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Bats fly using significantly different wing motions than other fliers, stemming
from the complex interplay of their membrane wings’ motion and structural
properties. Biological studies show that many bats fly at Strouhal numbers, the
ratio of flapping to flight speed, 50-150% above the range typically associated
with optimal locomotion. We use high-resolution fluid-structure interaction
simulations of a bat wing to independently study the role of kinematics and
material/structural properties on aerodynamic performance and show that
peak propulsive and lift efficiencies for a bat-like wing motion require flapping
66% faster than for a symmetric motion, agreeing with the increased flapping
frequency observed in zoological studies. In addition, we find that reduced
membrane stiffness is associated with improved propulsive efficiency until the
membrane flutters, but that incorporating microstructural anisotropy arising
from biological fiber reinforcement enables a tenfold reduction of the flutter
energy whilst maintaining high aerodynamic efficiency. Our results indicate
that animals with specialized flapping motions may have correspondingly
specialized flapping speeds, in contrast to arguments for a universally efficient
Strouhal range. Additionally, our study demonstrates the significant role that
the microstructural constitutive properties of the membrane wing of a bat can
have on its propulsive performance.

Bats are amazing fliers able to perform powered flight using membrane wings
which endow them with exceptional maneuvering capabilities [1]. Understanding
the complex mechanical interplay of their membrane wing and flight kinematics
is key to unraveling fundamental questions in evolutionary biology and to
engineering of biologically inspired flying vehicles.

Numerous studies have investigated the kinematics of bats in forward flight
[2–7] and provided details of its unique features. Bats fly using a power stoke
where the aerodynamic forces are mainly produced during the downstroke while
the upstroke is comparatively far less active and can even be feathered [8, 9].
The downstroke starts with the wing moving ventrally and anteriorly along the
stroke plane (see Fig. 1A). An essential parameter of bat (and animal) flight is the
angle of the stroke plane relative to the horizontal, which tends to increase with
flight speed [1]. Wing extension is also a key influencing parameter of bat flight;
it is maximal during the downstroke to enhance aerodynamic force production
[10] while it is minimal during the upstroke to reduce power expenditure [11].
An aspect that differentiates bat flight from other flying animals is their wing’s
weight, representing up to 20% of their total weight [12], which influences the
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Figure 1. Schematic of A the Strouhal number of a bat with showing the wingtip trajectory (black line) and the stroke plane (dashed grey line), adapted

from [1]. B Strouhal number envelope for several bat species from the data provided in [13]. The normal distribution is drawn with a variance where the

min-max envelope corresponds to ±3σ (99.7% confidence interval), and the mean uses the mean Strouhal number from the data. The grey shaded

area represents the typical Strouhal range of 0.25<St< 0.35. C Macroscopic structure of a bat wing membrane. Asterisks indicate the array of nearly

homogeneous, approximately spanwise-oriented elastin fibers; dagger indicates the chordwise-oriented musclesin in the armwing, adapted from [14]. D

Distribution of relative pressure due to dynamic motion along the wing’s span computed from experimental measurements[4].

power requirements of bats. While these studies provide
excellent observation of bat flight, they cannot isolate
the essential aspects of kinematics and their influence on
flight efficiency. Additionally, reported flapping frequencies
across numerous bat species can vary by as much as 50%
compared to those of morphologically similar birds, at
equivalent flight speed and flapping amplitude [13, 15].
We compile the experimental measurements of [13] (see SI
Appendix Tab. S1) in terms of the Strouhal number St

St=
fA

U
∼ flapping speed

flight speed
, (1)

with f the flapping frequency, U the forward velocity of
the swimmer/flyer, and A is the peak-to-peak flapping
amplitude, see Fig. 1A. Animal flight or swimming typically
occurs in a narrow range of Strouhal numbers, 0.25<St<
0.35, and this narrow band is linked to optimal locomotion
in terms of propulsive efficiency [16] associated with the
most unstable-mode of the wake. However, Fig. 1B shows
that many bats fly at Strouhal numbers significantly higher
than this, and we find that the motion amplitude is a good
measure of wake width, see SI Appendix Fig. S1, meaning
our use of A in defining St is consistent. As such, the
anomaly in the Strouhal number indicates that bat flight is
an outlier compared to other flapping animals.

In addition to bat flight’s uniquely high Strouhal number,
bat wing material properties are also unique, arising from
a complex arrangement of various types of elastic fibers
and muscles. Typical membrane thicknesses range between
130 and 300 µm, making them extremely thin compared
to other mammals’ skin [17]. Fiber assemblies in the

plagiopatagium and the dactylopatagium form an orthogonal
net [17], with the fibers approaching the digits at 90◦ to the
digit’ long axis. These fiber arrangements are volumetrically
dominated by spanwise elastin fibers featuring a high degree
of elastic recoil, while the much stiffer collagen fibers are
present in much smaller proportions. Within this orthogonal
fiber network, there is a significant stiffness ratio between
the spanwise and chordwise mechanical properties [18],
see Fig. 2C. The high level of mechanical anisotropy of
the wing results from pre-stretched spanwise elastin fibers
embedded in a matrix with randomly oriented collagen
fibers [14]. At rest, the pre-stretched elastin fibers induce
buckling of the supporting matrix. Under tension, the
much stiffer matrix and collagen fibers increase spanwise
stiffness once the elastin fibers have been stretched past
the unwrinkled configuration of the membrane. While it
has been hypothesized that this fibrous net improves flight
efficiency [19, 20], this has not been verified nor quantified
with parametric studies rooted in continuum mechanics of
both fluid and solid media.

Experimental studies of bat flight are limited in the
amount of information that can be simultaneously collected
about the structural and material properties of the wing,
and motion of the bat during flight. Therefore, these
studies cannot segregate the respective role of particular
structural elements of the membrane/wing composition
or that of flight kinematics on the bat’s performance.
Similarly, previous numerical simulations rely either on
marker measurements, fixed and discrete by definition,
and one-way fluid-structure interaction coupling [10, 21],
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Figure 2. Schematic of the kinematic and geometrical model of the bat wing. A Coarse representation of the finite-element model of the handwing

used for the numerical simulations with the fiber family direction vector. B Cartesian (OXY Z) and carpus (oxyz) coordinate system. The carpus

coordinate system is convected with the wing following the dashed path. Pitch and roll are rotations around the Y and X-axis, respectively. The Strouhal

number, St=A/(U/f) is depicted for kinematics at St= 0.5. C Constitutive curves for the fiber-reinforced membrane under biaxial loading showing

the membrane’s non-linear behavior and the tangent stiffness modulus for calibrating the mechanical properties. The constitutive curves correspond to

the two fiber families in A. The tangent stiffness modulus shows a response equivalent to linear isotropic material. D Trajectory of the wingtip and carpus

in a 3D space (thick lines) with projections onto the three planes (various discontinuous lines) for a Strouhal number St= 0.5 compared to experimental

measurements (markers) of [4]. The stroke plane is represented by the dashed grey line. The experimental Strouhal number is estimated to be St∼ 0.5.

or on overly simplistic kinematics and constitutive laws
for membrane skin [22, 23]. In the first case, these
numerical studies inherit the experimental study’s fixed
set of parameters by design, thus preventing any further
wider parametric studies, and in the second case, the
respective influence of the microstructural constitutive
parameters and motions of the wing membrane, and their
interplay, are not captured because of the low fidelity of the
kinematics and material law used. The research presented
here uses fully-coupled fluid-structure simulations to
perform the first controlled study of bat performance
using realistic parametric models of the bat flight motion
in concert with state-of-the-art microstructurally-based
constitutive model of the wing membrane valid for
arbitrary (i.e. finite) deformation. Computational studies are
indispensable for these complex systems that are intractable
analytically [24]. By investigating the flapping Strouhal
number and membrane reinforcement independently, we
determine their direct influence on the flow field and wing
deformations and ultimately explain the influence of these
unique features on bat flight performance.

Results

Parametric modelling approach
Our geometrical model of the bat wing consists of the
three distal digits (3, 4 and 5) and the membranes that
make up the handwing, see Fig. 2A. The handwing
experiences 98% of the dynamic load during a cycle (see
Fig. 1D) and significantly contributes to both lift and thrust.
Previous quasi-steady models of bat flight [12] estimate
that thrust is produced mostly by the handwing while lift
contributions are shared equally between the hand and
armwing. However, the armwing relies on complex muscle
activity to generate lift by modulating the camber of the
(plagiopatagium) membrane [20], while the handwing relies
on the large apparent velocity induced by the motion and
camber modulation via folding of the digits. Attempting
to actively control the time-dependent muscle and digit
activity would add significant complexity and uncertainty
to our geometric and kinematic model of the wing. While
omitting part of the biological system such as the body
and secondary lifting surfaces certainly introduces errors,
focusing on the dominant contributor to the propulsive
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force has been used in many successful numerical studies
[25, 26]. We therefore, limit the current study to the
handwing with inactivated digits and focus on the dynamic
thrust and lift production and passive deformation of
that structure. The flight kinematics are imposed on our
geometrical model through the carpus, see Fig.2A.

Bats use complex pitching, folding, and active camber
control of their wing during the cycle to modulate the
thrust/lift generation. Lift is mainly produced in the
downstroke, and the upstroke has a minor contribution
to the cycle-averaged values, while thrust is produced
throughout the cycle [10]. Mimicking the loading applied
during the downstroke and upstroke is critical to achieving
realistic performance estimates (see SI Appendix Fig. S2),
but modeling the folding of the wing during the upstroke
is extremely complex. To provide simplified yet realistic
kinematics, we prescribe a variable pitch to our model based
on an effective angle of attack approach [27, 28]. This is an
approximate method used to quickly estimate appropriate
pitch kinematics, after which the full fluid-structure
interaction solver is used to determine the resulting flight
performance. However, this simple approach captures bat
wing motion accurately when compared to actual wing
motion [4], see Fig. 2D. The complete kinematics, their
calibration, and the procedure used to obtain the pitch
profiles are presented in the Method section.

We use our fully-coupled fluid-structure interaction
solver, presented in [29, 30], to perform numerical
simulations of our parametric geometric and kinematic
model of a bat wing, see Fig. 2A and the Method
section for more details. In addition to Strouhal St, three
non-dimensional parameters govern the coupled problem:
the Reynolds number, Re=Ub/νa, the mass ratio, Mρ =

ρsh/ρab, and the Cauchy number,

Ca=
Eh

ρaU2
refb

∼ membrane stiffness
dynamic pressure

, (2)

where νa, b, E, and h are the kinematic viscosity of air,
the bat’s half-span, Young’s modulus, and the membrane
thickness, respectively. ρs and ρa are the membrane and
air density, respectively. The velocity scale, Uref, is the
maximum apparent velocity during the cycle U2

ref/U
2 =

1 + (πSt)2. This Ca scaling ensures that the impact of
Strouhal on the relative stiffness of the wing is accounted for,
allowing us to study the relative speed and stiffness effects
independently. Using typical bat wing membrane density
[17], the mass ratio is set to Mρ = 0.589. The full viscous
flow equations are solved, and assuming a standard cruising
speed and a wingspan of bats, the Reynolds number is
set to Re= 104. We study the Strouhal range St= 0.3− 0.7

based on Fig 1B. A simple estimate of bat Cauchy number
assuming a membrane wing with a thickness of 150 µm

[17] and a wing span of 0.1 m, a reference (max apparent)
velocity of 10 m/s and a tangent stiffness modulus 0.250

GPa [18] gives Ca∼ 0.3, and we simulate a wide range of
Ca around this estimate.

We start by presenting results for a linear isotropic
elastic constitutive law to investigate the effect of the

flapping speed and stiffness of the membrane wing on
the aerodynamic efficiencies. We will then compare the
isotropic linear elastic model to the non-linear fiber-
reinforced formulation that incorporates microstructural
and loading-induced anisotropy, more closely resembling
actual characteristics of the bat wing’s membrane [18,
31]. Idealized responses of this fiber-reinforced model are
shown in Fig. 2C together with the experimental calibration
data [18]. The strain energy density function of the non-
linear fiber-reinforced formulation and the method used to
calibrate the material coefficients on the experimental bat
membrane data are presented in the Method section.

Flow field characterization
Figure 3 shows the vortex structures generated by the wing
at three different Strouhal numbers and three different
Cauchy numbers at the same time during the downstroke
(t/T = 0.78, with T the motion period). These visualizations
show that the wake is sensitive to both the Strouhal
number and the Cauchy number of the membrane. The
complete unsteady flow field evolution can be viewed in the
electronic supplementary material video.

The Strouhal number strongly influences the vortex
structures generated by the wing (bottom-left to top-right
axis in Fig. 3), particularly on the leading edge vortex (LEV)
which generates large suction forces on the wing when fully
attached [32]. At low flapping speed, a very weak LEV is
generated, and the structures shed from the wing’s trailing
edge are confined to the tip of the wing, see Fig. 3. Increasing
the Strouhal number to St= 0.5 generates a stronger LEV
indicating much larger force production. A further increase
of the Strouhal number to St= 0.7 generates a large but
unstable LEV which breaks down almost immediately,
limiting the duration of effective force production. The tip
vortex located on the inner part of the wing results from our
simplification of the bat wing, where only the handwing is
modeled and is thus not present in real bat flight. However,
its strength is many times less than the LEV and tip vortex
due to its smaller dynamic velocity (Figure 1d) and it’s
influence on the results is minor.

In contrast, variations in the stiffness of the membrane
(top-left to bottom-right axis in Fig. 3) has a smaller effect on
the bat’s wake. For stiff membranes (i.e. high Ca) a LEV is
generated on the wing’s leading edge, but the vortices shed
at the trailing edge are not spanning the entire wing span.
A reduction of the membrane’s stiffness (i.e smaller Ca)
allows recovering strong vortices spanning the entire wing
at the trailing edge, but a very elastic membrane generates
a moderately unstable LEV. This moderately reduces the
effective force production, similar to (but less extreme than)
the high St case.

