Sparse machine learning assisted deep computational insights on the mechanical properties of graphene with intrinsic defects and doping
Sparse machine learning assisted deep computational insights on the mechanical properties of graphene with intrinsic defects and doping
Despite the tremendous capabilities of Molecular dynamics (MD) simulations, they suffer from the limitation of computationally intensive and time-consuming nature. This hinders the seamless discovery of nanomaterials with adequate computational insights. Over the last decade, graphene has received widespread attention from the scientific community due to its extra-ordinary multi-physical properties, primarily focusing on the fundamental physics and chemistry along with the notion of scalable synthesis. However, the recent advances in machine learning have opened new frontiers in the research of such exceptional two-dimensional materials where the boundaries of different multi-physical properties could be pushed further efficiently with the assistance of deep computational intelligence. Here we propose a coupled machine learning (ML) based approach to investigate the critical mechanical responses of graphene by capturing the underlying physics of the system through an (D-)optimally minimum number of MD simulations. We have investigated five different internal and external controlling input features like temperature, strain rate, nanostructural defects, doping, and chirality, which influence the critical mechanical properties of graphene such as the constitutive behavior including fracture strength, failure strain and Young's modulus. Even though the aspect of computational intensiveness in molecular dynamics simulations is addressed through the coupled ML based approach, in a data-driven comprehensive analysis, it is often difficult to get complete information about the concerning input parameters including their statistical distributions and occurrence bounds. Thus, it becomes difficult to carry out computational investigations based on powerful techniques like Monte Carlo simulation. To mitigate this lacuna, here we have exploited the ML-assisted approach for developing a level-based fuzzy framework at nano-scale under sparse input descriptions. In this article, we first demonstrate the computational efficiency achieved through the proposed ML based framework without compromising quality of the analysis, followed by data-intensive correlation analysis, sensitivity and uncertainty quantification considering various levels of the influencing system parameters, revealing detailed computational insights on mechanical properties of graphene including the coupled interactive influence of intrinsic defects and doping.
D-optimal design algorithm, Doping in 2D materials, Large-scale data-driven analysis under sparse input descriptions, Machine learning assisted molecular dynamics simulations, Mechanical properties of defective graphene
Gupta, K. K.
52bd46e7-a3fb-4b61-8ef2-73a1d57fe2b4
Mukhopadhyay, T.
2ae18ab0-7477-40ac-ae22-76face7be475
Roy, A.
e3867383-3a62-47eb-9ce2-6139098cb20b
Roy, L.
51d8e699-f9c0-4735-a3d1-405361ecab2a
Dey, S.
1a6c254a-af1c-4ee6-b3a0-e4dc82839395
1 August 2021
Gupta, K. K.
52bd46e7-a3fb-4b61-8ef2-73a1d57fe2b4
Mukhopadhyay, T.
2ae18ab0-7477-40ac-ae22-76face7be475
Roy, A.
e3867383-3a62-47eb-9ce2-6139098cb20b
Roy, L.
51d8e699-f9c0-4735-a3d1-405361ecab2a
Dey, S.
1a6c254a-af1c-4ee6-b3a0-e4dc82839395
Gupta, K. K., Mukhopadhyay, T., Roy, A., Roy, L. and Dey, S.
(2021)
Sparse machine learning assisted deep computational insights on the mechanical properties of graphene with intrinsic defects and doping.
Journal of Physics and Chemistry of Solids, 155, [110111].
(doi:10.1016/j.jpcs.2021.110111).
Abstract
Despite the tremendous capabilities of Molecular dynamics (MD) simulations, they suffer from the limitation of computationally intensive and time-consuming nature. This hinders the seamless discovery of nanomaterials with adequate computational insights. Over the last decade, graphene has received widespread attention from the scientific community due to its extra-ordinary multi-physical properties, primarily focusing on the fundamental physics and chemistry along with the notion of scalable synthesis. However, the recent advances in machine learning have opened new frontiers in the research of such exceptional two-dimensional materials where the boundaries of different multi-physical properties could be pushed further efficiently with the assistance of deep computational intelligence. Here we propose a coupled machine learning (ML) based approach to investigate the critical mechanical responses of graphene by capturing the underlying physics of the system through an (D-)optimally minimum number of MD simulations. We have investigated five different internal and external controlling input features like temperature, strain rate, nanostructural defects, doping, and chirality, which influence the critical mechanical properties of graphene such as the constitutive behavior including fracture strength, failure strain and Young's modulus. Even though the aspect of computational intensiveness in molecular dynamics simulations is addressed through the coupled ML based approach, in a data-driven comprehensive analysis, it is often difficult to get complete information about the concerning input parameters including their statistical distributions and occurrence bounds. Thus, it becomes difficult to carry out computational investigations based on powerful techniques like Monte Carlo simulation. To mitigate this lacuna, here we have exploited the ML-assisted approach for developing a level-based fuzzy framework at nano-scale under sparse input descriptions. In this article, we first demonstrate the computational efficiency achieved through the proposed ML based framework without compromising quality of the analysis, followed by data-intensive correlation analysis, sensitivity and uncertainty quantification considering various levels of the influencing system parameters, revealing detailed computational insights on mechanical properties of graphene including the coupled interactive influence of intrinsic defects and doping.
This record has no associated files available for download.
More information
Accepted/In Press date: 4 April 2021
Published date: 1 August 2021
Additional Information:
Funding Information:
KKG is grateful for the financial support from MoE , India during the research work. TM acknowledges the initiation grants received from IIT Kanpur.
Publisher Copyright:
© 2021 Elsevier Ltd
Keywords:
D-optimal design algorithm, Doping in 2D materials, Large-scale data-driven analysis under sparse input descriptions, Machine learning assisted molecular dynamics simulations, Mechanical properties of defective graphene
Identifiers
Local EPrints ID: 483895
URI: http://eprints.soton.ac.uk/id/eprint/483895
ISSN: 0022-3697
PURE UUID: 1a332d3d-2379-460c-b105-efd03cf3b211
Catalogue record
Date deposited: 07 Nov 2023 18:07
Last modified: 06 Jun 2024 02:16
Export record
Altmetrics
Contributors
Author:
K. K. Gupta
Author:
T. Mukhopadhyay
Author:
A. Roy
Author:
L. Roy
Author:
S. Dey
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics