of the inputs in the present study, we favour the fully connected layers over
the convolutional layers in line with similar investigations (Erichson et al., 2020; Nair
and Goza, 2020).

For the SNN architecture, shown in table 3.1, we construct a first “imagination” layer
with 1.5p nodes followed by a 1.2p “refinement” layer with a 5% dropout layer in be-
tween to improve the generalisation (Erichson et al., 2020). As the network scales with
the input size p, the amount of trainable parameters varies significantly for different
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networks considering varying amounts of probes. The training data however has a
consistent amount of samples. This requires the larger networks to utilise additional
generalisation. This is achieved by the 5% dropout layer (and leaves the small net-
works largely unaffected). The final linear layer contains the same number of inputs
(number of probes/modes) as outputs. For the activation functions the rectified linear
unit function (ReLU) is used for the hidden layers and a linear function for the output
layer. The optimisation is performed using the ADAM adaptive moment optimisation
(Kingma and Ba, 2015). The learning rate is set to 0.001, with the exponential decay
rate for the first moment estimates equal to 0.9 and the exponential decay rate for the
second moment estimates equal to 0.999. For numerical stability, the recommended
€ = 1077 value is used.

TABLE 3.1: The neural network architecture. The dropout layer is only active during
training.

Layer Layer type Number of nodes Activation

input input p linear
hidden1 dense 1.5p ReLU
(hidden) dropout 0.05-1.5p linear
hidden2 dense 1.2p ReLU
output dense p linear

The same training data used to obtain the POD basis @, is used to train each neural
network F using 89% of the samples n = 8000, reserving m = 1000 random samples
for iterative learning validation. As demonstrated by Guastoni et al. (2021), the neural
network for the present study is trained to recover the POD coefficients. The global
coefficients for training the outputs are obtained as A, = quDéf up to k = p modes
(where p is the number of probes), and the sparse probe coefficients Ag;, using the i-th
linear method applied to the training data U,C as the inputs. For each set of probe
locations and for each linear method, a separate network and corresponding set of

weights is trained to minimise the loss

W = argmin £(W) (3.9)
W

where the loss is defined for each epoch g as

oL

‘A Ag,(t]»);W)Hl (3.10)

where A(t;) indicates the vector of coefficients corresponding to the j-th training sam-
ple and the ~ indicates a dummy function or variable used for training. The [; norm
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is chosen in this study for evaluating the loss as it was found to outperform the com-
monly used I, norm. The use of the I; norm (in combination with unscaled coefficients,
as will be discussed) aids the network in prioritising an error reduction on the coeffi-
cients corresponding to the modes with larger singular values. In an effort to maintain
the singular value scaling of the corresponding temporal modes, the coefficient inputs
and outputs are not scaled to a zero-to-one range as is often done to speed up learning.
This appears to have a minor influence on the training only affecting initial optimisa-
tion epochs where the optimiser must adjust before reducing the loss (figure 3.5). The
use of batch normalisation for generalisation was omitted and instead large batches of
3000 samples were used. These have the added benefit of speeding up training. Other
methods such as layer activation regularisation or layer weight regularisation were
explored but were found to produce less consistent results over the various neural net-

works without repetitive hyperparameter optimisation.

It is possible to include additional constraints on the loss function in equation 3.9 in or-
der to keep the network more generalised (Erichson et al., 2020; Sun and Wang, 2020).
Instead for this study early stopping was opted for to avoid overfitting. The trained net-
work was evaluated on the validation subset every epoch and for every iteration where
the loss decreased the weights were stored. If the network did not experience a new
minimum in the validation loss within 500 epochs, the training was halted and the last
stored weights adopted. The value of 500 was chosen ad-hoc for this particular study
as it was found to strike a balance between “kick-starting” the network with enough
initial epochs but was large enough to revert any apparent overfitting. This is shown
in figure 3.5a for p = 5 and 500 probes via input coefficients from method 1. With this
architecture and early stopping criterion, the number of epochs was on the order of a
few thousand. The number of epochs increased with increasing probes to a maximum
of approximately 10 thousand epochs for the Q-DEIM positioning (figure 3.5b). For the
random probe positioning the number of epochs decreases from approximately 5000
for 5 probes to approximately 1500 for 500 probes.

We remark that the reconstructions use the same number of modes as probes, therefore
for the present study the more probes used for the inputs the greater the performance

ceiling for the SNN (up to the limit of the real coefficients truncated at p modes).

3.3.4 Quantification

Two metrics are utilised to quantify the reconstruction accuracy in the present study.
To quantify the phase properties of the reconstruction, the normalised correlation is
defined as

(' (x, ) 1pec (x, t)t> (3.11)

P = (D) 72 (e (3, £)2) 172
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where the angled brackets (-) indicated averaging over all space and time and here u},,
is the reconstruction of the horizontal fluctuating velocity. The correlation takes a value
of 1 for a reconstruction that is completely in phase, -1 when it is out of phase, and 0
when it is uncorrelated. To evaluate the overall difference between the original and
reconstructed fields, the root-mean-square error is defined as

(0 (0, 1) = apee(, )5

(u’(x, t)2>1/2

(3.12)

ey =

The root-mean-square error describes the fraction by which the reconstruction differs
from the original fields, with a perfect reconstruction at e = 0. Equations 3.11 and 3.12

are analogously defined for the vertical fluctuations v'.

3.4 Results

The results are presented first using the linear methods alone, followed by the non-
linear SNN refinement as outlined in section 3.3 and figure 3.3. The reconstructions
evaluate the ability of the linear and non-linear methods to predict instantaneous flow
fields using the testing data consisting of 5468 samples. For all results, the number of
modes k used in the reconstructions is equal to the number of probes p. This was chosen
based on the underlying principles of the calculation for the optimal placement using
the Q-DEIM (see section 3.3.1), revealing optimal probe locations for reconstruction
method 1 specifically (section 3.3.2.1). These were found to correspond to locations
within the separated region of the flow (figure 3.4). We remark, however, that the other
linear methods (methods 2 and 3) need not necessarily use all k = p modes in their
reconstructions. For the present study we opt to present k = p for all methods for
consistency of comparison.

3.4.1 Linear reconstruction

The normalised root-mean-square error and correlations for the three linear methods
are presented for each component of the fluctuating velocity in figures 3.6 and 3.7 for
Q-DEIM and random placement, respectively. The best possible performance is indi-
cated in both figures by the reconstruction calculated using the rank-truncated POD
via equation 2.6. It is immediately apparent that the maximum possible performance
with the maximum number of probes p = 500 corresponds to a normalised root-mean-
square error of 16% and 24% and correlations of 0.99 and 0.96 for 1’ and v/, respectively.
This highlights the challenge of applying a reduced order model such as POD to a tur-
bulent flow as in the present case; resulting in many required modes to capture the
fluctuations.
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FIGURE 3.6: Normalised root mean square error (a,b) and correlations (c,d) vs number
of probes for u’ (a,c) and v’ (b,d) using the Q-DEIM for probe placement applied to
the testing data via method 1 (squares), method 2 (circles), method 3 (triangles) and
POD (diamonds). The number of reconstruction modes k is equal is the number of
probes used p. The POD-based reconstructions are obtained via equation 2.6 using the
coefficients from projecting the full NACA 0012 velocity fields into the global basis
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FIGURE 3.7: Normalised root mean square error (a,b) and correlations (c,d) vs num-
ber of probes for #’ (a,c) and v’ (b,d) using random probe placement applied to the
testing data from via method 1 (squares), method 2 (circles), method 3 (triangles) and
POD (diamonds). The number of reconstruction modes k is equal is the number of
probes used p. The POD-based reconstructions are obtained via equation 2.6 using the
coefficients from projecting the full NACA 0012 velocity fields into the global basis

The results in figure 3.6 highlight the differences in the three proposed methods when
the probes are placed using Q-DEIM. For this placement, the sparse recovery via method
1 significantly outperforms the other methods. At 500 probes, method 1 was able to re-
cover the spatio-temporal fluctuations to within 25% and 40% for u" and v, respectively,
with correlations exceeding 90%. The relative superiority of method 1 is enforced by
construction, as the Q-DEIM ensures that method 1 produces coefficients that most effi-
ciently sample the POD basis. Methods 2 and 3 show mixed results. These approaches
were only able to recover the fluctuations with approximately 75% error for 1’ and even
exceeding 100% for v with correlations in the approximate range of of 30-60%. Both
methods produce reconstructions with very similar correlations. This is unsurprising,
as both methods use the same global probe basis. Method 3, on the other hand, effec-
tively contains a re-scaling of the coefficients by a factor of X, Zg, resulting in notable
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differences in the root-mean-square error. For 1/, this leads to comparatively lower er-
ror using method 3. However for v/, method 3 quickly compares worse to method 2

beyond 14 probes.

We remark that although the experimental data presented is inherently limited in its ac-
curacy and contains noise, no systematic variation of noise on the fidelity of the recon-
structions is presented. This is due to the underlying assumption that the measurement
noise is largely confined to low-energy high-rank structure that was explicitly treated
for in the data post-processing (section 2.1.1.2). The cut-off mode number for treating
the random noise was found to be higher than the maximum number of modes tested
for the sparse reconstructions. Nevertheless, the limited sub-pixel accuracy of the PIV
(Adrian et al., 2011) should be considered in the interpretation of the results. As can be
seen in figure 3.7, the vertical velocity fluctuation v’ was found to be consistently more
difficult to reconstruct across methods. This is likely due to the reduced signal-to-noise
ratio of v’ in the measurements, for which the vertical fluctuations span a smaller range
of pixel values (average deviation oy, = 1.2 pixels) than the horizontal (o5, = 1.8

pixels) and are therefore more greatly effected by sub-pixel accuracy in the PIV.

An interesting shift in the results occurs when the probes are placed randomly as shown
in figure 3.7. The sparse recovery approach of method 1 now performs significantly
worse than methods 2 and 3. This is due to the fact that the random probes have some
locations outside of the shear layer. These locations contribute very little variance to the
global POD basis, and when they are inverted (equation 3.3) the singular values become
large and amplify the noise as a result. This points to the necessity that reconstructions
obtained via method 1 must avoid probe locations with very little variance across the
global basis. For the case of a separated aerofoil, this means avoiding probes outside
of the separated region. On the other hand, the random placement does not greatly
impact the extended-POD based methods 2 and 3. Both methods perform similarly
between the random and Q-DEIM placements, suggesting they may be more robust to
arbitrary placement. Methods 2 and 3 do not suffer from the same effect as method 1
because they use an independent global probe POD basis that is tailored to the sets of
probe locations using individual decompositions obtained a-priori.

The extended-POD methods appear more robust for the present PIV data of a sepa-
rated aerofoil at high Reynolds number, but a natural question to ask is whether such
robustness extends to the laminar case. To assess this, we use the DNS data of a laminar
cylinder in crossflow at Rep = 100 provided by Brunton and Kutz (2019) and perform
sparse reconstructions of the vorticity as described by Manohar et al. (2018). A brief
outline of the analysis is as follows. The laminar data consists of 151 snapshots for
which the mean is subtracted to isolate the fluctuations. The first 100 snapshots are
used to generate the global basis and the global probe basis using POD for both Q-

DEIM and random placements (see figure 3.1c). The remaining 51 snapshots are used
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FIGURE 3.8: Comparison of normalised reconstruction correlation (a,b) and root mean
square error (c,d) for the reconstruction of #’ in the present case (filled symbols, x = u)
to the laminar cylinder at Rep = 100 from the DNS of Brunton and Kutz (2019) (un-
filled symbols, x = w) vs number of probes using Q-DEIM (a,c) and random place-
ment (b,d) via method 1 (squares), method 2 (circles), and method 3 (triangles)

for assessing the reconstructions quantified using the same metrics as the present study
(section 3.3.4).

The comparison to the laminar cylinder is presented in figure 3.8. The results from
the laminar cylinder are shown with unfilled symbols and from the present study for
u" with filled symbols using Q-DEIM and random placement. Method 1 outperforms
methods 2 and 3 for reconstructing the laminar cylinder for all probe numbers and
locations. Interestingly, for very few probes (p = 7) methods 2 and 3 correlate reason-
ably well for the Q-DEIM placement around the cylinder. However, as the number of
probes increases the correlation rapidly decreases. It is observed that as the number of
probes increases, the optimal locations for the probes shift from within the wake region
to concentrating near the leading edge of the cylinder. This appears to negatively im-
pact the ability for extended POD to capture the correlation between probes and flow.
The random placement however appears to give improved correlations for methods 2
and 3 compared to the Q-DEIM; indicating that the extended POD benefits from the

dispersed probe locations.

The comparison between the reconstructions in the present study and with the laminar
cylinder indicates that the compressed sensing methodology is superior for systems
captured by relatively few modes. This is because the compressed sensing method-
ology does not rely on underlying correlations between probes, but rather how their
location contributes to the global basis and its corresponding sparse inversion. By con-
trast, the improvement in the extended POD based methods between Q-DEIM and
randomly placed probes suggests that the extended POD relies more heavily on the
underlying spatial correlations captured by the POD of the global probe basis. Indeed,
it was confirmed (not shown) that spatially concentrated probes in the wake of the
cylinder yielded significantly poorer reconstructions than spatially dispersed configu-

rations. This effect may explain why the extended POD methods are more robust for
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FIGURE 3.9: Normalised root mean square error (a,b) and correlations (c,d) vs number
of probes for u' (a,c) and v’ (b,d) using SNN refinement and the Q-DEIM for probe
placement applied to the testing data from via method 1 (squares), method 2 (cir-
cles), method 3 (triangles) and POD (diamonds). The linear results are shown in gray
dashed lines with corresponding symbols. The number of reconstruction modes k is
equal is the number of probes used p. The POD-based reconstructions are obtained via
equation 2.6 using the coefficients from projecting the full NACA 0012 velocity fields
into the global basis

the separated aerofoil. The spatially dispersed probes capture a portion of the under-
lying spatial correlations whilst the compressed sensing approach of method 1 may be
sensitive to specific regions with low variance across the global basis.

3.4.2 Non-linear reconstruction

The root-mean-square error and correlations using the non-linear SNN for refinement
are presented in figures 3.9 and 3.10 for the Q-DEIM and random placements, respec-
tively. In both figures, the grey dashed lines indicate the reconstructions without ap-
plying the SNN. Regardless of which linear method is used to supply the input for
the SNN, the output coefficients perform nearly identically for each placement. The Q-
DEIM placement appears to slightly outperform the random placement; pointing to the
importance of the underlying correlations between the input and output coefficients on
their performance of the SNN. Only for very large numbers of probes using the random
placement can some small differences arise between input methods (figure 3.10). In any
case, the SNN outperforms all of the linear methods both in terms of correlation and
root-mean-square-error. The SNNs are trained using a loss function that is designed
to minimise the difference between the known POD coefficients and the output of the
SNN. It is therefore unsurprising that it outperforms the linear counterparts, although

it does not fully recover the true underlying POD coefficients for either placement.

In order to understand more about how the SNN is performing compared to the linear
methods, the singular values from the estimated coefficients Apyy are extracted. This
separates the orthogonal temporal part of the coefficients in order to reveal the effective
singular values used for the full reconstruction. This is presented for the linear methods
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FIGURE 3.10: Normalised root mean square error (a,b) and correlations (c,d) vs num-
ber of probes for ' (a,c) and v’ (b,d) using SNN refinement and random probe place-
ment applied to the testing data from via method 1 (squares), method 2 (circles),
method 3 (triangles) and POD (diamonds). The linear results are shown in gray
dashed lines with corresponding symbols. The number of reconstruction modes k
is equal is the number of probes used p. The POD-based reconstructions are obtained
via equation 2.6 using the coefficients from projecting the full NACA 0012 velocity
fields into the global basis

and with SNN refinement for the case p = 14 in figure 3.11 for Q-DEIM and random
placement. The results are seemingly counter-intuitive. For both placements, the linear
method 3 appears to most closely approximate the true singular values of the validation
run, but this does not mean that it will necessarily lead to a better reconstruction. In
fact, this result is unsurprising as method 3 is constructed to have a quasi-orthogonal
set of temporal probe modes that are re-scaled using the global ones, and therefore will
most closely resemble the true singular values upon extraction from the coefficients.
The other two methods on the other hand do nothing explicit to regulate the orthogonal
basis of the coefficients, and this is manifested by singular values in figure 3.11 that
depart from the true ones.

Regardless of the linear method used, the singular values from the output of the SNN
collapse together and consistently underestimate the true ones. It is important to note
that no orthogonal regularisation was imposed on the SNN in its construction. Instead
it simply attempts to minimise the loss function between the training inputs and the
training data by adjusting the weights. As the root-mean-square error and correlations
unilaterally improve via the SNN as shown in figures 3.9 and 3.10, the results of figure
3.11 imply that recovering the underlying temporal correlation (the phase information
of the temporal modes) is inherently more important than recovering the precise sin-
gular values (at least for minimising the imposed loss function). This becomes increas-
ingly less important as the mode number increases, as evidenced by the sharp decrease
in singular values with increasing k. This shown for the case of p = 14, however similar

results were found for all probe numbers tested.
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FIGURE 3.11: Singular values 04 y extracted from the estimated coefficients Apyy nor-

malised by the leading order singular value of the true coefficients for p = 14 probes

using linear methods (unfilled symbols) and SNN refinement (filled symbols) via Q-
DEIM (a) and random placement (b)

3.5 Conclusions

We have presented three distinct linear reconstruction methodologies and a shallow
neural network (SNN) for non-linear refinement to obtain state estimations of sepa-
rated turbulent flow over a NACA 0012 aerofoil at « = 12° and Re. = 75000 using
time-resolved PIV from limited probes. Each methodology was trained using 9000
samples of PIV training data and instantaneous sample prediction was tested using
all 5468 samples of an independent time-resolved data set. This is the first systematic
investigation of sparse reconstructions for a moderately high Reynolds number advec-
tive turbulent flow obtained via experiment.

The reconstructions were first tested through the use of linear methods alone. It was
found that the performance of the linear methods depended largely on the choice of
placement. When the placement was chosen carefully using the Q-DEIM, the compressed-
sensing approach of method 1 greatly outperformed the extended POD based approaches
of methods 2 and 3 (figure 3.6). When the probes were placed randomly (figure 3.7),

it was found that the extended POD methods performed move favourably than the
compressed sensing approach of method 1. This was due to locations within the global
POD basis outside of the shear layer with small variance causing errors in the inversion
of the sparse basis for method 1. This is illustrated clearly in figure 3.12c and e, showing
how the reconstruction is affected when probe locations reside in the free stream.

In order to investigate how the methods compare for the laminar case, the extended
POD methods were applied to the DNS of laminar flow over a cylinder at Rep = 100
of Brunton and Kutz (2019) (figure 3.8). It was found that the extended POD based
methods rely on the underlying correlations of their global probe POD basis. When
the probes were grouped closely together, the reconstructions performed more poorly.
When the probes were more dispersed, the autocorrelation underlying the global probe



3.5. Conclusions 43

Original Truncated, k=5

(@) =

(c) (d) ==

Q-DEIM

Q-DEIM

Method 1, p=5 Method 1—+SNN, p =5
s () (f) 1% m— ()

i
Random

Random

FIGURE 3.12: Original (a), POD-based (b), linear via method 1 (c,e), and non-linear

(d,f) reconstructions of the total velocity at one arbitrary instant using 5 probes and

Q-DEIM (c,d) and random (e,f) placement with every fifth velocity vector shown for

clarity. Vectors are scaled automatically with respect to their individual fields and not
across panels

POD basis was able to capture more features. Despite this, the compressed sensing ap-
proach of method 1 outperformed the extended POD approaches for both Q-DEIM
and random placement in the laminar case. As the laminar data did not contain mea-
surement noise and was captured by relatively few modes, small variances within the

global basis were comparatively less problematic.

Non-linear refinement of the estimated coefficients was tested through the application
of an SNN using the various linear methodologies as inputs. The performance of the
SNN was found to be nearly identical regardless of the linear method used and slightly
more favourable for Q-DEIM placement (figures 3.9 and 3.10). In all cases, the SNN
improved the root-mean-square error and correlations of the reconstructions. Interest-
ingly, it was found that the output coefficients of the SNN did not contain singular val-
ues that most closely matched the true singular values (figure 3.11). Instead, the SNN
naturally placed more emphasis on the phase information of the underlying temporal

correlations; leading to improved reconstruction performance.

The implications for sparse reconstructions in a rapidly evolving turbulent flow (the
most common type of flow in engineering applications) based on the findings of the
present study can be summarised as follows. Firstly, several hundred modes (and
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therefore probes) are required to capture the velocity fluctuations using POD as the
global basis. This implies an extensive full-field data set must be tabulated a-priori.
In this case 18 times more samples than the maximum modes used for reconstruction
(9000 samples and 500 modes). Many fewer probes may be used for reconstructions
depending on the desired accuracy for the application of interest (figure 3.6). Second,
the placement of the probes depends on the reconstruction method of choice. The com-
pressed sensing approach based on sparsity (method 1) is ideal but relies on chosen
locations within the flow with high variance. The extended-POD approaches (methods
2 and 3) are less optimal but comparatively more robust and instead depend on being
spatially dispersed. Finally, the non-linear refinement via the SNN appears to equalise
the linear approaches, with only a small improvement when placed favourably. This
result begs the question: why should one bother with linear methods at all? The answer
again depends on the application of interest. If the objective is to reconstruct the full-
tield as accurately as possible our results indicate one should employ as many sensors
as possible and use any linear method for the inputs to the SNN. This requires training
the network with the entirety of the full-field data obtained a-priori. If the application
instead does not require very high accuracy, the expensive task of training a neural net-
work may be avoided in which case the differences between the linear methods become

relevant once again.

This study has demonstrated the capability of linear and non-linear methods to recover
instantaneous reconstructions of the full experimental velocity fields using sparse mea-
surements. This is visualised in figure 3.12. Avenues for future work include sparse
reconstructions with flow control within the sensing region (which would require a
distinct global basis depending on if the flow control is active or not). A further explo-
ration of sensitivity for variations in the system e.g. changes in the freestream velocity
U or angle of attack « is warranted, as the cost of training separate global bases for
variations in external conditions is undesirably high (for the present study, this implies
separate training data sets on the order of thousands of samples each for each «). Fu-
ture investigations may also explore variations of the SNN architecture, which might
benefit from e.g. splitting the input coefficients into singular values and orthogonal
modes and training the modes with orthogonal regularisation. One challenge with
promising potential is to explore obtaining a greater number of outputs (modes) from
the SNN than inputs, potentially achieving reconstructions that are more accurate than
the rank-truncated POD itself.



45

Chapter 4

Non-Linear Modes of Flow over a
Stalled Airfoil

The proper orthogonal decomposition has long been a popular tool to extract orthogo-
nal modes from complex systems. Recently there has been a significant focus on finding
a suitable method for extracting non-linear modes from flow fields in aerodynamics.
The use of non-linear modes allows for the creation of a latent space which contains
more information than the linear equivalent. In the current research the relation be-
tween the linear proper orthogonal decomposition and neural networks is shown. The
use of hierarchical neural networks leads to the creation of non-linear modes which
can be ranked according to their contribution to a reconstruction. In order to create
orthogonal non-linear modes a variational autoencoder has been used for which the
regularisation of the latent space distributions has been tuned such that the reconstruc-
tion outperforms the proper orthogonal decomposition, while the latent space distribu-
tions closely match a unit normal distribution. This allows to sample new latent space

coefficients from known distributions which result in realistic reconstructions.

4.1 Introduction

The proper orthogonal decomposition (POD) has been introduced by Payne and Lum-
ley (1967) in fluid dynamics for the study of patterns within turbulent flow. The POD
allows to extract a set of linearly independent modes from a data set (Sirovich 1987a;
Berkooz et al. 1993). Each mode represents a multidimensional direction in which the
data set has a given variance. The POD modes are typically ordered from highest vari-
ance to lowest. The first POD mode represents the direction in the data set which
spans the largest one dimensional variance. Many flow phenomena however are non-
linear and could be better modelled by a non-linear representation of coherent flow

structures. Autoencoders bare similarities to the POD, but are a type of architecture of
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non-linear neural networks. Autoencoders are a popular tool for the analysis of a wide
range of aerodynamic parameters thanks to their ability to model both linear and non-
linear systems efficiently as shown by Saetta et al. (2022) and Omata and Shirayama
(2019). To improve the interpretability of the non-linear modes it is possible to use hier-
archical networks which are trained successively as shown by Fukami et al. (2020) and
Saegusa et al. (2004). As networks are trained successively, the ordering will be such
that the first network represents the largest reduction in error for the reconstruction
with the modes that it learns. Alternatively the use of variational autoencoders regu-
larises the latent space by drawing the the latent space variable values from learned dis-
tributions as introduced by Kingma and Welling (2014). Variational autoencoders have
been used for a range of applications in aerodynamics research from flow field pre-
dictions by Yang et al. (2022), to the design of airfoils by Yonekura and Suzuki (2021).
Variational autoencoders allow to create continuous latent space variables where each
combination of the latent space variables results in a realistic sample once decoded.
This property is what makes this type of neural network a generative model which can
create new realistic samples by sampling a latent space. The inclusion of an additional
parameter, beta (), can be used to adjust the amount of regularisation that is applied to
the latent space. By tuning this coefficient it becomes possible to find a balance between
the information captured in the latent space and the distribution of the latent space be-
ing close to a N'(0,1) distribution. Eivazai et al. (2022) used f variational autoencoder
networks to show the possibility of creating near orthogonal non-linear modes, which
capture a larger energy content of the data set with a limited set of modes compared to
the POD. In the present work different data driven reduced order models are compared
to explore the advantages and disadvantages associated with each method. The differ-
ent methods that are available are all closely related to each other with certain methods
being better suited for specific purposes. A good understanding of the different avail-
able reduced order model methods allows to select and create the appropriate model
for a data driven approach which can significantly impact the performance.

4.2 Separated flow data set

A data set compromised of processed PIV images of the flow over a wing is used as
the training data. The full details about the experimental setup and the data processing
of this data set are given in section 2.1.1. This data set includes the 2D velocity com-
ponents in the wall normal plane above a NACA 0012 airfoil profile. For the current
investigation only the fluctuations of the streamwise velocity component are used, as
shown in fig. 2.2. The full data set has been split into a training and test set, the training
set contains 65616 samples and the test set 5468 samples (12:1 ratio). A subset of the
training set can be used as the validation set where necessary. The validation set is al-

lowed to be evaluated during the training of several methods, whereas the test set does
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not have an influence on the training of any method and will only serve to evaluate the

performance of a method after the training phase is completed.

4.3 Linear modes

Two advantages of linear modes are the ability to use linear superposition of modes
to reconstruct the training data and the speed of such algorithms. This allows to sep-
arately interpret the modes, while the POD coefficient for each mode indicates its rel-
ative importance among the set of modes used. Similarly the singular values indicate
the relative importance of the modes across a training data set. Thanks to the linearity
of the modes there are a number of efficient algorithms which can be used to find a set
of modes for a data set.

4.3.1 POD by singular value decomposition

Typically a large enough training set is used such that all representative occurrences
are represented, which allows to utilise the learned spatial modes on new but similar

samples. The Pearson correlation, between n samples of x and y, is typically given as:

Yiq (xi —X)(yi —7)
o , (4.1)
A (- DA (i 7

where x; and y; indicate individual samples, and ¥ and ¥ indicate the averages. The
root mean squared error (RMSE), for n samples of x and y, is typically given as:

n

Z (Xl' — y,')z . (42)

i=1

RMSE =

Q|-

In fig. 4.1 the Pearson correlation and RMSE are shown for truncated POD reconstruc-
tions in comparison with the original samples. The learned spatial modes and singular
values from the training set have been used on the test set. It can be observed that the
correlation quickly increases with the inclusion of more modes from one to ten modes,
as more modes are included the gradient of the Pearson correlation improvement re-
duces. The error can be seen to reduce the most with the inclusion of the initial modes,
ordered by their singular values. In fig. 4.2 the explained variance ratio is shown which
represents the ratio between the variance captured by a limited set of spatial modes
over the entire set of spatial modes. With the inclusion of 362 modes it is possible to

reconstruct 99% of the variance in the data set.
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In fig. 4.3 truncated reconstructions are shown of a single sample with varying amounts

of spatial modes (and singular values) included. It can be seen that even up to 10 modes

the flow patterns that are visible tend to be of a larger scale than represented in the

original sample. When 25 modes are included in the truncated reconstruction some

flow patterns are visible on similar scales to the original sample.
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FIGURE 4.3: The reconstruction of a single sample is shown with a varying amount of
POD modes included in the reconstruction.

In fig. 4.4 four of the utilised spatial modes are shown. The spatial modes with the

largest singular values (lowest mode number) correspond to the modes with the largest

flow structures.
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FIGURE 4.4: The spatial modes corresponding to the 1%, 5, 10t and 25% largest
singular values.
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4.3.2 Hierarchical ML-POD

The use of machine learning in the form of neural networks provides unlimited varia-
tions for a desired function to be approximated through a training process. The archi-
tecture known as an autoencoder consists of several layers of nodes, where the input
size matches the output size and a restricted layer is in between them. The restricted
layer contains less nodes than there are variables in the original input data and result-
ing output data. This results in the restricted layer being forced to learn an efficient
representation of the input data which allows mapping to the output with a minimal
error. When only one linear layer is used between the input and output, which has less
nodes than the input, the resulting network represents the same transformation as a
truncated POD reconstruction as shown by Milano and Koumoutsakos (2002).

Fae (?ﬁ W)

A

r 3
Ze(yy;We)  Fal; Wy)

Y c yl

FIGURE 4.5: The general architecture of an encoder and decoder combined to form an

autoencoder. Only a single node is used for the encoding of a single mode. The input

y is transformed into a latent space coefficient c and this coefficient is used as an input
to obtain the truncated reconstruction y’

In order to illustrate this principle a neural network has been created with an architec-
ture of three layers as shown in fig. 4.5. The first layer does not perform any mathe-
matical operation and represents the inputs. The second layer consists of a single node,
which represents the transformation by a single spatial mode and has an amount of
trainable parameters equal to the amount of variables in the input data. The encoder
is described as F.(y; W,) = c in eq. (4.3) with input sample y, weights W, and latent
space coefficient c. The third and last layer of the network consists of an amount of
nodes equal to the amount of variables in the input data, this layer is connected to the
single node layer before it and produces the reconstruction of the single latent space
coefficient to a full sample, the decoder is described as F;(c, Wy) = y' with weights Wy
in eq. (4.3) and produces the truncated reconstruction y’. No activation function or bias

is used for the second and third layer.

Fae(y; W) = Fa(Fe(y; We); Wy) (4.3)
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The additional requirement of the spatial modes having norm one can be explicitly
prescribed in the final reconstruction layer, such as described by eq. (4.4), by scaling the
weights to achieve norm one during training. The middle layer (encoder) with a single
node then transforms the input into a single POD coefficient for each sample which
incorporates the singular value. This allows to visualise the spatial modes obtained in
the final layer of the network and to obtain the singular value found by the network as

the norm of the output of the single node layer for all samples.

Hw,,,H —1 (4.4)
2

In combination with the original data set the optimisation of this neural network con-
verges to the transformation that is obtained by the first spatial mode of the POD of
the data set. The weights W, and W, are optimised by minimising the loss over multi-
ple epochs (g) and retaining the weights which produce the lowest loss as described by
eq. (4.5) where the tilde represents the state during the training phase. The loss for each
epoch is the L2 norm of the difference between the original input and the output of the
autoencoder compromised of the encoder and decoder, such as described by eq. (4.6)

where 7 is the amount of samples in the data set at each epoch 4.

W = argmin £(W) (4.5)
w

n
Z% ‘y] Fae(yj; )H (4.6)
In fig. 4.6 the first spatial modes as obtained with the neural network approach is shown
in comparison with the spatial mode as obtained from the SVD. Only very small differ-
ences are present between the NN spatial mode or the SVD spatial mode. In fig. 4.7 the
distribution is shown of the POD coefficients. These are the temporal modes from the
SVD multiplied with the singular value of the first mode, and the latent space variables
from the NN. It can be seen that the distributions match very well. The singular values
as obtained from the SVD or the NN only differ by approximately 0.1%. This has been

obtained with 10 iterations over the entire training data set in combination with the
ADAM optimiser.
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The resulting single node autoencoder converges to the first POD mode, leaving the re-
maining POD modes as described by eq. (4.7) where ¢, represents the POD coefficients
for the k" mode and ¢ the k' spatial mode. The approximation (') can be subtracted
from the original input data (y), leaving the combination of the remaining modes. A
new network with the same architecture can be used to find the second mode. In a

similar fashion through recursive training the following modes can be obtained.

Y = Fae,mode 1 + Z CkPr (4.7)
k=2

In fig. 4.8 the four first spatial modes are shown as obtained by the neural network ap-
proach and the SVD. The comparison shows the similarity between the spatial modes,
it is possible that the modes have an opposite sign which is resolved by the correspond-

ing coefficients in the decomposition and reconstruction.
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FIGURE 4.8: Comparison of the spatial modes obtained with a neural network versus
the SVD for the first four modes.

4.4 Non-linear modes

Linear modes can be easily interpreted and provide a clear manner to create a trun-
cated version of the data set. The main drawback of the linear modes is that they are
not well suited to represent complex non-linear phenomena. Non-linear modes can be
created which can include more information in a single mode than the linear variant.
Neural networks can be used to reproduce the input data with a restricted number of
nodes between the input and output. Such an autoencoder model is known to create
an efficient representation of the training data. In this section some non-linear meth-
ods are explored for the use on a separated flow data set. By being able to capture
more information with less modes than the linear equivalent the modes become more

representative for the flow.

44.1 Hierarchical autoencoder

Autoencoders can exist in many variations due to the flexibility of a neural network ar-
chitecture. The most restricted hidden layer of an autoencoder determines the amount
of latent space variables that are used for a reconstruction. By creating a neural network
with a given amount of nodes in the restricted hidden layer the accuracy of the recon-
struction is also set. With multiple hidden layers and non-linear activation functions
the interaction between different modes becomes more complicated to understand and
cannot be further expanded to include more latent space variables after the training
phase of the given neural network. A trail and error process is required to find the
appropriate size of the latent space (and network architecture) for a desired level of

accuracy in the reconstruction of a given data set.
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The use of a regular autoencoder does not allow to create an encoded representation
of the data where the latent space variables are ordered according to their importance.
Saegusa et al. (2004) adapted a non-linear autoencoder approach to build successive
non-linear modes ranked according to their contributions to the reconstruction of a
data set. This approach relies on an autoencoder to find an efficient non-linear en-
coding of the data set into a single mode. For the first mode this is achieved with an
autoencoder which has a single node in the middle layer and potentially multiple hid-
den layers. The encoder architecture is retained for finding the mapping of the input
data to the latent space variable for the following modes. The structure of hierarchi-
cal autoencoders is described in more detail in Saegusa et al. (2004) and illustrated in
tig. 4.9 for the first three modes. The decoder architecture is changed by increasing the
number of inputs to allow for the increasing number of dimensions of the latent space
vector. By successively training the encoders (and corresponding decoders) the modes
are automatically ordered. This method effectively allows to train multiple networks
with a limited set of available data by splitting the training into sub-networks and com-
bining the trained networks (similarly to transfer learning). In the current investigation
monotonically decreasing loss was observed during training, which allowed to use a
small number of epochs (5) without a reduction in the loss larger than 1072 to serve
as the stopping criterion. Once the training is stopped, weights which resulted in the
lowest loss during training are restored. Additionally, thanks to the transfer learning
of different modes, the network which is trained for successive modes is very similar
to the networks for previous modes. This allows to use the same stopping criterion for
different modes.
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FIGURE 4.9: Hierarchical autoencoder setup. With the input y the reconstruction i’
and the latent space variables c,, where 1 represents the n" latent space variable cor-
responding to the 1" mode.

The decoder maps the latent space vector non-linearly to the reconstructed output. For
the first mode it is possible to visualise the non-linear variation in the output for a range
of latent space input values to the decoder. In fig. 4.10 the reconstruction is shown for
four values of the latent space variable for the first non-linear mode that have been
drawn from the distribution that follows from the training data set. It can be seen that
the single non-linear mode obtained with the autoencoder has the ability to represent
significant variation in the resulting flow patterns, similar to multiple POD modes or
the combination thereof. As no additional scaling factor equivalent to the singular
values in POD is used, the output directly represents the reconstruction in the velocity

domain.
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FIGURE 4.10: The reconstruction of four samples out of four values for the the latent
space variable of the first mode. All other latent space variables are set equal to zero.

When using two modes with the non-linear hierarchical autoencoders the modes can
not be displayed in a similar fashion as for a single mode. The resulting reconstruction

is dependent on the non-linear combination of two latent space variables. The two
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dimensional distribution of the values for the latent space variables can be visualised
as shown in fig. 4.11. It can be seen that the full range for each mode individually is not
applicable over the full range of the other modes. Specific combinations of latent space

variables values can lead to unrealistic reconstructions.
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FIGURE 4.11: Two dimensional latent space vector representation as found by the first

two networks of the hierarchical autoencoder. Only one out of every hundred samples

is shown for clarity, the dots are coloured according to the normalised probability
density.

As was shown in fig. 4.10 the hierarchical autoencoder has multiple flow patterns that
can be created from a single mode. It can thus be reasoned that a single non-linear
mode will perform better than a single linear mode in the reconstruction. The root
mean squared error (RMSE) and the Pearson correlation have been evaluated for a
reconstruction with both linear POD modes and non-linear hierarchical autoencoder
modes, with up to 4 modes included in the reconstruction, as shown in fig. 4.12 and
tig. 4.13. The error with a non-linear reconstruction is found to be lower when an equal
amount of modes is included. Additionally the Pearson correlation for the non-linear

reconstruction is significantly higher than the equivalent linear reconstruction.
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A drawback of the non-linear approach is the complexity in the setup and the compu-
tational cost, these aspects limit the practical application of a large amount of modes.
Additionally the POD is guaranteed to converge to an error of zero and a Pearson cor-
relation of one with the inclusion of more modes. The use of non-linear modes can be
beneficial when the linear modes are unrepresentative or when it is specifically desired

to have a low dimensional latent space.

4.4.2 Variational autoencoder

The use of neural network based autoencoders is great to encode a given data set. The
general applicability of the resulting autoencoder largely depends on whether the train-
ing data set is representative for the evaluation data or not. Additionally no samples
can be trivially reconstructed from a chosen latent space vector without detailed knowl-
edge of the multidimensional latent space distribution. These problems are tackled by
using a neural network approach which aims at developing a generative model. Such
a model can be created with probabilistic constraints to encourage the latent space to

have a known distribution.

To this end a variational autoencoder (VAE) can be used, as originally described by
Kingma and Welling (2014). The encoder of an n-dimensional VAE produces two out-
put vectors of dimension n. The elements of the first vector represent a mean and
the elements of the second vector represent a standard deviation. The n latent space
variables are then sampled from the normal distributions described by the vectors. A
“reparametrisation trick” allows to formulate the sampling of the distributions to be
differentiable. The latent space values are then decoded by the decoder. As the encoder
learns distributions for different latent space variables, these can be enforced to be sim-
ilar by using the Kullback-Leibler (KL) divergence. The loss function incorporates both
the reconstruction loss and the KL divergence. A beta variational autoencoder (§ - VAE)
uses a parameter B, to balance the contribution of the reconstruction loss and the KL
divergence. In this report only the implementation of this method is shortly described.
More complete analytical derivations, explanations and proof are given in Blei et al.
(2017) for variational inference and in Doersch (2016) for VAEs in addition to Kingma
and Welling (2014).

The encoder in this case produces two deterministic outputs, the mean y,, and the stan-
dard deviation ¢, dependent on the input y. An additional random variable, €, is in-
troduced which is A(0,1) distributed. The reparametrisation trick is used to sample a
latent space, z, by incorporating the distributions produced by the encoder as shown
in eq. (4.8).

zZ=Hyt+e€ oy (4.8)
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The decoder uses the latent space z as the input to produce the reconstruction y’. The
distribution divergence shown in eq. (4.9) is used as part of the loss which regularises
the latent space. The mean squared error (MSE) reconstruction loss shown in eq. (4.10)

is used to ensure the reconstruction is accurate.

divergence loss = KL[N (uy,07) || N(0,1)] (4.9)

reconstruction loss = MSE(y, y) (4.10)

The total loss as shown in eq. (4.11) is the sum of both the regularisation and recon-

struction loss with a balancing parameter () applied.

_ 1y B v 2_ 2
total loss = nj_zl(y y)? -3 n]; (1+1log(e7) — ui —07) (4.11)

The B parameter serves to prioritise either the reconstruction accuracy or the latent
space distribution. The KL divergence tries to match the conditional probability distri-
bution approximation q(z|y) to p(z), where p(z) is prescribed as A(0,1). As the latent
space distribution is forced towards N (0,1) a closely matching latent space distribu-
tion will force the q(z|y) ~ p(z). This would imply that the latent space z is indepen-
dent of the input y. Without the reconstruction loss term the encoder would simply
sample N (0,1) with random y’ obtained from the decoder. Without the regularisa-
tion term the variational autoencoder would not have closely matching distributions
for the latent space variables. It is clear that a delicate balance between both terms is
relevant and this is the purpose of the  parameter. The balance between minimising
the reconstruction error and obtaining a latent space from which can easily be sampled
is typically explored through trial and error. Typically the reconstruction error is ob-
served, to not compromise the essential function of the autoencoder. At the same time
the generalisation of the VAE can be monitored through the latent space distribution,
or the orthogonality of the VAE modes through the determinant of the latent space cor-
relation matrix. Regularisation of the latent space comes at the cost of reducing the

reconstruction accuracy, while improving the generalisation of the decoder.
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FIGURE 4.14: The architecture of a VAE network.

In fig. 4.14 the detailed architecture is shown for a VAE with two shared hidden layers
in the encoder, followed by the encoding layers for the mean (yellow) and standard
deviation (blue). The sampling of the latent space z (green) includes the additional
unit normally distributed noise parameter €. The decoder has two hidden layers to
decode the latent space into the reconstruction y’. The number of latent space variables
is determined by the number of nodes that are used in the layers which output y, and
0y. The latent space z is then sampled and decoded by the decoder with two hidden
layers. In the current investigation the hidden layers of the encoder have 30 and 25
nodes, followed by 4 nodes for p, and also for ¢,. This encoder thus allows for the
sampling of a latent space with dimension four. This latent space is then decoded by
a decoder that has two successive hidden layers with 25 nodes for the first and 30 for
the second layer. The final layer of the decoder has an equal amount of nodes as the
amount of variables in the input. The two hidden layers in the encoder and two hidden
layers in the decoder use a ReLU activation function, while all other layers use a linear

activation function.

Initially the B parameter has been set to zero. This implies that only the reconstruction
is included in the loss function. However unlike a regular autoencoder each variable
of the latent space is determined through the combination of three parameters. Two
parameters, the mean and standard deviation are calculated by the encoder, while the
third parameter is random noise. The encoder can minimise the reconstruction error by
minimising the impact of the noise through reducing the calculated standard deviation,
this is shown in fig. 4.15. As such the calculated mean (y,,) effectively becomes the latent

space variable z.
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In fig. 4.16 the distribution of the latent space variables is shown for each dimension

of the latent space individually. These distributions are not necessarily centred around

zero and do not have a consistent standard deviation close to one as the KL divergence

has no impact on the loss. In fig. 4.17 the distribution is shown of the latent space values

for the first and second variables. The designation of the first and second variables is

arbitrary when the variables have not been ordered. From the figure it can be seen that

while the distributions have significant overlap, the encoding of the known samples

still follows certain directions in the latent space. Sampling from the latent space to

result in new decoded samples would still require knowledge of these vectors in the

latent space that provide the main variation in the distribution. This could be achieved

through calculating the eigenvectors of the latent space.
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FIGURE 4.17: The distribution of the first and second latent space variables combined.

For POD we know that the modes are orthogonal and the temporal modes over the

entire training data set are also orthogonal. We can illustrate the independence of the

different modes with a correlation matrix of the latent space coefficients for the POD
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modes, as shown in fig. 4.18. It can be seen that the correlation between different modes
is zero. Similarly for the non-linear modes the latent space can easily be obtained from
the training set samples. The resulting correlation matrix is shown in fig. 4.19. The de-
terminant of the correlation matrices can be interpreted as a metric of the independence
of the modes, with 1 indicating that the modes are fully independent and 0 indicating
that the modes are completely dependent. While the POD modes are completely in-
dependent, the modes found with the B-VAE and = 0 are still dependent to a large
extend with a determinant of 0.26 for the correlation matrix.
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FIGURE 4.18: The correlation matrix FIGURE 4.19: The correlation matrix
of the training set latent space coef- of the training set latent space coeffi-
ficients obtained with POD. The de- cients obtained with a B-VAE and 8 =
terminant is 1 when evaluated on the 0. The determinant is 0.26 when eval-

training data. uated on the training data.

By having the B parameter equal to zero, full priority is given to minimising the re-
construction error of the B-VAE. This results in a low reconstruction error where the
orthogonality or sparsity of the modes is not prioritised. The model has also been eval-
uated on a test data set during training to monitor the progress. In fig. 4.20 the model
metrics are shown for the training phase of the model over a 100 epochs. From the fig-
ure it can be seen that very early in the training process the reconstruction error and the
Pearson correlation outperform the POD with 4 modes. Additionally it is shown that
the determinant of the correlation matrix gradually increases and approximately stag-
nates after 40 training epochs. The different determinant value as opposed to fig. 4.19
is due to the evaluation on the test set which has no influence on the training, resulting
in a lower determinant for the test data set.
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FIGURE 4.20: Training a B-VAE with = 0. The RMSE, Pearson correlation and deter-
minant of the correlation matrix have been evaluated on the test data set.

Lastly it is possible to illustrate the modes as decoded from latent space samples. The
non-linearity of the modes and the combination thereof can not be easily visualised.
It has been chosen to visualise each latent space dimension for two coefficient values
while keeping all other latent space variables at zero. Each variable has been visualised
atavalue -2 and 2, these values fall within the distribution as obtained from the training
set. The result is shown in fig. 4.21. It can be seen that due to the non-linearity the shape
of the flow patterns is not consistent over the range of values that a single latent space
variable can take.
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FIGURE 4.21: Visualisation of the activation of individual latent space variables with
all other latent space variables set equal to zero.

It is possible to tune the B parameter to force the latent space distributions to be closer
to a A (0,1). By doing so the network is encouraged to keep the mean activation near
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zero, thereby creating sparse modes. The  parameter can be tuned to create disen-
tangled modes which offer better interpretability for their range of activation (Higgins
et al. (2017)). Each mode individually is representative for flow patterns that can oc-
cur, unlike with POD where modes with lower singular values are less likely to fully
represent a realistic flow pattern. The determinant of the correlation matrix describes
the independence of the different latent space variables but does not guarantee disen-
tanglement. In the current investigation we seek to find a balance between the recon-
struction offering an improvement over the POD with 4 modes, while also obtaining
a high independence of the modes represented by the latent space variables. The B
parameter can be increased to such an extend that the latent space becomes a random
sampled N (1,0) distribution which contains no information of the inputs. When the 8
parameter is too high, the reconstruction error will be higher and the Pearson correla-
tion is lower than for a POD reconstruction. In fig. 4.22 the evaluation of these metrics
is shown for a network with a B parameter of 2 - 10~ which results in a determinant
of the correlation matrix of approximately one, indicating independent modes. At the
same time the reconstruction appears to be worse than a POD reconstruction based on

the RMSE and Pearson correlation.
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FIGURE 4.22: The RMSE, Pearson FIGURE 4.23: The RMSE, Pearson
correlation and determinant of the correlation and determinant of the
correlation matrix during training for correlation matrix during training for
a B-VAE with =2-10"3. a B-VAE with =2-10"%.

In fig. 4.23 the evaluation of the reconstruction metrics and the determinant of the cor-
relation matrix is shown for a B-VAE network with a B of 2- 10, The network can
be seen to outperform the POD reconstruction by a small margin and also have a high
determinant. This network balances the need to have an accurate reconstruction while
enforcing the latent space to be N/ (1,0) distributed.
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In fig. 4.24 the latent space distribution is shown of two modes of the B-VAE with g =
2-107%. It can be seen that the latent space variable values are clustered around 0. The
PDF is approximately maximal around 0 for each variable and decreases with the mul-
tidimensional distance from the origin. The generative ability of this network is better
as the latent space distribution is better understood. The correlation of the latent space
variables is shown in fig. 4.25. It can be seen that the latent space variables are almost
completely independent. At the same time the reconstruction error is lower than POD
and the Pearson correlation is higher. The modes can be considered disentangled as for
this network it is likely that the reconstruction of independent latent space activations
lead to realistic flow patterns.
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FIGURE 4.26: Visualisation of the activation of individual latent space variables with
all other latent space variables set equal to zero for a f-VAE with g =2-107*.

Lastly it can already be observed from fig. 4.26 that the fourth VAE mode resembles the
tirst POD mode. The Pearson correlation between the VAE activations and the POD
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modes can be calculated for the activation equal to -2, leading to a correlation matrix
as shown in fig. 4.27. The correlation can also be visually compared with fig. 4.26 and
tig. 4.4. In fig. 4.27 it is clearly indicated that the first POD modes matches the flow
pattern produced by the -2 activation of the fourth VAE latent space variable. In fig. 4.28
similarly shows how the activation of 2 instead of -2 results in approximately opposite
correlations. The B-VAE modes thus still resemble the POD modes while improving the

generative ability and the reconstruction (or compression) with a limited latent space.
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FIGURE 4.27: The Pearson correla- FIGURE 4.28: The Pearson correla-
tion between the -2 activation of the tion between the 2 activation of the
VAE latent space and the POD spatial VAE latent space and the POD spatial
modes. modes.

In order to further disentangle and order different modes obtained with a B-VAE it is
possible to use a hierarchical approach. Training different subnetworks can be done
recursively to obtain modes which address the part of the data set which has not been
captured by the previously trained modes. As such the information of the data set
contained in each mode will gradually decrease for additional modes.

4.5 Conclusions

A data set of flow fields over a stalled NACA 0012 wing has been used for the investi-
gation of data driven mode extraction. The POD has been used as a benchmark which
consists of a basis of linearly independent spatial modes. The root mean squared error
and the Pearson correlation have been used to quantify the performance of the recon-
struction with a given set of modes. The POD modes can be calculated efficiently on
a large data set and provide a single set of modes for a given data set. Due to the lin-
ear nature of POD a large set of modes is required to represent most of the variance
in the data set. An autoencoder neural network with linear activation function and a

single hidden layer is equivalent to POD when trained to minimise the L2 norm. This
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has been shown through the process of training subnetworks successively which is of-
ten described as a hierarchical approach. A similar hierarchical approach can be used
for non-linear autoencoders. The encoder can be trained to determine a single latent
space variable. The decoder is trained to take into account the previously trained en-
coders and the current encoder which is being trained. As such the decoders cannot
reconstruct individual modes, but the encoders can be called upon individually. A re-
construction from latent space variables requires specific knowledge about the multidi-
mensional distribution of the latent space variables. From the reconstruction of samples
in the test data set it has been shown that the use of non-linear modes does reduce the
reconstruction error and improves the Pearson correlation. In order to benefit from the
non-linear modes while allowing for sampling from the latent space the use of j varia-
tional autoencoders has been explored. By increasing the § parameter the distribution
of the latent space variables are forced closer to a N (1,0) distribution, which results
in a higher reconstruction error and lower correlation. Tuning the  parameter can be
done such that the latent space distributions are close to N'(1,0) while still producing
a better reconstruction compared to POD. Such a variational autoencoder has a latent
space which can be sampled from to generate new realistic samples. Additionally the
modes of this variational autoencoder have been shown to be nearly orthogonal with
a determinant of 0.98 or the correlation matrix. The § variational autoencoder which
has been illustrated requires a separate evaluation method to order the modes that
have been learned. An alternative approach would be to use hierarchical B variational
autoencoder subnetworks to obtain a ranking of the modes according to the combina-
tion of the reconstruction error and the latent space regularisation. Further research
is required to improve the interpretability of non-linear modes to complement their
superior performance in comparison to POD.
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Chapter 5

Surface Flow Classification

The behaviour of a boundary layer near the surface of an object is affected by many
factors such as the viscosity of the air, the velocity and the pressure. The boundary
layer behaviour is important because it affects the lift and drag forces on the object. An
adverse pressure gradient on the object surface can cause the boundary layer to exhibit
reverse flow. Separated flow on a wing surface is detrimental to the performance of the
wing and can be highly unsteady and unpredictable. The high level of turbulence in-
volved in separated flow makes it typically hard to investigate. In this investigation the
near surface flow of a stalled NACA 0012 is investigated. This investigation culminates

in a data driven model which predicts the surface flow type based on surface pressure.

5.1 Introduction

Separated flow over wings is an important topic of investigation as it is associated with
a loss of lift and increase in drag. Additionally separated flow can result in the loss
of control for aircraft as already indicated by Jacobs et al. (1933). McCullough and
Gault (1951) presented three distinct types of stall based on how the wing evolves from
attached flow to fully separated flow. The process of flow separation typically starts
from local areas of boundary layer separation. Boundary layer separation has been a
specific topic of interest for decades as shown by the overview given by Simpson (1996).
The visualisation of surface flow with techniques such as surface oil flow visualisation
(SOFV) or tufts relies on the flow direction close to the wing surface. More recently in-
vestigations of stall cell flow patterns have used surface flow visualisation as illustrated
by Dell’Orso et al. (2016) and De Voogt and Ganapathisubramani (2022). However it
remains difficult to combine the surface flow visualisation with obtaining quantitative
data of the flow within a stall cell at the same time. Stall cells occur after stall as in-
dicated by Yon and Katz (1998). They also indicated that the region within a stall cell
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experiences an upwash and the region outside the stall cell a downwash. The differ-
ence in effective angle of attack along the span is associated with the localised flow
separation and variation in surface pressure. Different investigations such as Manni
et al. (2016) have focused on how to computationally simulate stall cells. URANS sim-
ulations have been used to obtain a large data set of flow over a NACA 0012 wing with
stall cells present. By using multiple angles of attack (x) and Reynolds numbers (Re) the
results can be compared to assess the evolution of the surface flow in a wide operational
range. This allows to understand how the surface flow is related to the surface pres-
sure and the flow within the stall cell. Such an understanding of the flow supports the
development of data driven stall detection algorithms such as that presented by Zhou
et al. (2021). In the current investigation a fundamental approach for constructing such
a data driven detection algorithm is presented based on pressure measurements on the

wing surface.

5.2 Data and experimental setup

For the investigation of the surface flow over a NACA 0012 wing the computational

data as described in section 2.1.2.

In addition to the computational data, experimental surface pressure measurements
were taken on a NACA 0012 wing with aspect ratio (AR) 5.2. Two wing fences were
used, which can be positioned in a desired location on the wing. The distance between
the fences has been kept fixed at an AR of 2.5, allowing for the creation of a full stall
cell between the fences. In some cases it was observed that two half stall cells formed
rather than one whole stall cell. The experiments have been conducted in a wind-
tunnel at the University of Southampton, with a test section of 2.1 m by 1.6 m and
0.02 m/s accuracy for the set velocity. The free stream turbulence intensity has been
measured to be approximately between 0.5 to 1% at the location of the wing leading
edge. A small piece of approximately 4 cm (0.13 c) zig-zag tape was used near the
leading edge to trigger a stall cell behind it. In combination with the positioning of
the fences it was possible to shift a stall cell in spanwise direction over the pressure
taps. The wind-tunnel was run at a Reynolds number of 4.1 - 10° with the wing at an
angle of attack of 14° to consistently produce a stall cell. A total of 24 pressure taps on
the circumference of the wing were used in combination with a ScaniValve MPS4000
pressure transducer to record the surface pressure. The pressure was recorded at 500
Hz for a duration of 5 minutes for each run with different wing fence positioning. For
each wing fence position the tufts were also recorded with a camera, to create a visual

image for assessing the positioning of the stall cells relative to the pressure taps.
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FIGURE 5.1: The NACA 0012 wing setup with tufts to indicate the presence of stall
cells. A row of pressure taps (indicated in green) is in a fixed position. Movable wing
fences are indicated by the dashed lines.

5.3 Flow field characterisation

In the current investigation the NACA 0012 wing has been computationally investi-

gated with a focus on angle of attack and Reynolds number (x — Re) combinations that

result in suction surface flow which includes flow separation. In fig. 5.2 different types

of surface flow are indicated in lift polars for different Reynolds numbers. These sur-

face flow types have been manually indicated by visual inspection. Different surface
flow types may occur in different gradations, or even in combination with other surface
flow types. This complicates the ability to create a definitive method to identify the sur-

face flow type objectively. It has been chosen to assign a single surface flow type label

to each « — Re combination. The intermittency, size and other aspects of the surface

flow patterns have been omitted for the manual classification.
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FIGURE 5.2: The time averaged lift coefficient for all the simulated cases. Different
types of observed surface flow patterns indicated with markers.

The separated flow can be identified through upstream flow near the suction surface
of the wing. The different types of surface flow indicated in fig. 5.2 are also illustrated
by streamline plots of the flow near the wing surface in fig. 5.3, for which an offset of
0.1 % of the chord length perpendicular to the wing surface has been used. Attached
flow shows no upstream flow, as shown by fig. 5.3a. The first occurrence of upstream
flow when increasing the angle of attack at a constant Reynolds number occurs near
the TE, as shown by fig. 5.3b. Further increases in angle of attack can in some cases
result in the formation of stall cells, which include upstream flow near the wing surface
and vortices on the wing surface, as shown in fig. 5.3c. When the angle of attack is
increased even more, the stall cells can disappear and upstream flow occurs on almost
the entire suction surface of the wing as shown in fig. 5.3d. In fig. 5.2 it can be seen that
different flow types can occur for a single angle of attack at different Reynolds numbers.
However the progression of flow types at a constant Reynolds number with increasing
angle of attack moves consistently from attached flow to TE separation, to stall cells
(if present), to finally full separation of the flow on the wing suction surface. No stall
cells were observed at the lowest Reynolds number (3.1 - 10°) that was simulated. It is
unknown whether stall cells do not occur at this Reynolds number, or that the angle
of attack for the formation of stall cells at this Reynolds number was not tested. From
fig. 5.2 it can also be observed that the occurrence of stall cells is limited to the cases for

where the gradient % is negative.
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FIGURE 5.3: Flow velocity at a 0.001 c offset from the suction surface. Different types

of observed surface flow patterns for the simulated cases with a Reynolds number of

10° at different angles of attack: a) 10°, b) 16°, ¢) 18° and d) 20°. The magnitude of the

flow velocity is indicated relative to the freestream velocity. The vertical grey lines in

c) indicate the centre of the stall cell at 1.32 z/c and the spanwise location of the vortex
on the wing surface at 2.20 z/c.

The progression of surface flow patterns near the wing surface due to increasing angle
of attack, as shown in fig. 5.3 is typical for wings which exhibit TE stall, and has also
been observed experimentally with tufts by De Voogt and Ganapathisubramani (2022).
From the CFD results it is possible to observe the flow near the surface of the wing at
different chordwise locations, this allows investigating the progression of the flow as it
passes over the wing surface. The surface flow patterns illustrated in fig. 5.3 have been
obtained from specific  —Re combinations at a specific time step. The same cases have
also been used to illustrate the flow above the surface with velocity profiles illustrating
the local flow parallel to the wing surface as shown in fig. 5.4. At the surface of the wing
the flow velocity is zero due to the viscosity of the air. When moving further away from
the wing surface in a direction perpendicular to the wing surface, the momentum of
the freestream velocity becomes more dominant. The layer of air between the surface
of the wing and the inviscid flow away from the surface is the boundary layer. In
fig. 5.4a the velocity profiles are shown for attached flow. In these velocity profiles
the boundary layer can be identified as the region normal to the wing surface during
which the gradient of the velocity for the wall normal distance is larger than zero. As
the distance from the surface increases and the flow momentum dominates, the flow
regime becomes inviscid. The thickness of the boundary layer can be estimated for
attached flow in fig. 5.4a to be approximately 0.0025 c at the measurement closest to the
leading edge (LE) and 0.05 ¢ at the measurement location closest to the trailing edge
(TE).

The flow near the wing surface slows down as the distance travelled along the surface
increases. Both the viscosity of the air and the adverse pressure gradient contribute to

slowing down the flow velocity in the boundary layer. These two effects combined can
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cause upstream flow to occur on the wing surface as illustrated by the TE separation
in fig. 5.3b and fig. 5.4b. In comparison to the attached flow it can be seen that (at a
higher angle of attack) the boundary layer thickness grows faster and bigger towards
the TE. At some point along the airfoil surface the gradient of the velocity at the wing
surface becomes zero and moving further towards the TE causes the gradient to become
negative, indicating that the flow is moving upstream near the wing surface.
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FIGURE 5.4: Velocity profiles near the wing suction surface at different chordwise
positions for varying surface flow patterns. The line colors indicates the location of
the measurement. The measurements are perpendicular to the wing suction surface
and range between 0 to 0.1 ¢ away from the wing surface. All velocity profile plots
show results for a Reynolds number of 10°, and varying angles of attack: a) 10°, b)
16°, c1) 18°, ¢p) 18° and d) 20°. The spanwise location is z/c = 1.25 (midspan), except
for the plots c1) and cp) which consider a stall cell with spanwise variation in the flow.
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Further increases in angle of attack increase the adverse pressure gradient on the wing
surface and move the separation point upstream. It is possible that the flow near the
surface suddenly transitions into a stall cell configuration with upstream flow in the
centre of the stall cell and two spiral nodes near the sides of the stall cell. The vertical
grey line in fig. 5.3c which crosses the stall cell vortex at z/c = 2.2 indicates the location
at which the velocity profiles have been plotted in fig. 5.4c;. Close to the surface the
velocity of the flow has almost no streamwise component, apart from the measurement
location near the LE which still falls outside the stall cell. Most measurement loca-
tions also contain upstream flow near the wing surface, although small changes in x/c
may change the sign of the streamwise flow direction near the surface due to the lo-
cally rotating flow induced by the stall cell vortex. The stall cell vortices also introduce
spanwise velocity components near the wing surface such as shown for the spanwise
location z/c = 2.2 in fig. 5.5. It can be observed that upstream of the vortex the induced
spanwise velocity component points away from the centre of the stall cell, whereas
downstream of the vortex core the spanwise velocity points towards the centre of the
stall cell. The induced spanwise component has significantly different velocity profiles
depending on the chordwise position, indicating the complexity of the flow inside a
stall cell due to the proximity of multiple vortices.
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FIGURE 5.5: The spanwise velocity profiles at a spanwise location of z/c = 2.2, through

the stall cell vortex, for a wing at an angle of attack of 18° and Reynolds number of
106
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The vertical grey line in fig. 5.3c which crosses the stall cellvortex at 1.32 z/c indicates
the location at which the velocity profiles have been plotted in fig. 5.4c;,. This spanwise
location indicates approximately the centre of the stall cell. At the centre of the stall
cell the upstream flow near the wing surface is the largest in magnitude and spans the
largest distance along the wing surface in the chordwise direction. In fig. 5.4c; it can
be observed that each measurement location is contained in the stall cell near the wing
surface as indicated by the upstream flow near the surface. It can also be seen that the
thickness of this separated viscous region is very small near the LE and quickly grows
very large when moving further towards the TE. The rate of thickness growth for the
separated flow region in this location is significantly larger than observed in the cases
with a smaller angle of attack, or away from the centre of the stall cell.

Finally in fig. 5.4d the velocity profiles are shown for the wing experiencing full sepa-
ration along the entire span. All measurement points, except the one closest to the TE,
have upstream flow near the wing surface. The growth rate of the boundary layer for
this cases is the largest out of the cases considered in fig. 5.4. The last measurement
point does not have upstream velocity near the surface of the wing due to a vortex lo-
cated right above the TE, as shown in fig. 5.6. This vortex is a consequence of the low
pressure area of separated flow over the wing suction surface and the high momentum
flow along the pressure side of the wing. It can also be seen in fig. 5.6 that the separated
flow above the wing surface has a size which exceeds the velocity profile measurements

which extend only for 0.1 x/c away from the wing surface.
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FIGURE 5.6: Streamlines at z/c = 1.25 for the case with full span separation at an angle
of attack 18° and Reynolds number 10°. The core of the TE vortex is marked with a
“+” sign at x/c = 1.055 and y/c = 0.085.

5.4 Surface pressure

The flow behaviour on the wing surface can be visually identified through the use of
SOFV or tufts, yet in most cases quantitative measurements are desired for a range of

purposes such as design, safety or control. The ability to take high frequency data with
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minimal disturbance to the flow can be achieved through pressure taps. These measure
the static pressure on the surface of the wing. Depending on the amount and position
of the pressure taps a lot of information about the flow on the wing can be obtained.
As indicated through surface flow visualisation it is only for certain combinations of
angle of attack and Reynolds number that there are spanwise variations in the flow
behaviour on a 2D extruded wing profile. In most cases it would thus suffice to have a
single row of pressure taps along the chordwise direction to obtain representative data

for the entire wingspan as presented by Zhou et al. (2021).
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In fig. 5.7 the pressure coefficient (Cp) curves along the airfoil circumference at the
midspan location are shown for three types of surface flow which typically do not have
any spanwise variation in flow. As such, the results shown here match the spanwise av-
eraged results of Manni et al. (2016) very closely. Attached flow at an angle of attack of
10 degrees shows the typical characteristics of a stagnation point with a C, of one near
the LE. On the suction side of the airfoil near the LE a large (negative) pressure peak
occurs, after which an adverse pressure gradient extends till the TE to create the pres-
sure recovery on the suction side of the wing. When the angle of attack is increased the
pressure peak magnitude increases, thereby increasing the magnitude of the adverse
pressure gradient, which can lead to TE separation as shown in fig. 5.7 by the case with
angle of attack 16 degrees. For this case the pressure gradient on the suction side near
the TE becomes much closer to zero (as indicated by the nearly flat C,, in the TE detail of
the curve), due to the separated flow near the TE. When the angle of attack is increased

further to cause the flow to fully separate over the wing suction surface as shown in
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tig. 5.6 the pressure peak near the LE edge can reduce significantly in magnitude and
the pressure coefficient over the suction surface becomes nearly constant as shown in
tig. 5.7. In this figure it is also shown that the vortex near the TE has an effect on the
pressure distribution by increasing the magnitude of the negative pressure locally. For
cases with stall cells the pressure coefficient can vary significantly as shown in fig. 5.8.
This spanwise variation in pressure coefficient has previously been described as related
to vortices that trail downstream behind the stall cell, which cause an upwash in the
centre of the stall cell and a downwash outside the stall cell as described by Yon and
Katz (1998).

FIGURE 5.9: Images of tufts on a NACA 0012 wing at an angle of attack 14° and
Reynolds number of 4.1 - 10°. Movable wing fences and a zig-zag tripstrip have been
used to move half a stall cell across a row of pressure taps. Freestream flow is from the
bottom to the top of the images. The approximate layout of half the stall cell is drawn
with a consistant orange dotted line pattern in each image, the location of the pressure
taps is indicated with a green line. Image a has the pressure taps outside the stall cell,
alphabetical consecutive images have the pressure taps further towards the centre of
the stall cell.

In fig. 5.9 the visual results are shown of moving two fences and a tripstrip along the
span of a stalled NACA 0012 wing with the goal of moving a stall cell over a (chord-
wise) row of pressure taps. The shape, position and behaviour of a stall cell are not
perfectly controllable. As such, the different images in fig. 5.9 do not show consistent
spanwise shifts of the stall cell. Both images a4 and b have the row of pressure taps out-
side the stall cell. Images c and d have the pressure taps already inside the stall cell, but
still between the stall cell vortex and the stall cell outer boundary. Finally images e and
f show the pressure taps on the stall cell vortex and between the stall cell vortex and
the centre of the stall cell respectively. In fig. 5.10 the corresponding pressure coefficient
curves are shown. From the experimental pressure measurements it can be seen that
the negative pressure peak near the leading edge is the largest outside the stall cell. At
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these spanwise locations the flow also remains attached and shows an adverse pres-
sure gradient till the trailing edge. For case d the pressure coefficient can be observed
to be nearly constant for x/c between 0.3 and 0.8 in fig. 5.10, indicating that the flow is
already separated. For the cases e and f the pressure coefficient is constant over nearly
the entire chord. For case f specifically the standard deviation of the pressure fluctu-
ations near the LE is higher, due to the zig-zag tripstrip being right at the spanwise
location of the pressure taps near the leading edge.
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FIGURE 5.10: The experimental pres-
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FIGURE 5.11: The computational pres-
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such as indicated in the inset. The
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tack of 16° and a Reynolds number of
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In fig. 5.11 the pressure coefficient curves are shown of the computational results for a
NACA 0012 wing at a Reynolds number of 4.1 - 10°, similar to the experimental results
in fig. 5.10. However in the computational results no stall cells were observed at an
angle of attack of 14 degrees, only at angle of attack 16 degrees were stall cells observed
computationally for the Reynolds number of 4.1 - 10° as shown in fig. 5.2. The stream-
lines shown in the inset in fig. 5.11 show the shape of the stall cell, the vertical lines
indicate the locations at which the pressure coefficient curves have been obtained such
as shown in the figure. Similarly to the experimental observations, the locations outside
the stall cell or near the edge of the stall cell (0.0 and 0.2 z/c) show still mostly attached
flow characteristics in the pressure coefficient plots. The locations contained between
the stall cell vortex and the stall cell centre (0.4 - 1.4 z/c) show a mostly constant pres-
sure coefficient on the suction side of the airfoil with a declining pressure peak near the
LE when moving closer to the stall cell centre.
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FIGURE 5.12: The NACA 0012 wing at angle of attack 18° and Reynolds number 10°,

with a stall cell on the suction surface of the wing. (A) Isosurfaces of the Q criterion

equal to 20s~2 are shown, which are colored by the x vorticity. (B) The y vorticity of
the flow near the wing surface at an offset of 0.01 c from the wingsurface.

In fig. 5.12a the Q criterion has been used to create isosurfaces which indicate several
characteristic aspects of a stall cell. The specific case shown has a stall cell on the suction
surface which spans nearly the entire width of the wingspan. On the suction (top)
side of the wing in the image the isosurface related to the shearlayer of the separated
flow on the wing can be observed. Coming from the trailing edge another isosurface
can be seen related to the trailing edge shearlayer which is a consequence of the fast
flow on the pressure side and the separated flow on the suction side. Behind the wing
two long tubular isosurfaces are shown which represent the stall cell vortices that trail
downstream. These vortices are counter rotating as indicated by the x vorticity. The
rotational orientation of the vortices can be seen to cause an upwash between the two
vortices (stall cell centre) and a downwash outside the stall cell. Considering that a stall
cell occurs at a post stall angle of attack, the downwash can cause the effective angle
of attack to locally decrease outside the stall cell and result in regions of attached flow
around a stall cell. In fig. 5.12b the y vorticity is shown near the wing surface, which
indicates the vortices that are present near the surface and visible in the streamlines of
the flow near the surface when stall cells are present, similar to the inset in fig. 5.11.

5.5 Lift coefficient

From the investigation of the pressure coefficient it is clear that the spanwise variation
in flow, as induced by stall cells, has a significant impact on the wing lifting perfor-
mance. The spanwise variation in lift coefficient is thus related to the type of stall and
surface flow configuration on the wing. Additionally separated flow over the wing
tends to be unsteady, which also has an effect on full span separation without span-

wise variations in the flow.
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5.5.1 Spanwise variation

As has been indicated in fig. 5.3, the spanwise variation in surface flow is only present
for surface flow which shows stall cells. This spanwise variation in flow also has a
significant effect on the lifting capacity of the wing. In fig. 5.13 the spanwise variation
in lift coefficient is shown for the cases such as shown in fig. 5.3. From this figure it
can clearly be seen that no spanwise variation occurs for attached flow, TE separation
and even full span separation. These results have been obtained with 3D URANS sim-
ulations but suggest that 2D simulations might suffice. However it must be noted that
full span separated flow rarely is fully 2D in practice. Small disturbances can have big
cascading effects on the flow and URANS simulations are not suitable to investigate
the required level of detail.
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FIGURE 5.13: Spanwise variation in lift coefficient due to different surface flow types.

For cases with stall cells however a large spanwise variation in lift coefficient can be
observed in fig. 5.13. The maximum local Cy, along the wingspan can be observed to be
approximately 1.0, whereas the local minimum along the wingspan is approximately
0.6. This local minimum thus indicates that a local reduction of 40% of the local max-
imum lift coefficient can occur due to the formation of stall cells. From the analysis of
this specific case in fig. 5.3 and fig. 5.8 it can be concluded that the low local lift coef-
ficient is related to the local upstream flow on the wing surface. This situation is also
detrimental to the effectiveness of TE control surfaces. It is thus worrying that the po-
sitioning of stall cells is currently not understood well and might be due to arbitrary
disturbances.
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5.5.2 Unsteady variation

Next to the spanwise variation in lift coefficient it is also possible to have temporal
variation in lift coefficient. Unsteady flow behaviour results in unsteady performance
of the wing. The surface flow types which have been considered have only been inves-
tigated in a spatial manner, while the temporal aspect can be just as impactful on the
wing performance. For the temporal variation investigation the time frame is given in

convective cycles, defined as the chord length divided by the freestream velocity.
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FIGURE 5.14: Lift coefficient variation over time for different surface flow types. The
vertical black lines indicate the convective cycles at which the stall cell surface flow is
investigated in fig. 5.15 and fig. 5.16.

In fig. 5.14 the lift coefficient of the entire wing is shown over the initial time frame
of the URANS simulations. Each simulated case has a small transient time period at
the start of the simulation, which is largely caused by the non-physical flow which has
been set for the initialisation of the simulation. After a short amount of time (typically
less than 2 simulated seconds) the flow will have adapted to the boundary conditions
of the computational domain and start to represent the flow as representative for the
simulated wing at a given « —Re combination. The discussion of the wing performance
variation over time does not consider this initial transient period. For the cases with
attached flow and TE separation the lift coefficient is nearly constant over the entire
duration of the simulation. These cases represent flow which is stable over time and
thus could be solved with a more simplified method such as RANS rather than URANS.
The cases with stall cells present on the wing surface result in unsteady flow, which
also results in unsteady performance of the wing. This unsteady performance is easily
characterised by the lift coefficient such as shown in fig. 5.14. Similar results were found
by Liu and Nishino (2018). The lift coefficient for the full separation cases can be found
to be steady at lower Reynolds numbers, or unsteady as shown in fig. 5.14 for higher
Reynolds numbers. The unsteadiness is caused by vortices shedding from the wing
into the wake which influence the pressure coefficient such has been shown by fig. 5.7.



5.5. Lift coefficient

81

cycle 67.2, wmg CL =0.79

x/c

x/c

x/c

x/c

X/c

0.5 1.0 . 2.0 2.5

0.10 0.15 0.20 0.25 0.30
[IVu + V|

[

FIGURE 5.15: The surface flow at

varying timesteps such as indicated

by the vertical lines in fig. 5.14. The

NACA 0012 wing is at an angle of at-

tack of 18° and a Reynolds number
of 10°.

129 4

1.14

1.01

0.91

0.81

local spanwise C

0.7

0.6

00 05 10 15 20 25
z/c
convective cycle
—672 —687 701 — 71.6 — 73.0

201 &

00 02 04 06 08 10
x/c
wing C_

® 0.79 0.82 0.87 0.92 e 0.95

SEITITeNAe

00 02 04 06 08 10
x/c
FIGURE 5.16: a) the spanwise vari-
ation in lift coefficient at different
timesteps. b) the chordwise velocity
magnitude along the spanwise lo-
cation 0.1 z/c with mostly attached
flow as indicated by the vertical
lines in fig. 5.15. c) the pressure co-
efficient at the spanwise location 0.1
z/c with mostly attached flow.

In fig. 5.15 the surface flow patterns are shown for a single a—Re combination (as

shown in fig. 5.14) at different timesteps. The surface flow patterns all clearly show

a stall cell, although small differences in the exact patterns at different timesteps exist.
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It can be seen that the velocity magnitude of the flow near the surface of the wing is
changing over time. The shape of the stall cell can also be seen to change over time. This
is also indicated by the black parabolic line which approximates the curved separation
line at the front of the stall cell near the LE of the wing. However the current simu-
lations with a wing with AR 2.5 produce stalls cells which occupy the entire span. As
such, there is no opportunity for the stall cells to change in width. In fig. 5.16a the span-
wise lift coefficient at the different timesteps is shown to understand how the change in
integral wing lift coefficient is related to the spanwise flow variation as caused by the
stall cell. It can be seen that the largest differences in spanwise lift coefficient occur in
the spanwise regions between two stall cells (0.1 z/c in this case) where the flow is still
mostly attached to the wing. At this spanwise location the chordwise velocity has been
plotted as shown in fig. 5.16b where it can be seen that for the cases with lower wing
lift coefficients the local velocity near the wing surface is also lower. While the flow
velocity can be seen to decrease to approximately 0 near the trailing edge, the velocity
at an offset of 0.001 ¢ does not show any significant separation. The offset from the sur-
face is constant at which the velocity has been measured and shown. It must be noted
that this measurement is thus within a growing boundary layer. The local spanwise lift
coefficient is better represented by the local pressure coefficient which integrates to the
local lift coefficient. The local pressure coefficient at z/c 0.1 is shown in fig. 5.16c. The
differences in pressure coefficient for different timesteps are less significant than the
spanwise variation in pressure coefficient across the stall cell. For the timesteps with a
lower wing lift coefficient the pressure peak near the LE is slightly lower and a minor
difference persists along the chord length on the suction surface of the wing, resulting

in a lower local lift coefficient.
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FIGURE 5.17: The average position of FIGURE 5.18: Approximation of the
the stall cell vortices along the chord stall cell surface area based on the
of the wing for varying wing lift coef- parabolic separation line as shown in
ficient values. fig. 5.15.

In fig. 5.15 the approximate location of the stall cell vortex centres (or cores) on the

wing surface has been indicated with red dots. The stall cell vortices tend to be closer
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to the TE than the LE in almost all cases, however they do not have a fixed chordwise
or spanwise location. For the case such as displayed in fig. 5.15 with a constant angle
of attack and Reynolds number, the stall cell vortices have fluctuating positions over
time. In fig. 5.17 the average chordwise position (of the two vortices on the wing) is
shown for different lift coefficient values of the wing at different timesteps. It can be
observed that the stall cell vortices are positioned closer to the LE for higher values of
the wing lift coefficient. The differences in chordwise position of the stall cell vortices
however are small and cannot be seen as the sole indicator of the performance varia-
tion due to stall cells. Rather the position of the stall cell vortices both chordwise and
spanwise are parameters of the geometrical characterisation of stall cells. In fig. 5.15
the approximate shape of the separation line is also indicated with a parabolic curve.
Integrating the area under this curve can serve as an approximation of the surface area
covered by the stall cell as shown by Manolesos and Voutsinas (2014). In fig. 5.18 the
variation of surface area covered by the stall cell over time is shown for the case such as
the example displayed in fig. 5.15. The stall cell area is expressed as the x/c by z/c dis-
tances, as such a non-dimensional area is obtained which is relative to the wing chord
and aspect ratio. From the figure it can be observed that the lower wing lift coefficients
are associated with the higher stall cell areas. As the stall cell area mostly encompasses
the separated flow region near the wing surface, which is associated with a smaller
pressure difference between the pressure and suction side of the airfoil than attached
flow, a larger stall cell will typically result in a reduced wing lift coefficient.

5.6 Stall cell 3D structure

The structure of a stall cell has been hypothesised about and investigated in the past.
With the current URANS simulation results it becomes possible to investigate the flow
patterns in and outside the stall cell in detail. The three dimensional layout of a stall cell
has been shown to be a bubble of separated flow by Dell’Orso et al. (2016) with particle
image velocimetry. In the current investigation it is possible to show streamlines in the
computational results. In fig. 5.19 the three dimensional streamlines are shown which
start near the stagnation point and go around the stall cell bubble. Streamlines are only
shown for half the wing span, representing half of a symmetric stall cell, to improve
visual clarity. From these streamlines it can be observed that the height of the bubble
is the largest near the middle of the stall cell and tapers off towards the sides. The
bubble starts at the separation line on the wing surface, which curves from near the LE
edge at the middle of the stall cell towards the TE at the spanwise ends of the stall cell.
The downwash caused by the wing in the wake is stronger near the edges of the stall
cell than the middle of the stall cell. At the edges of the stall cell the flow is attached
along a larger part of the wing surface in chordwise direction, than in the middle of
the stall cell where the flow is separated over most of the wing surface. In fig. 5.20 the



84 Chapter 5. Surface Flow Classification

streamlines inside the stall cell are shown, which show the upstream flow near the stall
cell centre. The stall cell bubble contains recirculating flow with an upstream direction
near the wing surface between the spiral nodes on the wing surface. The vortex core
of these spiral nodes appears to run along the span of the wing and terminates in the
spiral nodes on the wing surface as indicated by the surface friction lines. Near the
trailing edge a separate vortex exists with an opposite rotational direction, this vortex
runs along the TE for the width of the stall cell.

: . o : : i
Velocity U/U, L‘ Velocity U L‘

three d streamline three d streamline SC

FIGURE 5.19: A snapshot image of
the NACA 0012 wing at an angle of
attack of 18° and a Reynolds num-
ber of 10°. 3D streamlines which pass
around the bubble of a stall cell along
the span of the wing, from the middle

FIGURE 5.20: A snapshot image of
the NACA 0012 wing at an angle of
attack of 18° and a Reynolds number
of 10°. 3D streamlines inside a stall
cell bubble, from the middle of the
stall cell to outside the stall cell.

of the stall cell to outside the stall cell.

In fig. 5.21 the sideview is shown of streamlines inside the stall cell. The view includes
streamlines along half the width of the stall cell. Two vortices can be seen, the ap-
proximate centre of these vortices (near the spanwise mid position of the stall cell) is
indicated with a red dot. The first vortex is above the trailing edge and induces up-
stream flow near the wing surface while creating an upwash near the wing LE. The
second vortex is located behind the trailing edge at the middle of the stall cell. This
vortex has an opposite rotational direction compared to the first vortex and induces
an upwash in the wake. These vortices only run along the width of the stall cell and
therefore the upwash of the wake is reduced outside the stall cell, thereby inducing a

vortex in the wake which trails downstream such as shown in fig. 5.22.
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FIGURE 5.21: A snapshot image of FIGURE 5.22: A snapshot image of
the NACA 0012 wing at an angle of the NACA 0012 wing at an angle of
attack of 18° and a Reynolds number attack of 18° and a Reynolds number
of 10°. Near the middle of the stall of 10°. The variation in upwash in the
cell two vortex cores (indicated by a wake along the span creates a vortex
red dot) can be observed with oppo- that trails downstream.

site rotational direction.

From the different perspectives of the streamlines in and around the stall cell it can be
observed that outside the stall cell the incoming flow is curved more along the airfoil
surface similar to attached flow. Whereas along the width of the stall cell the incoming
flow is deflected less by the wing. The difference in downwash of the flow in the wake
along the span induces a vortex in the wake. This process is shown in fig. 5.23, where
on the left the structure is shown of the two vortices along the width of a stall cell. The
configuration of these two vortices is very similar to the vortex configuration shown
by Weihs and Katz (1983) during the proposed formation mechanism of a stall cell. In
the current results these vortices have been observed to persist in established stall cells.
The existence of these vortices along the width of the stall cell in spanwise direction
still results in the commonly shown stall cell surface flow pattern. In the middle of
tig. 5.23 a 2D perspective shows how these vortices have an impact on the flow which
goes around the wing at a location near the middle of the stall cell (A in the figure) or
a spanwise location outside the stall cell (B in the figure). It is also shown how both
locations have different inflow angles as influenced by the vortex inside the stall cell,
and different outflow angles as influenced by the vortex at the TE. The inflow and out-
flow angles can also be observed in fig. 5.19. On the right is shown how the difference
in outflow angles imposes a vortex which trails downstream. This structure of the two
vortices along the width is very similar to the structure as has been hypothesised by
Weihs and Katz (1983). Furthermore the expected upwash near the centre of the stall
cell as mentioned by Yon and Katz (1998) can be explained by both the vortex which
connects the spiral nodes on the wing surface and the vortices trailing downstream.
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FIGURE 5.23: A scheme which represents the vortices involved in a stall cell. Left:

two vortices run along the spanwise width of a stall cell. Middle: the difference in

2D incoming and outgoing flow angle near the middle of a stall cell and outside the

stall cell. Right: the difference in flow angle in the wake induces a vortex which trails
downstream.

5.7 Data driven modelling

The modelling of stalled flow over a wing can be done with CFD to varying degrees
of accuracy. Typically the higher accuracy methods will be computationally more ex-
pensive. Such simulations may still show non-unique solutions for certain stalled flow
configurations as discussed by Kamenetskiy et al. (2014) and Manolesos and Papadakis
(2021). It has been proposed that the existence of non-unique solutions in the computa-
tional simulations might be due to the interaction of the separated flow with the trailing
vortices Spalart (2014). Lifting line (or surface) models based on these trailing vortices
have been constructed by Gross et al. (2015) and Plante et al. (2022), which showed that
a negative C;, — a gradient is required for the trailing vortices to exist. These mod-
els further require the relevant C;, — a curve, filters and smoothing to reduce certain
numerical effects that produce non-physical solutions. These models are interesting to
help discover some of the driving factors behind the occurrence of stall cells, but are
very limited in their application due to a lack of accuracy. Models with high accuracy
that are also very fast would be of great interest for multiple applications. Fast and
accurate physics based models typically do not exist as a fast model often relies on a
range of simplifications which ignore elements that are relevant to separated flow. The
blade element momentum theory is an example of a fast model based on simplified
physics, which is commonly used for wind farms. The blade element momentum the-
ory requires adaptations to take unsteady flow, yaw, tip losses and other aspects into
account. More recently a lot of attention has been given to data driven models as they
are able to provide very fast and accurate results, based on known data. These models
are capable of interpolating known scenarios, which is both a strength and drawback.
While fast and accurate, these models tend to require a large amount of known in-
formation to create such a model. When fast interpolation of known information is
important such data driven models can prove valuable. Zhou et al. (2021) investigates

the possibility of a one dimensional data driven stall detection model. The data driven
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model uses pressure measurements on the wing to infer other aerodynamic parame-
ters. The investigation by Zhou et al. (2021) used KNN for regression and classifica-
tion. The KNN algorithm is used to determine the parameters (both numerical and
classes) of new samples, based on neighbouring training data samples, for which the
desired parameters are known. The number of neighbouring training samples that are
used in the classification of new samples has an influence on the outcome. Including
too many neighbouring samples leads to the averaging of the results, whereas choos-
ing not enough samples may lead to the inclusion of outliers. It remains challenging
to choose the optimal number of neighbouring samples to use. Alternatively, KMeans
can be used for clustering. The KMeans algorithm creates multidimensional clusters
of samples. For new samples it can be determined which cluster they belong to. For
this method it is crucial to determine the right amount of clusters to calculate from the
training data. The same issue with the number of neighbours to include for KNN, is
also present for the number of clusters to calculate with KMeans. By using methods
such as compressive sensing as described by Bright et al. (2013) it is also possible to

minimise the amount of required pressure sensors for an accurate result.
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and lift coefficient for every individ-
ual time step of all simulated cases.

Many aircraft accidents are related to stall, where pilots or flight control systems are
presented with wrong or incomplete information. The information used in such situ-
ations is typically the angle of attack and the airspeed (equivalent Reynolds number).
Based on these parameters it is determined whether the wing is experiencing stall or
not, and action is taken by automated systems or pilots. The recent example of the
forced pitch down on the 737 MAX airplanes due to faulty angle of attack sensors (Lion
Air flight 610 and Ethiopian Airlines flight 302) both resulted in a fatal accident, killing
346 people. These incidents are not unique and similar events have occurred multiple
times in the past such as for the XL Airways Germany flight 888T or Air France flight

447 among others. It is essential to improve the assessment of whether the wing is
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stalling or not, while providing redundancy in the sensors used to assess this to reduce
the number of fatal accidents. With the current methods used in airplanes the primary
parameters to determine the flow type of the wing mostly rely on the Reynolds number
and the angle of attack. This essentially comes down to the classification such as shown
in fig. 5.24. In the simplest form curves can be estimated which form the boundaries
between different flow types based on the « — Re parameters, which then determine
the current flow type present on the wing. When the Reynolds number is desired to
be replaced the lift coefficient can be used instead. While this is more complex to de-
termine through sensors, it does give a clear indication of what flow type is present on
the wing in combination with the angle of attack as shown in fig. 5.25. In fig. 5.24 and
tig. 5.25 the angle of attack, Reynolds number and lift coefficient of a specific wing are
shown in plots such as they are commonly presented. These three variables all have
an influence on the flow type and can be combined in a 3D plot which gives a more
complete overview of the relevance of each parameter such as shown in fig. 5.26. In
this case it also shows how the attached flow has only been simulated at the highest
Reynolds number with a low angle of attack, but this does not mean that it can only
occur at this Reynolds number. The test matrix ideally should cover a range of angle of
attack and Reynolds numbers that exceeds all probable combinations.

surface flow
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TE separation

o stall cell

e full separation
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FIGURE 5.26: A 3D plot showing the relation between the angle of attack, Reynolds
number, lift coefficient and the flow type.

From the airplane crash investigations it has been shown that the angle of attack sensors
and pitot tubes can fail, showing that a redundant method for both would be desired.
In an ideal case the entire flow on the wing surface would be known, either as the flow
velocity near the surface or the pressure. As it is not practical to measure the flow
velocity near the wing in operation, it has been chosen to utilise the pressure which
can be measured with pressure taps and can be sampled at very high frequencies. The
CFD simulations have used more than 200 grid nodes along the chordwise direction on
the suction side of the airfoil. As it is desired to mimic a situation which is physically
feasible and practical, the amount of grid points can be sub-sampled to a more realistic
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distribution for pressure taps on the physical object. Since the pressure side of the airfoil
does not contribute much to the variation in pressure it also does not hold a clear rela-
tion to the flow type occurring on the suction surface. It has been chosen to sub-sample
the suction surface with 15 probes. The locations of the subsampled probes along the
chord are given in table 5.1. This distribution is realistic for the chordwise direction in a
real life setup. The spanwise spacing is kept constant at 0.1 ¢ which is the original grid
spacing. As such there are a total of 390 (15 chordwise by 26 spanwise) probes under
consideration for a wing with aspect ratio 2.5. In fig. 5.27 a comparison is shown be-
tween the available measurement points from CFD and the sub-sampled distribution
by colouring the rectangular squares for which a measurement point is representative.
The rectangles have an equal width in spanwise direction for both the original and the
sub-sampled data, while the chordwise height of the rectangles is significantly higher

for the sub-sampled measurements.

probe # 1 2 3 4 5 6 7 8 9 10
location [x/c] 0  0.02 0.04 0.07 0.10 0.14 0.18 0.24 0.30 0.37
probe # 11 12 13 14 15

location [x/c] 0.46 0.56 0.68 0.83 1

TABLE 5.1: Position of the subsampled pressure probes.

X/c

'0.00 025 050 0.75 1.00 125 1.25 150 1.75 2.00 225 2.50
z/c z/c

FIGURE 5.27: Comparison of the original pressure information available from the sim-

ulations (left) and the sub-sampled pressure data (right). The chordwise spacing for

the sub-sampled data is much coarser than the original data. The flow pattern near

the surface has been plotted to indicate the relation between the surface flow and the
surface pressure, while also providing a spatial reference.

In fig. 5.28 the pressure coefficient curves are shown for the first half of the chord length.
It can be observed that the subsampled spacing resolution is sufficient to approximate
the pressure peak near the leading edge and the subsequent adverse pressure gradient.
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FIGURE 5.28: Pressure coefficient curves across half the width of a stall cell showing
the front half of the chord length, for the original spacing of the pressure taps and the
subsampled spacing.

5.71 POD of pressure

Machine learning methods allow for a flexible amount of inputs and outputs. They fur-
ther allow for different purposes such as classification or regression. It is often chosen
to use a large amount of inputs to provide a lot of information. However, this can lead
to the neural network finding elements that are not relevant to the analysis but have
high spurious correlations with the desired results. Preprocessing of the inputs for the
neural network can help avoid the network learning undesired patterns in the data.
In the current case it might be that the flow type on the wing surface can be coupled
to the pressure value in a single location. It would be highly undesirable to have the
classification of the flow type depend on a single sensor such as discussed above for
the angle of attack sensor (of which there typically are multiple). In order to utilise the
information of all pressure taps simultaneously they can be linearly combined into a
new set of parameters. The mean has been subtracted from the surface pressure data
set to centre the data. Then the POD has been calculated for the centred data set. In
fig. 5.29 the first six spatial modes are shown as obtained from 4631 training samples
with 390 pressure probes per sample. The modes have been obtained from samples
across a range of angles of attack and Reynolds numbers. Most &« — Re combinations
which have been simulated did not show significant unsteady surface pressure. As
such, the largest variance in the data set is caused by the changes in angle of attack or
Reynolds number. The first mode can be interpreted as an approximation of the shift

in mean surface pressure for different « — Re combinations.
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FIGURE 5.29: The first 6 spatial modes of the pressure POD.

In fig. 5.30 the singular values are shown of the spatial modes, the singular values
quickly decrease by orders of magnitude. The singular values are linear coefficients
and are easily understood to have a very large influence on the decomposition or re-
construction, where the first mode is roughly a 100 times more ‘important’ than the
10™ mode. Due to the quick decline in the singular values for increasing spatial mode
numbers only a limited amount of spatial modes are required to accurately capture
the original sample. This principle can be shown by the cumulative explained vari-
ance ratio which illustrates the ratio of variance that can be captured in the training
data set with a limited amount of spatial modes included, relative to the original data.
This ratio is shown in fig. 5.31 where it can be seen the ratio very quickly approaches a
value of one, where the value of one indicates that the complete variance in the origi-
nal data set is reproduced. When the samples in the data set are linearly independent
the ratio of one for the cumulative explained variance will only be obtained when all
spatial modes are included. In the current case it can be seen that with only 10 modes
included already a ratio of more than 99% can be achieved. This implies that a limited
set of modes can accurately represent all the variations of surface pressure across all

training samples.
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By using a limited set of trained POD spatial modes and corresponding coefficients
a truncated reconstruction can be made of any sample. In fig. 5.32 the truncated re-
construction of four samples is shown. A reconstruction with just 2 modes already
captures more than 95% of the variance in the data set. The truncated reconstruction
with 10 modes in fig. 5.32 illustrates the accuracy of reproducing the patterns of the
surface pressure within a small range of the pressure coefficient.
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FIGURE 5.32: The surface pressure of four different samples is shown in the left col-
umn. The middle columns shows a truncated POD reconstruction with 2 modes in-
cluded and the right column represents a reconstruction with 10 modes.
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The spatial modes represent orthogonal vectors which thus allows to visualise the first
three modes similarly to fig. 5.26 with a 3D plot of the first three POD mode coeffi-
cients for each sample, coloured by the flow type. In fig. 5.33 these POD coefficients
have been plotted. It can be seen from this plot that the cases with full separation are
clustered closely together with some variation possible. This likely reflects the repeti-
tive vortex shedding at higher Reynolds number as well as the steady full separation
at lower Reynolds numbers. The attached flow is represented by a single location for
each separate case forming a 3D curve. This is because each separate case displays only
a single constant pressure surface for the entire simulation. The TE separation surface
pressure samples lie closely together with more variation per case but still structured,
reflecting minimal variation per case. Lastly it can be seen that the cases with stall cells

are present in large parts of the domain, spanned by all 3 POD modes.
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FIGURE 5.33: A 3D plot showing the relation between the POD coefficients of the first
three POD modes.

In fig. 5.34 a 2D view is shown with the first and second POD modes as the axes. With
this view it is clear that the surface pressure samples with attached flow or TE separa-
tion all occur within the first quadrant, this means a positive coefficient for the first and
second modes. The full separation occurs exclusively with a negative coefficient for the
tirst mode and a positive coefficient for the second (with exception of two samples).
Lastly the stall cell samples can be found in multiple regions. Two of these regions are
specific to certain flow configurations. The circular region around [0,12] for the [first
mode, second mode] location indicates that on top of the average surface pressure coef-
ficient map the second mode has a big influence. The positive sign of the second POD
mode indicates a pressure coefficient near the center of the wing span with a lower
pressure peak such as shown in fig. 5.29. This situation occurs when a single stall cell
is on the wing surface such as shown by fig. 5.11. Alternatively when the second mode
has a negative coefficient, it indicates the presence of a stall cell which is shifted in

spanwise direction by half a span length.
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FIGURE 5.34: A 2D plot showing the relation between the POD coefficients of the first
two POD modes.

The investigation with POD modes of the different types of surface flow, through the
decomposition of the surface pressure, shows clear grouping of the flow types in a
space spanned by the first three modes. This indicates that only a limited amount of
information from the pressure taps is necessary to provide a good indication of the flow
type that is present on the wing.

The POD analysis serves to reduce the dimensionality of the data set obtained with
the chosen probe locations. Different positions of the probes will influence all aspects
of the data driven analysis. For the analysis with the neural network that follows it
is required to have a minimal number of modes necessary to identify the flow type.
As such, choosing probes with high variance or important locations can lead to a lot
of information captured in a minimal number of modes. The choice for the probe po-
sitioning will determine the information in the first several modes, and thereby affect
the surface flow classification performance. The minimisation of the number of probes
and the optimisation of their positions are interesting investigations with different con-
siderations than the current proof of concept investigation. The current POD analysis
and surface flow classification has also been evaluated with linearly spaced pressure
taps, which resulted in a very similar POD basis and similar flow type classification
performance by the neural network. The details of this evaluation are discussed in
section 5.A.

5.7.2 Neural network for flow type

The POD modes allow to capture a large part of the information from the pressure
probes into a limited set of POD coefficients. These coefficients by themselves do not
allow for immediate classification of the flow type but require an additional algorithm
or function to do so. A neural network can be trained based on the training data to

perform the classification. It has been chosen to use just two POD modes, as the spatial
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modes and their coefficients can be visualised easily. This allows to illustrate the inner
workings of the neural network.

The network has been chosen to have only one hidden layer and four outputs corre-
sponding to the four relevant flow types. This network consists of 5 equations with 11
trainable parameters. The equation for the hidden layer contains three parameters, two
coefficients for the two inputs and one bias. Each of the four output equations also has
a coefficient and a bias, which are applied to the outcome of the hidden layer. This net-
work can be trained on the available data set with the POD coefficients of the first two
modes as inputs. In fig. 5.35 the metrics for evaluating the performance of the network
are shown for the training and validation data during training. The accuracy is defined
as the percentage of samples for which the predicted flow type matches the true flow
type. The accuracy metric is not compatible with the optimiser and back-propagation
for updating the network coefficients. As such, a cross entropy (CE) loss is used:

CE loss = —

n

Yn - log(Yn), (5.1)
1

p
where y, represents the true probability of a sample belonging to class 7, and ¥, the
predicted probability with p possible classes. The current implementation of the cross
entropy has been adapted to use integer encoding in the true probability description
(sparse categorical cross entropy), in combination with the network outputting p values

/1,- These output values are scaled with:

- o
I = (5.2)
n—=

such that 25:1 ¥n = 1. The cross entropy loss, as shown in eq. (5.1), can be used as a
measure of difference between the input distribution of one-hot encoded categories (a
value of ‘0’ for all categories, except ‘1" for the category the sample belongs to) and the
predicted distribution from the network for different categories. The validation data is
a random subset of 500 samples from the full training set that has been used to create
the POD modes. It can be seen that the improvements in accuracy largely come in steps
rather than gradual increases, and most of the accuracy improvements are achieved
very early on in the training process. The training has been stopped automatically
when no improvement in the loss of the validation data set is found for 100 consecutive

epochs.
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FIGURE 5.35: The accuracy and the loss (categorical cross entropy) of the model for
classifying the flow type during training. The loss for both training and validation has
been normalised with the respective first iteration loss.

Once the training is stopped the performance can be checked on the test data set, which
has not had any influence on the training process. In fig. 5.36 a confusion matrix is
shown for the evaluation of the test data set with the trained neural network. The ma-
trix shows that when a stall cell is present a small chance exists that it is miss-classified
as trailing edge separation or attached flow. Cases with trailing edge separation and
full separation are correctly classified without any mistakes.
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FIGURE 5.36: Confusion matrix showing the results on the test data set for the classi-
fication of the flow type with two POD coefficients.

The results can also be visualised such as shown in fig. 5.37. From the shaded regions it
can be seen that the domain spanned by two POD modes is divided by linear lines into
different flow types. The angle of these lines and the offset determine the individual

boundaries between two different flow types. As was shown by the confusion matrix,
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some stall cell samples fall in the regions where the network predicts attached flow or
trailing edge separation.
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FIGURE 5.37: The results of the single hidden layer with one node neural network.
The shaded area shows the interpolated predictions for the flow type based on the
first and second POD coefficients. The individual dots indicate the test cases.

The equation of the single node in the single hidden layer:

output = POD; - W; +POD, - W, + B, (5.3)

this node uses two POD coefficients (POD; and POD,) which are multiplied with
weights and biases is added to get the node output. An activation function which sets
all negative values to zero is applied to the output. Multiple activation functions exist
and could provide potentially better results. However, for the simplicity of the expla-
nation a ReLU activation is used. A ReLU activation only finds the maximum between
0 and the input (which is the output of a node), making this very computationally effi-
cient. A ReLU activation function is commonly used in combination with feed forward
dense neural networks. The equation of the single node can be re-written into the form

of a line for a fixed output:

POD, = —% .POD; + wtpv‘;#.
2 2

(5.4)
The equation is of the form ‘y = mx + ¢’ with m the gradient in this case determined
by the negative ratio of the weights of the node and an offset determined by the fixed
output value, the weight of the second POD mode and the node bias. The weights
have been extracted from the trained neural network to allow to plot the outcome of
the single node hidden layer. Using eq. (5.3) the output of the single node prior to the
activation function has been calculated as shown in fig. 5.38. The vectors in the image
indicate the direction for no change in the single node layer output and maximum
change. When no change in the single node output value occurs, it also is impossible
for following layers to indicate a different flow type. It can be seen that the vector of



98 Chapter 5. Surface Flow Classification

no change indicates the direction between the two clusters with stall cells, which are
spaced apart in the domain. The vector indicating the direction of maximum change
is approximately aligned with the line on which the full separation cases and trailing

edge separation cases lie.
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FIGURE 5.38: The shaded area is coloured according to the value of the output of the
single hidden node. The vectors given represent the direction of no change in the
output value and maximum change.

The output of the single node is then the singular input to four different linear equa-
tions. The output of these equations can be normalised with a softmax function, such
that the outputs represent the probability, which sums to one when including all out-
puts. Each output also represents a given flow type, or class. Each data sample is
classified as belonging to the class with the largest probability. These four equations
have been visualised in fig. 5.39 for an applicable range of the single layer output val-
ues (where the normalisation function is omitted). Each line has a different gradient
and offset and the local maximum value between all output ranges from 3 to 10 ap-
proximately. A negative domain is shown, however this is effectively not used by the
neural net. The neural network uses an activation function to set all output values
of the single node that are negative to zero. As such the equations shown in fig. 5.39
would have a constant value in the negative domain, equal to their value at zero.
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FIGURE 5.39: The different lines correspond to the equations of the different output
nodes.

From the combination of the single node output (fig. 5.38) and the interpretation of that
output by the final four nodes (fig. 5.39) the final classification can be found (fig. 5.37)
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by taking the classification with the highest output value at each position. This network
although extremely simple already shows the ability to use a data driven approach to
improve our understanding and the ability to estimate desired elements for which no
applicable equation is available. More complex neural networks can create multidi-
mensional criteria for the identification of the flow type, such networks ideally are also

supplied with more inputs and more extensive training data.

5.8 Conclusions

Complex flow patterns such as stall cells can occur on wings. These flow patterns can
be challenging to investigate experimentally due to the complexity of simultaneously
detecting the presence of stall cells and acquiring quantitative data. The detection of
the type of flow which is present on a wing is important for aircraft safety, control
and stability. The type of flow on a wing surface of a simulated NACA 0012 wing has
been extensively investigated. For a range of angles of attack and Reynolds numbers
the flow near the surface has been investigated. The characteristic stall cell patterns
on a wing surface are the result of the flow directions very close to the wing surface.
Experimental and computational surface pressure measurements have been taken at
similar locations on the wingspan relative to the stall cell surface visualisation pattern.
The comparison showed good agreement between the experimental and computational
results. The investigation of the computational data showed that stall cells can induce
a large deviation of approximately 40% reduction in the local spanwise lift compared
to the attached flow sections on the wingspan. Additionally separated flows tend to be
unsteady, which in the case of stall cells is observed by the undulating movement of
the stall cells. For full separation cases vortex shedding was observed which induced
unsteady lift. Each of the surface flow types (attached flow, trailing edge separation,
stall cell or full separation) has distinct characteristics in the surface flow patterns and
also in the measurable performance such as the surface pressure. The POD has been
used to obtain spatial modes of the surface pressure which capture some of the most
important patterns. With just two modes more than 95% of the variance in the data set
can be captured. The data projected onto the POD basis also shows some clustering. A
neural network has been used to classify surface pressure measurements into different
flow types based on the first two POD coefficients of the pressure map. This neural

network consisted of merely 11 parameters and achieved an accuracy of 98%.

5.A Appendix: alternative pressure probe spacing

Withing the current investigation it has been mentioned that the spacing of the pressure

probes, subsampled from the CFD meshgrid, has been chosen to resemble the spacing
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of pressure taps commonly used in practice. The spacing was chosen to be denser near
the leading edge of the wing than the trailing edge. For this investigation the assump-
tion is that the pressure on the wing is known everywhere by linearly interpolating
the CFD meshgrid spacing. As such the probe locations, which will supply the neces-
sary pressure information to predict the surface flow type, can be chosen freely. The
robustness of the algorithm which classifies the surface flow type depends on the in-
put information supplied. Variations of the input can be introduced by for example
changing the number of probes and the probe spacing. In order to have redundant in-
formation a large number of probes are used, which in turn reduces the reliance on a

single sensor to provide critical flight performance information.

The goal of the current investigation is also to provide an explainable algorithm which
determines the flow type. This requires the neural network to be extremely small. In
order to still utilise the all the information provided by the pressure probes the POD
can be used. The decomposition into modes is commonly used to analyse the patterns
in the data which contribute significantly to the overall variation in the data set. At
the same time, it allows to compress the data into a truncated set of temporal modes in
combination with the trained spatial modes. The compressed latent space then allows

to reduce the number of inputs for the neural network.

Choosing (a different number of probes or) different probe locations will alter the dis-
tribution of the obtained samples that form the data set. As such, this will result in
different spatial modes, singular values and temporal modes. Probes near the leading
edge have a higher variance than near the mid chord position across different « —Re
cases. Probe locations near the leading edge also show spanwise significant variation
in pressure for cases with stall cells. The CFD samples have been subsampled linearly
in chordwise direction, with the same spanwise locations as before and without chang-
ing the number of probes. The pressure probe locations for this linear subsampling are
shown in table 5.A.1.

probe # 1 2 3 4 5 6 7 8 9 10
location [x/c] 0  0.07 0.14 0.21 0.29 0.36 0.43 0.50 0.57 0.64
probe # 11 12 13 14 15

location [x/c] 0.71 0.79 0.86 0.93 1

TABLE 5.A.1: Position of the linearly subsampled pressure probes.

Some of the results which follow from this change in probe positioning are shown
below. The linearly subsampled pressure for a single «—Re combination at a single
timestep is shown in fig. 5.A.1. Different curves show the pressure variation along the
span of the wing. Compared to the non-uniform spacing which was used previously,
the current linear spacing is not able to capture a similar amount of variation in C,

occurring near the leading edge pressure peak.
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FIGURE 5.A.1: Pressure coefficient curves across half the width of a stall cell showing
the front half of the chord length, for the original CFD spacing of the pressure taps and
the linearly subsampled spacing.

In fig. 5.29 the first six spatial modes were shown which were obtained with non-
uniform pressure probe spacing. In fig. 5.A.2 the first six POD spatial modes are shown

which were obtained with linearly spaced pressure probes.
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FIGURE 5.A.2: The first 6 spatial modes of the pressure POD obtained with linearly

spaced pressure probes.

From the visual comparison it can be seen that the spatial modes are similar for the
different spacing of the pressure probes. A more quantitative assessment can be made
with the cumulative explained variance ratio, as shown in fig. 5.A.3. Similarly as for the
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non-uniform distributed pressure probes, the resulting POD from the linearly spaced
probes captures more than 95% of the variance with just two modes.
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FIGURE 5.A.3: The cumulative explained variance ratio for an increasing amount of
modes included of the pressure POD, starting with the modes with the highest singu-
lar values. POD obtained with linearly spaced pressure probes.

The input to the neural network which predicts the surface flow type consists of the
tirst two temporal modes, corresponding to the first two spatial modes with the high-
est singular values. Similarly as in fig. 5.34 these temporal modes can be visualised for
the POD obtained with linearly spaced probes, this is shown in fig. 5.A.4. Small differ-
ences between the non-uniform subsampled probe POD and the linearly subsampled
probe POD exist, but the overall latent space representation of the data is very similar.
This is to be expected following the similarity of the spatial modes and the cumulative
variance distribution, which is related to the singular values.
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FIGURE 5.A.4: A 2D plot showing the relation between the POD coefficients of the
first two POD modes obtained with linearly spaced pressure probes.

Lastly the neural network for surface flow type prediction as discussed earlier can be
recreated, where everything is kept the same except the input is changed to the tem-
poral modes obtained from the linearly spaced pressure probes POD. The confusion
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matrix of the trained result is shown in fig. 5.A.5. The results are very similar to the
results obtained with the non-uniform spacing for the pressure probes. Both neural
networks completely correctly classify all cases of full separation, trailing edge separa-
tion and attached flow. Both neural networks also have a very low error for the stall
cell classification, where less than 2% of the cases are miss-classified.
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FIGURE 5.A.5: Confusion matrix showing the results on the test data set for the clas-
sification of the flow type with two POD coefficients.