Overall, the wake is governed by the flapping speed
of the wing, but within a fixed Strouhal number, the
membrane’s stiffness can further influence the vortex
structures. We note that our simulation are able to capture
some wake features observed experimentally [33], such as
the span reduction during the upstroke and the transition
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Figure 3. Vortex structures in the wake of the bat represented by isosurfaces of λ2(b/U)2 =−5× 10−6 coloured by spanwise vorticity ωy(b/U)± 50

at a selected time during the downstroke. Three different Strouhal numbers at a fixed Cauchy number Ca= 0.5 are represented on the bottom-left to

top-right axis and three different membrane Cauchy numbers at a fixed Strouhal Number St= 0.5 are represented on the top-left to bottom-right axis.

The bat’s body (absent from flow computation) is represented by the opaque ellipsoid, which is not necessarily scaled to the wing. Arrows identify Leading

Edge Vortex (LEV).

vortex (.i.e the vortex generated during the upstroke-
downstroke transition), see the electronic supplementary
material video.

Effect of Strouhal number
Further quantification of the results are presented in terms
of thrust, lift and power coefficient

CT =
Fx

1
2ρaSU

2
, CL =

Fz
1
2ρaSU

2
, CPow =

Pow
1
2ρaSU

3
, (3)

where measured thrust force (Fx), lift force (Fz), and the
power (Pow) are calculated from the integration of pressure
and viscous forces over the wing. S is the planform area
of the wing, and U is the forward speed of the bat. To
quantify the thrust and lift efficiency of the wing, we
use the propulsive and Rankine-Froude (RF) [34] efficiency,
respectively

ηP =
FxU

P
=

CT

CPow
, ηRF =

CL
3/2

CPow
, (4)

where an overline signifies cycle-averaged values.
The propulsive and lift efficiency for two linear isotropic

membranes with different Ca for a range of Strouhal
numbers are presented in Fig. 4A. Regardless of membrane
stiffness, both efficiencies peak at a Strouhal number St∼
0.5. The reduced efficiency at high (St= 0.7) and low (St=

0.3) Strouhal numbers can be associated with the high
mixing present in the wake and the small leading edge
vortex present on the tip of the wing and not the entire
span, see Fig. 3. Peak efficiencies are associated with a strong
leading edge vortex, spanning the entirety of the wing span
and a small amount of mixing in the wake.

The efficiency is much less sensitive to membrane
stiffness than to St. The lift efficiency decreases slightly
with the 10x decrease in stiffness, measuring around 10%
lower for Ca= 0.5 than for Ca= 5.0 across the St range.
In contrast, the thrust efficiency increases with reduced
stiffness, with a 25% improvement at St= 0.5 (although
no change is measured for St > 0.6). In terms of thrust
coefficient, we find that Ca= 0.5 out-performs Ca= 5.0 for
St < 0.6, while the opposite is true for St > 0.6. Lift steadily
increases with St for both membrane stiffness but at a lower
rate forCa= 0.5, especially for St > 0.6. This is likely linked
to a reduction of the effective angle of attack of the wing as
St increases, which results in less membrane camber and
less force generation for Ca= 0.5.

The Strouhal number corresponding to the peak in
efficiency is relatively insensitive to the membrane stiffness
but is strongly influenced by the kinematics. Indeed,
replicating these simulations with identical geometrical and
material models under symmetric-flapping kinematics, which
are based on our bat kinematics but use symmetric pitching
and flapping of the wing, showed a peak efficiency at
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B for various Cauchy numbers and membrane material models at a fixed Strouhal number of St= 05. The dashed vertical line in A indicates the optimal

propulsive efficiency for an identical wing model under symmetric-flapping kinematics. C Overlay of the phase-averaged vertical deformation of the

trailing edge of the inner membrane at 100 times over a flapping cycle shown in the curvilinear coordinate system of the undeflected membrane trailing

edge (see insert). Deflections are shown for three Cauchy numbers for the linear isotropic membrane (Ca∈ {5.0, 0.5, 0.05}) and a fiber-reinforced

membrane (with an equivalent Ca= 0.05). D Power-spectral density of the vertical velocity of the midpoint of the membrane’s trailing edge against

normalized frequency for the four material properties shown in C. Fiber-reinforced membranes reduced the peak frequency magnitude tenfold compared

to equivalent linear elastic membranes. E Streamlines of the direction of the max. principal strain ε1 colored by the magnitude of the max. principal

strain in the membrane at t/T = 0.78, corresponding to the flow plot in Fig. 3, for two different constitutive models and membrane Cauchy numbers.

Isocontours show the coaxialiality of max. principal strain with the max. principal stress σ1. The use of fibers reduces the regions of the membrane where

coaxiality < 0.75, indicated by the dashed contour. Contours and streamlines are shown in the undeformed configuration.

St∼ 0.3, see SI Appendix Fig. S3. While geometric factors,
such as the propulsor’s aspect ratio, have been known to
change the optimal Strouhal number [35], our results show
that keeping identical material and geometrical models but
changing the motion to bat kinematics results in a 66%
increase in the optimal flapping rate.

Effect of membrane stiffness and fiber
reinforcement
At the peak-performance Strouhal number (St= 0.5),
reducing membrane stiffness improves propulsive
efficiency while only slightly penalizing the lift efficiency
(Fig. 4A). Fig. 4B shows the change in the efficiency at
St= 0.5 over a 100x reduction in membrane stiffness to
quantify the performance of a highly compliant membrane.
Additionally, actual bat membranes are made of complex
fiber arrangements [17], and the mechanical properties
deviate significantly from those of linear isotropic elastic
materials, see Fig. 2C. To investigate the effect of the fiber

reinforcement on bat flight, we repeat these simulations
using a fiber-reinforced membrane, see Materials and
Methods; the results are shown in Fig. 4B on top of
the linear isotropic elastic membrane results. For linear
isotropic membranes, the propulsive efficiency increases
with reduced membrane stiffness (i.e. reduced Ca). The
maximum propulsive efficiency is reached at Ca∼ 0.1

before abruptly dropping. Lift efficiency steadily decreases
with decreased membrane stiffness, and the drop observed
Ca< 0.1 for the propulsive efficiency is not as severe.
Adding fiber reinforcements to the membranes does not
significantly change the performance of stiff membranes
(i.e. large Ca). However, at very low stiffness (i.e. small Ca),
adding fiber reinforcements allow a 10% gain in propulsive
and lift efficiencies and no drop-off. This loss in efficiencies
near Ca= 0.05 for linear isotropic membranes corresponds
to the onset of flutter of the membrane and increased vortex
shedding in the wake, see Fig. 3. Figure 4C documents
the flutter in terms of the phase-averaged trailing edge
deflection of the membrane. Deflections are shown in the
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frame of reference of the undeformed membrane (see insert
in Fig. 4C). The corresponding power-spectral density
(PSD) of the vertical velocity of the trailing edge’s midpoint
also indicates flutter, see Fig. 4D. Membrane flutter
introduces high-frequency oscillations of the membrane
and shifts the peak frequency of the membrane above the
motion frequency. This high-frequency oscillation contains
ten times the energy of stiffer membranes. By introducing
fiber reinforcement to the membranes, the internal response
of the wing is changed (see below), and the aerodynamic
efficiency is improved.

These very flexible membranes also increase the high-
frequency mixing of the fluid, as measured by the enstrophy
E , the integral of the square-vorticity in the fluid domain.
We measure a strong inverse Pearson’s correlation ρE,η =

−0.976 with p-value of 0.00436 between the mean enstrophy
during a cycle and the propulsive efficiency at St= 0.5, see
SI Appendix Fig. S4. This is because excessive fluid mixing
requires significant power input from the wing without a
large gain in force production. The flutter induced by a very
flexible membrane generates the most enstrophy in the bat’s
wake, explaining the poor aerodynamic efficiency in Fig 4B
at very low Ca, whereas fiber-reinforced membrane limits
the flutter and thus the mixing in the wake, which allows
maintaining high aerodynamic efficiencies.

We document the internal response of the membrane
in terms of the direction and magnitude of the principal
strain in Fig. 4E. When the membrane has a low linear
stiffness (Ca= 0.05), fiber reinforcements greatly reduce the
maximum strain in the membrane from 9.4% to 4.1% due
to the loading-induced non-linear stiffening of the fiber
at high strain, see Fig. 2C. This effect is similar to an
increase in stiffness of a linear isotropic membrane without
requiring a thicker membrane, which explains the extremely
low thickness of the bat’s membrane. This loading-induced
stiffening does not activate for the Ca= 0.5 membrane
because the strains are too low. Fig. 4E also shows that
fiber-reinforcing the Ca= 0.05 membrane also reduces the
region of low coaxiality of the principal stress and strain in
the membrane by 60%. Coaxiality of the stress and strain
tensors corresponds to a state of deformation in which
the principal directions of both tensors are aligned [36].
This metric indicates the state of isotropy of stress and
strain that biological tissues appear to maximize through
internal microstructure evolution since it minimizes their
strain energy [37, 38]. This principle of energy minimization
is commonly considered a fundamental axiom in Nature.