With this analysis it has been shown that the current approach to predicting the surface
flow type can provide consistent results with different probe positions. This mainly
relies on the first two modes of the POD to be similar to the ones shown in fig. 5.29
or fig. 5.A.2 and capture a significant amount of variation in the pressure probe data
set. While the first mode was shown to be indicative of changes in angle of attack and
Reynolds number, the second mode includes spanwise variation in the pressure coeffi-
cient. The combination of these two aspects likely provides the necessary information
for a neural network to determine a surface flow type prediction.
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Chapter 6

Determination of Unsteady Wing
Loading Using Tuft Visualisation

Unsteady separated flow is present on many physically large objects. Low-fidelity sim-
ulations cannot accurately estimate the influence of separated flow. The physical scale
of some objects precludes full-scale testing in wind-tunnels and complicates the acqui-
sition of performance data in operational conditions. Small-scale wind-tunnel tests can
provide an estimate of the aerodynamic loading. Tufts can be used to qualitatively
validate the surface flow between different investigations and the full-scale object in
operational conditions. In the current investigation it is shown, with computational
and experimental data, that tufts can provide a quantitative estimate of the unsteady
wing loading. Unsteady 3D simulations of a NACA 0012 wing, at different angles of
attack and Reynolds numbers, are used to obtain unsteady surface flow and lift coeffi-
cient data beyond stall. The computational data provides a proof-of-concept by using a
linear surrogate model based on pseudo tuft orientations. This model is then extended
with a non-linear component. Experimental data of a NACA 0012 wing, equipped with
tufts and a force balance, has been used in combination with neural networks to infer
quantitative information about the unsteady wing loading. This results in the ability to
capture non-periodic lift and pitching moment fluctuations based on visual tuft obser-

vations.

6.1 Introduction

During the design phase of many aerodynamic applications both simulations and phys-
ical scale models for wind-tunnels are commonly used. Computational Fluid Dynam-
ics (CFD) simulations can be utilised to obtain an estimate for almost any desired flow
property in the simulated domain. When separated flow is present in the computa-

tional domain simulations tend to become more computationally expensive to achieve
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more accurate results, this can result in unrepresentative results when expensive sim-
ulations are not feasible (Ashton and Revell (2015)). Experimental investigations offer
the ability to measure the flow, including separated flow, while limited by the capabili-
ties of the experimental method and equipment. Surface flow visualisation is typically
used to compare and validate simulations with experiments such as shown by Neves
et al. (2020) and Cai et al. (2018). For unsteady flows the use of surface oil flow is not
preferable due to the inability to provide temporal information. Tufts can be utilised for
unsteady surface-flow to approximate the instantaneous local flow direction near the
object surface. However tufts also have drawbacks. Each type of tufts has its own drag,
inertia and stiffness which affect their specific response to the flow. Chen et al. (2019)
indicated that the specific application method of tufts on a surface can also influence
their ability to indicate the local flow direction. These and other shortcomings have
largely precluded the use of tufts to obtain quantitative data. Some investigations have
shown however that tufts can be used to obtain quantitative flow field measurements
in a variety of manners for different purposes. Chen et al. (2020) used tufts for the iden-
tification of separated flow behind a backward-facing step where also the frequencies
of the tuft fluctuations are considered. Similarly tufts have been used in a study by
Swytink-Binnema and Johnson (2016) to characterise the flow on wind turbine blades
on full scale. This study showed the ability of tufts to be combined with a video cam-
era and video processing to achieve a reliable quantitative estimates of the stall fraction.
Steinfurth et al. (2020) obtained quantitative information from tufts by using them to
obtain velocity fields or identify pressure fluctuation based on the deflection of tufts.
This investigation also indicated some issues associated with tufts in flow regions with
a low velocity or with high frequency flow oscillations.

In the current investigation the focus is on unsteady surface flow over a wing with a
NACA 0012 airfoil profile and the corresponding wing loading. For wings with airfoil
profiles which exhibit trailing edge stall characteristics there is a tendency to develop
coherent surface flow patterns after stall as discussed by Broeren and Bragg (2001).
These characteristic flow patterns were observed by Moss and Murdin (1968). The sur-
face flow patterns typically consist of a curved separation line along the spanwise di-
rection which is terminated at both ends by two vortices on the wing surface, this flow
structure is often referred to as a stall cell. An example of a stall cell flow configura-
tion is shown in fig. 6.1.1, which is based on findings by Manolesos et al. (2014a,b) and
Yon and Katz (1998). The investigations by De Voogt and Ganapathisubramani (2022),
Dell’Orso and Amitay (2018) and Schewe (2001) indicate that the criteria for the forma-
tion of stall cells is dependent on the airfoil shape, the angle of attack and the Reynolds
number. The exact formation mechanism for stall cells has not been shown yet, but has
been reasoned to be related to the Crow-like instability in combination with a spanwise
disturbance on the two shear layers due to the separated flow as described by Crow
(1970) and Weihs and Katz (1983). The influence of a stall cell on the wing loading has
been shown by Yon and Katz (1998) to be similar to a locally decreased effective angle
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of attack near the centre of a stall cell, where the flow near the surface has an upstream
direction. An investigation by Liu and Nishino (2018) has shown that the presence of
stall cells on a wing influences the performance significantly. In the research by Bartl
et al. (2018) time averaged measurements of a wing with the same airfoil profile pro-
duced different results for the lift coefficient after stall, which has been attributed to
multiple factors among which are stall cells. Similarly the unsteady behavior of stall
cells has been shown by Liu and Nishino (2018) through CFD simulations to be highly
related to the fluctuations in the lift coefficient of the wing. Stall cells can form on the
surface of many aerodynamical applications, yet the implications of stall cells on the
aerodynamic loading are unknown. While stall cells are identifiable through the sur-
face flow, many other local stall patterns can also occur with characteristic surface flow
and aerodynamic performance influence. The current investigation uses wings with a
NACA 0012 airfoil profile, which has been extensively investigated and documented
for several decades. Still, the stall behavior of this airfoil profile is not well known due
to stall cells and their influence. In the current investigation it is shown that a data
driven method can be used to approximate the relation between the surface flow and
the unsteady aerodynamic loading through the use of tufts. The angle of attack and
Reynolds number experienced by a wing can determine the aerodynamic performance
regime such as attached flow or separated flow, for a simple surrogate model these in-
put parameters are both steady and do not easily allow for an estimate of the unsteady
aerodynamic loading associated with separated flow. The use of tufts as an input for
a surrogate model in this investigation serves to have an unsteady input which results
in a related unsteady output. Both a CFD and an experimental investigation have been
conducted to assess the ability of tufts to provide an estimate for the unsteady wing
loading. The computational data provides clean data which has been used to construct
an interpretable proof-of-concept method which relies on the use of pseudo tufts ob-
tained from the flow velocity near the wing surface. The experimental data represents
a more complex real life situation as can be encountered in industrial applications with
the use of physical tufts. The CFD investigation focused on a wide variety of cases, each
with a different combination of angle of attack (x) and Reynolds number (Re), in order
to estimate the lift coefficient fluctuations. The experimental investigation focused on
a single combination of angle of attack and Reynolds number in order to estimate the
lift and pitching moment fluctuations for highly unsteady surface flow. The use of tufts
for estimating the unsteady wing loading can serve as a method for further research
into unsteady surface flow or as an input to unmanned aerial vehicle control systems

for example.
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FIGURE 6.1.1: Flow direction (dotted lines) near the wing surface inside and outside
of a stall cell. The x direction is aligned with the chord and the z direction is aligned

with the span. The velocity vector V has its components [u,v,w] for directions [X,y,z]
respectively.

6.2 Setup

The results from the simulations described in section 2.1.2 are used for the current in-
vestigation. Additional relevant details are given in section 6.2.1. In section 6.2.2 the

details of the experimental setup of a wing in the wind-tunnel are described.

6.2.1 Computations

Large scale features such as stall cells can be identified with tufts experimentally. In
order to replicate this computationally, the surface flow velocity of the computational
results have been used to obtain pseudo tufts. The local flow angle near the suction
surface of the wing can be used to represent pseudo tufts. In order to obtain the local
flow angle at desired locations near the wing surface an offset of 1 mm (0.001 x/c) has
been used from the wing surface. Pseudo tufts have been obtained by linearly sampling
10 points in chordwise direction with a 0.05 x/c offset from both leading and trailing
edge, the spanwise direction has been sampled at 0.1 z/c to match the original mesh
grid spacing, as seen in fig. 6.4.3. The pseudo tuft and lift coefficient data obtained from
the URANS simulations serves as the input and validation for the proof-of-concept

method to obtain unsteady wing loading from tuft observations.

6.2.2 Experiments

The experiments have been conducted in a wind-tunnel at the University of Southamp-
ton, with a test section of 2.1 m by 1.6 m and 0.02 m/s accuracy for the set velocity. The
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free stream turbulence intensity has been measured to be approximately 1% near the
ceiling of the tunnel at the location of the wing leading edge, and approximately 0.5%
near the centre of the wind-tunnel at the location of the wing leading edge at the end-
plate. For the experimental setup a wing with a NACA 0012 profile, AR 2.6 and chord
length of 30 cm has been used. This wing is suspended from a force balance (the model
is an ATI Industrial Automation Delta IP65) outside the wind-tunnel test section at the
wind-tunnel ceiling and spans approximately half the cross-section of the wind-tunnel,
as shown by the schematic in fig. 6.2.1a. In order to limit the tip vortex effect an end
plate has been used as shown in fig. 6.2.1b. While the endplate is only partially effective
at eliminating the tip vortex, the remaining effect of the tip vortex has no influence on
the analysis presented in this investigation. The forces and moments have been sam-
pled at 6 kHz. The wing has been equipped with fluorescent tufts. The tuft spacing is
based on the smallest scale flow features that are of interest. The tufts are 5 cm long and
less than 1 mm thick. In chordwise direction 5 tufts have been used and in the span-
wise direction 13 rows of tufts have been applied. In the analysis of the experimental
data the two outer rows of tufts (near the wind-tunnel ceiling and near the endplate)
have been disregarded, leading to 11 rows of 5 tufts to be analysed. The wing was illu-
minated with a UV floodlight, while the tufts were recorded at 120 frames per second
simultaneously with the force measurements. The wing was tested at an angle of attack
of 13° and a Reynolds number of 2.1 -10° (10 m/s). This a— Re combination resulted in

highly unsteady separated flow over the wing suction surface.
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FIGURE 6.2.1: The experimental setup of the NACA 0012 wing equipped with tufts

and a force balance. (a) A schematic of the setup. (b) The NACA 0012 wing with

fluorescent tufts and an end plate installed in the 7'x 5" wind-tunnel test section at the
University of Southampton.
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6.3 Methodology

First the relevant data processing for the experimental data is presented in section 6.3.1.
For the experimental data several processing steps have been described which trans-
form the raw acquired images and measured lift and moment data into the data which
has been used with data driven models. In section 6.3.2 the different approaches for
data driven surrogate models which have been investigated are described.

6.3.1 Experimental data processing

The tufts provide an estimation of the local flow angle near the surface of the wing. In
order to overcome the non-physical discontinuity at the zero to 27 radians boundary,
each angle is converted to a sine and cosine value. Using the sine and cosine values
allows two continuous values to represent any angle, where the numerical discontinu-
ity when exceeding 27 is negated, which is beneficial for data driven methods. Ad-
ditionally the cosine and sine values are individually representative for chordwise and
spanwise flow directions respectively, when zero radians is aligned with the freestream

direction.

6.3.1.1 Experimental tuft images

For the experimental investigation the purpose is to extract the local surface flow an-
gles as indicated by the tufts. The procedure for doing so is dependent on the setup
that has been used in combination with a wide variety of possible image processing
methods, which can achieve a similar end result. In the current investigation we de-
scribe the approach that has been used for the current setup, this approach is also more
generally applicable to different experimental setups. As the image processing is not
the focus of the investigation, the experimental setup has been constructed to keep the
required image processing to a minimum. The goal is to assign a single angle to each
tuft. Curved tufts may occur due to aerodynamic forces, inertial forces or other in-
fluences. The curvature radius of the tufts usually is very large compared to the tuft
length. Additionally, the tuft spacing is small enough such that a single tuft is not es-
sential to identifying a surface flow pattern. Therefore, the curvature is ignored and
tufts are assumed to be straight lines. It is possible with more complicated image pro-
cessing algorithms to obtain a more accurate representation of tufts with segmented

lines.
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FIGURE 6.3.1: Image processing of the tuft recording. (a) Top: a single grey scale im-

age is shown on the top, clipped to wing size, with masked areas indicated by a yellow

circumference. The 5 horizontal lines crossing the tufts in spanwise direction indicate

the location of the analysed the pixel intensity in part (b). Bottom: the resulting black

and white image by using a spanwise varying threshold and masking. (b) The inten-

sity of the pixels crossed in a grey scale image of the tufts by the spanwise lines as
shown in the top image of part (a) of the figure.

The image processing initially serves to construct a black and white image which only
contains the tufts. Irrelevant areas from the images and small areas with consistently
high intensity reflections have been masked, shown in the top image of fig. 6.3.1a. The
UV light intensity varies along the span of the wing, causing a varying background
intensity along the span of the grey scale image. In order to eliminate the background
noise of the grey scale image a black and white threshold is used which varies along
the span such that it is higher than the background intensity but lower than the tuft

intensity at each spanwise location as shown in fig. 6.3.1b.
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BW image Hough lines distance clipped average Hough fixed point
(55 tufts) (487 found)

Hough lines (53 tufts) to free end

FIGURE 6.3.2: Processing of the black and white images to obtain the tufts from each

snapshot image. From left to right: identification of the fixed end of the tufts (orange

dots), all Hough lines found, delete lines which are far away from the tuft fixed end

points, average the begin and end points of the Hough lines grouped near a tuft fixed

point and as a final step the starting point of the Hough lines is replaced with the
known fixed location of the tufts.

The black and white images containing only tufts can be used in combination with a
probabilistic Hough transform to obtain straight lines corresponding to the tufts, as
is shown in fig. 6.3.2 (Galamhos et al. (1999)). The Hough transform is implemented
in several Python packages and MATLAB, although the exact implementation might
vary. The Hough transform allows to set certain parameters such as the line length
which should match the tuft length in the image or be slightly shorter. The initially
found lines can be many more lines than tufts that are in the image and can overlap.
Further processing of the initially found Hough lines is based on the known location of
the tuft fixed ends on the wing. These locations can be marked on the image and used
to eliminate Hough lines which are located too far away from any such known tuft
fixed end location. Next the remaining Hough lines can be grouped together per tuft
location to obtain a single Hough line per tuft location, by averaging the start and end
points. In a final step the end point of the Hough line closest to the known tuft fixed end
location is replaced by the known fixed end location. As is observable from fig. 6.3.2 the
last step of the process has almost no impact on the tuft identification when the image
processing is suitable for the data under consideration. Using this method, for 94% of
the image samples 52 or more tufts have been found out of the 55 available tufts. From
these identified tufts the local surface flow angle can be obtained and converted into
the corresponding sine and cosine values. Each sample thus has 55 values for the sine
and 55 for the cosine (110 total values per snapshot image), missing tufts have a value
of zero for both the sine and cosine.
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FIGURE 6.3.3: The results from the image processing, from left to right: tufts found

by the processing, tracking of the Hough process, map of the cosine of the tufts and a

map of the sine of the tufts. In the middle of the second tuft row from the bottom a
missing tuft can be observed.

In fig. 6.3.3 the result of the image processing is shown. In the left most figure the
grey scale image is shown with the masked areas blacked out. The tufts as found by
the image processing are shown on top in red. The second image from the left shows
the amount of Hough lines found per tuft location and can be used to assess if the pa-
rameters of the probabilistic Hough line process are appropriate for the data from the
current setup. The last two images on the right illustrate the sine and cosine of the tufts
that have been found for the shown sample. The sine and cosine have been obtained
from the tuft angles calculated in the image frame of reference. While the calculated
angles do not represent the effective flow angles near the surface relative to the surface
(and chord), the difference between the image frame of reference and the local frame
of reference on the wing surface is small with respect to the tuft angles. As the relative
position of the camera and the wing does not change during the data acquisition, the
choice of frame of reference is irrelevant. The neural network relies on the relative po-
sitioning of the tufts to each other and the freestream flow. As the angle of attack does
not change, the inflow angle is automatically included in the data as a constant. For the
current case it is thus not necessary to apply coordinate transformations. It would be
beneficial to apply coordinate transformations of the tuft angles into a consistent frame
of reference when using different angles of attack, or different viewing angles. For the
application of a trained model to different objects the objects need to be geometrically
similar, and the flow conditions need to be similar. Finally, the tuft positions need to
be in the same frame of reference as the original data used for training the network.
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This can be achieved by similar camera positioning and field of view relative to the ob-
ject. Alternatively a coordinate system transformation can be applied to the new data
to match the frame of reference of the training data.

6.3.1.2 Experimental force and moment measurements

The experimental data obtained with the force balance has a sampling frequency of 6
kHz, while the camera used for recording the tufts used a frame rate of 120 Hz. Con-
secutive images of the tufts have been verified to have only very small differences in
tuft orientations. It can be checked with the force and moment data if the frame rate of
the tuft recordings is sufficient to capture the unsteady aerodynamic loading. This does
not guarantee that the tufts are suitable for the investigated flow as they may react in-
sufficiently to changes in the surface flow. A frequency analysis of the lift and pitching
moment signal at 6 kHz is shown in fig. 6.3.4. In order to obtain the frequency spectra
25 windows of 28.2 seconds have been used (total signal length is 705 seconds), with
Hanning weighting coefficients and no overlap (Bartlett’s method) (Nuttall (1981), En-
gelberg (2008)). The large window size allows to analyse also large timescale changes
in the surface flow. The lowest frequency of 0.035 Hz corresponds to 940 convective

normalized force and moment frequency spectrum
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FIGURE 6.3.4: Top: the frequency spectrum of the lift and pitching moment signal,

normalised by the peak value around 0.03 St. Bottom: a sample of the signal acquired

for the lift and pitching moment fluctuations, normalised by the highest absolute value

per signal in the sample range. Convective cycles are defined as the chord length
divided by the freestream velocity.
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cycles or a Strouhal number of 0.001 approximately. The highest frequency of 3 kHz

corresponds to 0.01 convective cycle or a Strouhal number of approximately 90.

The frequency spectra show significant peaks at very low Strouhal numbers ranging be-
tween 0.03 and 0.1, showing the longer timescales which are relevant. These timescales
represent approximately 100 - 300 convective cycles and are driven by changes in the
flow over the wing. Ata Strouhal number of approximately 0.3 another significant peak
in the lift and moment fluctuations frequency spectra can be observed in fig. 6.3.4. It
is expected that this frequency of force and moment oscillations represents the natural
frequency of the suspended wing structure. This can be further verified in the future.
The frequency spectra of several tuft locations has also been checked (both sine and
cosine, representing spanwise and chordwise fluctuations respectively), which showed
that the specific tuft location has a large influence on the frequency behavior of the tuft
motions. More details are given in section 6.4.4.3. To illustrate the lift and moment
signal amplitude variation without the large amplitude of the natural frequency com-
ponent, also a version of the signal with all frequencies above a Strouhal number of
0.255 cut is shown in fig. 6.3.4. The signal with a 0.255 St cutoff is not used for the train-
ing of any model, but has been used for interpretation of the results. The original lift
and moment signals do not contain significant frequencies above a Strouhal number of
1.8 or 60 Hz (which is the tuft recording Nyquist frequency). For the data driven model
the original force and moment measurements have been down-sampled to 120 Hz from
6 kHz, such that a corresponding lift force and pitching moment are available for each
snapshot image of the tufts.

6.3.2 Lift coefficient from tufts

The angle of attack and the Reynolds number are the primary parameters to deter-
mine an estimate of the steady lift coefficient of a given wing. When using for example
experimental data it is common practice to take the average result from multiple in-
stantaneous measurements at a fixed angle of attack and Reynolds number to obtain a
representative steady lift coefficient result. This approach is shown by:

Cr(a,Re) = Yioi CLi(%Re) (6.1)

7
n «,Re = constant

with n measurements for a given & — Re combination, where the over line indicates the
average for the lift coefficient. However, unsteady flow behavior results in an unsteady
lift coefficient. As such, the constant parameters « and Re do not provide the necessary
inputs for a simple surrogate model to produce an unsteady lift coefficient. Tufts can be
used to capture the unsteady flow behavior and thereby allow for an estimation of the
unsteady lift coefficient through the use of a surrogate model. The unsteady component
of the lift coefficient can be represented as a deviation from the steady lift coefficient:
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Cr = Cr(a,Re) + F(tufts), (6.2)

the linear combination of the steady and the unsteady lift coefficient components is

shown, with the unsteady component represented as a function of the tufts.

6.3.2.1 POD and universal approximation theorem

The unsteady component of the lift coefficient, as estimated through the use of tufts,

can be determined by a linear and a non-linear component:

F(tufts) = Flinear (tufts) + Frontinear (tufts), (6.3)

the linear component of the data driven model is constructed out of a linear combina-
tion of a truncated set of temporal modes of the tuft SVD (equivalent to POD coeffi-
cients), as shown by eq. (6.4) for a single sample i. A single layer neural network with

a linear activation function can be used:

-/rlinear,i(tufts) = WL ' \Fi + BL/ (64)

in eq. (6.4) the trained weights are stored in vector Wy, the temporal modes for a set
of spatial modes of a single sample are represented by vector ¥;, the weights and tem-
poral modes are combined with the dot product and finally a trained bias By, is added.
The non-linear component of the data driven model is based on the universal approx-
imation theorem (Cybenko (1989)). The non-linear component can be approximated
using a neural network with a single hidden layer and a Sigmoid activation function,
followed by a linear output node. This approach can be described for a single sample i
with 7 nodes in the hidden layer:

n

Frondineari (tufts) = Y aj - (W, - Xi + B j), (6.5)
i=1

in eq. (6.5) the angles of the tufts are used as inputs rather than the SVD temporal
modes. The tuft angles for a single snapshot sample are represented by vector X;j. The
tuft angles are multiplied with the weights of node j indicated by vector Wnn;j using a
dot product. The bias of node j represented by Bxn;, j is added. The output of each node
has a Sigmoid function applied (¢()). The final outputs of all nodes are then linearly
combined with coefficients a; without a bias.
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6.3.2.2 Neural network

The experimental data contains some noise and other deficiencies such as tufts that
might get stuck and are no longer aligned with the surface flow. The tufts have initially
been applied aligned with the attached flow direction. When upstream flow is present
the tufts are forced in the opposite direction of their resting position, this causes further
issues with determining the exact local flow angles. In order to deal with these imper-
fections, which are to be expected, it has been chosen to utilise a simple neural network
which more easily can be trained on a large volume of data while certain shortcom-
ings present in the data. The use of a neural network allows to illustrate the current
approach of using tufts to obtain aerodynamic performance coefficients in a manner
which can more easily be applied to real world data.