Conclusion
In this paper, we performed fully-coupled computational
fluid-structure interaction simulations of a bat wing with
fully adjustable parametric kinematics and material model.
The parametric models are simplified compared to real-
life bat kinematics and wings, but capture the essential
nonlinear aspects of bat flight and mechanical membrane
behavior (see Fig. 2C-D), making these results relevant
to actual bat flight. These models allow us to separately

investigate the effects of the Strouhal and membrane
compliance on the flight performance of bats, as well as
giving detailed insights into the structural response of
the wing’s membrane. First, we show that bats operate
at a Strouhal number corresponding to a peak in both
propulsive and lift efficiencies. This peak occurs near
Strouhal number St∼ 0.5, which agrees well with the mean
Strouhal number of actual bats; see Fig. 1A. This peak
is also well above the range commonly associated with
optimal locomotion in birds and fish [16]. We demonstrate
that this optimum results from specific structures present in
the wake of the bat and that these occur at high flapping
speeds due to the highly three-dimensional nature of bat
kinematics. Indeed, when replicating the simulations under
symmetric-flapping kinematics, we find that the optimum
shift to the classical St∼ 0.3. This implies that the high
Strouhal number of our model results from the specialized
kinematics, not the material flexibility.

Finally, we show that reducing membrane stiffness
benefits propulsive efficiency. However, for very compliant
(i.e small Ca) linear isotropic membranes, we observe
membrane flutter and a severe deterioration of the
efficiencies. As a result, a strong inverse correlation
(ρE,η =−0.976) between mean flow enstrophy (mixing) and
propulsive efficiency is found. This suggests that membrane
wings made of linear isotropic elastic materials are most
efficient just before the onset of flutter, which we estimate
to occur around Ca∼ 0.1. By reinforcing the isotropic
membranes with fibers, which capture the response of
actual bat skin more accurately, flutter is delayed and high
aerodynamic efficiencies can be maintained for Ca< 0.1 .
This effect is similar to an increase in membrane stiffness
but without the resulting increase in skin thickness and
wing mass, which is likely to have a positive influence
on the cost of flight [11], and the nonlinear effect is more
pronounced when the loading on the membrane is large,
i.e. for high-speed flight. This suggests that the complex
fiber arrangement in the bat wing’s membrane has evolved
to optimize the structural response of the wing by limiting
flutter even when flying quickly, ultimately improving its
propulsive performance.

Methods

Bat flight kinematics
A parametric model for the wing’s motion lets us freely
prescribe the bat Strouhal number. Five degree-of-freedom
motion is imposed at the carpus and the rest of the
wing passively deforms under aerodynamic and inertial
loading. Our parametric kinematic model closely matches
experimental measurements, see Fig. 2D, capturing key
features of bat flapping such as the angled downstroke
plane and the biased power and recovery strokes.

The parameterized flight kinematics is expressed in a
fixed Cartesian or global coordinate system (OXY Z) and
describes the motion and orientation of the carpus (oxyz)

coordinate system, see Fig. 2B.
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The time-dependent angles and translation applied to
the carpus are given by

X (t) =AX sin(2πft),

Y(t) =AY (cos(2πft)− 1) ,

Z(t) =AZ sin(2πft),

θ(t) =Aθ (c1 cos(2πft+ c2) + (1− c1)) ,

ϕ(t) =Aϕ sin(2πft).

(5)

where X (t) is the surge, Y(t) the sway, Z(t) the heave,
θ(t) the pitch and ϕ(t) the roll. Pitch and roll are
rotations around the Y and X-axis, respectively. The
non-dimensional amplitudes are AX /b=AY/b= 0.10 and
AX /b= 0.15 where b is the wing span. These motion
amplitudes have been derived from a fit of motion of
the wing such that the stroke plane angle is ∼ 60◦ from
the horizontal, typical of medium speed flight of bats [4]
for a Glossophaga soricina, or Palla’s long-tongued bat. The
roll amplitude is Aϕ = 30◦, taken from the mean stroke
amplitude in [13]. Other authors have reported similar
kinematics [4], see Fig. 2. The contraction/extension of the
wing span during the down/up-stroke, resulting from the
variation of the Y position of the carpus is AY/b∼ 10%.

Optimal Pitch Profile

The effective angle of attack measures the angle between
the flow and the wing at the 3/4 chord, α3/4, during
motion and includes a dynamic upwash correction. For
more details, the reader is referred to [28]. To model
the different flow conditions along the span, we apply a
strip-theory approach, where the wing is discretized in 10
spanwise strips of equal width. For each strip, we compute
the effective angle of attack of a point located at 3/4 chord in
the middle of the span of the strip. The total effective angle
of attack of the wing is found by an area-weighed average
of the different strips.

Although this method cannot accurately predict the
forces during a cycle, it allows us to estimate the effective
angle of attack seen by the wing during a cycle. We can
now optimize our analytic form for θ(t) given by Equ. 5 to
achieve the target angle of attack profile α̃3/4 by minimizing
a constrained equation of the form

Aθ, c1, c2 → minimize
Aθ,c1,c2∈R

∥α3/4(Aθ, c1, c2)− α̃3/4∥2 (6)

with Aθ ∈ [0, π/2], c1 ∈ [0.5, 1] and c2 ∈ [−π/2, π/2]. We use
a simple form for the target effective angle of attack, where
the upstroke effective angle of attack must vanish and reach
target value αmax during the downstroke

α̃3/4 =

{
αmax if t/T > 0.5,

0 else.
(7)

We set αmax = 20; a common mean effective angle of
attack during downstroke [39]. The minimization procedure
is carried out for each Strouhal number and results in
various amplitudes Aθ , but the other two values were
constantly around c1 ∼ 0.8 and c2 ∼−π/8. Therefore, we

fixed those values and repeated the optimization for Aθ

only, resulting in Aθ = [0.28, 0.45, 0.63, 0.80, 0.98] radians
for St= [0.3, 0.4, 0.5, 0.6, 0.7], respectively. Sample results
of the optimization are presented in SI Appendix Fig.S2,
showing that this method generates roughly constant lift
during the down-stroke and very small lift in the upstroke,
consistent with actual bat flight [9].

Hyperelastic formulation
To investigate the effect of membrane compliance and fiber
reinforcement on flight efficiency, we use two constitutive
models for the membrane; a linear isotropic elastic model
and a hyperelastic fiber-reinforced model calibrated on
experimentally obtained bat wing membrane properties
[18, 31], see Fig. 2C. The fiber-reinforced model introduces
microstructural and loading-induced anisotropy in the
response of the membrane via a deformation invariant-
based hyperelastic strain energy density function [40]. This
type of constitutive approach is suited to model a wide class
of fibrous biological soft tissues [41–43], including bat wing
membrane [31].

Bones in the handwing are more flexible than the
humerus and radius and are orders of magnitude stiffer
than the membrane they support. In this work, we model
the digits with an isotropic material whose Cauchy number
is 3000 times larger than the stiffest membrane (i.e. Ca=
5), making it it effectively highly rigid compared to the
membrane. Additionally, the Cauchy scaling using Uref
ensures that the bone’s deformation is constant (and
minimal) across Strouhal numbers. The camber in the find
is thus only generated by the deformation of the wing’s
membrane. Digits typically have thicknesses much greater
than the membrane they support. Our simplified model
uses a uniform thickness throughout the whole wing and
scales the bone’s stiffness and density accordingly. To
model the fiber-reinforced membrane of the wing, we use
a constitutive model based on the strain energy density
function proposed by [40, 44]

ψ= ce
(
Ī1 − 3

)
+

1

D

(
J2 − 1

2
− ln J

)
+

∑
i=4,6

k1,i
2k2,i

[
exp

(
k2,i

[
Īi − 1

]2)− 1
] (8)

where ce is a material constant related to the matrix shear
modulus µ by ce = µ/2 and D is a material parameter
related to the matrix compressibility, or the bulk modulus
K = 2/D. I1 is the first invariant of the isochoric right

Cauchy-Green deformation tensor C =F
⊤
F , with F the

isochoric part of the deformation gradient F calculated as
F = J−1/3F , where J is the Jacobian or determinant of
the deformation gradient F . The anisotropic response of
the fiber is introduced through the undeformed mean fiber
vector ai and the pseudo-invariant of Ii = ai ·

(
Cai

)
, i=

4, 6, and represents the stretch along each fiber direction
(in this case we have two fiber families, denoted by their
invariant-associated index, 4 and 6). k2,i is a dimensionless
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positive parameter controlling the shape of the nonlinear
stiffening of the fibers’ mechanical response, and k1,i is
an elastic modulus-like parameter corresponding to fiber
stiffness. The constitutive parameters of this model are
obtained by numerical identification from experimentally
measured bat wing membrane properties [18].

The membrane material was assumed to be relatively
incompressible by setting the compressibility parameter
D= 20ce, leading to an equivalent ground-state Poisson’s
ratio ν = 0.475. The 20 ratio of bulk to shear properties
was sufficiently small to prevent numerical ill-conditioning
associated with volumetric locking in purely displacement-
based finite element formulations [45] whilst also ensuring
low compressibility.

Hyperelastic calibration

To identify the constitutive parameters in Equ. 8, we fit the
experimental data from [18, 31] to the stress-strain curves
from the model in 8 under the same equibiaxial loading.