The previously discussed linear method based on the SVD temporal modes uses merely
31 (30 coefficients and one bias) trainable parameters, when using 30 modes as an input.
The extension with the non-linear approach based on the universal approximation the-
orem has 18270 trainable parameters for 35 nodes in the hidden layer and 520 (sine and
cosine) inputs from the tufts. The computational training data contains a high number
of input parameters for the amount of training data (4.6k samples) available, which is
sub optimal for data driven methods. The experimental data contains significantly less
input parameters (110 sine and cosine values) for a larger amount of available train-
ing data (65k samples). This further promotes the use of a neural network where the
increased complexity requires more training data than the linear or single layer equiv-

alent data driven method.

A neural network with two hidden dense layers has been used. The first has 75 nodes
and the second hidden dense layer has 10 nodes. Both hidden layers use a Sigmoid ac-
tivation function. A ReLU activation was tested, which converged faster. The Sigmoid
activation consistently resulted in a lower error. Two dropout layers are used, one be-
tween the input and the first hidden dense layer and a second dropout layer is used
between the first and the second hidden dense layers. The full network architecture is
shown in fig. 6.3.5. The network architecture with 110 inputs results in a total of 9096
trainable parameters. The inputs to the network are the sine and cosine of the tufts on
the wing surface and the output is the magnitude of the instantaneous lift fluctuation.
A network with the same architecture can be constructed but trained with the pitching
moment as an output. The L2 norm between the known output values of the train-
ing set and the model estimation has been minimised in combination with the ADAM
optimiser (Kingma and Ba (2015)).
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FIGURE 6.3.5: A two layer neural network architecture for determining the lift or
pitching moment fluctuations from 55 tufts.

6.4 Results and discussion

The results consider initially the output of the URANS CFD simulations presented in
section 6.4.1. The output of the simulations considers the surface flow and the lift coef-
ficient experienced by the wing over time for a variety of angle of attack and Reynolds
number combinations. From the computational simulations the surface flow velocity
can be obtained on the entire wing suction surface, this surface flow velocity also pro-
vides the flow direction for the pseudo tufts. As such a clear comparison can be made
between the detailed information from the flow velocity and the sparse information
provided by the pseudo tufts. The POD analysis of the suction surface velocity ob-
tained from the simulations is shown in section 6.4.2, followed by the POD analysis of
the suction surface tufts of the simulated NACA 0012 wing in section 6.4.3. Finally the
results for the computational and experimental investigation into obtaining an estimate
for the unsteady wing loading from tufts are given in section 6.4.4.

6.4.1 Surface flow and wing loading of URANS computational results

The use of periodic boundary conditions allows to simulate an infinite wing. The in-
vestigation by Liu and Nishino (2018) presents in great detail the effect of the AR of the
wing in combination with periodic boundary conditions. Investigations by De Voogt
and Ganapathisubramani (2022), Moss and Murdin (1968), Gregory and O’Reilly (1970)
and Manni et al. (2016) indicated that the NACA 0012 airfoil profile tends to produce
stall cell patterns of approximately 2.5 c in spanwise width. The current investigation
uses a wing with AR 2.5. By varying the angle of attack and Reynolds number over a

wide range around and beyond stall, multiple flow configurations have been observed.
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Most & — Re combinations that have been simulated contain some form of flow sepa-
ration, which often results in unsteady flow behavior and by extension an unsteady
lift coefficient for a constant « — Re combination. All 43 distinct « — Re combinations

which have been simulated are shown in fig. 2.6.

For the highest Reynolds number under consideration, 10, the widest range of angles
of attack has been simulated. This wide range for the angle of attack illustrates the
four different primary flow configurations under consideration: attached flow, Trailing
Edge (TE) separation, stall cells and full separation. The cases with attached flow typi-
cally would not require expensive 3D URANS simulations and a 2D RANS simulation
could produce similar results with respect to the obtained converged lift coefficient.
Furthermore it might be possible to simulate the cases with TE separation or full sep-
aration (along most of the chord length) with 2D URANS as some flow unsteadiness
can occur which will still be mostly uniform along the span. Cases which contain the
formation of stall cells do require 3D unsteady simulations as the flow is unsteady and
not uniform along the span. In fig. 6.4.1 examples are shown for the lift coefficient re-
sult of two cases which contain stall cells at an angle of attack of 17° with two distinct
Reynolds numbers. During the first seconds of the simulations it can be seen that the
flow and thus lift coefficient are adjusting and the lift coefficient does not yet represent
the characteristic oscillatory behavior which can be associated with unsteady stall cell

flow as indicated by the investigation of Liu and Nishino (2018).
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FIGURE 6.4.1: The lift coefficient as obtained with URANS simulations for two cases

with angle of attack 17° and two different Reynolds numbers. Both cases exhibit stall

cell surface flow behavior. Convective cycles are defined as the chord length divided
by the freestream velocity.

From the current investigation of simulated @« — Re combinations it can be observed that
the angle of attack range in which stall cells occur varies across the Reynolds numbers
tested. More specifically at higher Reynolds numbers the range of angles of attack in
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which stall cells occur can be seen to be larger and occur at higher angles of attack in
tig. 2.6.

For both TE separation and full span separation the use of tufts can indicate the extent
of upstream flow in chordwise direction on the wing suction surface, where the extent
of upstream flow is mostly uniform along the wing span. For cases with stall cells
present on the wing surface significant variation in flow direction near the wing surface
along the span is induced by stall cell vortices, as shown by fig. 6.4.2. The surface flow
can locally be observed to include also spanwise velocity components as opposed to

almost no spanwise surface flow for cases with TE separation of fully separated flow.
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FIGURE 6.4.2: An example of a stall cell in the computational URANS results. The

cosine and sine of the pseudo tufts which have been obtained from the surface flow

velocity (0.001 x/c offset from the surface) on the suction side of the wing, with x/c =
0 the leading edge of the wing, for angle of attack 18° and Re = 10° (time = 8.5 s).

Cases with a stall cell present can also have significant variations in sectional lift coef-
ticient along the span of the wing. In fig. 6.4.3 the variation in sectional lift coefficient
can be observed. The pressure coefficient, from which the sectional (and integral wing)
lift coefficient is obtained through integration, is related to the surface flow by both
flow velocity and flow direction. Flow structures can be recognised from the pseudo

tufts on either an integral wing scale (e.g. stall cells) or on a smaller scale (e.g. stall cell

vortices).
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FIGURE 6.4.3: Top: sectional lift coefficient variation along the span as induced by a
stall cell. Bottom: visualisation of pseudo tufts with pressure coefficient contours for
angle of attack 18° and Re = 10° (time = 8.5 5).

For the evaluation of POD and other data driven methods, the available data obtained
from simulations has been split into training data and test data. In order to assess the
ability of the data driven methods to generalise to other « — Re combinations several
cases have been selected to serve as test cases. These have been indicated with a black
square in fig. 2.6. Among the test cases are varying angles of attack, Reynolds num-
bers and the three flow configurations with separated flow which are of interest for
unsteady wing loading. The training and test sets both exclude the initial 25% of the
simulated time to eliminate the majority of the initial transient phase of the simulation.
The training data set contains 4631 snapshot samples representing 37 cases (unique «
— Re combinations), while the test set contains 731 samples representing 6 cases. The
training — test split is thus approximately 86 — 14 (%) respectively in terms of cases
(and closely matched for sample count). For clarification with respect to the commonly
used test-validation-train split in data driven methods, the test set referred to in this
investigation is a data set which has no influence on the training of any method, with
exception of eq. (6.1). For the other data driven aspects all data used for training is
either a subset of the training data set (validation set, used for early stopping criteria of
the training) or the complete training data set.

6.4.2 Surface velocity POD

The oscillations of stall cells have been linked to the oscillations of the lift coefficient by
Liu and Nishino (2018). Liu and Nishino showed that the temporal modes of velocity
flow fields in the wake contain a similar frequency content as the lift coefficient. In the
current investigation POD can be applied to the suction surface flow velocity of the
wing (sampled at a 0.001 x/c offset from the wing surface). The surface velocity has
been sampled on a 26 by 204 grid, in spanwise and chordwise direction, respectively.
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The surface velocity is described by both a chord- and spanwise velocity component
in each grid point. A total of 10608 data points are thus available for each snapshot
sample. As 4631 training samples are available for 10608 parameters, the resulting
POD of the suction surface velocity results in 4631 spatial modes. The average of all
snapshot samples contained in the training data set (excluding transient phase at the
start of each simulated case), shown in fig. 6.4.4, has been subtracted from the samples
prior to the computation of the POD basis. The mean surface velocity of the training set
can be seen to include a chordwise velocity gradient which is mostly consistent along

the span. The spanwise velocity component shows multiple dipoles which represent

vortices.
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FIGURE 6.4.4: The mean velocity components of the training set. Data sampled at
0.001 x/c offset from the wing suction surface. The data set spans Reynolds numbers
from 3.1 -10° (4.53 m/s) to 10° (14.61 m/s).

In order to confirm that the training data is sufficiently large for the surface flow under
investigation the cumulative explained variance ratio can be checked. This ratio repre-
sents the fraction of the variance in the original data set that can be reproduced with a
rank truncated POD reconstruction with a set amount of modes. In fig. 6.4.5 this ratio
is shown for an increasing rank which include a number of modes with the highest
singular values. From the figure it can be seen that with 10 modes included more than
99% of the variance in the data set can be reconstructed. Several factors can contribute
to the low number of modes required. One of those factors can be the similarity be-
tween samples such as periodically oscillating stall cells, or time invariant trailing edge
separation. Another factor can be the chordwise distribution of the 204 measurement
points, which are aligned with the computational grid and are thus closely clustered
near the leading edge where the surface velocity is relatively high. Local flow veloc-
ity changes near the leading edge can thus lead to a large explained variance. Lastly,
as URANS simulations have been used, a significant amount of averaging has been

applied to obtain the solutions, which limits the presence of small scale features.
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FIGURE 6.4.5: The cumulative variance ratio of the surface velocity POD.

The spatial modes of the velocity POD can be visually represented as flow patterns.
These patterns can be linearly combined to reconstruct the snapshot samples of the
training data set. The spatial modes are ranked according to their singular value scal-
ing which allows to represent the relative importance of the modes. The three most im-
portant modes corresponding to the largest singular values are shown in fig. 6.4.6. The
first mode can be seen to primarily affect the chordwise velocity. The velocity gradient
over the suction surface with a high velocity near the leading edge which decreases
towards the trailing edge is clearly represented. While the mean velocity components
of the training data set also contain a significant gradient for the x velocity component,
the first mode represents the variation in the magnitude of the x velocity component
which can be caused by for example Reynolds number changes. The second mode can
be observed to contain a structure similar to a stall cell split in the middle, with each
half of a single stall cell attached to the periodic boundary. The spanwise velocity com-
ponent for the second and third mode can be seen to exhibit dipole areas which are the
result of the stall cell vortices. The third mode represents a regular stall cell at the cen-
tre of the wingspan. The second and third mode effectively illustrate the same surface
flow pattern, which due to periodic boundary conditions, is shifted along the span. It
is unsurprising that the periodic boundary conditions introduce spanwise periodicity
in the data, and therefore also in the POD spatial modes. Over the wide range of cases
simulated which include stall cell surface flow patterns, it has been found that the re-
sults will tend to represent either a full stall cell in the centre of the span or a stall cell
split down the middle (i.e. shifted by half a span). The second and third mode thus
represent a pair of modes which are of very similar importance. This is also shown in
the inset of fig. 6.4.8 by the very similar singular values of the second and third mode.
POD mode pairs can exist for periodic flow situations with a characteristic length scale
to represent the alternating states in snap shot samples such as for a von Karman vor-
tex street (Mulleners et al. (2008)). The first three modes shown have a similar sign
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convention for upstream and downstream flow (and corresponding spanwise flow in
either direction) to allow for a comparison. However when computing the POD library
the signs of the modes can be arbitrary which is resolved in the decomposition of a sam-
ple with the appropriate sign for the temporal mode of the sample and corresponding
spatial modes. More information with regards to the sign convention of POD modes
can be found in Carter et al. (2021). Other POD spatial modes after the first three do
not represent recognisable flow patterns such as presented in fig. 2.6. They rather rep-
resent a variety of differences between multiple flow configurations or unsteady flow
configurations which only exist on small timescales as can be observed from the fourth
and fifth mode in fig. 6.4.6.
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FIGURE 6.4.6: The chordwise (x) and spanwise (z) velocity components for the first
five modes of the suction surface POD.

The relation between the POD modes, the flow configuration on the wing surface and
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the lift coefficient of the wing can be captured by the frequency spectrum of the tem-
poral modes and the lift coefficient over the simulated time frame. In fig. 6.4.7 the
lift coefficient is shown over time, where the initial transient phase (such as shown
in fig. 6.4.1) has been eliminated from the analysis, together with the temporal modes
(POD coefficients divided by the singular values) over time. The signals shown in the
plot on the left have been normalised with the maximum of the absolute signal such
that the plot allows for a comparison within the [-1,1] amplitude range, similarly the
frequency spectra shown in the right plot have been normalised with their respective
maximum peak value. From the pseudo tufts and the flow velocity visualisation on the
wing surface it has been verified that the case with angle of attack 18° and a Reynolds
number of 10° shows a full stall cell, as shown in fig. 6.4.3. Similarly from the temporal
modes as shown in fig. 6.4.7 for the same case it can be seen that mode 1 and mode
3 retain a value close to their maximum which is positive. As mode 1 represents the
general velocity gradient on the wing, this is likely present in each sample. However,
mode 3 has been indicated to represent a full stall cell as shown in fig. 6.4.6 which is a
specific flow configuration. Mode 2 and mode 3 of the velocity POD both show a stall
cell configuration, but shifted by half a span length relative to each other. As such mode
2 and 3 have opposite rotational directions of the stall cell vortices at similar spanwise
locations. This results in the temporal modes for the case shown in fig. 6.4.7 to have
opposite signs for mode 2 and mode 3.
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FIGURE 6.4.7: Surface flow velocity POD temporal modes frequency spectrum with

lift coefficient frequency spectrum. Both signals and frequency spectra are normalised

with their respective maximum of the absolute values. Left: the signal under investi-

gation, right: the resulting frequency spectrum. Convective cycles are defined as the
chord length divided by the freestream velocity.

From the frequency spectra in fig. 6.4.7 it is clear that the frequency spectrum of the SVD
temporal modes matches closely with the lift coefficient frequency spectrum. Similar
observations can be made for other cases with stall cells present, or cases with unsteady

full span separation and oscillations in the lift coefficient. Each case may have its own
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characteristic frequency spectrum for the lift coefficient. The lift fluctuations follow
from the unsteady flow around the wing. With POD these flow changes can be cap-
tured, which results in fluctuations of the temporal modes with similar frequencies as
the lift coefficient fluctuations. The current analysis presents a clear indication that the
most energetic spatial modes are able to capture unsteady flow fluctuations near the
wing suction surface. Additionally the fluctuations of these spatial modes appear to be

closely related to the lift coefficient fluctuations of the wing.

6.4.3 Tufts POD

The surface velocity as obtained from CFD simulations provides a lot of information
in great detail as the mesh grid resolution is very fine in chordwise direction and the
velocity magnitude and direction are both known. For experimental investigations ob-
taining the surface velocity is highly complicated due to the curved surface of the wing.
Currently no experimental method can produce similar results as obtained from CFD
(and used in the surface velocity POD analysis above). The use of (pseudo) tufts as il-
lustrated by the sine and cosine of the local flow angle in fig. 6.4.2 or visually in fig. 6.4.3
eliminates the velocity magnitude while retaining the flow direction at a reduced spa-
tial resolution. The use of tufts allows to make an equivalent assessment as with the
surface velocity while eliminating the need for complex and extensive experimental
measurements. The CFD data has been used to compare the surface velocity POD to
the POD of pseudo tufts.

In fig. 6.4.8 the singular values of the POD of the tufts is shown. As each snapshot
sample contains 260 tufts which are described by a sine and cosine. The POD basis
contains 520 spatial modes, obtained from a total of 520 measurements per snapshot
sample. The resulting spatial modes have singular values which follow a similar trend
as the velocity POD but have a drop-off at approximately 500 modes (due to reduced
dimensionality of the tuft snapshot samples). For the first 10 modes shown in the inset,
again a similar trend can be observed, indicating the similarities between the POD for

the full velocity fields or just the local flow angles as obtained from tufts.
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FIGURE 6.4.8: Singular values of the POD for the suction surface pseudo tufts on the
wing in comparison with the singular values for the velocity POD.

The similarity between the velocity POD and tuft POD can further be illustrated through
the spatial modes of the tufts as shown in fig. 6.4.9. This illustrates how the sparser in-
formation of the tufts can still capture the most important surface flow features, albeit
with less detail than shown in fig. 6.4.6. The first mode in this case for the tuft POD does
not represent any flow velocity but flow direction indicating downstream flow along
most of the chord length. It must be noted that the sign of spatial mode is arbitrary.
The temporal modes contain the sign necessary to decompose or reconstruct a sample
with a given POD basis. The second and third modes of the tufts still represent similar
flow scenarios as identified by the second and third velocity POD modes. It can be ob-
served that mode 2 and mode 3 for the tufts have been switched compared to mode 2
and mode 3 for the velocity, from the singular values in fig. 6.4.8 it can be seen that the
singular values for the second and third mode are almost equal, leading to the potential
switch of the modes for second and third position as influenced by small differences in
the training data sets for either the velocity POD or tufts POD.
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FIGURE 6.4.9: The cosine and sine of the first three spatial modes for the POD of the
URANS CFD tuft data set.

Similar to the analysis with the velocity POD, the tuft POD modes can be used to in-
vestigate the same flow case as has been shown in fig. 6.4.7. For the Reynolds number
of 10° and angle of attack 18° the temporal mode signal and frequency spectra are com-
pared to the lift coefficient as shown in fig. 6.4.10. For the case with angle of attack
18° the second tuft POD mode represents the full stall cell. This can be observed to
be the case in the temporal mode signal which is positive. However, also the negative
signal of the third mode is clearly visible. As the velocity magnitude does not play a
role and only the local flow direction is relevant, the second and third mode are similar
but opposite when considering the sine of the tufts (spanwise flow direction). When
considering the frequency spectra the results can be seen to still retain frequency peaks
that match for the temporal modes and the lift coefficient, indicating that the use of
the local flow directions suffices to obtain an indication of the unsteady lift coefficient
oscillations due to surface flow patterns. The frequency spectra of the tuft temporal
modes however do deviate more from the lift coefficient spectrum relative to the sur-

face velocity temporal mode spectra as were shown in fig. 6.4.7.
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FIGURE 6.4.10: Tuft POD temporal modes frequency spectrum with lift coefficient

frequency spectrum. Both signals and frequency spectra are normalised with their

respective maximum of the absolute values. Left: the signal under investigation, right:

the resulting frequency spectrum. Convective cycles are defined as the chord length
divided by the freestream velocity.

6.4.4 Unsteady lift from tufts
6.4.4.1 Computational results

In section 6.3.2 the procedure has been described which can be followed to obtain an
unsteady wing loading estimate from the pseudo tufts. For this computational ap-
proach, the first step is to obtain a steady estimate for the wing lift coefficient for each
« — Re combination. In order to limit the influence of the initial transient phase in the
simulation, the initial 25% of the simulated time has been ignored. The resulting aver-
age lift coefficients for each « — Re combination of the remaining 75% of the simulated
time, are shown in fig. 6.4.11. For the calculation of the average lift coefficient per case
also the test cases have been taken into account, as no other suitable method would
lead to a reasonable estimate for the average lift coefficient. Interpolating the known
average lift coefficient based on known Cj, values for different « — Re combinations can
lead to large errors if not enough & — Re combinations are known. Alternatively some
other unrelated methods to obtain a steady estimate might exist (2D RANS, potential
flow, etc.) that are computationally cheaper than 3D URANS, but come with other dis-
advantages such as limited accuracy for separated flow cases as under investigation

here.
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FIGURE 6.4.11: The average lift coefficient obtained from the URANS simulations for
each « — Re combination. The initial 25% of the simulated time is ignored to omit the
transient phase.

The equations (6.2),(6.3) and (6.4) can be combined into eq. (6.6), where the left hand
side of the equation represents the unsteady component of the lift coefficient and the
right hand side the optimised linear equation based on the temporal modes of the snap-
shot samples and trained coefficients. These coefficients can be optimised by minimis-
ing the root mean squared error (RMSE) between the measured unsteady lift coefficient
and the estimated value. In the optimisation only the training data is used such that
the test data represents unseen combinations of angle of attack and Reynolds number.