The coefficients [ce, k1,4, k2,4, k1,6, k2,6] are determined
by a L2-norm minimization of the difference in the stress-
strain curves σii and the experimental stress/strain curve
σ̃ii

ce, k1,4, k2,4, k1,6, k2,6 → minimize︸ ︷︷ ︸
ce,k1,4,k2,4,k1,6,k2,6∈R+

∥σii − σ̃ii∥2.

(9)
In practice, we find that ce tends to take negative values,
as this would result in unphysical material behavior, we
fix its value to ce = 20. The different parameters found are
k1,4 = 33.5, k2,4 = 13.5, k1,6 = 102.7, k2,6 = 12.3.

These coefficients can then be injected into the numerical
model for the bat wing; the difficulty lies in scaling the
fitted parameters into a dimensionless form employed in
our numerical simulation. To scale the fitted hyperelastic
parameters and compare fiber-reinforced membranes with
isotropic membranes, we must be able to express both in
terms of Ca. For a linear isotropic elastic constitutive law,
E is readily available (and constant). For the transversely
isotropic hyperelastic fiber-reinforced membrane, E is a
function of the deformation (through C), making a simple
estimate unavailable. To alleviate this problem, we use an
initial tangent stiffness modulus approach to estimate the
initial stiffness of the hyperelastic material (in the limit of
vanishing strain), see Fig. 2C. This tangent stiffness modulus
approach ensures that linear isotropic and non-linear fiber-
reinforced membranes behave similarly in the small strain
limit and ultimately allow us to compare them. Finally, we
use Equ. 2 to express the different material coefficients at
different Cauchy numbers.

Numerical Setup
We perform all the simulations with our validated fluid-
structure interaction solver [29, 30] which couples an
immersed boundary finite volume method for the fluid with
a shell finite element method for the structure. Defining b as
the hand-wing span, the fluid domain consists of a uniform
region of dimensions [2.5, 1.2, 1.2]× b, centered around the
wing. Grid stretching fills the domain until it reaches a
total size of [12, 6, 6]× b. Because of the symmetry of the
problem, we only model the bat’s right wing and apply
a symmetry boundary condition on the centerline of the
domain (i.e., the middle of the bat’s body) to reduce the
computational load. A uniform free-stream velocity U is
imposed on the inlet of the fluid domain, while a zero
pressure gradient condition is used on the outlet. The no-
slip condition is applied to the immersed wing, and all other
fluid domain boundaries are threaded as free-slip walls.
The wing is modeled as an initially flat shell with constant
thickness h/b= 0.005 and the fixed-point fluid-structure
interaction problem is solved using a quasi-Newton scheme
until the relative residuals between consecutive coupling
iterations drop below 10−4 for both the displacements and
the forces [30]. This typically takes 2 iterations per time step,
as the mass ratio of the simulations is relatively large (small
added-mass effects). In our simulations, the flow evolves for
six cycles. However, we found excellent repeatability after
two cycles and we phase-average the quantities of interest
over the last four cycles. The cycle-averaged values are then
obtained by averaging the phase-averaged data.

Table 1 shows the results of a mesh convergence study for
a Strouhal number St= 0.5 and a Cauchy number Ca= 0.5.
We vary the mesh resolution Nx = b/∆x∈ [32, 64, 96, 128].
We compare the cycle-averaged forces coefficients to the
finest mesh and find that reducing the resolution toward
Nx = 128 changes the resulting forces by ∼ 1%. We use
the Nx = 96 mesh for all the simulations presented herein,
giving a non-dimensional wall distance y+ ∼ 5, assuming a
flat plate 1/7 power-law for the velocity profile. The total
fluid mesh count is around 12.8M control volumes. For the
structural model, 64 linear triangular elements along each
digit, giving a total mesh count of 13,093 elements.

Simulations were performed on the Iridis 5
supercomputer at the University of Southampton. Typical
simulations used 64 2.0-GHz Intel Skylake processors for the
fluid domain and 4 for the structural problem. Simulations
took 3-4 days to reach six motion cycles (at St= 0.5) at this
resolution with a fixed time step ∆tU/∆x= 0.2.

Data Accessibility. The data generated during this study and the analysis scripts have been uploaded to 10.4121/b6bb4c63-dc61-4a7d-
9ad9-66f82139604a.v1.
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Table 1. Convergence of aerodynamic force coefficients of the bat wing simulations for a Strouhal number St= 0.5 and Ca= 0.5 using a isotropic

linear elastic membrane for various resolutions.

Nx CT CL CPow ηP

32 0.0520 0.2179 0.1626 31.97%
64 0.0880 0.2013 0.2069 42.52%
96 0.0975 0.1881 0.2174 44.84%
128 0.0998 0.1914 0.2204 45.28%
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