Cri — Cr(a,Re) = WL - ¥; + BL + error (6.6)

The unsteady component of the lift coefficient is estimated based on a number of in-
cluded temporal modes with the corresponding weights and a single bias. It can be
expected that the inclusion of more modes results in better performance. This has been
evaluated by considering a varying amount of modes to include between 10 and 100
modes. For validation 500 random samples from the training data set were used, these
samples allow for evaluation in between training iterations on the remaining training
data (epochs - this is the validation data set). When the evaluation of the 500 sam-
ples did not improve for 200 iterations the optimisation was halted and the weights
and bias resulting in the lowest error for the 500 samples were restored (also known as
early stopping). For each varying amount of modes considered 10 different optimisa-
tions have been run, for which the resulting error and standard deviation are shown
in fig. 6.4.12. From the figure it can be seen that indeed for the training data set (and
the validation subset), the error decreases for increasing amounts of modes included.
However, for data driven methods the tendency to overfit can occur especially when
the test set represents entirely different cases with unseen angle of attack and Reynolds
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number combinations in the training data set. The test data set illustrates the impor-
tance of evaluating the ability of a method to generalise to different cases, which with
the current data set and training — test split can be found to be close to optimal around
30 modes. It is also noticeable that the train and validation error are similar, with the
training error smaller than the validation error. Both training and validation data sets
contain samples of the same angle of attack and Reynolds number cases. These data
sets (training and validation) are thus similarly distributed and the error is thus also
similar. As the network coefficients are updated based on the training data and eval-
uated on the validation data, the error is lower for the training data. Lastly, the test
data has been taken from angle of attack and Reynolds combination cases which do
not occur in the training and validation data. As such the error for these cases can be
significantly different. In the current investigation the test cases tend to contain the type
of surface flow which can be predicted well due to the unsteadiness in the tufts, leading
to the low error relative to the training data. Some of the «— Re cases in the training
data, such as attached flow do not benefit from an unsteady model for performance

prediction based on tufts.
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FIGURE 6.4.12: Resulting error for Fjjne,r with increasing amounts of modes included.

Root mean squared error for the training data set (train: 4131 samples), the subset for

intermediate evaluation (validation: 500 samples) and the test set without any influ-
ence on the training (test: 731 samples).

A function has been created with 30 weights for 30 temporal modes and one bias. The
function produces the unsteady lift coefficient component (ACy in fig. 6.4.13) which
has different characteristics for different types of test cases. The flow type as identified
in fig. 2.6 is also indicated at the start of the respective x-axes in fig. 6.4.13. It can be
noticed that for cases with stall cells the linear function can reproduce the unsteady
lift with reasonable accuracy, most notably the frequency content of the test samples
appears to be reproduced well for all cases. For the cases with fully separated flow

over the wing suction surface there is only very little variation in the flow direction
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observations through tufts. Relevant information to estimate the lift coefficient fluctu-
ations amplitude variations could be contained in the velocity. For the cases with full
span separation the tufts are thus not able to provide the necessary information for the
magnitude of the lift coefficient fluctuations, however it remains possible to estimate
the frequency of the fluctuations based on the flow direction. Lastly for the cases with
TE separation there is nearly no unsteady component. The small deviation that is in-
troduced by the linear equation is mostly due to a combination of several modes rather
than the bias (Br) of the equation which is -0.003 (as the linear function only considers
lift fluctuations).
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FIGURE 6.4.13: The unsteady lift coefficient component (ACyp), the true result from
CFD and the predicted result from the linear function for the test cases.

Finally the error of the linear function, as described in eq. (6.6), can be modelled with
the non-linear function based on the tuft observations as described by eq. (6.5). The
use of this non-linear one layer neural network is to investigate the ability to use ad-
vanced modelling and optimisation techniques outside conventional linear methods.
For neural networks the performance that can be achieved often comes at the cost of
interpretability. Using an adaptation of the universal approximation theorem keeps the
neural network complexity at a minimum while offering improved performance over

the previously used linear method. For the linear method the full amount of tufts are
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implicitly used when obtaining the POD modes and the corresponding coefficients. Af-
ter the POD coefficients or temporal modes have been obtained, a rank truncation can
be applied to reduce the amount of parameters of the final linear combination which
gives the unsteady Cr. The universal approximation theorem has been implemented
as a single layer neural network with Sigmoid activation in the latent layer and a lin-
ear activation at the output node. This implementation can be interpreted similarly to
the linear approach. The input layer of the non-linear network takes in all the tufts
and transforms these into a latent space of predefined size similarly to the POD rank
truncation. The output node provides the linear combination of the latent space coeffi-
cients, similarly to the linear combination of the temporal modes. The main difference
is thus the non-linear activation function applied to the latent space. Increasing the size
of the latent space of the neural network can be expected to improve the performance
similarly as for the linear approach. In fig. 6.4.14 the resulting RMSE is shown for the
non-linear network, with 10 optimisations per latent space size. The error can be seen
to initially decrease with increasing number of latent space nodes. After 35 nodes no
improvements can be observed with increasing latent space size. This is possibly a
limitation caused by the amount of data required or by the limited information that is
contained in a current snapshot sample. For the non-linear function the standard devi-
ation can also be observed to be much larger compared to the optimisation of the linear

function at each number of nodes or modes to include.
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FIGURE 6.4.14: Resulting error for F,on-linear With increasing amounts of nodes in the

hidden layer. Root Mean Squared Error (RMSE) for the training data set (train: 4131

samples), the subset for intermediate evaluation (validation: 500 samples) and the test
set without any influence on the training (test: 731 samples).

o 35
CrLi— CL((X, Re) — (WL . ‘Pi) + B = Zaj . U'(WNN,]' - Xi + BNN,j) (6.7)
=1
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A neural network with 35 nodes has been created which attempts to optimise the coef-
ficients on the right hand side of eq. (6.7). Where on the left hand side the 30 optimised
weights for the linear function are represented by vector Wi, on the right hand side
the weights Wnn;,j represent 35 vectors (layers) of 520 floating point numbers which
produce the dot product with the tuft inputs (U;). The equation can be optimised to
produce a test RMSE of 0.025. The results of the test set are shown in fig. 6.4.15, where
the final resulting estimated unsteady Cj, is shown through combining the steady esti-
mate with the unsteady linear and non-linear estimate. The non-linearly estimated part
of the unsteady lift coefficients makes some improvements to all the different types of
surface flow cases. For cases with stall cells the lift coefficient matches the frequency,
phase and magnitude slightly better than with only the linearly estimated unsteady lift
coefficient. For the full separation cases the magnitude of the Cj, fluctuations is better
represented, however the non-linearity does not affect the lack of the ability to capture

the change in amplitude of the fluctuations over time.
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FIGURE 6.4.15: The unsteady lift coefficient, the true result from CFD and the pre-

dicted result from the linear function for the test cases. The predicted result includes

the average lift coefficient, the linearly predicted unsteady component and the non-
linearly predicted unsteady component.
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6.4.4.2 Experimental results

While it is possible for the linear and non-linear method used in the computational
investigation to explore an optimal amount of modes or nodes to include, for deep
neural networks the tuning of hyper parameters is typically more challenging. Shallow
two-layer neural networks have previously been demonstrated to be trainable on small
data sets with good performance (Carter et al. (2021), Erichson et al. (2020)). In the cur-
rent investigation a simple two-layer neural network has been used which gradually
reduces the width of the network from an input size of 110 to a single output. The
training data set consists of 65k samples and a separate set of 10k samples is avail-
able for validation (during training). The test set for evaluating the performance of
the trained neural network also consists of 10k samples. All samples are taken from
one experimental run at a constant angle of attack and Reynolds number, where the
training data is the first recorded data followed by the validation data and the test data
was recorded last. The validation samples are thus not an interpolation of the training
samples, and the test data is also independent of the training data. Both the valida-
tion during training and the test evaluation thus represent out of sample predictions.
The computational data showed highly periodic behavior for each « — Re combination,
which is not the case for the experimental data. During initial data exploration it was
noticed that there appears to be a slight temporal offset between the measurements
of the lift and the pitching moment. As the lift measurements appear to lag the tuft
and moment measurements, the lift measurements have been shifted forward tempo-
rally in the training data by 8 time steps (0.067 seconds). The optimal temporal shift
was determined by testing several different delays between five and fifteen time steps
and selecting the shift which results in the lowest error for the lift coefficient surrogate
model. For the pitching moment measurements the lowest error was found without
any temporal shift.
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FIGURE 6.4.16: The unsteady lift and pitching moment estimated from experimental
tuft recordings with a shallow neural network.

In fig. 6.4.16 the result is shown for a time frame of 10 seconds which is part of the
test data set. The mean lift force measured was 11.15 N and the mean measured pitch-
ing moment was 0.24 Nm. The measured lift force fluctuations filtered at a Strouhal
number of 0.255 shown in fig. 6.4.16 have a peak-to-peak amplitude of approximately
21% of the mean value, while similarly for the pitching moment this amplitude is ap-
proximately 125% of the mean value. The neural network can estimate the magnitude
and phase of these fluctuations well based on the tuft recordings. The component at
a Strouhal number of 0.3 of the measured fluctuations is more significant for the lift
than for the pitching moment, as shown in fig. 6.4.17. In fig. 6.4.17 a comparison is
shown between the unfiltered measured data (similar to training data) and the net-
work prediction for the test data set. The match in frequency content is very good with
exception of the peak at a Strouhal number of 0.3 for the lift and (also St = 0.6) for the

pitching moment. Currently it can not be determined definitively what the cause is
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for the neural network to not capture the appropriate magnitude of the component of
the fluctuations at a Strouhal number of 0.3. However, as no significant changes in tuft
motion can be seen on such a small timescale it is possible that the fluctuations at these
frequencies are not of aerodynamic origin, or cannot be registered properly with tufts.
A short overview of the tuft motion frequency content is shown in section 6.4.4.3 this
indicates that it is unlikely to obtain a significant frequency component at a Strouhal
number 0.3. The higher Strouhal number range appears to still match but the signif-
icance of this Strouhal number range is very limited and close to representing noise.
The networks and models used in this investigation have only been trained to process
a single independent sample. It could be possible that the inclusion of multiple time

steps in a model improves the results.
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FIGURE 6.4.17: The frequency spectra, normalised by the low-frequency peak value,
of the lift and pitching moment fluctuations in the test set of the data. A comparison
is shown between the spectra of the measured values and the predicted values.

6.4.4.3 Time response of tufts

In fig. 6.4.18 and fig. 6.4.19 the frequency spectra are shown of 11 spanwise adjacent
tufts near the centre of the chord, for the cosine and the sine of the tuft angles respec-
tively. These tufts consider some locations which are prone to showing attached flow as
well as tufts which tend to be inside a stall cell with separated flow. While the analysis
of the specific individual tuft behavior in relation to the surface flow is outside of the
scope of the current investigation, it remains relevant to assess the range of frequen-
cies which can be found in the tuft data which is used as an input for the data driven
method with a neural network. In fig. 6.4.18 it can be observed that the peak power of
the individual tuft angle cosine frequency spectra is found between 0.1 and 1 Hz. The
cosine of the tuft angle indicates the chordwise flow direction. Large changes in the co-

sine can thus represent the switch between attached flow aligned with the freestream or
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separated flow going upstream near the wing surface. In fig. 6.4.19 the frequency spec-
tra of the sine of the tuft angles are shown, which indicate that no clear peak values
are present in the frequency spectra. The sine of the tuft angle represents the change
in spanwise flow direction. It can be observed that for the spanwise flow unsteadi-
ness the relevant frequencies are an order of magnitude larger than for the chordwise
flow unsteadiness (as represented by the cosine of the tuft angles). It appears that the
10 Hz frequency as found in the lift and pitching moment data is also present in the
spanwise fluctuations but not with a clear distinct peak value. The analysis of the tuft
fluctuations as presented through the frequency spectra of the sine and cosine of the
tuft angles neglects the important aspect of the magnitude of the fluctuations, which is
likely important in the physical analysis of the flow. Future investigations may focus
on the complete combination of the tuft angle frequency spectra and the magnitude of

the tuft angle fluctuations to improve the knowledge of separated flow structures.
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FIGURE 6.4.18: Frequency spectrum comparison of different tufts at a similar chord-

wise position along the span. The frequency spectrum considers the variation of the

cosine of the tuft angles, which is equivalent to the tuft fluctuations in chordwise di-
rection.
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FIGURE 6.4.19: Frequency spectrum comparison of different tufts at a similar chord-

wise position along the span. The frequency spectrum considers the variation of the

sine of the tuft angles, which is equivalent to the tuft fluctuations in spanwise direc-
tion.

6.5 Conclusions

In the current work it has been shown that, with both computational and experimental
data, tufts in combination with data driven methods can provide quantitative informa-

tion about the unsteady aerodynamic loading of a wing with a NACA 0012 profile.

The computational data consists of varying combinations of angle of attack and Reynolds
number URANS simulations of a 3D wing with a NACA 0012 airfoil profile. Most of
the simulated « — Re combinations contain unsteady surface flow with correspond-
ing unsteady wing loading. The flow direction near the surface of the wing has been
utilised to obtain pseudo tufts, which have been used as an input for a surrogate model
that estimates the unsteady lift coefficient fluctuations. It has initially been shown that
the surface flow velocity holds a strong relation to the lift coefficient through the use
of a frequency analysis of the SVD temporal modes (equivalent to POD coefficients) of
a snap shot sample. As a next step the local flow direction has been used to indicate a
similar relation in terms of the frequency content of the temporal modes of the tufts. A
linear combination of the temporal modes of tuft snapshot samples has been shown to
be capable of estimating the unsteady lift coefficient for cases with flow separation. The
remaining error after the linear estimate of the unsteady lift coefficient has further been
captured through optimising the coefficients for the equation of the universal approxi-
mation theorem, which has been implemented as a single hidden layer neural network
with a Sigmoid activation layer. The non-linear approximation further improves the es-
timation of the unsteady lift coefficient. The computational investigation showed that
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it is possible to use a single surrogate model which provides lift fluctuation estimates
for multiple angles of attack, Reynolds numbers and surface flow configurations based
on the pseudo tufts.

Unsteady separated flow tends to involve turbulent flow which is not represented well
with the current URANS simulations. Therefore, an experimental investigation has
been performed to assess the ability of a data driven model to function on complex
flow patterns with input data which contains both noise and turbulence. The experi-
mental investigation focused on a wing with a NACA 0012 airfoil profile, which has
been investigated at a single combination of angle of attack (13°) and Reynolds num-
ber (2.1 -10°) which produced highly unsteady surface flows. The forces and moments
were recorded simultaneously with the tufts. With 120 frames per second for the ex-
perimental tuft recordings it is possible to acquire multiple orders of magnitude more
samples than with simulations of a similar flow. The large amount of samples available
with imperfect complex input data have been used to train two separate neural net-
works. Both neural networks have two hidden layers and a single output, one network
is trained on the lift fluctuations and the other on the pitching moment fluctuations.
With less than 10 minutes of sampled data at 120 Hz it has been found possible to cap-
ture the fluctuations of the lift and pitching moment with snapshot samples of the tufts.
It is possible that the current results for the experimental investigation can be improved
upon by tuning the network parameters or even including multiple time steps in the

input.
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Conclusions

Research of separated flows is notoriously difficult due to the chaotic nature of the
flow. Separated flow over a wing includes unsteady interaction of flow structures on a
range of spatial and temporal scales. Experimental and computational methods have
been essential to the research of turbulent flows. Both methods offer specific advan-
tages and come with certain disadvantages. In the last few decades advancements in
computing have helped to improve experimental and computational methods. Inves-
tigations now yield very large data sets which have become difficult to process. The
advancements in computing have also helped bring data driven methods such as neu-
ral networks to the forefront. These new methods allow us to create models which
capture the information contained in data sets without the need for an explicit formu-
lation of the observed system. Both linear and non-linear methods are commonly used
to capture important flow features or approximate complex systems. The current work
focused on different aspects of separated flow in combination with relevant data driven
methods. The initial focus has been on reducing the dimentionality of data sets with
a large number of parameters. This has been explored with sparse reconstruction of
particle image velocimetry velocity fields, with approximately 51 000 parameters per
sample, through the use of the proper orthogonal decomposition (POD) and non-linear
refinement. Recently developed methods for non-linear mode decomposition were ex-
plored next. Variations of autoencoders were shown to have particular strengths and
drawbacks. The dimentionality reduction has then been applied to create a data driven
stall detection model based on surface pressure measurements. The final part of the
research showed that it is possible to use tufts in combination with a neural network
to obtain a quantitative estimate of the wing performance during unsteady flow. The
use of sparse sensors in combination with data driven methods have been shown to
be a powerful tool. These tools allow to extend measurement capabilities beyond their
initial purpose, and enhance our understanding of large and complex systems.
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7.1 Summary

In chapter 3 a data set of two dimensional PIV flow fields has been used to investigate
different sparse reconstruction methods. Sparse reconstruction methods utilise sparse
measurements of a system to estimate the full state of that system. The flow fields con-
tain turbulent separated flow over a NACA 0012 airfoil at a Reynolds number of 75000
and an angle of attack of 12°. The sparse pseudo probe measurements in this case
are represented by local velocities at a point within the velocity field. Three different
linear methods have been compared with either randomly positioned probes or posi-
tions obtained with Q-DEIM method. From the investigation of the linear methods it
was shown that the compressed sensing approach in combination with Q-DEIM probe
positioning performed the best. The extended POD and quasi orthogonal extended
POD methods were preferable when the probes were positioned randomly. These lin-
ear methods estimate the POD coefficients for a POD basis which contains the POD
modes of the full velocity fields. The linear estimation of these coefficients based on
a limited set of measurements was shown to be improved by using a neural network
to update the estimated coefficients. Such a network takes in the POD coefficients as
estimated by the linear methods and updates these to reduce the reconstruction error
with the POD basis of the flow fields. The neural network does not use the probe mea-
surements as an input and thus can be interpreted as having learned the error that is
introduced in the linear estimate of the POD coefficients based on the sparse measure-
ments, allowing the neural network to correct that error. The neural network updating
of the coefficients showed large improvements in the reconstruction of the flow field

from randomly positioned sparse probes.

In chapter 4 non-linear modes of a separated flow field have been investigated. The
popularity of POD to decompose a data set into modes has more recently sparked a lot
of interest in creating non-linear modes through the use of neural networks. The PIV
data set with separated flow fields has been used to compare several methods which
result in non-linear modes. The principle of hierarchical subnetworks has been illus-
trated on a linear single layer autoencoder to show the equivalence to POD. The same
process of successively training subnetworks can be applied to non-linear autoencoders
to produce non-linear modes which are ranked according to the information they cap-
ture in the training set. The non-linear hierarchical autoencoders create a latent space
distribution which can be hard to interpret. Variational autoencoders introduces prob-
abilistic constraints to regularise the latent space. This results in autoencoders with
a latent space that resembles a known distribution. An additional parameter () can
be tuned to balance the reconstruction error of the autoencoder and the latent space
regularisation. It was found that with the correct value for B the autoencoder learns
a set of non-linear modes which are near orthogonal. These modes have a reduced

reconstruction error compared to POD and an improved Pearson correlation. As the
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latent space distribution for the latent variables matches A (1,0) closely, it is possible
to sample points from this distribution to create new realistic samples.

In chapter 5 the flow over a NACA 0012 wing has been simulated with unsteady
Reynolds averaged Navier Stokes (URANS). Many different Reynolds number and an-
gle of attack combinations have been simulated to obtain a representative overview of
the flow on the wing ranging from attached flow to fully separated flow. The impor-
tance of the flow near the surface of the wing has been illustrated for cases which con-
tain some form of flow separation. The surface pressure on the wing has been shown to
be closely related to the surface flow patterns that are observable with surface flow vi-
sualisation techniques. Experimental and computational measurements of the surface
pressure on a wing with a stall cell present showed good agreement when the location
of the pressure measurements is relative to the surface flow pattern. The URANS sim-
ulations allowed to investigate the unsteadiness of the flow over a wing with a stall
cell present. The fluctuations in the lift coefficient were indicated to be related to the
undulations of the stall cell. Based on these observations a flow type classifier has been
built which could serve as a stall detection system. The flow type classifier consists
of a system of five equations to classify the surface flow into one out of four different
flow types. The equations use the first two proper orthogonal decomposition (POD)
modes of surface pressure measurements as inputs. This very simplistic model already

provides 98% accuracy.

In chapter 6 an approach to estimate the unsteady lift coefficient from visual tuft ob-
servations has been created. Tufts have long been used as a qualitative tool to visualise
the flow near the surface of an object. It has been shown that the surface flow is closely
related to the surface pressure on a wing. As such, the tufts can be reasoned to contain
information about the performance of a wing. It is not feasible to create an analyti-
cal expression that describes the relation between tuft observations and aerodynamic
parameters. It is however possible to use a neural network to approximate this rela-
tion. An initial investigation of this approach on a computational data set showed the
working principle. An experimental investigation of a NACA 0012 wing experienc-
ing highly unsteady flow provided simultaneous images of tufts and integral force and
moment measurements of the wing. This experimental data contained erratic flow and
flow fluctuations. By processing the tuft images into data suitable for a neural network
it was shown that this network can accurately estimate the unsteady lift and pitching

moment fluctuations of the wing.

7.2 Future research

The research in this thesis has addressed several gaps in the existing literature of data
driven methods for separated flows. The current research also indicates how there are
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still unanswered questions for this topic.

¢ The investigation of separated flow through computational means suffers from
inherent inaccuracies introduced by the simplifications in the computational mod-
els. A thorough experimental surface flow investigation of the progression of
stall including stall cells is still missing from literature. Such data can provide
an important link between visually observable flow structures with tufts and the

measurable properties of the flow.

¢ Although several methods for sparse reconstruction have been compared, there
are many more possibilities for sparse reconstruction. A full non-linear approach
likely performs better than the linear approach with non-linear refinement.

¢ The use of non-linear modes for reduced order modelling showed benefits such
as a reduced reconstruction error and an improved correlation compared to the
linear POD. However non-linear modes remain difficult to interpret, which is a
key aspect of the decomposition into modes for flow analysis. Hierarchical meth-
ods which successively train subnetworks naturally create a ranking of the non-
linear modes. Applying the hierarchical approach to  variational autoencoders
can bring a clear structuring to successive modes which already have a known

distribution for the latent space.

¢ Stall detection systems are essential for aircraft safety. In the current work a data
driven approach has shown great results on a computational data set. More ad-
vanced data driven methods in combination with experimental data can create
a stall detection model which performs well on chaotic real life data with just a
limited set of sensors.

¢ The surrogate model for the lift coefficient based on tufts has been shown to be
generally applicable for different angles of attack and Reynolds number for com-
putational data. It remains to be tested if such surrogate model can be created for
experimental data which works for a range of angles of attack and Reynolds num-
bers. Similarly when given the specific airfoil parameters as an input, it might be
possible that such a surrogate model based on a neural network could further

generalise to different airfoils.
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